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Dyson’s rank, overpartitions, and universal
mock theta functions

Helen W. J. Zhang

Abstract. In this paper, we decomposeD(a,M) intomodular andmockmodular parts, so that it gives

as a straightforward consequencethe celebrated results of Bringmann and Lovejoy on Maass forms.

Let p(n) be the number of partitions of n and N(a,M , n) be the number of overpartitions of n with

rank congruent to a moduloM. Motivated by Hickerson and Mortenson, we find and prove a general

formula for Dyson’s ranks by considering the deviation of the ranks from the average:

D(a,M) =
∞

∑
n=0

(N(a,M , n) − p(n)
M
)qn .

Based on Appell–Lerch sum properties and universal mock theta functions, we obtain the stronger

version of the results of Bringmann and Lovejoy.

1 Introduction

Here and throughout the paper, we adopt the following common notation:

(x1 , x2 , . . . , xk ; q)∞ =
∞

∏
n=0
(1 − x1qn)(1 − x2qn)⋯(1 − xkqn),

j(z; qs) = (z; q)∞(q/z; q)∞(q; q)∞,

Ja ,m = j(qa , qm), Jm = (qm ; qm)∞, Ja ,m = j(−qa , qm),
where we assume that ∣q∣ < 1.

�e rank of a partition was introduced by Dyson [8] as the largest part of the
partition minus the number of parts. Let N(s, ℓ, n) denote the number of partitions
of n with rank congruent to s modulo ℓ. Atkin and Swinnerton-Dyer [2] obtained
generating functions for rank differences N(s, ℓ, ℓn + d) − N(t, ℓ, ℓn + d) with ℓ = 5
or 7 and 0 ≤ d , s, t < ℓ, which lead to combinatorial interpretations of Ramanujan’s
congruences modulo 5 and 7.�e connection between classical mock theta functions
and the generating functions of rank differences of partitions have been extensively
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studied. For example, Andrews and Garvan [1] found that the fi�h order mock theta
functions χ0(q) and χ1(q) can be expressed in terms of the rank differences of
partitions modulo 5, which was later proved by Hickerson [10]; that is,

2 + ∞∑
n=0
(N(1, 5, 5n) − N(0, 5, 5n))qn = χ0(q),

∞

∑
n=0
(2N(2, 5, 5n + 3) − N(0, 5, 5n + 3) − N(1, 5, 5n + 3))qn = χ1(q).

Subsequently, Hickerson [11] showed that the seventh order mock theta functions
F0(q), F1(q), and F2(q) are related to the rank differences of partitions modulo 7.
Since then, the work on Dyson’s rank andmock theta functions have been extensively
studied; see, for example, [3, 4, 13, 18].

Dyson’s rank can be extended to overpartitions in the obvious way. Recall that an
overpartition [7] is a partition inwhich the first occurrence of a partmay be overlined.
�e rank of an overpartition is defined to be the largest part of an overpartitionminus
its number of parts. Similarly, let N(s, ℓ, n) denote the number of overpartitions
of n with rank congruent to s modulo ℓ. We define the general rank difference for
overpartitions

R(a, b,M , c,m) = ∞∑
n=0
(N(a,M ,mn + c) − N(b,M ,mn + c))qn ,(1.1)

where a, b, c, m, andM are integers with 0 ≤ a, b < M , and 0 ≤ c < m.
�e rank differences of overpartitions are also related to mock theta functions. For

third ordermock theta functionω(q), the author andWei [17] established the relation
between ω(q) and the ranks of overpartitions modulo 6:

ω(q) = 1

2
R(0, 1, 6, 2, 3).

As an example of Lovejoy and Osburn’s results, they proved for modulus 3 [16,
�eorem 1.1], slightly written,

