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Abstract
Human longevity is changing, but at what rate? Insurance claims are increasing, but at what rate?
Are the trends that we glean from data true or illusionary? The shocking fact is that true trends might
be quite different from those that we actually see from visualised data. Indeed, in some situations the
upward trends (e.g. inflation) may even look decreasing (e.g. deflation). In this paper, we discuss this
“trends in disguise” phenomenon in detail and offer a way for estimating true trends.
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1. Introduction

Trends of human longevity are changing (cf. e.g. Bebbington et al., 2011b; Green & Bebbington,
2013; references therein). Very likely, they are increasing, and might be even more increasing than
we have thought so far (cf. e.g. Ediev, 2011, 2013).

Non-life insurance claims are increasing, and perhaps faster than we have observed them
(e.g. Brazauskas et al., 2009; Fackler, 2011).

Health-care costs are increasing too, and at much higher rates than the general inflation
(e.g. Committee on Post-Employment Benefit Plans, 2012).

Owing to their importance, these issues have been actively researched and discussed by academics and
practitioners (e.g. Brickmann et al., 2005; Gesmann et al., 2013). The current consensus is that the problem
of estimating such trends with any degree of certainty is quite challenging. To illustrate the ongoing
discussion, next is a quote from Brickmann et al. (2005) that eloquently summarises the challenge:

Claims inflation is one of the key assumptions used by non-life actuaries. An appreciation of
claims inflation rates is needed in virtually all the areas that non-life actuaries get involved,
including reserving, pricing, planning and capital modelling. For reserving, an understanding
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of historical rates of claims inflation is of primary importance, whereas for planning, and
capital modelling, the actuary needs to understand the expected future rates. For pricing, both
the past and future rates are needed – the former in order to restate the past years on a
comparable basis to the current year, and the latter in order to project the results into the next
policy year. Like it or not, non-life actuaries cannot get away from claims inflation! Which is a
bit of a problem since it can be very difficult to measure. It is hard to accurately gauge the level
claims inflation has been running at in each past year. This is because the truth is hidden in the
claims data which is distorted by lots of other factors such as changes in the mix of business,
changes in limits, deductibles and policy terms, and changes in settlement patterns. And,
however difficult it is to put figures on past inflation rates, it is even harder to estimate the
future level of claims inflation.

Indeed, the shocking fact is that in various phenomena the true underlying trends, which we cannot
always observe, can be quite different from those that we actually see even when observations are affected
by simple “filters” such as truncation, in which case we only see an outcome if it is above a certain
threshold (e.g. an insurance deductible) and do not see it otherwise. Think also of layers such as “infant
mortality” and “senescent mortality” that have been of particular interest in the literature (e.g. Green &
Bebbington, 2013; references therein). We indeed find many layer-based considerations in diverse research
areas, such as demography, finance, insurance, reliability engineering, and survival analysis.

To illustrate the phenomenon, in Figure 1 we have produced six plots: the three left-hand panels
depict the yearly means and medians of true-but-unobserved insurance losses, and the three right-
hand panels depict the corresponding yearly means and medians of observed insurance losses, that is,
which are above a certain deductible. In section 2, we shall give details on the underlying distributions,
their parameters, and deductible values. At the moment, we only note that the assumed “true” inflation
rate is 10%/year (three left-hand panels), whereas the observed inflation rates are 0.76%, 0%, −1.05%
(mean based) and 0.58%, 0%, −0.53% (median based), which are depicted in the three right-hand
panels from top to bottom. Notice that the third inflation rate, which corresponds to the bottom right-
hand panel, is even negative, let alone zero as is the case in the middle right-hand panel.

To gain additional preliminary intuition on the distributions used in Figure 1, in Figure 2 we have
depicted the density plots of the three parent distributions (left-hand panel) alongside their corre-
sponding three truncated versions (i.e. after deductibles) in the right-hand panel. One can easily see
that while the three complete densities are markedly different, their truncated versions are almost
indistinguishable. Note that data truncation, estimation of risk capital, and other related issues have
also been actively researched in the literature on operational risk modelling (e.g. Cavallo et al., 2012;
Opdyke & Cavallo, 2012).

