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This paper theoretically studies the effect of eccentricity on the conditions of capillary
emptying (determined by critical Bond number) in a horizontal annular tube in a downward
gravity field. Experiments are conducted to compare with theoretical results. We find that
non-horizontal eccentricity can lead to the occurrence of a re-entrant liquid-state transition
(from liquid non-occlusion to liquid plug to liquid non-occlusion) with increasing Bond
number, when the eccentricity (e) or inner-to-outer radius ratio (χ ) is large enough,
and the two liquid non-occlusion states correspond to different emptying mechanisms
dominated by the gravity effect and the ‘wedge’ effect, respectively. Existence of the
re-entrant transition is accompanied by occurrence of unconditional liquid non-occlusion
at large enough or small enough contact angles regardless of Bond numbers. The critical
Bond numbers at a contact angle γ for vertical upward eccentricity are equal to those
at a contact angle 180° − γ for vertical downward eccentricity. In a parameter space (γ ,
e/(1 − χ )), the region with the re-entrant transition becomes larger with the eccentric angle
varying from 0° (horizontal) to 90° (vertical). Optimization of geometrical parameters
and inner and outer contact angles can lead to better effect of capillary emptying. This
paper provides a very effective scheme for removing a liquid blockage from a capillary in
optofluidics/microfluidics.
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1. Introduction

Some small multiphase fluid containers may be blocked by liquid or gas. Fluid plugs occur
in many processes, and may shut down the oxidizer flow in fuel cells (Zhang, Yang &
Wang 2006), cause gas embolization in cardiovascular vessels (Lee, Wu & Li 2020), or
degrade the transporting efficiency of the liquid propellant in fuel tanks of spacecraft under
microgravity (Chen & Collicott 2006). It is of great importance to remove such fluid plugs
by capillary emptying, which is capillary non-occluding and does not mean the tube would
completely empty here.

Generally, the multiphase fluid interface deformation in a capillary can be affected
considerably by a transverse body force (if the force exists). The critical Bond number
is used as the critical parameter of determining the existence or non-existence of capillary
plugs in a horizontal tube in a gravity field. The Bond number is given by

Bo = δ2/l2ca, (1.1)

where δ is the characteristic length of the capillary tube with a cross-section of arbitrary
geometry and lca = √

σ/ρg is the capillary length, with surface tension σ between
liquid and gas, (positive) density difference ρ between liquid and gas and gravitational
acceleration g. Generally, in a horizontal open or concentric annular capillary in a
downward gravity field (Manning, Collicott & Finn 2011; Manning & Collicott 2015;
Rascón, Parry & Aarts 2016; Zhu, Zhou & Zhang 2020; Zhou et al. 2021), the criterion
for the non-existence of capillary plugs is

Bo > Boc, (1.2)

where Boc is the critical Bond number. In this case, the emptying of a capillary tube is
dominated by the gravity effect. The characteristic lengths of capillaries corresponding to
the critical Bond numbers during investigation of the problem are mainly of millimetre
or micrometre (see Parry et al. 2012) sizes. From the theory in a transverse body
force field (Manning et al. 2011; Manning & Collicott 2015; Rascón et al. 2016; Zhu
et al. 2020; Zhou et al. 2021) developed from the theory in microgravity (Concus &
Finn 1969; Finn 1986), the critical Bond number can be obtained at a given contact
angle.

New shapes of tubes for liquid non-occlusion in a transverse body force field have been
investigated theoretically. A flattened ice-cream cone cylinder was designed by Manning
et al. (2011) for liquid non-occlusion. The critical Bond number for a rectangular tube
was found to decrease when using a large enough width-to-height ratio of cross-section
(Manning & Collicott 2015) and to further decrease when reducing the bottom contact
angle and a side contact angle and increasing the top contact angle and the other side
contact angle (Zhu et al. 2020). The critical Bond number was able to be changed by using
other shapes (ellipse and triangle) and different orientations (Rascón et al. 2016). For an
existing small tube facing the problem of liquid plugs, how to remove the existing liquid
plugs is of great importance. However, replacing a liquid-plugged tube by a new tube of
a different shape having larger emptying capacity is a difficult process. Instead, a simple
possible measure should be sought. In this situation, the idea of using an eccentrically
positioned rod to avoid liquid plugs in zero gravity was proposed by Smedley (1990) and
Pour & Thiessen (2019); Zhou et al. (2021) found that the insertion of a rod at the centre
of a horizontal liquid-plugged tube in a downward gravity field may help to remove liquid
plugs from the tube.

Little experimental work about fluid occlusion and emptying in a capillary tube has been
conducted to date. Verma et al. (2020) conducted experimental research on the generalized
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emptying criteria for finite-length capillaries by taking the contact line pinning at the sharp
edge into consideration, and their experiment properly validates the theoretical conclusion
that a different bottom contact angle from the top contact angle can cause the critical
Bond number to vary (Parry et al. 2012; Zhu et al. 2020). Zhou et al. (2021) performed
an experimental study to validate their theoretical finding that the insertion of a rod into a
tube at its centre helps to remove liquid occlusion.

Special tube structure with a rod inserted into the tube at an eccentric position has
applications in other fluidic systems (Smedley 1990; Carrasco-Teja et al. 2008; Nikitin,
Wang & Chernyshenko 2009; Choueiri & Tavoularis 2015; Pour & Thiessen 2019; Renteria
& Frigaard 2020; Lamarche-Gagnon & Tavoularis 2021). It is worth noting that fluid
occlusion (in a liquid–gas system) even at zero Bond number can be prevented by
the use of eccentricity of annular tube cross-section (Smedley 1990; Pour & Thiessen
2019) due to the ‘wedge’ effect, i.e. the effect of wedge-shaped regions (Concus &
Finn 1969; Protiere, Duprat & Stone 2013; Reyssat 2015; Rascón et al. 2016). Can the
‘wedge’ effect (produced by the eccentricity) together with the gravity effect help to
remove (avoid) fluid occlusion from (in) a horizontal annular tube in a downward gravity
field for a larger range of contact angles? How do different eccentric angles influence
fluid non-occlusion? Is the conventional criterion (1.2) for the non-existence of capillary
plugs still applicable? Answers to these interesting questions have not been reported to
date.