R(0, 1, 3, 0, 3) = −1 + J36 J3,6
J21,6 J2

,

R(0, 1, 3, 1, 3) = 2J36
J1,6 J2

,

R(0, 1, 3, 2, 3) = 4J36
J2 J3,6

− 6h(q, q3),

where

h(x , q) = 1

J1,2

∞

∑
n=−∞

(−1)nqn(n+1)
1 − xqn(1.2)

is a universal mock theta function that appeared in [6].
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Bringmann and Lovejoy [5] show that R(a, b, t, d , t) is a weakly holomorphic
modular form when ( d

t
) = −(−1

t
). Moreover, they also mentioned that

∞

∑
n=0
(N(a,M , n) − p(n)

M
)qn

is the holomorphic part of a weak Maass form.
For integers 0 ≤ a ≤ M, define

D(a,M) = D(a,M , q) = ∞∑
n=0
(N(a,M , n) − p(n)

M
)qn .(1.3)

In terms of (1.1), we obtain

R(a, b,M , 0, 1) = D(a,M) − D(b,M).(1.4)

�eorem 1.1 If 0 ≤ a < M, then

D(a,M , q) = d(a,M , q) + T a ,M(q),
where

d(a,M , q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h( − 1, (−1) M

2
+1q

M
2

4 ) + (−1) M

2
−1q

M

2
−1h( − q M

2

4
− M

2 , (−1) M

2
+1q

M
2

4 ),
if a = 0 and M ≡ 0 (mod 2)

(−1) M

2
− a

2
+1q

aM

4
− a

2

4 h(q M
2

4
− aM

4 , (−1) M

2
+1q

M
2

4 )
+(−1) M

2
− a

2 q
aM

4
+ M

2
− (a+2)

2

4 h(q M
2

4
− aM

4
− M

2 , (−1) M

2
+1q

M
2

4 ),
if a ≠ 0 and a ≡ M ≡ 0 (mod 2)

2(−1) M

2
− a

2
+ 1

2 q
aM

4
+ M

4
− (a−1)

2

4 h( − q M
2

4
− aM

4
− M

4 , (−1) M

2
+1q

M
2

4 ),
if a ≡ 1 (mod 2) and M ≡ 0 (mod 2)

0, if a = 0 and M = 1
2(−1) M−1

2 q
M
2−1
4 h(qM( M−1

2
) , qM

2) − qM−1h(qM2−M , qM
2),

if a = 0 and M ≡ 1 (mod 2)
2(−1) M+1

2
− a

2 q
M
2−1
4
− a

2+2a
4 h( − qM( M−1

2
)− Ma

2 , qM
2)

+(−1)M− a

2 q
a

2
(M− a

2
)h( − qM2− aM

2 , qM
2)

+(−1)M− a

2
+1q(

a

2
+1)(M− a

2
−1)h( − qM(M− a

2
−1) , qM

2),
if a ≠ 0, M ≠ 1, a ≡ 0 (mod 2)

and M ≡ 1 (mod 2)
2(−1)M− a−1

2 q(
a+1
2
)(M− a+1

2
)h( − qM(M− a+1

2
), qM

2)
+(−1) M−a

2
+1q

M
2−a2

4 h(qM( M−a
2
), qM

2)
+(−1) M−a

2
+1q

M
2−(a+2)2

4 h( − qM( M−a
2
−1) , qM

2),
if M ≠ 1 and a ≡ M ≡ 1 (mod 2)

and T a ,M(q) is a theta function.
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In Section 2, we prove the main theorem using classical methods. In Section 3, we
demonstrate how the main theorem yields the results of Bringmann and Lovejoy on
Dyson’s ranks and Maass form.

2 Proof of Theorem 1.1

�is section is devoted to the decomposition of D(a,M) as stated in�eorem 1.1. It is
known that mock theta functions can be expressed in terms of the Appell–Lerch sum
m(x , q, z). Recall that the Appell–Lerch sum is defined by

m(x , q, z) = 1

j(z; q)
∞

∑
r=−∞

(−1)rq(r2)zr
1 − qr−1xz ,(2.1)

where x , z ∈ C∗ with neither z nor xz an integral power of q.
First, we recall the universal mock theta function h(x , q) defined by Gordon and

McIntosh [9]

h(x , q) = 1

J1,2

∞

∑
n=−∞

(−1)nqn(n+1)
1 − xqn .(2.2)