The purpose of this paper is to discuss the aforementioned “trends in disguise” phenomenon, and to
also offer a practical and efficient way for estimating the true underlying trends, such as the true
inflation rate of insurance claims. We have organised the rest of the paper as follows. In section 2, we
shall provide three distributions that illustrate different scenarios of trends in disguise. In particular,
for a positive underlying trend, we shall explore the cases when (i) the observed trend is positive but
smaller than the actual one, (ii) the observed trend is zero, and (iii) the observed trend is negative.
Furthermore, in section 3 we shall introduce a model and a statistical technique for finding the true
trend, derive the likelihood function for estimating unknown parameters, and present a numerical
example that deals with losses of an employee group under a prescription drug coverage. In section 4,
we shall summarise the findings of this paper and offer a few concluding remarks.
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Figure 1. Trends in disguise: means and medians of unobserved (left-hand column) and observed
(right-hand column) insurance losses from selected distributions.
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2. How Much Can the True Trends be Disguised by the Observed Ones?

The immediate answer to the question posed in the title is that true and observed insurance losses (or
whatever variables we might be analysing) might exhibit trends that are comonotonic with different
rates, or even exhibit anti-comonotonic trends. Indeed, trends in observed variables can look slower than
in the true ones (section 2.1.), may even completely disappear (section 2.2.), and most disturbingly,
although trends in true unobserved variables might be positive, the trends of observed variables can be
negative (section 2.3.). Moreover, as we shall see in the following three subsections, the loss models,
which our illustrations are based upon, are attractive and practically sound parametric distributions of
insurance claims.

2.1. Inflation can look diminished

Suppose that during each year j 2 f1; ¼ ; Jg for J consecutive years, we observe insurance claims
that follow the folded-t distribution, which has been successfully used by Brazauskas & Kleefeld
(2011, 2014) and Scollnik (2014) to model insurance data. In particular, the authors have
demonstrated that this distribution well captures the highly skewed and heavy-tailed nature of
insurance claims. The survival function of the folded-t distribution is given by

SFTðν;σÞðxÞ ¼ 2STðνÞðx=σÞ; x> 0 (1)

where STðνÞðxÞ ¼
Ð1
x fTðνÞðtÞ dt is the survival function of Student’s t distribution with ν degrees of

freedom, and its density fTðνÞ is defined by

fTðνÞðtÞ ¼
Γ ν + 1

2

� �
Γ ν

2

� �
Γ 1

2

� � 1ffiffiffi
ν

p 1

1 + t2=νð Þðν + 1Þ=2
; �1< t<1

where Г denotes the gamma function. (Note that v>0 is not required to be integer.) As follows from
Brazauskas & Kleefeld (2011, section 2), the mean and the median of XFTðν;σÞ � SFTðν;σÞ are given by
the formulas

E XFTðν;σÞ
� � ¼ σ

ffiffiffi
ν

p Γ ν�1
2

� �
Γ ν

2

� �
Γ 1

2

� � ; ν >1 (2)
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Figure 2. Complete probability density functions of the folded-t, Pareto, and polynomial Pareto
distributions (left-hand panel) and their truncated versions (right-hand panel).
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and

median XFTðν;σÞ
� � ¼ σF�1

TðνÞð0:75Þ (3)

where F�1
TðνÞ is the quantile function of Student’s t distribution with v degrees of freedom. Now we are

ready to provide our first bit of information about Figure 1.

Note 2.1. Let ν = 2, σ0 = 0.93, and σj ¼ σ0ð1 + rÞj�1 with r = 0.10. With σj instead of σ on the right-
hand sides of equations (2) and (3), the resulting means and medians of the losses for each of the
6 years j ¼ 1; 2; ¼ ; 6 are depicted in the top left-hand panel of Figure 1.

Furthermore, for the truncated (at d) and limited (at u) folded-t random variable, the survival
function can be derived as follows:

Sðd;u�FTðν;σÞðxÞ ¼P min XFTðν;σÞ; u
� �

> x j XFTðν;σÞ > d
� �

¼ P min XFTðν;σÞ; u
� �

> x;XFTðν;σÞ > d;XFTðν;σÞ > u
� �

P XFTðν;σÞ > d
� �

+
P min XFTðν;σÞ; u

� �
> x;XFTðν;σÞ >d;XFTðν;σÞ ≤ u

� �
P XFTðν;σÞ >d
� �

¼ P XFTðν;σÞ > u
� �

1 x<uf g + P x<XFTðν;σÞ ≤ u
� �

1 x<uf g
P XFTðν;σÞ > d
� �

¼ STðνÞðx=σÞ
STðνÞðd=σÞ

1 x< uf g; x>d ð4Þ

where the indicator 1fx<ug is equal to 1 when x<u and 0 when x≥u. (Note that Sðd;u�FTðν;σÞðxÞ ¼ 1 for
x≤d.) To derive formula for the mean of the truncated-and-limited folded-t random variable
Xðd;u�

FTðν;σÞ � Sðd;u�FTðν;σÞ, we use expression (4), integration by parts, and straightforward simplifications:

E Xðd;u�
FTðν;σÞ
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¼
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d
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And expression for the median of the truncated-and-limited folded-t random variable Xðd;u�
FTðν;σÞ � Sðd;u�FTðν;σÞ

follows directly from (4):

median Xðd;u�
FTðν;σÞ

h i
¼ min u; σF�1

TðνÞ 0:5 + 0:5FTðνÞðd=σÞ
� �n o

(6)
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In particular, when u ¼ 1, then we call Xðd;1�
FTðν;σÞ and Sðd;1�

FTðν;σÞ the truncated (at d) folded-t random
variable and survival function, respectively. The corresponding cumulative distribution function
(cdf) Fðd;1�

FTðν;σÞ for various parameter values is depicted in Figure 3.

The mean and the median of Xðd;1�
FTðν;σÞ can be derived from equations (5) and (6) by simply setting the

parameter u to ∞, in which case we obtain the following equations:

E Xðd;1�
FTðν;σÞ

h i
¼ σ

ν

ν�1
1 +

ðd=σÞ2
ν

 !
hTðνÞðd=σÞ; ν > 1 (7)

and

median Xðd;1�
FTðν;σÞ

h i
¼ σF�1

TðνÞ 0:5 + 0:5FTðνÞðd=σÞ
� �

(8)

where hTðνÞ ¼ fTðνÞ=STðνÞ denotes the hazard rate function of Student’s t distribution with v degrees of
freedom. Notice also that if we let d = 0 in equations (7) and (8), they become (2) and (3), respectively.

Note 2.2. Let ν = 2, σ0 = 0.93, and σj ¼ σ0ð1 + rÞj�1 with r = 0.10. Furthermore, let d = 4. Then
with σj instead of σ on the right-hand sides of equations (7) and (8), the means and the medians of the
truncated (at d) losses for each of the 6 years j ¼ 1; 2; ¼ ; 6 are depicted in the top right-hand panel
of Figure 1, with the inflation rates being 0.76% (mean based) and 0.58% (median based).

2.2. Inflation can become invisible

Suppose that during each year j 2 f1; ¼ ; Jg for J consecutive years, we observe insurance claims
that follow the classical Pareto distribution of the first kind, also known as a single-parameter Pareto
distribution in actuarial literature, which has the survival function

SPðα;θÞðxÞ ¼ θ

x

	 
α

; x ≥ θ (9)
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Figure 3. Complete-but-unobservable (left-hand panel) and truncated-and-observable (right-hand
panel) folded-t distributions of inflated losses with v = 1.5 and various values of σ.
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where α>0 and θ> 0 are the shape and scale parameters, respectively. Recall that the mean of this
distribution is αθ=ðα�1Þ, assuming of course α> 1, and the median is 21=αθ.

Note 2.3. Let α = 2, θ0 = 0.66, and θj ¼ θ0ð1 + rÞj�1 with r = 0.10. With θj instead of θ, the resulting
means and medians of the losses for each of the 6 years j ¼ 1; 2; ¼ ; 6 are depicted in the middle left-
hand panel of Figure 1.

Furthermore, the truncated (at d) and limited (at u) Pareto random variable has the survival function
(cf. equation (4)):

Sðd;u�Pðα;θÞðxÞ ¼
d
x

	 
α

1fx< ug; x> d

Hence, the corresponding mean and median are

E Xðd;u�
Pðα;θÞ

h i
¼ αd

α�1
� uðd=uÞα

α�1
; α> 1 (10)

and

median Xðd;u�
Pðα;θÞ

h i
¼ min u; 21=αd

n o
(11)

Also, when u ¼ 1, then we call Xðd;1�
Pðα;θÞ and Sðd;1�

Pðα;θÞ the truncated (at d) Pareto random variable and
survival function, respectively. The corresponding cdf Fðd;1�

Pðα;θÞ for various parameter values is depicted
in Figure 4.