In this paper, we take a horizontal tube structure with a rod inserted eccentrically into
a circular tube as an example to answer the above questions. We extend the research of
Zhou et al. (2021) to the effect of eccentricity on the emptying conditions of a horizontal
annular capillary, observe new phenomena that have not been reported in a horizontal
open (Manning et al. 2011; Manning & Collicott 2015; Rascón et al. 2016; Zhu et al.
2020) or concentric annular tube (Zhou et al. 2021) or in an eccentric annular tube in zero
gravity (Smedley 1990; Pour & Thiessen 2019) and find greater emptying capacity than
in Zhou et al. (2021) to a large extent. In § 2, the mathematical model for a tube with a
general cross-section of irregular geometry (e.g. an eccentric annulus) is developed. In
§ 3, the eccentricity effect on the critical Bond numbers and the emptying mechanisms
is theoretically investigated by changing the magnitude and direction of eccentricity, the
inner-to-outer radius ratio and the contact angles on the inner rod wall and the outer tube
wall, and the effect of non-equal inner and outer contact angles is also examined. In § 4,
an experiment is done for validation of the mathematical model. In § 5, main conclusions
are drawn.

2. Mathematical model

Figure 1 shows a schematic of a gas–liquid interface in a general cross-section of an
infinitely long horizontal circular tube with a horizontal rod inserted into it at an eccentric
position in a downward gravity field in Cartesian coordinates (x, y, z). In this paper,
for the irregular geometry of tube cross-section, the outer tube centre O lies on the x
axis, while the centroid of the annulus is not necessarily on the x axis. The radius ratio
of the tube χ is defined as the ratio of the rod radius Ri to the radius of the outer
tube Ro. The displacement d is non-dimensionalized by the characteristic length Ro to
obtain the eccentricity as e = d/Ro. The Bond number of the eccentric annular tube is
given by Bo = (Ro/lca)2. The annular gap between the tube and the inside rod is filled
with liquid and gas two-phase immiscible fluids, both of which have very large fixed
volumes.
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Figure 1. Schematic of general cross-section of liquid partially filling a horizontal circular tube of radius Ro
with a rod of radius Ri inserted into it at an eccentric position in a downward gravity field. The displacement
d is defined as the distance of the rod centre O′ away from the outer tube centre O. The eccentric angle θ is
measured counterclockwise, starting from the positive x axis. The gas–liquid interface Γ meets the inner and
outer walls at contact points with inner and outer contact angles γ i and γ o. The annular gap has total area
Ω and total inner and outer perimeters Σi and Σo, while the liquid has area Ω∗ and wetting inner and outer
perimeters Σ∗

i and Σ∗
o .

The three-dimensional (3-D) Young–Laplace equation due to gravity and the surface
tension force can be expressed as (Finn 1986)

∇ · T u = l−2
ca y + λ, T u = ∇u

(1 + |∇u|2)0.5 , (2.1a,b)

where u(x, y) describes the shape of the 3-D liquid surface and λ is a Lagrange parameter.
The following boundary conditions are satisfied:

νi · T u = cos γi, on the inner rod wall, (2.2a)

νo · T u = cos γo, on the outer tube wall, (2.2b)

where νi is the unit exterior normal to the tube on the inner perimeter Σi of the annular
cross-section, νo is the unit exterior normal to the tube on the outer perimeter Σo and
γ i and γ o are the inner and outer contact angles, respectively. According to the Green
formula, the following term can be given based on (2.2a) and (2.2b):∫

Ω

div T u =
∫

Σi

v · T u +
∫

Σo

v · T u = |Σi| cos γi + |Σo| cos γo. (2.3)

The Lagrange multiplier λ is determined by the liquid volume and container, but is not
related to the liquid volume for a capillary of a constant cross-section. By integration of
(2.1a) and employing (2.3), one obtains

λ = 1
|Ω|

(∫
Ω

div T u − l−2
ca Υ

)
= 1

|Ω|(|Σi| cos γi + |Σo| cos γo − l−2
ca Υ ), Υ =

∫
Ω

y.

(2.4)
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For a circular tube with a rod inserted at an eccentric position, λ is rewritten as

λ = 2(Ro cos γo + Ri cos γi) + l−2
ca RoR2

i e sin θ

R2
o − R2

i
= 2(cos γo + χ cos γi) + l−2

ca R2
oχ

2e sin θ

Ro(1 − χ2)
,

(2.5)
where θ is the eccentric angle. For the concentricity case and the horizontal eccentricity
case, the centroid of the annulus just lies on the x axis, and λ is reduced to (Zhou et al.
2021)

Υ =
∫

Ω

y = 0, λ = |Σi| cos γi + |Σo| cos γo

|Ω| = 2(cos γo + χ cos γi)

Ro(1 − χ2)
. (2.6a,b)

If γi = γo = 90◦, then (2.5) is reduced to

λ = l−2
ca Roχ

2e sin θ

1 − χ2 . (2.7)

Under the critical condition of transition between liquid plug and liquid non-occlusion
(corresponding to the critical Bond number), the tongue of a large 3-D droplet can
be seen to be infinitely long with its cross-section being translationally invariant. The
total free energy of a 3-D droplet that contains the free surface energy, the wetting
energy, the gravitational energy and a liquid internal energy term imposing a volumetric
constraint on the problem is finite. Thus, the total free energy per unit length of the tongue
corresponding to the critical Bond number should be equal to zero. On this occasion,
the 3-D problem of determining the critical conditions of transition between liquid plug
and liquid non-occlusion is reduced to an associated two-dimensional (2-D) problem. The
functional denoting the total free energy of a drop per unit length of liquid tongue based
on a general cross-section of an annular capillary is given by (Zhou et al. 2021)

