
On non-existence of steady periodic solutions
of the Prandtl equations
Michael Renardy†

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA

(Received 26 November 2012; revised 4 January 2013; accepted 6 January 2013;
first published online 7 February 2013)

We prove that periodic solutions of the steady Prandtl equations do not exist on a
stationary boundary. On a moving boundary, there are no solutions with a monotone
velocity profile.
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1. Introduction

Consider a bounded two-dimensional region bounded by a number of closed curves.
Then steady flows of the Euler equations are highly non-unique. Prandtl (1904) and
Batchelor (1956) have raised the question of which of these many flows can be
realized as limits of steady flows of the Navier–Stokes equations in the limit of
infinite Reynolds number. An important result (Prandtl 1904; Batchelor 1956) is that,
in any region of closed streamlines that is free of singularities, the vorticity must
be constant. Further characterization of these flows raises the question of boundary
layers, in particular, what steady flow solutions of the Prandtl equations exist on closed
boundaries and to which exterior flows can they be matched? In general, of course,
one does not expect steady flows to be stable at high Reynolds numbers. However,
there are some flows like rigid-body motion that are always stable, and the theory
has received impetus from the hope that there may be flows stable at sufficiently high
Reynolds number to make asymptotic theory applicable.

We shall show below that stationary solutions of the Prandtl equations with periodic
boundary conditions do not exist on a stationary boundary. On the other hand,
solutions on moving boundaries do exist. The only case that seems to be well
understood is that where the difference between the wall velocity and the velocity
of the outer flow is small. Wood (1957) derived a formal series expansion. It shows
that, for given wall velocity, the velocity in the outer flow is restricted to a manifold
of codimension one. At the leading order, the average of the outer flow velocity
is equal to the velocity of the moving wall. Further work (Feynman & Lagerstrom
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1956; Moore 1957; Kim 2000, 1998; Edwards 1997; Van Wijngaarden 2007) has
applied Wood’s result to specific flow situations and provided a rigorous mathematical
justification for the series expansion.

Well-posedness of the time-dependent Prandtl equations is assured only when the
velocity in the boundary layer is monotone (Oleinik & Samokhin 1999). Recent work
of Gérard-Varet & Dormy (2010) shows that without this assumption we cannot expect
well-posedness. The argument in Gérard-Varet & Dormy (2010) is based on a shear
flow instability first considered in Cowley, Hocking & Tutty (1985), and it appears
to be ‘localizable’, so that ill-posedness should be expected whenever there is a
non-degenerate velocity extremum in the boundary layer. Indeed, a result along these
lines is given by Ding (2012).

The solutions found by Wood clearly do not have a monotone velocity profile.
Indeed, we shall prove that solutions with a monotone velocity profile do not exist.

These results show that we cannot expect to find physically relevant stationary flows
on the basis of an asymptotics which combines Euler and Prandtl equations. If any
component of the boundary is stationary, such solutions do not exist at all. On moving
boundaries, the boundary layer solutions would be in a regime where the Prandtl
equations are dynamically ill-posed. For the full Navier–Stokes equations, this would
still imply instabilities with a growth rate that increases with Reynolds number (see
the remarks in Cowley, Hocking & Tutty 1985).

2. Non-existence on stationary boundaries

We consider the Prandtl system

uux + vuy = uyy − px, (2.1a)

py = 0, (2.1b)

ux + vy = 0, (2.1c)

in the half-space y > 0. We seek solutions which are smooth, satisfy the boundary
conditions

u(x, 0)= v(x, 0)= 0, (2.2)

periodicity in the x-direction,

u(x+ λ, y)= u(x, y), v(x+ λ, y)= v(x, y), p(x+ λ, y)= p(x, y), (2.3)

and the following conditions at infinity:

(a) u(x, y)→ u0(x) as y→∞ uniformly in x;
(b) p(x, y)→−u0 (x)

2 /2 as y→∞ uniformly in x;
(c) uy(x, y)→ 0 as y→∞ uniformly in x;
(d) uyy is integrable on (0, λ)× (0,∞).

We shall prove that, with the obvious exception of u = 0, no solutions with these
properties exist.

We multiply (2.1a) by u. The resulting equation can be put in the form(
u
∂

∂x
+ v

∂

∂y

)(
u2

2
+ p

)
= uuyy. (2.4)

Let L denote the left-hand side and R the right-hand side of this equation. Since u is
bounded and uyy is integrable, it follows that R is integrable. Moreover, an integration
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Prandtl equations

by parts yields ∫
∞

0

∫ λ

0
R dx dy=−

∫
∞

0

∫ λ

0
u2

y dy. (2.5)

This is strictly negative unless u is identically zero.
Now we estimate the integral of L. Since R is integrable and L = R, L must be

integrable, too. We can therefore evaluate the integral of L as∫
∞

0

∫ λ

0
L dx dy= lim

M→∞

∫
Ω(M)

L dx dy, (2.6)

where Ω(M) is any sequence of domains which exhausts the flow domain as M→∞.
To construct Ω(M), we proceed as follows: We start with the strip 0 < y < M. Now
we consider all streamlines which pass through this strip. We take Ω(M) to be the
union of all these streamlines, truncated at y = Y(M), where Y(M) shall be chosen
large relative to M. The boundary of Ω(M) consists of the wall y = 0, segments of
streamlines and segments of the line y= Y(M). Noting that L has divergence form, we
find that ∫