Note 2.4. Let α = 2, θ0 = 0.66, and θj ¼ θ0ð1 + rÞj�1 with r = 0.10. Furthermore, let d = 4 and
u ¼ 1. As equations (10) and (11) are independent of θj’s, we have constant means and medians of
the truncated (at d) losses for each of the 6 years j ¼ 1; 2; ¼ ; 6. This fact is seen from the middle
right-hand panel of Figure 1, where the inflation rate is 0%.
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Figure 4. Complete-but-unobservable (left-hand panel) and truncated-and-observable (right-hand
panel) Pareto distributions of inflated losses with α ¼ 0:5 and various θ.
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2.3. Inflation can look even like deflation

Suppose that during each year j 2 f1; ¼ ; Jg for J consecutive years, we observe insurance claims
that follow what we call the polynomial Pareto (PP) distribution, which has the survival function

SPPðα;β;θÞðxÞ ¼ θ

x

	 
α

exp β
1
x
� 1
θ

	 
� �
; x ≥ θ (12)

with parameters α> 0, β ≥ 0, and θ>0. Notice that when β ¼ 0, then formula (12) reduces to (9)
and thus the PP model becomes the standard Pareto one. We note in passing that we have created
the PP distribution specifically for the purpose of illustrating the message stated in the title of
this subsection. For other similar distributions, we refer to, for example, Lai & Xie (2006) and
Marshall & Olkin (2007).

Note 2.5. The hazard rate function of the PP distribution is

hPPðα;β;θÞðxÞ ¼ α

x
+

β

x2
; x ≥ θ

which can be viewed as a polynomial of the standard Pareto hazard rate function 1/x, and this
explains why we have decided to call this distribution “polynomial Pareto”. Note also that hPP is a
special case of the class of rational hazard rate functions (cf. e.g. Bebbington et al., 2011a).

Similar to the previous subsection, the truncated (at d) and limited (at u) PP random variable has the
survival function

Sðd;u�PPðα;β;θÞðxÞ ¼
d
x

	 
α

exp β
1
x
� 1
d

	 
� �
1fx< ug; x>d

Unlike in the previous sections, the mean and the median of this distribution cannot be reduced to
simple closed-form expressions, and thus we have to evaluate them numerically.

In addition, when u ¼ 1, then we call Xðd;1�
PPðα;β;θÞ and Sðd;1�

PPðα;β;θÞ the truncated (at d) polynomial Pareto
random variable and survival function, respectively. The corresponding cdf Fðd;1�

PPðα;β;θÞ for various
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Figure 5. Complete-but-unobservable (left-hand panel) and truncated-and-observable (right-hand
panel) polynomial Pareto distributions of inflated losses with α ¼ 0:5 and various values of β and θ.
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parameter values is depicted in Figure 5. Now we are ready to present our last bit of information
about Figure 1.

Note 2.6. Let α = β = 2, θ0 = 1, βj ¼ β0ð1 + rÞj�1 and θj ¼ θ0ð1 + rÞj�1 with r = 0.10. The means and
the medians of the ground-up losses for each of the 6 years j ¼ 1; 2; ¼ ; 6 are depicted in the bottom
left-hand panel of Figure 1. Furthermore, with d = 4 and u ¼ 1, the means and the medians of the
truncated (at d) losses for each of the 6 years j ¼ 1; 2; ¼ ; 6 are depicted in the bottom right-hand
panel of Figure 1, with the inflation rates being −1.05% (mean based) and −0.53% (median based).

3. Estimating the True Inflation

The results and discussions of the previous sections show that we cannot rely on eyeballing graphs
for determining the true inflation rate – a model needs to be developed and appropriate statistical
tools used. Below, we shall suggest an effective method for gleaning out true underlying inflation
rates from data extracted from layers, such as those above a deductible or, more generally, above a
specified threshold.

