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A viscous damping model is proposed based on a simplified equation of fluid motion
in a moonpool or the narrow gap formed by two fixed boxes. The model takes into
account the damping induced by both flow separation and wall friction through two
damping coefficients, namely, the local and friction loss coefficients. The local loss
coefficient is determined through specifically designed physical model tests in this
work, and the friction loss coefficient is estimated through an empirical formula
found in the literature. The viscous damping model is implemented in the dynamic
free-surface boundary condition in the gap of a modified potential flow model. The
modified potential flow model is then applied to simulate the wave-induced fluid
responses in a narrow gap formed by two fixed boxes and in a moonpool for which
experimental data are available. The modified potential flow model with the proposed
viscous damping model works well in capturing both the resonant amplitude and
frequency under a wide range of damping conditions.

Key words: surface gravity waves

1. Introduction

The resonant oscillations of a water column in the gap formed between two
closely spaced floating structures or the moonpools of drilling vessels have attracted
extensive attention in recent decades due to their engineering significance. In addition
to physical model tests, the methods of investigation mainly include two types of
numerical model. One is based on potential flow theory, and the other is based on
a viscous flow model using computational fluid dynamics (CFD); these types of
models are referred to as the potential flow model and CFD model, respectively,
hereafter. Although CFD models have recently shown reasonable success in solving

† Email address for correspondence: lulin@dlut.edu.cn

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

30
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-4370-1339
https://orcid.org/0000-0001-8288-2219
mailto:lulin@dlut.edu.cn
https://doi.org/10.1017/jfm.2019.302


A viscous damping model for piston mode resonance 511

gap resonance problems (Kristiansen & Faltinsen 2008, 2010; Lu et al. 2010; Lu &
Chen 2012; Fredriksen, Kristiansen & Faltinsen 2015; Moradi, Zhou & Cheng 2015,
2016), they are computationally expensive for practical engineering applications. In
contrast, potential flow models based on boundary/finite element methods in the
frequency/time domain (e.g. Sun, Eatock Taylor & Taylor 2010; Uzair & Koo 2012;
Feng & Bai 2015) and semi-analytical methods (Molin 2001; McIver 2005; Faltinsen,
Rognebakke & Timokha 2007; Yeung & Seah 2007; Zhou, Wu & Zhang 2013;
McIver & Porter 2016) are computationally efficient and widely used. However, the
conventional potential flow models generally significantly over-predict the resonant
response amplitudes due to the omission of the energy dissipation induced by the
wall friction and flow separation. Efforts have been made to modify potential flow
models by introducing an artificial viscous damping mechanism (or coefficient) while
maintaining the computational efficiency (Molin et al. 2002, 2009; Chen 2004; Pauw,
Huijsmans & Voogt 2007; Lu et al. 2011a,b; Liu & Li 2014). Modified potential
flow models can predict resonant response amplitudes correctly with a predetermined
damping coefficient, which is normally determined through trial-and-error tuning
against experimental or CFD data. One concern about this type of modified potential
flow model is whether the tuned damping coefficient remains valid for conditions
that are beyond the parameter range of the experimental data or when extrapolated
to prototype conditions.

Faltinsen & Timokha (2015) studied two-dimensional piston mode sloshing in a
rectangular moonpool under forced heave motions. In their work, a pressure drop term
representing the pressure discharge in the moonpool opening is directly introduced
in the dynamic free-surface condition of a modified potential flow model inside
the moonpool to account for the viscous damping involved in the fluid motion
in/out of the moonpool. The pressure drop coefficient was determined through a
known empirical formula for oscillatory flow through slotted screens (Faltinsen,
Firoozkoohi & Timokha 2011). Significantly, the introduced damping mechanism is
directly related to the underlying physics of the problem and no numerical tuning
is required. The determination of the damping coefficient in the system relies on
the known values for b∗ and the pressure drop coefficient K(Sn, Kc) (Sn is the
solidity ratio, Kc is the Keulegan–Carpenter number), which are available for a
moonpool entrance with sharp corners. The parameter b∗ was originally proposed by
Molin (2001) to estimate the resonant frequency of the piston mode fluid oscillation
in a moonpool and specifically represents the added mass of the oscillating fluid
bulk. Faltinsen & Timokha (2015) assumed a pair of artificial impermeable vertical
plates beneath a barge with a rectangular moonpool so that they could utilize the
similarity between the piston-mode fluid motions in the moonpool and the oscillatory
flow in a slot in a slatted screen. The parameter b∗ is used to denote half of the
distance between the fictitious vertical plates, and the solidity ratio Sn is defined
as Sn = (2b∗ − 1)/(2b∗). Because the determination method for b∗ is specifically
designed for moonpool problems, it is uncertain whether the damping coefficient
used in Faltinsen & Timokha (2015) is also applicable for gap resonance problems
with a different geometry from the sharp-corner entrance and deep drafts. Despite
this uncertainty, the method proposed by Faltinsen & Timokha (2015) is generally
applicable for applications where the pressure drop coefficient is known.

The objective of the present study is to develop a viscous damping model that can
be implemented in a potential flow model in the frequency domain by considering
damping induced by both flow separation and wall friction. The remainder of the
paper is organized as follows. The problem is stated in § 2, and a viscous damping
model is introduced in § 3. The quantification method for the local and friction loss
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FIGURE 1. (Colour online) Sketch of the gap resonance between two fixed identical boxes
with a curved gap entrance, where h is the water depth from the mean water level to the
seabed, B is the breadth of the box, L1 is the gap width, d is the draft of the floating
boxes and R is the radius of the quarter circles used to form the gap entrance.

coefficients is reported in § 4. The implementation of the viscous damping model in
a potential flow model is presented in § 5. Physical experiments are reported in § 6.
Comparisons of the numerical results with experimental results are described in § 7.
The method of estimating the frictional damping force and extensions of the presented
methodology to general situations are discussed in § 8. Conclusions are finally drawn
in § 9.

2. Statement of the problem
The physical problem considered in this study involves two identical, closely spaced

fixed boxes subjected to incident waves from the left, as illustrated in figure 1. It
is assumed that the dimension of the body in the direction perpendicular to the
x–z plane is infinite. Thus, the problem can be simplified as a two-dimensional
(2-D) problem. Of interest in this study is the piston-mode resonant response of
the fluid trapped in the narrow gap and excited by a harmonic incident wave train.
To facilitate the discussion presented in this study, the normalization method used
by Faltinsen & Timokha (2015) is adopted. Specifically the length and time scales
used in the normalization are, respectively, the gap width L1 and the inverse of the
angular frequency of the incident waves (1/σ = T/2π, with T the wave period). The
following normalizations are used throughout the article unless otherwise specifically
mentioned:

x= x
L1
, z= z

L1
, t= σ t, Λ= L1

g
σ 2, ψ(x, z, t)= ψ(x, z, t)

σL2
1

,

h= h
L1
, B= B

L1
, d= d

L1
,

 (2.1a−h)

where variables marked by an overbar are dimensional variables, Λ is the non-
dimensional wave frequency, ψ(x, z, t) is the dimensionless velocity potential, g is
the acceleration due to gravity, L1 is the gap width, σ is the angular frequency of the
incident wave, h is the water depth, B is the breadth of the box and d is the draft
of the floating boxes.