Φ = |Γ | − (|Σ∗
o | cos γo + |Σ∗

i | cos γi) + l−2
ca

∫
Ω∗

y dx dy + λ|Ω∗|, (2.8)

where Γ is the arc length of the gas–liquid interface and the gas–liquid interface can be
determined by the Young–Laplace equation in two dimensions (Bhatnagar & Finn 2016;
Zhou & Zhang 2017):

d
dx

yx√
1 + y2

x
= l−2

ca y + λ, (2.9)

where yx = dy/dx, with the inner and outer contact angle conditions satisfied, Ω∗ is the
liquid interior area and Σ∗

i and Σ∗
o are the wetting inner and outer perimeters, respectively

(see figure 1). The critical Bond number can be determined by solving the following
equation (Finn 1986; Manning et al. 2011; Rascón et al. 2016; Zhou et al. 2021):

Φ = 0. (2.10)

Table 1 gives the computational procedure for obtaining the critical Bond number(s) of
an eccentric annular capillary with a given geometry for a set of inner and outer contact
angles when the critical Bond number(s) exists. The total free energy of the droplet in
a tube always reaches the minimum possible value and, accordingly, at the fourth step
of the computational procedure in table 1, the interface with the minimum energy Φmin
is chosen among all the possible interfaces calculated from (2.9) satisfying the contact
angle conditions at a given Bond number. The non-existence of a liquid plug for a Bond
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1. Treat Bo as the independent variable.
2. Find all the possible gas–liquid interfaces calculated from (2.9) satisfying the contact angle conditions

by gradually changing the contact points along the entire perimeters Σi and Σo.
3. Calculate the values of the energy functional corresponding to the possible interfaces by (2.8).
4. Find and choose the interface with the minimum energy Φmin among the possible interfaces.
5. Vary Bo from 0 to a large enough value to find the critical Bond number(s) at which (2.10) is satisfied.

Table 1. Computational procedure to obtain the critical Bond number(s) for a given capillary tube geometry
and specified contact angles when the critical Bond number(s) exists.

number can be determined by judging the sign (positive or negative) of the value of the
minimum energy Φmin. The case of Φmin < 0 for a Bond number indicates non-existence
of a liquid plug, while Φmin > 0 for a Bond number permits an occluding liquid surface in
the capillary tube (Manning et al. 2011).

For γo = γi = 90◦, the Lagrange multiplier λ and the critical Bond number for the
horizontal eccentricity case are analytically obtained as

λ = 0, Boc = 3

(χ + 0.5)2 + 0.75
, (2.11a,b)

which are the same as those for the concentricity case (Zhou et al. 2021).

3. Results and discussion

The inside rod may be located at arbitrary eccentric positions in various directions
in a tube. For vertical upward and downward eccentricities, the gas–liquid interface is
symmetric with respect to the vertical axis of symmetry but the centroid of the annulus
has a vertical displacement from the centre of the outer tube O. While, for horizontal
eccentricity, the centroid of the annulus is kept at the same height as the outer tube
centre, but the interface is not symmetric with respect to the vertical axis of symmetry.
For eccentricity in directions other than vertical and horizontal directions, the interface
is not symmetric with respect to the vertical axis of symmetry and the centroid of the
annulus deviates slantly from the outer tube centre. These lead to the complexity of
computation and analysis regarding this problem. The vertical and horizontal eccentricities
are considered as the basic forms of eccentricity in terms of studying the eccentricity
effect. In the following sections, we initially analyse the cases of vertical and horizontal
eccentricities and then analyse the cases of inclined eccentricity at different inclined angles
under the conditions of equal inner and outer contact angles. The contact angle studied
here ranges from 1° to 179° at intervals of 1° and a local refinement around each kink is
conducted. The effect of radius ratio is also discussed. The cases of non-equal inner and
outer contact angles are finally investigated.

3.1. Vertical eccentricity
Consider an annular tube of vertical upward eccentricity. The eccentricity is restricted to
be in a range 0 < e < 1 − χ , while the cases e > 1 − χ will be non-physical. The critical
emptying lines (each being a plot of critical Bond number as a function of contact angle)
of the annular tubes with three radius ratios χ = 0.1, 0.4 and 0.7 and different vertical
upward eccentricities for equal inner and outer contact angles (γ o = γ i = γ ) are shown in
figure 2. Due to the vertical eccentricity, the critical emptying line is not yet symmetric
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about the vertical line γ = 90°. Interestingly, lower and upper critical emptying lines occur
when the eccentricity or radius ratio is large enough. The two critical emptying lines start
appearing at smaller eccentricity for larger radius ratio (for example, e ≥ 0.7 for χ = 0.1,
e ≥ 0.3 for χ = 0.4 and e ≥ 0.05 for χ = 0.7), as shown in figure 2(a–c). Parameters Bocl
and Bocu are defined as the critical Bond numbers on the lower and upper critical emptying
lines, respectively. The lower and upper critical emptying lines touch the horizontal line
Bo = 0 at a smaller contact angle γBocl=0 (e.g. point J in figure 2b) and a larger contact
angle γBocu=0 (e.g. point K in figure 2b), respectively, and may intersect at the contact
angle γBocl=Bocu /= 0 (e.g. point I in figure 2b).

Generally, there are two kinks of the critical emptying lines containing lower and upper
lines for a not-so-large radius ratio (for example, e = 0.8 for χ = 0.1 and e = 0.4 and 0.5
for χ = 0.4), one of which is also the intersection point of the lower and upper critical
emptying lines. Occurrence of the two kinks is attributed to the contact point jumps
due to the transition among the three non-occluded liquid topologies represented by the
cross-sections D–F in figure 2(a) or the cross-sections C–E in figure 2(b). However, there
is one kink of the critical emptying lines containing lower and upper lines for a larger
radius ratio (for example, only one kink existing at e = 0.2 or 0.25 for χ = 0.7), and the
kink is just the intersection point of the lower and upper critical emptying lines, as shown
in figure 2(c). The reduction of the number of kinks by one as compared to the general
case of a not-so-large radius ratio is attributed to the non-existence of the non-occluded
liquid topology with the interface only meeting the outer wall due to the larger radius ratio.
Additionally, for some smaller eccentricities (for example, e = 0.7 for χ = 0.1, e = 0.3 for
χ = 0.4 and e = 0.05, 0.1 and 0.15 for χ = 0.7), the two critical emptying lines do not
interact, and this causes one kink to disappear.