3.1. Model

Suppose that during each year j 2 f1; ¼ ; Jg for J consecutive years, random variables Yj;1; ¼ ;Yj;Nj

manifest themselves but not all of them are actually seen. Namely, we can see only those Yj;k’s whose
values are in a certain layer, say in the interval ðdj; uj�; we can think of the lower limit dj as an
insurance deductible and of the upper limit uj as an insurance policy limit. Hence, we observe the
random variables:

Xj;k ¼ minfYj;k; ujg j Yj;k > dj

and there are Mj ¼
PNj

i¼1 1fYj;k > djg of them with values either Yj;k or uj depending on the mag-
nitude of Yj;k.

Denote the distribution of the counts Nj by Pj ¼ fPjðnÞ; n ¼ 0; 1; 2; ¼ g. These integer-valued
random variables Nj are not observable; only Mj’s are observable. Denote the distribution of Mj by
Qj ¼ fQjðmÞ;m ¼ 0; 1; 2; ¼ g, which is given by the formula

QjðmÞ ¼
X1
n¼m

PjðnÞ
n

m

 !
Smj ðdjÞFn�m

j ðdjÞ

The following examples (cf. e.g. Klugman et al., 2008) illustrate the distributions Pj and Qj:

E1. If PjðnÞ ¼ Poissonðn j λjÞ for all n ¼ 0; 1; 2; ¼ , where λj > 0 is a parameter, then QjðmÞ ¼
Poissonðn j λjSjðdjÞÞ for all m ¼ 0; 1; 2; ¼ .

E2. If PjðnÞ ¼ NBðn j αj; θjÞ for all n ¼ 0; 1; 2; ¼ , where αj > 0 and θj > 0 are parameters, and NB
stands for the negative binomial distribution, then QjðmÞ ¼ NBðn j αj; θjSjðdjÞÞ for all
m ¼ 0; 1; 2; ¼ .

E3. If PjðnÞ ¼
Ð
Poissonðn j λÞdGjðλÞ for all n ¼ 0; 1; 2; ¼ , where Gj is the cdf of a random

variable, then QjðmÞ ¼ Ð Poissonðn j λSjðdjÞÞdGjðλÞ for all m ¼ 0; 1; 2; ¼ .

Note 3.1. When Gj is degenerate at the point λj > 0, then (E3) reduces to (E1), and when Gj is the
gamma distribution with parameters αj > 0 and θj > 0, then (E3) reduces to (E2).
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Assume that all the underlying random variables Yj;k are independent, have densities, and let, for
each year j 2 f1; ¼ ; Jg, the densities of the random variables Yj;1;Yj;2; ¼ be fj. The dependence of
the density fj on j stems from the underlying problem. Namely, we assume that there is a certain trend
~σ ¼ ðσ1; ¼ ; σJÞ from year to year (think of inflation) and thus there is an underlying cdf F0 such that
the cdf of Yj,k is equal to F0ðy=σjÞ, and thus

fjðyÞ ¼ 1
σj
f0

y
σj

	 


where f0 is the density of F0. We also assume that Yj;1;Yj;2; ¼ are independent of Nj, that is, the
claim severities are independent of the frequencies. This is a common assumption in the classical
actuarial literature (cf. e.g. Klugman et al., 2008), but there are of course many research papers that
depart from it (cf. e.g. Sendova & Zitikis, 2012; Li & Sendova, 2014; and references therein). Our
task is to estimate the trend ~σ, keeping in mind that we observe only Xj;k’s, but not Yj;k’s.

3.2. Estimation

To estimate the trend ~σ ¼ ðσ1; ¼ ; σJÞ, we use the maximum likelihood technique and thus need to
derive the complete likelihood, which is

L ¼
YJ
j¼1

QjðmjÞ
Ymj

k¼1

fjðyj;kÞ
SjðdjÞ

	 
1 dj < yj;k < ujf g SjðujÞ
SjðdjÞ
	 
1 yj;k ≥ ujf g

¼
YJ
j¼1

QjðmjÞ SjðujÞ
Pmj

k¼1
1fyj;k ≥ ujg

SjðdjÞmj

Ymj

k¼1

fj yj;k
� �1 dj < yj;k <ujf g ð13Þ

where SjðyÞ ¼ 1�FjðyÞ and mj is the number of observed yj;k’s, that is, all of those yj;k’s are above dj.