The above problem can be solved by using a potential flow model where the
velocity potential is written as ψ(x, z, t)=ψI(x, z, t)+ψs(x, z, t) with ψI the incident
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potential and ψS the scattering potential. For linear water waves, the incident potential
reads ψI(x, z) = 0.5gHi cosh k(z + h) sin(kx − σ t)σ−2L−2

1 (cosh kh)−1, where Hi is the
incident wave height and k is the wavenumber. Therefore we can obtain ψ by solving
for ψS because ψI is known. Within the framework of linear potential flow theory
the boundary value problem in figure 1 is formulated based on the mass continuity
and linearized boundary conditions as follows:

∇2ψS = 0 in Q0,
∂ψS

∂z
= 0 on SD,

∂ψS

∂n
=−∂ψI

∂n
on SB,

∂ψS

∂x
∓ ikL1ψS = 0 as x→±∞, ∂ζ

∂t
= ∂ψS

∂z
and Λ

∂ψS

∂t
+ ζ = 0 on SF,


(2.2a−f )

where Q0 is the fluid domain, SD represents the horizontal seabed, SB is the wetted
body surface, SF is the free surface (z= 0), ζ (x, t) is the elevation of the free surface,
and n is the outward unit vector normal to the fluid boundary.

It is well known that the potential flow model shown in (2.2) generally over-predicts
the resonant wave amplitude in the gap due to the viscous effect being ignored. To
overcome this problem, modified potential flow models have been proposed, where a
damping force is introduced by modifying the free-surface boundary condition in the
gap (e.g. Chen 2004; Faltinsen & Timokha 2015):

Λ
∂ψ

∂t
+ η(t)= εdη(t)

dt
on SGF, (2.3)

where ε is a viscous damping coefficient, η(t) is the time-dependent wave elevation in
the narrow gap and SGF is the free surface in the gap. Chen (2004) suggested that ε
can be determined by tuning against experimental results. Faltinsen & Timokha (2015)
suggested the following method to estimate ε:

ε= Λ∗K(Sn,Kc)

16b2∗

∣∣∣∣dη(t)dt

∣∣∣∣ , (2.4)

where Λ∗ is the resonant frequency of the oscillating system, K(Sn,Kc) is a pressure
drop coefficient, Sn is the solidity ratio, Kc is the Keulegan–Carpenter number and b∗
is an auxiliary parameter used to calculate the solidity coefficient Sn (see Faltinsen &
Timokha 2015) that can be estimated based on the resonant frequency through the
formulation proposed by Molin (2001). Although the right-hand side of (2.3) is a
nonlinear term due to the formula for ε as shown in (2.4), (2.3) can be solved through
the equivalent linearization method.

Following a similar approach to that by Chen (2004) and Faltinsen & Timokha
(2015) the modified dynamic free-surface boundary condition defined by (2.3) is
also used in this study. A simplified dynamic equation of fluid motion in the gap is
employed to derive an empirical formula for ε, which will be detailed in the next
section.

3. Viscous damping model
To identify the viscous damping mechanisms involved in the response, a simplified

dynamic equation of motion for the fluid trapped in the gap is examined first. For the
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fluid inside the gap, which can be treated as a solid body (Molin 2001), the simplified
equation of motion can be written in the following form:

M
d2η(t)

dt2 + Fd(t)+ ρgη(t) · L1 = Fex(t), (3.1)

where ρ is the density of the fluid, η(t) is the mean water elevation in the gap,
M is the mass of the fluid bulk in the gap plus the added mass due to the fluid
bulk oscillations, Fd(t) is the damping force and Fex(t) represents the excitation
force induced by the incident waves (the overbars imply dimensional values). The
damping force Fd(t), which consists of a friction force on the two side walls and
a force induced by the flow separation (and turbulence) at the gap entrance can be
approximated as

Fd(t)= 2ρ
f
2

dη(t)
dt
· d+ ρ ξ

2

∣∣∣∣dη(t)dt

∣∣∣∣ dη(t)
dt
· L1, (3.2)

where f is a friction factor (dimensional parameter, unit: m s−1) related to the shear
stress on the solid walls and ξ is the local loss coefficient (dimensionless parameter)
that takes into account the overall energy loss associated with the flow separation
and turbulence dissipation. The friction damping force component defined in (3.2)
is written in a simplified manner, which is reasonable only for sharp-corner cases,
whereas a more general formula that can be applied to round-corner cases is presented
in § 8. It is noted that the friction damping force component defined in (3.2) and in § 8
does not include the contribution from pressure forces, which exist for round-corner
cases with non-separated laminar flows (refer to Molin & Etienne (2000) and Molin
(2004) for details). Since the overall damping is calibrated against experimental results,
the contribution to the friction component due to pressure, which is not accounted for
in the friction damping force, is expected to be absorbed in the local loss coefficient ξ .
Substituting (3.2) into (3.1) and implementing normalizations, we obtain the following
non-dimensional equation of motion,

d2η(t)
dt2
+ Λn

2

(
2fd
σL1
+ ξ

∣∣∣∣dη(t)dt

∣∣∣∣) dη(t)
dt
+ Λn

Λ
η(t)= Fex(t), (3.3)

where Λn(= ρL2
1/M) is the natural frequency of the oscillating system and Fex(t) =

(Fex(t)/ρgL2
1)(Λn/Λ). Using the linearization method of Mei, Stiassnie & Yue (2005,

Article 285), the non-dimensional damping force in (3.3) can be linearized as

Fd(t)= Λn

2

(
2fd
σL1
+ ξ

∣∣∣∣dη(t)dt

∣∣∣∣) dη(t)
dt
= Λn

2

(
2fd
σL1
+ 8

3π
ξ

∣∣∣∣dη(t)dt

∣∣∣∣
amp

)
dη(t)

dt
, (3.4)

where |dη(t)/dt|amp denotes the amplitude of |dη(t)/dt| during one oscillatory period.
The normalized damping force described by (3.4) constitutes the viscous damping
model proposed in this study and is used in the modified dynamic free-surface
boundary equation (2.3) to approximate the overall effect of viscous damping on
the piston-mode response in the gap. Specifically, the damping forces described by
(2.3) and (3.4) are equivalent, namely Fd(t) = εdη/dt. Thus, the modified dynamic
free-surface boundary condition described by (2.3) can be rewritten as

Λ
∂ψ

∂t
+ η(t)= εdη(t)

dt
with ε= Λn

2

(
2fd
σL1
+ 8

3π
ξ

∣∣∣∣dη(t)dt

∣∣∣∣
amp

)
on SGF. (3.5)
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The physical meaning of the local loss coefficient ξ is actually similar to the pressure
drop coefficient K(Sn, Kc) in Faltinsen & Timokha (2015). Based on (2.3)–(2.4) and
(3.3) and suggesting Λ∗ =Λn, ξ is related to K(Sn,Kc) in the following manner,

ξ = K(Sn,Kc)

8b2∗
. (3.6)

Based on (3.6), the method proposed by Faltinsen & Timokha (2015) for estimating
the damping coefficient can be used as an option to approximate the local loss
coefficient ξ .