Ω(M)
L dx dy=

∫
∂Ω(M)

(u ·n)
(

u2

2
+ p

)
ds. (2.7)

Here u = (u, v), and n is the outward unit normal. The contributions from the
boundary y = 0 and from streamlines are zero. Thus, if Σ(M) is the part of the
boundary y= Y(M) that belongs to ∂Ω(M), we have∫

Ω(M)
L dx dy=−

∫
Σ(M)

v

(
u2

2
+ p

)
dx. (2.8)

Now introduce the streamfunction ψ by u= ψy, v =−ψx. We find∫
Ω(M)

L dx dy=
∫
Σ(M)

(
u2

2
+ p

)
dψ (2.9)

and hence∣∣∣∣∫
Ω(M)

L dx dy

∣∣∣∣6 max
y=Y(M)

∣∣∣∣u2

2
+ p

∣∣∣∣ ∫
Σ(M)
|dψ |6 max

y=Y(M)

∣∣∣∣u2

2
+ p

∣∣∣∣ ∫
y=M
|dψ |. (2.10)

Here we have used the fact that all streamlines crossing y= Y(M) through Σ(M) must
come from y=M. Since u2/2+ p tends to zero at infinity, we can make the right-hand
side of (2.10) small by choosing Y(M) large relative to M. Consequently, the integral
of L must be zero.

In essence, the argument given here is an energy balance. Viscous dissipation in the
boundary layer requires energy, and this energy cannot be extracted from the outer
flow. If the boundary is stationary, no work is done at the boundary, so there is no
source of energy. The situation is different for moving boundaries, which we shall
consider in the next section.

3. Non-existence of monotone solutions

We now allow a moving boundary. Only the behaviour at infinity will be relevant in
the following. We first consider the case where the limiting velocity u0 at infinity is
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unidirectional, say u0 > 0. We can then use von Mises variables, in which the Prandtl
equations take the form (see e.g. Wood 1957)

∂

∂x
(u2
− u2

0)= u
∂2u2

∂ψ2
. (3.1)

We set w= u2
− u2

0 and obtain

1√
u2

0 + w

∂w

∂x
=
∂2w

∂ψ2
. (3.2)

If the velocity in the boundary layer is strictly monotone, then w and wψ do not
change sign and wψ/w < 0. We divide (3.2) by w and substitute w = ±ea. This leads
to the equation

ax =

√
u2

0 ± ea(aψψ + a2
ψ). (3.3)

Let b=
√

u2
0 ± eaaψ . Then we can write the preceding equation in the form

ax = bψ ∓
ea

2 (u2
0 ± ea)

3/2 b2
+

1√
u2

0 ± ea
b2. (3.4)

Since ea
→ 0 for ψ →∞, the coefficient of b2 on the right-hand side is bounded

below by some positive constant C if ψ is large enough. We now integrate over x and
find

d
dψ

(∫ λ

0
b dx

)
6−C

∫ λ

0
b2 dx 6−

C

λ

(∫ λ

0
b dx

)2

. (3.5)

By assumption b is negative. But then (3.5) implies that
∫ λ

0 b dx approaches −∞ at
a finite value of ψ , and we have a contradiction. Hence monotone solutions with a
unidirectional outer flow cannot exist.

Now suppose u0 is not unidirectional, but u is strictly monotone, say uy > 0. Let
[a, b] be an interval on which u0 > 0, with u0(a) = u0(b) = 0. Pick x0 ∈ (a, b), and
consider streamlines passing through a point (x0,Y). Since u(x0, y) is positive and
monotone for large y, we conclude that the streamline through (x0,Y) can cross
the line x = x0 only once if Y is large enough. Moreover, by our assumption that
u0 is not unidirectional, there exists another point x1 where u0(x1) < 0. It follows
that ψ(x1, y) tends to −∞ for y→∞. Hence, if Y is large enough, the streamline
through (x0,Y) cannot cross the line x = x1. In conclusion, the streamline through
(x0,Y) can neither cross the line x = x0 a second time, nor cross the line x = x1.
Thus it cannot be closed or periodic, leaving only the possibilities that at either
end it must approach a stagnation point or go to infinity. Sard’s lemma states that
the set of critical values of a smooth function (i.e. the set of values corresponding
to points where the gradient is zero) has zero measure. Hence the values of the
streamfunction associated with stagnation points have measure zero. Hence there are
values of Y with Y large such that the streamline Γ through (x0,Y) goes to infinity
at both ends. Along Γ , the horizontal flow cannot reverse, since there cannot be a
point with u < 0 directly above another point where u > 0. Hence Γ is described
by a function y = φ(x), where limx→a = limx→b φ(x) =∞. Now consider the domain
Ω = {(x, y) | x ∈ (a, b), y > φ(x)}, and integrate (2.4) over Ω . As in the preceding
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section, we argue that the integral of L must be zero. On the other hand, we find that∫ b

a

∫
∞

φ(x)
R dy dx=−

∫ b

a

∫
∞

φ(x)
u2

y dy dx−
∫ b

a
u(x, φ(x))uy(x, φ(x)) dx< 0. (3.6)

This is a contradiction.
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