While the second equation of (13) is a simple rearrangement of the terms in the previous expression,
the first equation needs some explanation. We begin by noting that, conditionally, on the number
Mj = mj of observations, the inside product on the right-hand side of the first equation multiplies the
likelihoods of all the observed values: if a value yj;k has been recorded, then its conditional on being
above dj likelihood is f ðyj;kÞ=SjðdjÞ, but if the value uj has been recorded, then we do not know the
actual value of the corresponding loss yj,k, except that it is somewhere on or above uj, and thus
the conditional likelihood becomes SjðujÞ=SjðdjÞ. As the entire inside product is the conditional likeli-
hood upon Mj ¼ mj, we turn it into an unconditional likelihood by multiplying it by the probability
QjðmjÞ of Mj ¼ mj. As the losses over the J years are independent by assumption, we obtain
the complete likelihood by multiplying the individual j ¼ 1; ¼ ; J likelihoods. This leads us to the
complete likelihood given by formula (13).

As we observe the random variables Xj;k ¼ minfYj;k; ujg j Yj;k > dj, we next rewrite formula (13) in
terms of xj;k’s:

L ¼
YJ
j¼1

QjðmjÞ SjðujÞ
Pmj

k¼1
1fxj;k¼ujg

Sj dj
� �mj

Ymj

k¼1

fj xj;k
� �1fxj;k < ujg (14)

We shall use formula (14) in our illustrative example below.
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3.3. Example

We illustrate the above ideas by considering losses of an employee group under a prescription drug
coverage. Specifically, we investigate losses during the 5 consecutive years 2008–2012 for drugs
prescribed to treat cancer. The data set is confidential, and we thus do not elaborate here on its
source, nor provide further details, except that we do provide the necessary summary statistics that
are sufficient for our following analysis and also for the appreciation of results.

We proceed as follows. Even though our data set is complete, and we do use it to check the accuracy
of our findings based on the above-described methodology, we start our considerations by first
constructing a new data set by artificially imposing a deductible of 1,000 dollars on the original data.
Table 1 provides summaries of the complete as well as of the truncated data that result from

Table 1. Summary of cancer drug loss data.

Year Exposure Number of losses Average of losses Number of losses>1,000 Average of losses> 1,000

2008 52,239 3,083 449.44 444 2,190.23
2009 52,950 2,968 510.64 445 2,363.51
2010 52,853 3,087 488.20 450 2,386.79
2011 52,158 3,208 496.55 454 2,521.35
2012 50,649 3,366 568.04 503 3,053.64
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Figure 6. Histograms of the logarithms (base 10) of cancer drug losses for the 5 years from 2008
to 2012.
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imposing the noted deductible. We see that there are roughly 50,000 life-years of exposure in each
calendar year, meaning that ∼50,000 individuals are covered by the prescription drug insurance
coverage. While the number of cancer drug losses seems high, we must recognise that a given
individual may have multiple prescription drug losses in a year. Notice that a fairly small fraction of
losses exceed 1,000, and that the average loss among losses above 1,000 is large owing to the long
tail of the loss distribution.

Histograms of the losses in each calendar year are given in the five panels of Figure 6, where we have
found that it is more informative to examine histograms of the logarithms (base 10) of the losses than
the histograms of the losses themselves. The distributions of the losses in excess of 1,000 are then
delineated by the bars of the histograms that correspond to values greater than 3.

While the histograms provide information about the loss distributions, it is difficult to glean any
information about the trend in loss amounts. We can calculate crude estimates of the inflation rate
using the averages shown in Table 1 by the formula

brcrude ¼ average loss in 2012
average loss in 2008

	 
1=4

�1

Using the averages of all loss amounts, the crude inflation rate estimate is 0.0450, but if we assume
that we observe only the losses above 1,000, then the crude inflation rate estimate becomes 0.0757.
We know, however, that this estimate is not an appropriate estimate because it does not correctly
allow for the truncation.

In order to improve upon our estimate while still using only the observed losses that exceed 1,000,
we employ the model developed above. Namely, we assume that in each year j ¼ 2008; ¼ ; 2012,
the number of losses follows the Poisson distribution with the mean λj ¼ λej, where ej is the exposure
in the year j (see Table 1). Then the number of losses above 1,000 in the year j has a Poisson
distribution with the mean λjSjð1; 000Þ. We further assume that losses in each year j are independent
and identically distributed, and follow the folded-t distribution with parameters v and
σj ¼ σð1 + rÞj�2008. We have four parameters to estimate: λ, r, ν, and σ. Using the likelihood technique
described above, we obtain the estimates reported in Table 2. A few comments follow.