Assuming a harmonic response of η(t) = ηA cos(t − ϕ), where ηA is the non-
dimensional response amplitude excited by the excitation force Fex(t) = FA cos(t)
from the incident waves and ϕ is the phase angle between the fluid motion in the
gap and the excitation, we can obtain the following useful solutions from (3.3) after
considering (3.4),

Λ∗ = Λn

1+ ε2
, ϕ = tan−1

(
ε

Λn/Λ− 1

)
, (3.7a,b)

where Λn and Λ∗ are the natural frequency and resonant frequency of the oscillating
system, respectively. The effect of viscous damping on the resonant frequency is
demonstrated in (3.7a). Equation (3.7b) offers a possible method to calibrate the
system damping coefficient ε through the measured phase differences between the
response in the gap and the incident waves over a range of frequencies. Once ε is
determined, we can calculate ξ through (3.5) because the friction factor f can be
estimated using an empirical formula available in the literature, as will be shown in
§ 4.

4. Quantification method for f and ξ

The term accounting for the wall friction contribution introduced in (3.2) is of a
form commonly used in coastal engineering applications. There are many empirical
formulae in the literature for estimating the friction coefficient f in (3.2) (e.g. Soulsby
1997) that cover a wide range of flow (laminar and turbulent) and surface (smooth
to rough) conditions. For the specific application in this study, the following equation
(Soulsby 1997) is used to estimate the shear stress τw acting on the smooth side walls
(dimensional form),

τw = 1
2
ρf

dη(t)
dt

, (4.1)

where

f = α(Re)−N

∣∣∣∣dη(t)dt

∣∣∣∣ , Re=
∣∣∣∣dη(t)dt

∣∣∣∣ · Aν , A=
∣∣∣∣dη(t)dt

∣∣∣∣ · 1
σ
, (4.2a−c)

where ν is the kinetic viscosity of the fluid, α =√2 and N = 0.5 for Re 6 5 × 105

(laminar) and α = 0.052 and N = 0.187 for Re > 5 × 105 (smooth turbulent). Note
that the coefficient α for the laminar flow regime in (4.2a) (α=√2) is different from
that employed by Soulsby (1997) due to the phase difference (0.25π) between the
shear stress τw and the velocity dη/dt (Molin et al. 2002). For laminar flow in the
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gap (Re6 5× 105), the friction coefficient defined in (4.2a) is identical to that derived
from the classical Stokes’ second problem of an oscillating flat plate with f = (2νσ)0.5,
which leads to

τw = ρ
√
σν

2
dη(t)

dt
. (4.3)

Equation (4.3) shows that the shear stress on the side walls is linearly proportional
to the oscillation velocity within the gap when the velocity and amplitude of the
water oscillations are relatively small (in the laminar regime). Regarding the turbulent
flow conditions, the shear stress τw is no longer linearly proportional to the velocity
(approximately (dη/dt)1.813); f is also dependent on the relative roughness of the
surface under turbulent flow conditions should a rough surface be of concern in
practical applications (refer to Soulsby (1997) for more details). The non-dimensional
forms of (4.1)–(4.3) can be easily obtained using the normalizations specified in
(2.1a–h) and will not be given here. An alternative method for determining the f
values is also available in Molin et al. (2002), which is based on the classical Stokes
boundary layer solution for a flat plate and leads to the same friction coefficient as
the one specified in (4.2) for laminar flow. The advantage of (4.2) is that it is also
applicable in turbulent flow regimes.

From (3.2) ξ is essentially a local loss coefficient similar to that used in pipe flow
hydraulics to explain the local head losses induced by sudden changes in the flow
geometry (e.g. pipe sudden expansion/constriction, valves and elbows). The local loss
coefficient ξ is normally dependent on the flow geometry and flow velocity. Although
the local loss coefficients for various flow configurations are readily available for
steady flows in pipes, few data exist for oscillatory flows in other geometries. The
previous work most relevant to the present flow geometries is that performed by
Smith & Swift (2003), who investigated the local loss coefficient in oscillatory flow
within a 2-D channel (similar to the present gap set-up). They found that the local
loss coefficient is dependent on the radius of the channel entrance, the oscillatory
flow Reynolds number based on the maximum oscillatory velocity in the channel,
the viscous penetration depth (2ν/σ)0.5 and the dimensionless stroke length based on
the width of the channel and the fluid semi-excursion. Through model testing, Smith
& Swift (2003) quantified the overall local loss coefficient by averaging the pressure
loss over the oscillation period under the assumption that the local loss coefficient
is independent of time during each of the blowout and suction phases. The local
loss coefficient presented by Smith & Swift (2003) could be used directly in the
present study if the parameter ranges were similar. For this reason, in this study, ξ
is determined via specifically designed physical model tests. The procedure used to
determine the local loss coefficient ξ in the present study is illustrated in figure 2.
Through physical experiments, the friction factor f can be determined by (4.2) with
the measured wave resonant responses, and the damping coefficient ε can be obtained
based on the measured phase angle through a correlation analysis via (3.7b). The
experiments and the obtained ξ values will be described in § 6.

5. Implementation in a linear potential flow model

The present viscous damping model is implemented in a linear potential flow model
in the frequency domain, which is the same as that reported by Lu et al. (2011a,b)
and suitable for gaps between bodies of different shapes. The higher-order boundary
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Measured resonant wave responses Measured phase angle Ç

Friction factor f Damping coefficient Ó

Local loss coefficient ≈

(3.7b)(4.2)

(3.5)

FIGURE 2. Flowchart of the procedure used to estimate the local loss coefficient ξ based
on experimental results.

element method (Teng & Eatock Taylor 1995) is used in the (modified) potential flow
model to solve the boundary value problem formulated in § 2.

Based on the methods proposed for quantifying f and ξ , an iterative procedure for
utilizing (3.5) in the modified potential flow model is proposed below:

(i) For any problem where ξ is known, start the potential flow computation by
setting ε= 0 in (3.5) for a range of frequencies until Λn is found.