The occurrence of lower and upper critical emptying lines is attributed to two
solutions (two critical Bond numbers) of (2.10) obtained for each of the contact angles
γBocl=Bocu /= 0 < γ ≤ γBocl=0, corresponding to two critical Bond numbers (figure 3),
which is different from only one solution (Boc) of (2.10) for the horizontal open (Manning
et al. 2011; Manning & Collicott 2015; Rascón et al. 2016; Zhu et al. 2020) or concentric
annular (Zhou et al. 2021) capillary in a normal downward gravity field. Besides the
two critical Bond numbers for γBocl=Bocu /= 0 < γ ≤ γBocl=0, there is only one Boc for
γBocl=0 < γ ≤ γBocu=0 in the contact angle range of the critical emptying lines. For a
contact angle ranging between γBocl=Bocu /= 0 and γBocl=0, a re-entrant liquid state transition
(i.e. transition from liquid non-occlusion to liquid plug and transition from liquid plug to
liquid non-occlusion) with the Bond number increasing from 0 to a large enough value is
found. In this case, the criterion (1.2) for the non-existence of capillary plugs is obviously
not applicable. For the cases of two critical emptying lines, whether in the two-Boc contact
angle range or in the one-Boc contact angle range, capillary plugs do not exist when the
following condition is satisfied:

Bo < Bocl or Bo > Bocu. (3.1)

As shown in figure 2, if Bo < Bocl, then liquid non-occlusion with the new topology where
the liquid is trapped in the narrow region of the horizontal tube will occur due to the
‘wedge’ effect. Regarding the state of capillary plugs, the 3-D interfaces directly computed
via Surface Evolver (Brakke 1992) for different Bond numbers between the lower and
upper critical emptying lines at a representative contact angle of the tube (χ = 0.4 and
e = 0.4) are displayed in figure 2(b). When Bo is slightly above the lower critical emptying
line, the upper tongue of the plugging liquid droplet is much longer than the lower tongue.
When the lower critical Bond number is attained, the upper tongue can be seen to be
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Figure 2. Critical Bond numbers of annular tubes with different vertical upward eccentricities for different
radius ratios (a) χ = 0.1, (b) χ = 0.4 and (c) χ = 0.7 versus contact angle γ o = γ i = γ . The squares denote the
representative points each corresponding to a cross-section of the part of the interface that extends to infinite
length at the critical Bond number. In (b), the circles on the black thick line denote three key points at e = 0.4.
Points I, J and K correspond to the intersection point of the lower and upper critical emptying lines (i.e. the lines
IJ and IK), Bocl = 0 and Bocu = 0, respectively. In the right-hand part of (b), 3-D interfaces (an oblique view)
computed by Surface Evolver (Brakke 1992) at γ = 30° for e = 0.4 for different Bond numbers correspond to
the triangles denoting the points P1, P2, P3, P4 and P5, respectively. For points P1 and P2, the upper tongue
is longer than the lower tongue (the phenomenon for point P2 does not seem apparent due to the oblique view,
and accordingly a grey circle through the tip of the lower tongue denoting a cross-section of the outer tube is
plotted to help understand the phenomenon for point P2), while for points P3, P4 and P5, the lower tongue is
longer than the upper tongue.
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Figure 3. Minimum energy Φmin (calculated at the fourth step of table 1) for an annular tube of vertical upward
eccentricity (χ = 0.4 and e = 0.4) for (a) the cases γ o = γ i = γ < 90° and (b) the cases γ o = γ i = γ > 90°
versus Bond number. Points C–E and I–K correspond to C–E and I–K, respectively, as presented in figure 2(b).
The dot-dashed line denotes the straight line for Φmin = 0. In (a), each dashed line (a discontinuous segment
of the line of Φmin) represents a jump due to the transition between different non-occluded liquid topologies
corresponding to minimal total free energy.

(a) (b)

Figure 4. Schematic of evolution of the 3-D interface (an oblique view) (a) as the Bond number gradually
decreases (from left to right) and approaches the lower critical Bond number and (b) as the Bond number
gradually increases (from left to right) and approaches the upper critical Bond number. Some representative
3-D interfaces computed using Surface Evolver (Brakke 1992) are integrated in a horizontal eccentric annular
tube.

infinitely long. Crossing the lower critical emptying line by decreasing Bo can lead to
the transition from liquid plug to liquid non-occlusion. With Bo increasing, the lower
tongue of the plugging liquid droplet gradually becomes longer, which is accompanied by
shortening of the upper tongue. When Bo approaches the upper critical emptying line, the
lower tongue is much longer than the upper tongue (figure 4). When the upper critical Bond
number is attained, the lower tongue also can be seen to be infinitely long. Crossing the
upper emptying line by increasing Bo can induce the transition from liquid plug to liquid
non-occlusion. The co-occurrence of upper tongue receding and lower tongue advancing
is attributed to the gradual increase of the gravity effect relative to the ‘wedge’ effect with
the increase of Bo. As expected, if Bo > Bocu, then liquid non-occlusion with the topology
where the liquid is wrapped in the wide region will occur due to the larger gravity leading
to disappearance of the ‘wedge’ effect in this case.

The contact angles of the lower critical emptying line are smaller than 90°. For the
contact angle range γBocl=Bocu /= 0 < γ < γBocl=0, a sufficiently small capillary has a
sufficiently small Bond number smaller than Bocl except at the contact angles adjacent to
the contact angle γBocl=0 (e.g. point J in figure 2b), and in this case, the sufficiently small
capillary can be of approximate liquid non-occlusion. If γ > γBocu=0 or < γBocl=Bocu /= 0,
the capillary tube will be in a state of unconditional liquid non-occlusion, no matter
what the size of the capillary tube cross-section. Generally, a sufficiently small horizontal
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Figure 5. Critical Bond numbers of annular tubes with vertical upward (θ = 90°) and downward (θ = −90°)
eccentricities e = 0.4 for representative radius ratio χ = 0.4 versus contact angle γ o = γ i = γ .

capillary tube in a downward gravity field will be approximately or unconditionally liquid
non-occluding for the contact angle range excluding γBocl=0 ≤ γ ≤ γBocu=0. The total
contact angle range 
γ of approximate and unconditional liquid non-occlusions is defined
as


γ = γBocl=0 + 180◦−γBocu=0. (3.2)

According to the results calculated using the model, the two contact angles of zero critical
Bond number have the following relationship:

γBocl=0 = 180◦−γBocu=0. (3.3)

This relationship (3.3) also can be obtained from Appendix A. Substituting (3.3) into (3.2),

γ is rewritten as 
γ = 2γBocl=0. It is also found from figure 2 that the value of 
γ can
be increased by an increase of vertical eccentricity or radius ratio.