First, note that the model-based estimate 0.0411 of the true inflation rate is close to the “true” crudely
estimated rate 0.0450, which is based on the entire data set. Note also that the other crude estimate
0.0757, which is based on the truncated data, is quite different from the model-based estimate.

Of course, we should bear in mind that estimates depend on how well our model describes the loss
distribution for each year. We can check this for losses above 1,000. Having said this, we want to point out

Table 2. Maximum likelihood estimates of parameters with approximately 95% likelihood
ratio confidence intervals.

Parameter Estimate 95% CI

λ 0.0355 (0.0341, 0.0370)
r 0.0411 (0.0269, 0.0556)
ν 1.61 (1.55, 1.67)
σ 520 (503, 538)
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that given the complete data set that we actually have, we do know the loss amounts even below 1,000, but
in general, we would not normally have any information about the losses below the deductible. Hence, our
conclusions about loss trends would depend on some aspects of the model that may not be verifiable.

Next, our data on losses above 1,000 provide information about the product λSjð1; 000Þ, but not
about λ and Sjð1; 000Þ individually. Hence, our estimates of λ and Sjð1; 000Þ may be quite poor even
if our estimates of the rate at which losses above 1,000 occur and of the conditional distribution of
losses above 1,000 happen to be quite good.

Finally, it would appear at least in our real-life illustrative example that having data for 5 years is not
enough to obtain a very good estimate of the trend: the year-to-year variation in the loss distribution
is too great. Nevertheless, the illustrative example has successfully demonstrated that with good care
of the matter, one can, nevertheless, extract a reasonably accurate estimate of the true inflation rate
even from data layers, such as that above deductible.

4. Concluding Notes

In this paper, we have studied the “trends in disguise” effect that is caused by data truncation. In
particular, it was shown that depending on the underlying probability distribution, the actual and
observed trends can exhibit comonotonic (but with different rates) as well as anti-comonotonic patterns.
In addition, we have constructed a model and derived its likelihood function that can be successfully used
for estimating the true underlying trends. A numerical illustration of the proposed methodology has been
provided using a data set of losses of an employee group under a prescription drug coverage.

The paper also suggests several avenues for future research. For example, it would be of interest to
examine large-sample asymptotic as well as small-sample-based properties of the maximum like-
lihood estimator of the underlying trend, as well as of other parameters of interest. Sensitivity of the
proposed model to the distributional assumptions should also be explored. Furthermore, it would be
useful to develop robust model-fitting procedures, and to evaluate their performance. Answering
these and other related questions, however, has been beyond the scope and space of the current
paper, owing to the inevitable technical complexity of considerations.

Acknowledgements

We thank the anonymous referee for insightful comments and suggestions that helped us to improve the
paper. The first author gratefully acknowledges the hospitality of the Department of Statistical and
Actuarial Sciences at the University of Western Ontario, where all three authors met for 2 weeks in the
fall of 2013 and started working on this project. The second and third authors also acknowledge the
support of their research by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

References
Bebbington, M., Lai, C.D., Murthy, D.N.P. & Zitikis, R. (2011a). Rational polynomial hazard

functions. International Journal of Performability Engineering, 6, 35–52.
Bebbington, M., Lai, C.D. & Zitikis, R. (2011b). Modelling deceleration in senescent mortality.

Mathematical Population Studies, 18, 18–37.
Brazauskas, V., Jones, B.L. & Zitikis, R. (2009). When inflation causes no increase in claim

amounts. Journal of Probability and Statistics, 2009, 1–10.

Vytaras Brazauskas et al.

70

https://doi.org/10.1017/S1748499514000232 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499514000232


Brazauskas, V. & Kleefeld, A. (2011). Folded- and log-folded-t distributions as models for insurance
loss data. Scandinavian Actuarial Journal, 2011(1), 59–74.

Brazauskas, V. & Kleefeld, A. (2014). Authors’ reply to “Letter to the Editor: Regarding folded
models and the paper by Brazauskas and Kleefeld (2011)” by Scollnik. Scandinavian Actuarial
Journal, 2014(8), 753–757.

Brickmann, S., Forster, W. & Sheaf, S. (2005). Claims inflation – uses and abuses, GIRO
Convention 2005, October 18–21, 2005. Blackpool, England.