(ii) Estimate f through (4.2) and ε through (3.5) based on the results obtained from
the previous step. Note that ε is dependent on the local flow velocity.

(iii) Repeat the computations again with the new ε and compare the numerical
solutions with the results obtained from the previous step.

(iv) If the difference between the wave amplitudes in the gap obtained from two
consecutive iterations is smaller than a predetermined norm, stop the iteration.

(v) Otherwise, go back to step (ii) until the iteration has converged.

The above procedure will be demonstrated in § 7.

6. Physical experiments
6.1. Experimental set-up

To quantify ξ , physical model tests were conducted in a wave flume 56 m in length,
0.7 m in width, and 0.7 m in depth at Dalian University of Technology, China. An
overview of the experimental set-up is shown in figure 3. Two boxes with a draft
d= 0.252 m, gap spacing L1= 0.05 m, and breadth B= 0.5 m were fixed in the wave
flume. The width of the models was 0.69 m. The small separations between the two
ends of the model and the wave flume walls were less than 0.01 m and were sealed
with silicon. The model boxes were fabricated from a 0.01 m-thick plexiglass plate.
Six wave gauges (Techco, TWG-600S) were used to measure the wave elevations in
the flume. As shown in figure 3, the wave gauge G4 was located at the centre of
the narrow gap, and G3 and G5 were arranged 0.05 m in front of the leading Box
A and 0.05 m behind the rear Box B, respectively. Since the diameter (0.008 m) of
the wave gauges is rather small in comparison with the gap size (0.05 m by 0.7 m),
its influence on the surface elevation is expected to be small. To separate the incident
wave and the reflected wave, wave gauges G1 and G2 were mounted at 1 m+λ/4 and
1 m in front of Box A, respectively, where λ denotes the incident wavelength. Wave
gauge G6 was situated 1 m behind the rear Box B. The acquisition rate of the wave
gauges was 100 Hz and the absolute error was confirmed to be less than ±1.5 mm
based on calibration tests.
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Wave
generator

Incident
waves

Reflected
waves

Transmitted
waves

Wave
absorber

G1 G2 G3 G4 G5 G6

z-

x-

B-B- L1

Box BBox A

R-R-d-

h- ¬/4
¬

Hi Hr Ht

38 m 1 m 1 m 15 m

FIGURE 3. An overview of the experimental set-up with a constant body draft d =
0.252 m, identical body breadth B = 0.5 m, gap width L1 = 0.05 m and water depth
h= 0.5 m (d= 5.04, B= 10 and h= 10).

R (m) 0 0.025 0.05 0.10 0.15
R(= R/L1) 0 0.5 1.0 2.0 3.0

TABLE 1. Corner radius of the gap entrance.

Five groups of laboratory tests were performed in this study, in which various edge
shapes were considered for the twin boxes, including one sharp corner and four round
corners. The edge configuration was measured using a non-dimensional parameter of
roundness defined as R= R/L1, where R is the radius of the round corner as shown
in figure 3. The tested values of the edge roundness R were 0, 0.5, 1.0, 2.0 and 3.0,
as listed in table 1. For the particular case with sharp corners, R= 0. Regular waves
with a period ranging from 0.90 s to 1.50 s were generated in each group of tests.

For each group of tests, approximately 30 incident wave periods were used to
capture the equilibrium responses of the wave oscillation in the gap. The tests were
terminated before the reflection waves from the wave maker reached the floating boxes.
Approximately ten periods of steady-state time series of the free-surface elevation
were used to calculate the average amplitude, with the relative root-mean-square error
for the amplitude generally less than 4 %. No filtering treatment was conducted on the
experimental data. The test repeatability was checked at the beginning and throughout
the testing programme. The incident wave height Hi was initially fixed at 0.024 m
(therefore, Hi/L1 = 0.48) to identify the resonant frequency Λ∗ for different R values.
For this small wave amplitude with Hi/h= 0.048, the corresponding wave steepness
Hi/λ was estimated to be less than 0.02, which falls into the linear wave regime.
After the resonant frequency for each of the R values was obtained, the incident wave
height was varied between Hi= 0.010 m (Hi/L1= 0.2) and Hi= 0.045 m (Hi/L1= 0.9)
at the identified resonant frequency Λ∗ for each R to investigate the dependence of
the resonant amplitude on the incident wave height under the assumption that the
resonant frequency is not very sensitive to the incident wave height. The maximum
values of Hi/λ and Hi/h considered in the tests were 0.027 and 0.09, respectively.
This result suggests that several of the incident waves were beyond the linear wave
regime.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

30
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.302


A viscous damping model for piston mode resonance 519

-10
-5

0
5

10(a)

(b)

50 51 52 53 54 55 56 57 58 59 60
-20

-t (s)

-̇
 (c

m
)

-̇
 (c

m
)

-10
0

10
20

50 51 52 53 54 55 56 57 58 59 60

A
m

pl
itu

de
 sp

ec
tru

m
 ˙

A

0 1 2 3 4 0 1 2 3 4
0

0.5

1.0

1.5

0

1

2

3(c) (d)

�(Ò/Ò*) �(Ò/Ò*)

FIGURE 4. (Colour online) (a,b) Time series of the free-surface elevations in the gap
under resonant conditions for d = 5.04, B = 10, R = 1.0 and h = 10: (a) Hi/L1 = 0.2;
(b) Hi/L1= 0.9; (c,d) The corresponding non-dimensional amplitude spectra ηA normalized
by L1 for (a,b) with Λ∗(= σ 2

∗L1/g) being the non-dimensional resonant frequency.

6.2. Experimental results
6.2.1. Resonant amplitude and frequency

The harmonic components of the steady-state resonant responses in the narrow
gap are examined first. A Fourier analysis was performed on the time history of the
free-surface elevation measured at G4, as illustrated in figure 3. The time series of the
free-surface elevation in the gap are shown in figure 4(a,b), and the corresponding
amplitude spectra are shown in figure 4(c,d) for the case with R = 1.0 and two
incident wave heights Hi/L1 = 0.2 and 0.9. Special attention was paid to the first
and higher harmonic components of the resonant fluid responses in the narrow gap,
as shown in figure 4(c,d). Although higher harmonic components were involved, the
response was dominated by the first harmonic component. A relatively significant
second harmonic component was found for the case shown in figure 4(d), where the
largest resonant response amplitude was observed among all the cases considered in
this study. The ratio of the amplitude of the second peak to the amplitude of the
first peak in figure 4(d) was approximately 0.1, whereas the ratio in figure 4(c) was
approximately 0.04.