Here, we discuss the relationship between the critical Bond numbers for vertical
downward eccentricity and those for vertical upward eccentricity. Under the condition
of equal magnitude of eccentricity, the perimeter of the tube cross-section for vertical
downward eccentricity and that for vertical upward eccentricity are symmetric with respect
to the horizontal axis. In this case, from Appendix A, a gas–liquid interface for vertical
downward eccentricity at a contact angle γ + = 180° – γ that is symmetric to a given
interface for vertical upward eccentricity at a contact angle γ with respect to the horizontal
axis can be found, and the critical Bond number(s) for the vertical downward eccentricity
at contact angle γ + = 180° − γ is equal to that for the vertical upward eccentricity at
contact angle γ , as shown in figure 5. Accordingly, an eccentric angle range from 0° to
90° is sufficient when studying the effect of eccentric angle in the following sections.
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Eccentricity effect on horizontal capillary emptying
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Figure 6. Critical Bond numbers of annular tubes with different horizontal eccentricities for representative
radius ratio χ = 0.4 versus contact angle γ o = γ i = γ . An enlarged view of the line segments around the left
kink of the curve for e = 0.5 is shown. Contact angle refinement for e = 0.4 is conducted in order to avoid the
appearance of false kinks.

3.2. Horizontal eccentricity
Consider an annular tube of horizontal eccentricity. The critical emptying lines of annular
tubes with different horizontal eccentricities and representative radius ratio χ = 0.4 for
γ o = γ i = γ are shown in figure 6. The critical emptying line is symmetric about the
vertical line γ = 90°, which can be obtained from Appendix A. With the eccentricity
increasing, the critical emptying line gradually drops. However, the maximums for
different horizontal eccentricities reached at γ = 90° are equal for a certain radius ratio
and are reduced with the radius ratio increasing. These can be directly derived from
(2.11b). Furthermore, the case of two critical emptying lines does not yet occur. This is
attributed to the geometric feature that the centroid of the eccentric annulus lies on the
x axis, which is the same as the case of a concentric annulus. As shown in the figure,
the critical Bond number reaches zero at a contact angle for e ≥ 0.3, and the contact
angle range for unconditional liquid non-occlusion regardless of Bond numbers increases
with the horizontal eccentricity increasing. Note that a kink appears at γ ≈ 72.8◦ for the
case e = 0.5 due to the occurrence of contact point jump (see configurations B and C in
figure 6).

3.3. Inclined eccentricity
After the discussion about the vertical and horizontal eccentricity effects, we want to know
what the vertical–horizontal mixed eccentricity effect (i.e. the inclined eccentricity effect)
is on the critical Bond number. We take an eccentric angle θ = 45° as an example to
analyse the cases of inclined eccentricity (see figure 7a). As expected, 
γ increases with
inclined eccentricity (at a fixed eccentric angle) or radius ratio increasing. Interestingly,

γ remains constant with θ changing from 0° to 90° at intervals of 22.5° (see figure 7b).
This is attributed to the fact that the two contact angles γBocl=0 and γBocu=0 determining
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Figure 7. Critical Bond numbers of annular tubes with (a) different radius ratios and different eccentricities
for eccentric angle θ = 45° and with (b) radius ratio χ = 0.4 and eccentricity e = 0.4 for different eccentric
angles versus contact angle γ o = γ i = γ .

the value of 
γ are obtained in zero gravity, in which all the cases are not related to the
eccentric angle.

3.4. Phase diagram
From the above analysis, it is found that the states are affected by the magnitude and
direction of eccentricity, the radius ratio and the contact angles. In order to demonstrate
this problem more clearly, the boundaries among four states, i.e. non-physical state,
unconditional liquid non-occlusion, one Boc at a contact angle (gravity-dominated
emptying mechanism) and two Boc at a contact angle (gravity and ‘wedge’ emptying
mechanisms), in a space (γ , e/(1 −χ )) for γ o = γ i = γ are plotted in figure 8. In
this figure, the horizontal dashed line, above which is non-physical, is determined by
e/(1 − χ ) = 1, and the curves going though points J and K correspond to zero critical
Bond number. The solutions (γ , e/(1 −χ )) for (2.10) at zero Bond number also can be
determined theoretically based on the geometrical relationship (Pour & Thiessen, 2019),
which is discussed in Appendix B.

The cases as shown in figure 8 are the cases of γ i = γ o. As shown in figure 8(a), in
the parameter space (γ , e/(1 − χ )), the two boundary lines of the one-Boc region (i.e. the
lines corresponding to zero critical Bond number) can be theoretically determined using
the above solving method. The two-Boc cases and unconditional liquid non-occlusion
cases may occur for e/(1 −χ ) ranging between 0.3376 and 1, and they would not
exist for e/(1 −χ ) < 0.3376 representing small enough eccentricity and small enough
radius ratio. The two boundary lines of the one-Boc region do not change with the
direction of eccentricity. In contrast, the boundary line between the left unconditional
liquid non-occlusion region and the two-Boc region cannot be described theoretically
and gradually drops (the two-Boc region in the parameter space becomes smaller) with
θ decreasing from 90° to 0°, and it coincides with the left boundary line of the one-Boc
region when θ = 0°. This again illuminates that the two-Boc cases would not arise for
horizontal eccentricity, as discussed in § 3.2. The two-Boc cases only occur at γ < 90° and
the range of e/(1 − χ ) corresponding to the cases becomes larger with γ decreasing.