Cavallo, A., Rosenthal, B., Wang, X. & Yan, J. (2012). Treatment of the data collection threshold in
operational risk: a case study with the lognormal distribution. Journal of Operational Risk,
7(1), 3–38.

Committee on Post-Employment Benefit Plans (2012). Health care trend rate. Educational Note,
May 2012, Canadian Institute of Actuaries, Ottawa, Canada.

Ediev, D.M. (2011). Life expectancy in developed countries is higher than conventionally estimated.
Implications from improved measurement of human longevity. Journal of Population Ageing,
4, 5–32.

Ediev, D.M. (2013). Decompression of period old-age mortality: when adjusted for bias, the variance
in the ages at death shows compression. Mathematical Population Studies, 20, 137–154.

Fackler, M. (2011). Inflation and excess insurance, ASTIN Colloquium 2011, Parallel Session 8,
June 19–22, 2011, Madrid, Spain.

Gesmann, M., Rayees, R. & Clapham, E. (2013). A known unknown, The Actuary, 2 May.
Available at http://www.theactuary.com/features/2013/05/a-known-unknown/.

Green, R.M. & Bebbington, M.S. (2013). A longitudinal analysis of infant and senescent mortality
using mixture models. Journal of Applied Statistics, 40(9), 1907–1920.

Klugman, S.A., Panjer, H.H. & Willmot, G.E. (2008). Loss Models: From Data to Decisions,
3rd edition. Wiley, New York, NY.

Lai, C.D. & Xie, M. (2006). Stochastic Ageing and Dependence for Reliability. Springer, New York,
NY.

Li, Z. & Sendova, K.P. (2014). On a ruin model with both interclaim times and premiums depending
on claim sizes. Scandinavian Actuarial Journal, 2013, http://dx.doi.org/10.1080/03461238.
2013.811096.

Marshall, A.W. & Olkin, I. (2007). Life Distributions: Structure of Nonparametric, Semiparametric,
and Parametric Families. Springer, New York, NY.

Opdyke, J.D. & Cavallo, A. (2012). Estimating operational risk capital: the challenges of truncation,
the hazards of MLE, and the promise of robust statistics. Journal of Operational Risk,
7(3), 3–90.

Scollnik, D.P.M. (2014). Letter to the Editor: regarding folded models and the paper by Brazauskas
and Kleefeld (2011). Scandinavian Actuarial Journal, 2014(3), 278–281.

Sendova, K.P. & Zitikis, R. (2012). The order-statistic claim process with dependent claim
frequencies and severities. Journal of Statistical Theory and Practice, 6(4), 597–620.

Trends in disguise

71

https://doi.org/10.1017/S1748499514000232 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499514000232

	Trends in disguise
	1. Introduction
	Figure 1Trends in disguise: means and medians of unobserved (left-hand column) and observed (right-hand column) insurance losses from selected distributions.
	2. How Much Can the True Trends be Disguised by the Observed Ones?
	2.1. Inflation can look diminished

	Figure 2Complete probability density functions of the folded-t, Pareto, and polynomial Pareto distributions (left-hand panel) and their truncated versions (right-hand panel).
	2.2. Inflation can become invisible

	Figure 3Complete-but-unobservable (left-hand panel) and truncated-and-observable (right-hand panel) folded-t distributions of inflated losses with v��&#x003D;��1.5 and various values of &#x03C3;.
	Figure 4Complete-but-unobservable (left-hand panel) and truncated-and-observable (right-hand panel) Pareto distributions of inflated losses with  =0.5 and various &#x03B8;.
	2.3. Inflation can look even like deflation

	Figure 5Complete-but-unobservable (left-hand panel) and truncated-and-observable (right-hand panel) polynomial Pareto distributions of inflated losses with  =0.5 and various values of &#x03B2; and &#x03B8;.
	3. Estimating the True Inflation
	3.1. Model
	3.2. Estimation
	3.3. Example

	Table 1Summary of cancer drug loss�data.
	Figure 6Histograms of the logarithms (base 10) of cancer drug losses for the 5 years from 2008 to�2012.
	Table 2Maximum likelihood estimates of parameters with approximately 95&#x0025; likelihood ratio confidence intervals.
	4. Concluding Notes
	ACKNOWLEDGEMENTS
	References