The variations of the response amplitude with the incident wave frequency for
different gap entrance configurations are presented in figure 5, together with the
variations of the relative resonant amplitude and dimensionless mean velocity in the
gap with R. The wave height and resonant wave height in the gap are denoted by Hg

and Hg-Res, respectively. For the purpose of comparison, the previous independent
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FIGURE 5. (Colour online) (a) Variation in the relative wave height Hg/Hi in the gap with
a non-dimensional incident wave frequency Λ(= σ 2L1/g) at various corner radii of R for
d=5.04, B=10, h=10 and Hi/L1=0.48. Available experimental results from Saitoh et al.
(2006) at R= 0 are included for comparison. (b) Variation in the relative resonant wave
height Hg-Res/Hi in the gap and non-dimensional resonant free-surface velocity amplitude
Vg-Res (= |dη(t)/dt|amp) with the corner radius R.

experimental results reported by Saitoh, Miao & Ishida (2006) for twin boxes
with a sharp-corner entrance are also included in figure 5(a). The two sets of
experimental results for the sharp-corner case agree well, with an almost identical
resonant frequency of approximately 0.142 and a difference in the resonant wave
heights of approximately 3 %.

The relative resonant wave height Hg-Res/Hi increased dramatically from 4.90 to
7.93 as R increased from 0 to 0.5 (see figure 5b). This substantial increase in the
resonant wave height is primarily attributable to the sudden decrease in the system
damping ε (as confirmed by the calculated damping coefficients shown in table 2; see
details in § 6.2.3). The sudden decrease in ε was likely induced by the disappearance
of flow separation at the sharp corners, which in turn caused a significant increase
in the flow velocity in the gap as shown in figure 5(b). The resonant frequency only
increased slightly as R increased from 0 to 0.5.

As R increased further from 0.5 to 3.0, the resonant wave height Hg-Res/Hi
decreased slightly. At the largest corner radius of R = 3.0, the resonant wave
height Hg-Res/Hi decreased to 7.23, and the resonant frequency Λ∗ increased by
approximately 30 % from 0.142 at R= 0.5 to 0.183 at R= 3.0. The gently decreasing
trend of the resonant response amplitude with further increases in R beyond R= 0.5
may be due to (i) the weak influence of the roundness R on ε for R> 0, as shown in
table 2 or (ii) the decreasing excitation force, as suggested by the increasing natural
frequency. The relatively large increase in the resonant frequency with R is mainly
attributable to the decrease in the fluid mass in the narrow portion of the gap as R
increases, which leads to an increase in the natural frequency of the system (Moradi
et al. 2015).

6.2.2. Phase angle
Figure 6(a,b) shows typical examples of the temporal variations of the free-surface

elevation measured at the wave gauge locations of G3 and G4, respectively, when the
fluid oscillation in the gap was fully developed. Regarding the resonant condition with
Λ∗= 0.142, the wave amplitude in the gap was much larger than that in front of the
leading Box A, where a standing wave with an amplitude of 1.88Hi developed. A
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FIGURE 6. (Colour online) (a,b) Time series of the free-surface elevations in the gap and
in front of Box A (corresponding to wave gauges G4 and G3; see figure 3) under different
non-dimensional incident wave frequencies for d=5.04, B=10, R=0, h=10 and Hi/L1=
0.48 (sharp-corner case): (a) Λ= 0.142 (resonant conditions); (b) Λ= 0.163 (non-resonant
conditions). (c) Variation in the measured phase difference |ϕ| (absolute value) with the
incident wave frequency Λ (symbols) for various corner radii R. The phase difference
is defined as that between the free-surface motions in the gap and in front of Box A.
Theoretical predictions were made by (3.7b), in which ε was calibrated through a least-
squares analysis (lines): R = 0 (solid); R = 0.5 (dashed); R = 1.0 (dashed-dot); R = 2.0
(long-dashed); R= 3.0 (dashed-dot-dot).

phase difference of approximately π/2 was observed between the wave oscillations
measured at G3 and G4 at resonance. In the non-resonant condition with Λ= 0.163,
as shown in figure 6(b), the response amplitude in the gap was of the same order of
magnitude as that at the front location of the leading box, with a phase difference of
approximately π.

The variations of the phase difference |ϕ| (absolute value) between the free-surface
elevations measured at locations G3 and G4 with the incident wave frequency Λ are
shown in figure 6(c). In general, the phase difference increased with the incident wave
frequency for all cases. The phase difference |ϕ| asymptotically approached zero and
π as the incident wave frequency approached zero and infinity, respectively, consistent
with the predictions from (3.7b), in which ε was calibrated through a least-squares
analysis, as will be described in the next subsection.
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R ε R-square 1/(1+ ε2)

0 0.0729 0.916 0.995
0.5 0.0408 0.989 0.998
1.0 0.0435 0.964 0.998
2.0 0.0432 0.989 0.998
3.0 0.0392 0.995 0.998

TABLE 2. Damping coefficient ε for different corner radii R.

6.2.3. Damping coefficient
The damping coefficients ε for the tested cases were calibrated against the

experimental data through a least-squares-based correlation analysis via (3.7b). The
measured phase differences between the locations at G3 (in front of the leading box)
and G4 (in the gap) were chosen to calibrate ε because the phase measured at G3
was representative of the phase angle of the excitation force, based on the numerical
results from a CFD model (not shown here). Based on (3.7a), the difference between
Λ∗ and Λn is expected to be negligibly small. Therefore, we calibrated ε via (3.7b)
with the assumption of Λn ≈ Λ∗. The calibrated results for ε are listed in table 2
with the corresponding correlation coefficients (R-square). The phase differences
predicted by (3.7b) based on the coefficients given in table 2 were compared with the
measurements in figure 6(c), and the agreement between the measured and predicted
phase differences was reasonable.

Table 2 shows that the damping coefficient ε decreases substantially as the edge
shape changes from sharp corners to round corners with a small R = 0.5. Such a
rapid drop in ε was somewhat expected based on our understanding gained from
its steady-flow counterpart in pipes with sudden geometrical expansions/constrictions.
Moreover, the damping coefficient ε was not very sensitive to the variation in R for
the round-corner cases (R > 0.5). The results shown in the last column of table 2
also confirmed our earlier speculation that the values of the resonant frequencies and
natural frequencies are nearly identical due to the small damping involved in these
cases.

6.2.4. Local loss and friction coefficients
Further attempts were made to quantify the local loss coefficient ξ via the

quantification method illustrated in figure 2 based on the ε values presented in table 2
and the friction factors f calculated via (4.2). The ξ and f values are presented in
figure 7, which are obtained for a constant incident wave height of Hi/L1 = 0.48.
As shown in figure 7, for the sharp-corner case, the local loss coefficient ξ was
approximately 0.95, whereas for the round-corner cases, ξ varied between 0.21 and
0.29 with an extremely gentle descending trend for 0.5 6 R 6 3.0. For the friction
factor, figure 7 shows that f changes little with the increasing corner radius R.