As shown in figure 8(b), with the radius ratio increasing, the two-Boc region is enlarged,
and the two boundary lines of the one-Boc region clearly drop, but the maximum value
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Figure 8. (a) Phase diagram in a space (γ , e/(1 −χ)) for different eccentric angles for χ = 0.4 and (b)
boundary lines in the parameter space for vertical eccentricity θ = 90° and different radius ratios χ = 0.1,
0.4 and 0.7. Equal inner and outer contact angles are used: γ o = γ i = γ . In (a), boundaries among four states
are presented for different eccentric angles. With the eccentric angle varies, the boundary line (dashed line)
between the left unconditional liquid non-occlusion region and the two-Boc region changes, while the two
boundary lines (solid lines) corresponding to zero critical Bond number do not change. Points I–K correspond
to I–K, respectively, as presented in figure 2(b). The blue text annotation corresponds to the region between the
blue dashed line and the solid line through point J, representing the two-Boc region in the parameter space for
the case of vertical eccentricity θ = 90°. In (b), the dashed line corresponds to the case denoted by the solid
line in the same colour.

is kept constant at γ = 90°. The value of 
γ also increases largely. This implies that
increasing the radius ratio can effectively enhance the possibility of liquid non-occlusion
in a small enough eccentric annular capillary.

3.5. Non-equal inner and outer contact angles
The above analysis is based on γo = γi. The effect of γo /= γi is examined in this section.
The variation of the parameter e/(1 −χ ) with γo, and the variation of 
γo (defined as
the outer contact angle range of approximate and unconditional liquid non-occlusions at
a fixed value of γi) with e/(1 − χ ) for different inner contact angles are compared with
those for γo = γi (see figure 9). According to Appendix A, under zero gravity, for an
eccentric annular tube, if the minimal energy φmin at contact angles γo and γi is equal
to 0, then Φ+

min = 0 will exist at contact angles 180◦ − γo and 180◦ − γi. Accordingly,
the boundary lines of the one-Boc region at contact angles γo and γi and those at contact
angles 180° − γo and 180° − γi are symmetric with respect to the vertical line γo = 90°.
The cases of γi > 90° have not been included in this analysis.

The boundary lines of the one-Boc region for γo /= γi are not symmetric about
the vertical line γ o = 90° except γ i = 90°. With γ i decreasing from 90° to 30°, the
maximum gradually shifts to the right, which is accompanied by the reduction of the right
unconditional liquid non-occlusion region, and the two-Boc region is enlarged (figure 9a).
Moreover, the case γ o = γ i is found to have the maximum value of 
γo (figure 9b).
Accordingly, the condition of γ o = γ i is preferable in view of liquid non-occlusion in a
small enough eccentric annular capillary.

4. Experimental validation

The mathematical model is developed to determine the critical emptying conditions for a
tube with a cross-section of irregular geometry. By analysing the results calculated based
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Figure 9. (a) Boundary lines in parameter space (γ o, e/(1 −χ)) at χ = 0.4 and θ = 90° for different
inner contact angles versus outer contact angle γ o and (b) outer contact angle ranges of approximate and
unconditional liquid non-occlusions 
γ o for different inner contact angles versus e/(1 −χ). In (a), the dashed
line corresponds to the case denoted by the solid line in the same colour.

on the developed mathematical model, the vertical eccentricity has a notable effect on
preventing capillary plugs in a tube, and a new phenomenology about the existence of the
re-entrant liquid state transition is found. We take a vertical eccentricity as an example to
conduct experiments to validate the new phenomenology found theoretically.

The silica glass capillary tubes used for the experiments had a length of 20 cm and were
open at both ends, and the silica glass rods had a length of 30 cm. The contact angles
of water on the glass surfaces used were measured using the sessile drop method to be
approximately 30°. Long capillary tubes and rods were used in order to make the effect of
contact line pinning at the sharp edge at both ends become negligible when studying the
eccentricity effect here. The eccentric annular tube was formed by hanging the inside rod
on two accessories manufactured using 3-D printing technology. The tubes and rods were
cleaned using an ultrasonic cleaning machine before the experiments. Deionized water
and air were used as the liquid and the gas, respectively. The fluids in capillaries exposed
to two LED light sources were visualized by employing a Nikon D7200 camera mounted
with Nikon Micro-NIKKOR 105 mm f/2.8G macro lenses.

The lower and upper critical emptying lines theoretically calculated using this model
for an eccentric annular capillary of radius ratio χ = 0.5 and vertical eccentricity e = 0.27
are displayed for experimental validation (see figure 10). The results of the experiments
(radius ratio χ ≈ 0.5 and vertical eccentricity e ≈ 0.27) for five different Bond numbers
are obtained using capillaries of different sizes and rods of different sizes. We observe
from the experiments that the vertically eccentric annular tube is not plugged by liquid for
both the Bond number below the lower critical emptying line and the Bond number above
the upper critical emptying line, while it is liquid-occluded for Bond number between the
lower and upper critical emptying lines. It is concluded that the experiments well validate
the existence of the re-entrant liquid state transition found theoretically. In a horizontal
tube without eccentricity, due to the gravity effect, a liquid plug is generally accompanied
by a morphology in which the lower tongue of the liquid droplet is longer than the upper
tongue (see the lower photograph in figure 3c in Zhou et al. (2021)). In the experiments,
when gravity is large enough (for example, the point denoted by a cross just above Q2 in
figure 10a), a liquid droplet morphology also exists with the lower tongue longer than the
upper tongue similar to that in Zhou et al. (2021). Additionally, we found experimentally
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Figure 10. (a) Theoretical predictions for lower and upper ‘critical emptying lines’ (Boc(γ ), where
γ o = γ i = γ ) for a vertically eccentric annular capillary (χ = 0.5 and e = 0.27) and experimental results. The
circles (e.g. Q1 and Q3) indicate liquid non-occlusion and the crosses (e.g. Q2) indicate that the liquid plug
remains. For the three experimental cases Q1, Q2 and Q3, different diameters of outer tubes at 5.95, 7.96
and 12.11 mm and the corresponding different sizes of rods are used, respectively, thus leading to different
Bond numbers. Note that, as predicted by theory, a small tube (see Q1) and a large tube (see Q3) become
non-occluding after rod insertion whereas a medium-sized tube remains blocked (see Q2). (b) Photographs of
the liquid occlusion or non-occlusion for the three experimental cases Q1, Q2 and Q3 representing the liquid
states related to the re-entrant transition with increasing Bo. Note that the contact angles at the lower section of
the tube in the picture of Q2 seem much larger than 30°. This is attributed to the 3-D liquid surface (meniscus)
concave towards the gas and the position of the camera relative to the horizontal capillary.

that there is a case of liquid plugs where the upper tongue of the liquid droplet is a little
longer than the lower tongue when Bo is a little above the lower critical emptying line (see
Q2 in figure 10b) because the ‘wedge’ effect gains an advantage over the gravity effect.
This is in good agreement with the results directly computed via Surface Evolver (Brakke
1992) in 3-D mode.