The ξ values for various edge configurations were also estimated through
extrapolations and interpolations of the graphical results presented in Smith & Swift
(2003) and Smith (2004), with the parameters derived from the present experiments.
The estimated ξ values for the sharp-corner and round-corner cases based on Smith
& Swift (2003) and Smith (2004) are approximately 1.08 and 0.2∼ 0.3, respectively,
largely in agreement with the values estimated based on the present experimental
data. Overall, these results provide a certain level of confidence that the damping
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FIGURE 7. (Colour online) Local loss coefficient ξ and friction factor f versus corner
radius R.
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FIGURE 8. (Colour online) Sketch of the experimental set-up of Faltinsen et al. (2007).

coefficient of the gap resonance can be obtained by conducting physical model tests
systematically for various body geometries.

7. Modified potential flow solutions
To demonstrate the validity of the present method, the modified potential flow model

in the frequency domain was used to simulate the present experimental cases and those
of the moonpool resonance problems presented in Faltinsen & Timokha (2015). The
simulations were performed based on the predetermined damping coefficients. The first
test case was the example presented in Faltinsen et al. (2007) with ξ and f determined
based on (3.6) and (4.2), respectively. Figure 8 shows a sketch of the experimental
set-up of Faltinsen et al. (2007), where a rectangular moonpool is under forced heave
motions with an amplitude Ab. Their flume model tests were carried out for a range
of forcing frequencies Λ, with three different geometric configurations, corresponding
to the dimensionless parameters (normalized by L1) in table 3.

The numerical results for the excited piston-mode fluid response are shown in
figure 9, where Ag denotes the amplitude of the piston-mode wave oscillations in
the moonpool. The presented predictions agree well with the experimental results by
Faltinsen & Timokha (2015). The predicted resonant amplitudes are generally lower
than the semi-analytical solutions (with damping) of Faltinsen & Timokha (2015).
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Case 1a Case 1b Case 2a Case 2b Case 3

h 5.72222 5.72222 5.72222 5.72222 2.86111
d 1.0 1.0 1.5 1.5 0.5
B 2 2 2 2 1
Ab/L1 0.013889 0.027778 0.013889 0.027778 0.00694

TABLE 3. Geometric parameters and forcing amplitude (Ab/L1) of the model tests of
Faltinsen et al. (2007).

Cases shown in figure 9 (a) (b) (c) (d) (e)

Estimated ξ based on (3.6) 1.215 1.215 1.252 1.252 1.149
Calculated f based on (4.2) 3.27× 10−3 3.27× 10−3 3.07× 10−3 3.08× 10−3 3.07× 10−3

d 1.0 1.0 1.5 1.5 0.5
Er 5.7 % 3.5 % 8.8 % 5.3 % 7.1 %

TABLE 4. Estimated ratio of the friction-induced damping force to that due to flow
separation (denoted by Er) for the cases shown in figure 9.

The ratio of the friction-induced damping force to that due to flow separation,
denoted by Er, was evaluated based on (3.2). The results are detailed in table 4 for
the cases shown in figure 9. The contribution of the damping force from the wall
friction was generally less than 9 % of the flow separation for the cases investigated
in Faltinsen & Timokha (2015). Thus, the numerical results would not be significantly
affected even though the loss due to friction is completely ignored. As confirmation,
the calculations were repeated by artificially setting f = 0, and the results are shown
as dotted (green) lines in figure 9. The influence of the wall friction forces on
the numerical results was indeed small. This influence would likely become more
significant if the draft d is increased. The contribution from the friction loss will be
further discussed later in this section.

The modified potential flow model was also applied to the flume test cases
reported in this study. The numerical results are compared with the experimental
data in figure 10. The present numerical results agree reasonably well with the
experimental measurements, whereas the conventional potential flow model without
the damping term over-predicts the resonant response amplitudes significantly. The
relative differences in the resonant frequency Λ∗ and resonant wave height Hg-Res/Hi

were less than 4 % and 15 %, respectively. For comparison, with the aid of (3.6),
the pressure drop coefficient K(Sn, Kc) proposed by Faltinsen & Timokha (2015)
was directly applied to compute those cases, and the results are shown in figure 10
as dashed-dot (green) lines. The method proposed by Faltinsen & Timokha (2015)
worked extremely well for the sharp-corner case but under-predicted the response
amplitude for the round-corner cases in which the viscous damping was much
smaller than that in the sharp-corner case.

The sensitivity of the numerical results to the choice of the local loss coefficient
ξ was examined by applying the ξ value determined with a constant incident wave
height of Hi= 0.024 m (Hi/L1= 0.48) to a range of cases with different incident wave
heights at each of the R values investigated in this study. The numerical results are
compared with the experimental data from this work in figure 11. To further examine
the individual effects of the friction and local loss components of viscous damping on
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FIGURE 9. (Colour online) Comparison of the present predictions and previous results
for the relative wave amplitude Ag/Ab in a moonpool undergoing heave motions. The
geometric parameters and forcing amplitudes (Ab/L1) of the experiments of Faltinsen
et al. (2007) are shown in table 3. (a) Case 1a; (b) case 1b; (c) case 2a; (d) case
2b; (e) case 3. The experimental results are taken from Faltinsen & Timokha (2015) (@,
red) and were filtered by the reflection waves. The semi-analytical solutions with/without
artificial damping are taken from Faltinsen & Timokha (2015) (long-dashed/dashed-dot).
The present modified potential solutions with iterations are based on (3.5) (solid and
dotted lines), where ξ is estimated based on (3.6), in which the coefficients K(Sn, Kc)
and b∗ are determined according to the method of Faltinsen & Timokha (2015); f is
estimated by (4.2) for the solid lines (——), and f is artificially set at f = 0 for the
dotted lines (· · · · · ·).