5. Conclusions

The effect of eccentricity of an annular capillary with a rod inserted into a circular tube
in a normal gravity field on the critical Bond number is investigated theoretically and
experimentally. The effects of horizontal eccentricity, vertical eccentricity and inclined
eccentricity are analysed. A phase diagram in a parameter space (γ , e/(1 − χ )) at different
eccentric angles for γ o = γ i is plotted. The influence of radius ratio and γo /= γi is
examined. The following conclusions are drawn from the above analysis.

For the non-horizontal eccentricity case, the lower and upper critical emptying lines
arise when the eccentricity or the radius ratio is large enough, and the lower critical
emptying line for γ o = γ i occurs at contact angles smaller than 90°. The critical Bond
number(s) for the vertical upward eccentricity at a contact angle is equal to that for the
vertical downward eccentricity at the supplementary contact angle. For the case of two
critical Bond numbers at a contact angle, the re-entrant liquid state (liquid non-occlusion
to plug to non-occlusion) transition occurs. For Bo < Bocl, the tube is non-occluding due
to the ‘wedge’ effect. For Bocl < Bo < Bocu, the tube may be occluded by liquid and

946 A7-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.567


D. Tan, X. Zhou, G. Zhang, C. Zhu and C. Fu

receding of the upper tongue and advancing of the lower tongue occur together with an
increase of Bo. When the lower (upper) critical Bond number is attained, the upper (lower)
tongue can be seen to be infinitely long. For Bo > Bocu, the tube is also non-occluding due
to larger gravity.

Existence of the two critical emptying lines is accompanied by the occurrence of
unconditional liquid non-occlusion in a certain contact angle range (γ > γBocu=0 and
<γBocl=Bocu /= 0). A sufficiently small horizontal capillary tube will be approximately or
unconditionally non-occluding if the contact angle is in the range 
γ excluding those
between the two contact angles at zero critical Bond number. In the parameter space
(γ , e/(1 −χ )), with the eccentric angle increasing from 0° to 90°, the two-Boc region
gradually becomes larger; however, the contact angle range 
γ remains unchanged. The
range 
γ can be increased effectively by increasing the eccentricity and radius ratio. The
case γ o = γ i is found to have the maximum value of 
γo compared with different cases
of γo /= γi. The condition γ o = γ i is therefore preferable in view of liquid non-occlusion
in a small enough eccentric annular capillary. This paper lays a solid foundation for more
efficient use of inserting a rod into a horizontal capillary in terms of removing a liquid
blockage, and for notably triggering the transition between a top flow path and a bottom
flow path in optofluidic or microfluidic devices.
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Appendix A

Under the critical emptying conditions, for a horizontal tube having a general cross-section
Ω in an arbitrary geometrical shape (figure 11), the gas–liquid interface Γ : y = y(x) is
described by the 2-D Young–Laplace equation (2.9) with the boundary conditions νi ·
T y = cos γi and νo · T y = cos γo. If the perimeters Σ+

i and Σ+
o of cross-section Ω+ of

a horizontal tube are respectively symmetric to Σi and Σo for the horizontal tube with
respect to the horizontal axis (figure 11), γ +

i = 180◦−γi and γ +
o = 180◦−γo, under the

condition of other properties the same, a curve Γ + : y+ = −y(x) can be found, which
satisfies the relationship

d
dx

y+
x√

1 + ( y+
x )

2
= l−2

ca y+ + λ+, (A1)

with the boundary conditions νi · T y+ = cos γ +
i and νo · T y+ = cos γ +

o . According to
the above features, the following relationship can be held by λ+ = −λ, |Γ | = |Γ +|,
|Ω| = |Ω+|, |Σi| = |Σ+

i |, |Σo| = |Σ+
o |, |Ω∗| = |Ω+| − |Ω+∗|, |Σ∗

i | = |Σ+
i | − |Σ+

i
∗|

and |Σ∗
o | = |Σ+

o | − |Σ+
o

∗|. In this case, the energy functional Φ = Φ+. The critical Bond
number(s) Boc(γ i, γ o) for the tube with Ω is equal to Boc(180° − γ i, 180° − γ o) for the
tube with Ω+.

946 A7-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-2205-3045
https://orcid.org/0000-0002-2205-3045
https://orcid.org/0000-0001-6340-5273
https://orcid.org/0000-0001-6340-5273
https://orcid.org/0000-0002-5236-4960
https://orcid.org/0000-0002-5236-4960
https://orcid.org/0000-0001-6175-5421
https://orcid.org/0000-0001-6175-5421
https://doi.org/10.1017/jfm.2022.567


Eccentricity effect on horizontal capillary emptying

g

x

y

z

γi
+

γo
+

γo γi

Σo

Σi

Σi
∗

Γ

Γ +

Ω∗ Ω+
∗

Ω+

Ω

Σo
∗

Σo
+
∗

Σi
+
∗

Σi
+

Σo
+

Figure 11. Schematic of cross-section of a horizontal tube Ω in an arbitrary geometrical shape and the
cross-section of another horizontal tube Ω+ whose perimeter is symmetric to the perimeter of the cross-section
Ω with respect to the horizontal axis.