the numerical results, four different sets of numerical results are included in figure 11:
(i) f = 0 and ξ = 0 (without damping), (ii) f 6= 0 and ξ = 0 (with friction damping
only), (iii) f = 0 and ξ 6= 0 (with local flow separation damping only) and (iv) f 6= 0
and ξ 6= 0 (with both friction and flow separation damping). The conventional linear
potential model over-predicted the resonant amplitude, particularly for the cases with
large incident wave amplitudes. The numerical results with f 6= 0 and ξ = 0 worked
relatively well only in the round-corner cases with a large corner radius (R= 2.0 and
3.0) and a small incident wave amplitude (Hi/L1 = 0.2). These results are possibly
due to (i) the insignificance (relative to the friction loss) of the local energy loss
induced by small-amplitude incident waves for the round-corner cases because this
loss is quadratically proportional to the mean flow velocity (which is a small quantity
<1.0; see figure 5b) in the gap; by contrast, the friction loss is linearly proportional
to the mean flow velocity; and (ii) the local energy loss in the case with sharp corners
was significant, even at small amplitudes of incident waves, due to the flow separation
expected at the sharp-corner locations. The numerical model with f 6= 0 and ξ = 0
significantly over-predicted the resonant response amplitude for all other cases with
relatively large incident wave amplitudes because the local loss dominated the friction
loss in those cases. As shown in figure 11, the resonant amplitude predicted by using
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FIGURE 10. (Colour online) Comparison of the numerical predictions of the potential
flow models (with/without the damping term) and the experimental results for d = 5.04,
B= 10, h= 10 and Hi/L1= 0.48. Cases with both sharp and round corners are considered:
(a) R= 0; (b) R= 0.5; (c) R= 1.0; (d) R= 2.0; (e) R= 3.0. Experimental results (@, red);
linear potential solutions without the damping term (dashed line - - - -); modified potential
solutions with the damping coefficient ε listed in table 2 (solid line ——); modified
potential solutions with iterations based on (3.5) (dashed-dot line – · – · –), where ξ was
approximated by (3.6), in which the coefficients K(Sn,Kc) and b∗ were determined by the
method of Faltinsen & Timokha (2015), and f was estimated by (4.2).

f 6= 0 and ξ = 0 was almost linearly proportional to the incident wave height for the
entire range of incident wave heights considered in this study. This result suggests that
the boundary layer flow over the side walls of the gap was in the laminar regime, as
indicated by (4.3), where the shear stress on the side walls is linearly proportional to
the mean velocity in the gap. This point will be further elaborated on when the results
shown in figure 12 are discussed.

The numerical results with f = 0 and ξ 6= 0 generally agree well with the
experimental results for all cases investigated here, suggesting that the local loss
dominated the friction loss, particularly for the case with sharp corners, where flow
separation was expected. A general trend in figure 11 is that the differences between
the experimental measurements and the numerical results with f = 0 and ξ 6= 0
increased with the incident wave height Hi/L1. This behaviour was not necessarily
caused by the dependence of ξ on the Keulegan–Carpenter number Kc. Instead, it
was induced by the omission of the friction contribution ( f = 0), because this trend
disappeared in the numerical results with f 6= 0 and ξ 6= 0. These observations suggest
that ξ is relatively insensitive to the incident wave height for the range of incident
wave heights investigated here.

As expected, the numerical results with f 6= 0 and ξ 6= 0 generally agreed better
with the experimental results than all other artificial cases with either the local loss
coefficient or friction coefficient being deliberately set to zero, except in the cases
with the largest three R values investigated in this study (figure 10c–e). Although
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FIGURE 11. (Colour online) Comparison of the numerical predictions and experimental
results for the resonant wave height Hg-Res/L1 with different incident wave heights Hi/L1
and various corner radii: (a) R = 0; (b) R = 0.5; (c) R = 1.0; (d) R = 2.0; (e) R = 3.0,
for d= 5.04, B= 10, h= 10. Experimental results (- -@- -); linear potential flow solution
without any damping term (——); modified potential solution considering viscous damping
due to wall friction only (artificially setting f 6= 0 and ξ = 0) (–+–); modified potential
solution considering damping due to flow separation only ( f = 0 and ξ 6= 0) (–A–); and
modified potential solution considering damping due to both flow separation and wall
friction ( f 6= 0 and ξ 6= 0) ( ). The numerical solutions were based on the modified
potential flow model with iterations based on (3.5), where the values of the local loss
coefficient ξ can be found in figure 7, and f was estimated by (4.2).

the underlying causes might be diverse (and are not further explored due to certain
limitations), these results might be due to the errors introduced in estimating the
friction contribution based on the empirical formulae (4.1)–(4.3) and the simplification
made in the derivation of (3.4), where the draft of the gap is assumed to be d even
for the cases with round corners. Strictly speaking, (4.1)–(4.3) are only applicable for
oscillatory flow parallel to a flat surface. The flow in the gap entrance region was
neither necessarily parallel to the surface, nor was the surface flat. Such an effect
was more pronounced for large R values because the wall friction contribution to the
overall damping was more pronounced than that in the other cases investigated here.

Smith & Swift (2003) suggested that ξ is generally dependent on the Reynolds
number Re and the Keulegan–Carpenter number Kc, defined as Kc=VgT/2R, with Vg
the amplitude of the oscillating velocity in the gap (the overbars imply dimensional
values), for oscillatory flow through a geometry similar to the one investigated in this
study. The ranges of Re and Kc covered in this study are quantified in figure 12. Note
that the Kc values for the sharp-corner cases are not included in figure 12(a) due to
the adopted definition of Kc from Smith & Swift (2003) with R as a denominator.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

30
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.302


528 L. Tan, L. Lu, G.-Q. Tang, L. Cheng and X.-B. Chen

5

10

15

20(a) (b)
R = 0.5
R = 1.0
R = 2.0
R = 3.0

1.5
(÷ 105)

0

0.5

1.0

R = 0
R = 0.5
R = 1.0
R = 2.0
R = 3.0

Hi/L1

0.2 0.4 0.6 0.8 1.0
Hi/L1

0.2 0.4 0.6 0.8 1.00

ReKc

FIGURE 12. (Colour online) (a) Variation in the Keulegan–Carpenter number Kc (=VgT/
2R) with the incident wave height Hi/L1 and corner radius R (corresponding to the
experimental results in figure 11) for d = 5.04, B= 10, h= 10; (b) the same as (a) but
for the Reynolds number Re (defined in (4.2)).

Figure 12(a) shows that Kc reached a maximum value of 16.4 at Hi/L1 = 0.9 with
R = 0.5 and approached the minimum value of 1.0 at Hi/L1 = 0.2 with R = 3.0 in
the present experiments. As shown in figure 12(b), the minimum Re was 5× 103 at
Hi/L1 = 0.2 with R= 0, and the maximum Re was approximately 105 at Hi/L1 = 0.9
with R= 1.0. These results confirm that the boundary layer flow over the side walls of
the gap was in the laminar regime because the maximum Re was smaller than 5× 105.

The contributions from the wall friction damping for the cases shown in figure 11
were further examined by quantifying the ratio of the friction and flow separation
components of the viscous damping. The ratio of the friction-induced damping force
to that due to flow separation, denoted by Er, was evaluated based on (3.2) The
estimated Er values for different incident wave heights and R values are shown in
figure 13; Er generally decreased with the increasing incident wave height because
the damping forces associated with local and friction energy losses are quadratically
and linearly proportional to the mean velocity in the gap, respectively. As the wave
height increased, the local energy loss increased much faster than the energy loss due
to the wall friction; Er was less than 0.3 for the sharp-corner cases and as high as 0.8
for the case with the largest R= 3.0 and the smallest Hi/L1= 0.2. The results shown
in figure 13 suggest that the contribution from the wall friction forces to the overall
viscous damping could be substantial, particularly for the cases with large round edges
and small incident wave amplitudes.

8. Discussion
8.1. On estimating the frictional damping force

In additional to the simplified formula (3.2), the viscous damping force due to the
wall friction can be evaluated in a more general and rigorous manner (Molin et al.
2002). First, the dissipated energy due to the wall friction over one period T is given
by

Ef =
∫ Sb

0

(∫ T

0
ρ

f
2
(V t(S) cos(σ t− ϕ))2 dt

)
dS=

∫ Sb

0

ρπf
2σ

(V t(S))2 dS, (8.1)

where V t(S) is the amplitude of the tangent oscillating velocity on the wet surface
of the boxes, as illustrated in figure 14, and Sb is the total length of the wet surface
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FIGURE 13. (Colour online) Estimated ratio of the friction-induced damping force to that
due to flow separation Er (corresponding to numerical results of ‘f 6= 0 and ξ 6= 0’ in
figure 11) with different incident wave heights Hi/L1 and various corner radii: (a) R= 0;
(b) R = 0.5; (c) R = 1.0; (d) R = 2.0; (e) R = 3.0, for d = 5.04, B = 10, h = 10. The
numerical solutions are based on the modified potential flow model with the damping
coefficient ε estimated by (3.5) via the iterative method. The values of the local loss
coefficient ξ are shown in figure 7, and f was calculated by (4.2).

lines of the boxes (corresponding to the red lines). In (8.1), V t(S), which is difficult
to measure directly in experiments, can be obtained based on potential flow solutions.
Apart from (8.1), the frictional energy loss can also be evaluated by

Ef =
∫ T

0
Fd−f cos(σ t− ϕ) · Vg cos(σ t− ϕ) dt= πFd−f Vg

σ
, (8.2)

where Fd−f is the amplitude of the frictional damping force and Vg is the amplitude
of the oscillating velocity in the gap. Based on (8.1) and (8.2), the frictional damping
force can be written as

Fd−f cos(σ t− ϕ)=

∫ Sb

0
ρf (V t(S))2 dS

2Vg
cos(σ t− ϕ). (8.3)

Compared with (3.2), (8.3) is a more general and rigorous method for estimating the
frictional damping force.

Under resonant conditions, the estimated frictional damping forces based on the
two methods ((8.3) and (3.2)) for the sharp- and round-corner cases are shown in
figure 15. The result based on (8.3) and linear potential flow solutions is denoted
by Fpote, and that estimated by the simplified method based on (3.2) is denoted by
Fsimp. Figure 15 shows that Fpote/Fsimp is between 0.90 and 1.11 for R6 2, suggesting
that the approximation made in (3.2) is reasonably good for R 6 2. The largest
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FIGURE 14. (Colour online) Sketch for estimating the frictional damping force based on
potential flow solutions.
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FIGURE 15. (Colour online) Ratio of the estimated frictional damping force based on
(8.3) and linear potential flow solutions (Fpote) to that estimated by the simplified approach
based on (3.2)(Fsimp).

difference between Fpote and Fsimp appears in the case with the largest corner radius
(R = 3.0) investigated in the present study, corresponding to Fpote/Fsimp = 0.74. It is
recommended that (8.3) is used in situations where R> 2.0.

8.2. Extensions of the viscous damping model
In additional to the present two identical bodies subjected to water waves, the viscous
damping model can be applied in two-dimensional cases with different geometries
of bodies and wave conditions as long as the local loss coefficient in the model is
quantified. However, in its present form, this viscous damping model is only suitable
for piston-mode responses with fixed structures. Considerable research efforts are
required for extensions to problems involving moving bodies and three-dimensional
problems where multiple response modes exist. For a floating body with significant
motion, the relative velocity between the bodies and fluid should be considered in
estimating the frictional damping force. For three-dimensional problems, the frictional
damping force should be estimated through the integration method described by
(8.3). Furthermore, both body motions and three-dimensional effects may influence
the viscous damping due to flow separation. Hence, the local loss coefficient must
be quantified under corresponding conditions. When multiple response modes exist,
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it may require conducting a dynamic analysis to determine the response modes in
which viscous damping plays an important role.

9. Summary and conclusions
This study considers the piston-mode fluid resonance in a moonpool or the narrow

gap formed by two fixed boxes. In §§ 2–5, after the statement of the problem, we
introduced a modified potential flow model and a viscous damping model, presented
the implementation of the viscous damping model in the (modified) potential flow
model and reported quantification methods for the local and friction loss coefficients in
the model. In § 6, we reported the physical experiments, and the local loss coefficient
was quantified based on the measured phase difference. In § 7, the (modified) potential
flow model implemented with the viscous damping model was used to predict the
resonant response in a narrow gap/moonpool. Numerical predictions were carried
out for varied damping conditions and compared with the available experimental
and numerical data in the literature and the present experimental results. In § 8, a
more general and rigorous method for estimating the frictional damping force is
presented. The extensions of the present methodology to more general situations are
also discussed.

A viscous damping model for energy losses due to both wall friction and flow
separation is proposed for a two-dimensional fluid response in a narrow gap or
moonpool. An equivalent linearized viscous damping coefficient (ε) dependent on
the body geometries, response amplitude, natural frequency and surface roughness
is devised to account for the energy dissipation. The damping component associated
with the flow separation (ξ) is determined through a correlation analysis of the
experimental data obtained in this study, and the friction component ( f ) is calculated
using a well-established empirical formula. The application of the proposed viscous
damping model in the frame of potential flow theory leads to a modified potential
flow model that can predict the amplitude of the piston-mode resonance for a wide
range of flow conditions without artificially tuning the damping coefficient, including
a sharp/round gap entrance corner and various incident wave amplitudes. Further
evidence from specifically designed physical tests indicates that the viscous damping
due to wall friction plays an important role for round-corner gap entrance geometries
and small incident wave heights.

The physical model tests conducted in this work confirm that the gap geometries
significantly influence the resonant response amplitude and resonant/natural frequency
of the fluid trapped in the gap. The resonant wave amplitude becomes much higher
when the shape of the gap entrance changes from a sharp corner to a round corner.

Despite the developments in this work, the method proposed by Faltinsen &
Timokha (2015) can be extended to cases with a round gap entrance if an appropriate
pressure drop coefficient is adopted. Both methods shed light on the successful
prediction of resonance problems within the modified potential flow model without
artificially tuning the damping coefficient. The proposed viscous damping model can
also be applied in other modified potential flow models, such as that of Chen (2004).
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