It is concluded that the critical Bond number(s) for the vertical upward eccentricity at
a contact angle is equal to the case of the vertical downward eccentricity having equal
magnitude of the vertical upward eccentricity at the supplementary contact angle, which
can also be demonstrated by the curves in the first and third graphs of figure 3 of Rascón
et al. (2016).

Furthermore, for the horizontal eccentricity, the perimeter of the tube cross-section is
symmetric with respect to the horizontal line of symmetry of the cross-section. Therefore,
the critical emptying line is symmetric about the vertical line γ o = γ i = γ = 90°, which
is demonstrated by the tubes each of which has one cross-section in another shape being
symmetric with respect to the horizontal line of symmetry of the cross-section (Manning
et al. 2011; Manning & Collicott 2015; Rascón et al. 2016; Zhu et al. 2020; Zhou et al.
2021).

Under zero gravity, the shape of a liquid droplet in an eccentric annular tube is
independent of the eccentric angle. In this case, the energy Φ for contact angles γi
and γo and an interface Γ for an eccentric annular tube is equal to the energy Φ+ for
γ +

i = 180◦−γi and γ +
o = 180◦−γo, and |Γ +| = |Γ | for the tube. If Φmin = 0 at contact

angles γi and γo, then Φ+
min = 0 will exist at contact angles 180◦ − γi and 180◦ − γo, for

the tube. The contact angle corresponding to point J (figure 2b) is the supplementary
contact angle corresponding to point K (figure 2b).

Appendix B

At zero Bond number, the energy functional (2.8) becomes

Φ = |Γ | − (|Σ∗
o | cos γo + |Σ∗

i | cos γi) + λ|Ω∗|, (B1)

where the Lagrange parameter λ is obtained from (2.5) as λ = 2(cos γo + χ cos γi)/
[Ro(1 − χ2)], and the 2-D gas–liquid interface becomes a circular arc, the radius of which
is given by

Rs = 1
λ

= Ro(1 − χ2)

2(cos γo + χ cos γi)
. (B2)

The interface is convex towards the liquid for Rs > 0 and concave towards the liquid for
Rs < 0. The following analyses are suitable for Rs > 0 and Rs < 0. As gravity vanishes, the
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Figure 12. Non-occluded liquid configurations with the interface meeting the outer and inner walls at zero
gravity for a set of inner and outer contact angles γ i and γ o. The liquid may occupy (a) the narrow part or (b)
the wide part. In (a), α is the angular position of the outer contact point on the outer circle, β is the angular
position of the inner contact point on the inner circle and ϕo and ϕi are the angular positions of the outer and
inner contact points on the interface arc, respectively. These angular positions are measured counterclockwise,
starting from the positive x axis.

configuration of liquid in an eccentric annular cross-section is independent of the eccentric
angle θ and symmetric with respect to the axis of symmetry (through the line OO′) of the
cross-section.

The non-occluded liquid configurations for the cases under zero gravity can be divided
into three types: the interface only meeting the outer wall, the interface only meeting the
inner wall and the interface meeting the outer and inner walls. We found that the values
of energy functional Φ for the former two types are always larger than 0. The two types
will not be considered here for calculation of the critical parameters corresponding to zero
Boc.

For the non-occluded liquid configuration with the interface meeting the outer and
inner walls for a set of geometric parameters Ro, χ and e, and the contact angles γ i and
γ o, the liquid may occupy the narrow part (figure 12a) or the wide part (figure 12b),
and the location of the interface as shown in figure 12(a,b) can be determined by the
geometrical relationship due to zero Bond number. The centre s of curvature of the
interface segment on the right-hand side of the cross-section for each of the two cases as
shown in figure 12(a,b) has coordinates (xs, ys), where xs and ys are given by, respectively,

xs =
√

R2
s + R2

o − 2RsRo cos γo sin

[
cos−1

(
eRo

2
√

R2
s + R2

o − 2RsRo cos γo

)]
, (B3a)

ys = eRo

2
. (B3b)

By considering the case that the liquid is wrapped in the narrow part (figure 12a), the
angular position of the outer contact point on the outer circle, α, the angular position of
the inner contact point on the inner circle, β, and the angular positions of the outer and
inner contact points on the interface arc, ϕo and ϕi, are given by, respectively,

α = sgn(Rs) cos−1

(
Ro − Rs cos γo√

R2
s + R2

o − 2RsRo cos γo

)
+ tan−1

(
ys

xs

)
, (B4a)
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Eccentricity effect on horizontal capillary emptying

β = sgn(Rs) cos−1

⎛
⎝ χRo + Rs cos γi√

R2
s + (χRo)

2 + 2χRoRs cos γi

⎞
⎠− tan−1

(
ys

xs

)
, (B4b)

ϕo = α + γo, ϕi = β + π − γi. (B4c,d)

Due to the symmetry of the cross-section, the lengths of the liquid boundary parameters
Γ , Σ∗

o and Σ∗
i can be expressed as

|Γ | = 2Rs(ϕi − ϕo), |Σ∗
o | = Ro(π − 2α), |Σ∗

i | = χRo(π − 2β). (B5a–c)

By the application of the Green formula, the liquid area becomes (Pour & Thiessen 2019)

|Ω∗| = R2
o

(π

2
− α

)
+ χR2

o

(
χβ − e cos β − πχ

2

)
+ R2

s (ϕo − ϕi)

+ Rs[xs(sin ϕo − sin ϕi) − ys(cos ϕo − cos ϕi)]. (B5d)

Then, the value of energy functional for the case of liquid occupying the narrow part Φn
can be calculated from (B1).

For the case of liquid wrapped in the wide part (figure 12b), the above equations (B4)
and (B5) are not suitable due to the geometrical relationship. According to Appendix A,
the energy functional for the case of liquid occupying the wide part Φw for a set of contact
angles γi and γo will be equal to Φn for another set of contact angles 180◦ − γi and 180◦ −
γo, which can be calculated using the above equations. Parameter Φmin is determined,
which is equal to the minimum value of Φn and Φw. One can repeat the above steps by
changing the geometric parameters Ro, χ and e, and the contact angles γ i and γ o to find
the critical parameters of geometry and contact angles corresponding to zero critical Bond
number that lets Φmin = 0.
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