Hickerson andMortenson [12] showed that h(x , q) andm(x , q, z) have the following
relation:

h(x , q) = −x−1m(x−2q, q2 , x2z) + J31 j(xz; q) j(z; q2)
j(q; q2) j(x; q) j(z; q) j(x2z; q2) ,(2.3)

where the right-hand side is actually z-independent.
We note that the z = x−1 and z = −x−2 specialisations of (2.3):

h(x , q) = −x−1m(x−2q, q2 , x),(2.4)

h(x , q) = −x−1m(x−2q, q2 ,−1) + ∆(x; q),(2.5)

where

∆(x; q) = x−1 J31 j(−x; q) j(−x2; q2)
j(q; q2) j(x; q) j(−x2; q) j(−1; q2) .(2.6)

�e following lemmas play central roles in the proof of �eorem 1.1.

Lemma 2.1 ([12, �eorem 3.9]) Let n and k be integers with 0 ≤ k < n. Let ω be a
primitive n-th root of unity. �en

n−1

∑
t=0

ω−ktm(ωtx , q, z) = nq−(k+12 )(−x)km( − q(n2)−nk(−x)n , qn2

, z′) + nΨn
k (x , z, z′; q),

where

Ψn
k (x , z, z′; q) = − xkzk+1 J3n2

j(z; q) j(z′; qn2)
× n−1

∑
t=0

q(
t+1
2
)+kt(−z)t j( − q(n+12 )+nk+nt(−z)n/z′ , qntxnznz′; qn2)

j( − q(n2)−nk(−x)nz′ , qntxnzn ; qn2) .
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Lemma 2.2 If 0 ≤ r < t are integers, then we have

∞

∑
n=0

N(r, t, n)qn = 1

t

∞

∑
n=0

p(n)qn + 1

t

t−1

∑
j=1

ζ
−r j
t R(ζ jt ; q).(2.7)

Proof �ere is just one overpartition of 0, the empty overpartition. We define its
rank to be 0. Let N(m, n) denote the number of overpartitions of n with rank m.
Lovejoy [15] obtained the following generating function for N(m, n),

R(z; q) ∶= ∞∑
n=0

∞

∑
m=−∞

N(m, n)zmqn

= (−q; q)∞(q; q)∞
∞

∑
n=−∞

(1 − z)(1 − z−1)(−1)nqn2+n

(1 − zqn)(1 − z−1qn) .(2.8)

Since we have

∞

∑
n=0

p(n)qn = R(1; q),

it follows that the right-hand side of (2.7) is

1

t

t−1

∑
j=0

ζ
−r j
t R(ζ jt ; q).

�erefore, the n-th coefficient of this series, say a(n), is given by

a(n) = 1

t

t−1

∑
j=0

ζ
−r j
t

∞

∑
m=−∞

ζ
m j
t N(m, n) = 1

t

∞

∑
m=−∞

N(m, n) t−1∑
j=0

ζ
(m−r) j
t .

Equation (2.7) follows, since the inner sum is t if m ≡ r (mod t), and is 0 otherwise.
∎

Now we are in a position to prove�eorem 1.1.

Proof of�eorem 1.1. �e proofs of the seven cases are similar, so we give only a
few as examples. For the sake of brevity, we do not write out an explicit theta function
for each T a ,M(q). However, we point out that our arguments are effective in that we
can easily keep track of the various summands of quotients of theta functions that
arise from using Lemma 2.1.

Let ζM = e2πi/M . Substituting (2.7) into (1.3), we find that

D(a,M) = 1

M

M−1

∑
j=1

ζ
−a j
M R(ζ jM ; q).(2.9)

Applying the following identity [14, p. 251]:

R(ζ ; q) = (1 − ζ)(1 − ζ−1)h(ζ , q)
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to (2.9), we get

D(a,M) = 1

M

M−1

∑
j=1

ζ
−a j
M (1 − ζ jM)(1 − ζ− jM )h(ζ jM , q).

By (2.5), we have

D(a,M) = − 1

M

M−1

∑
j=1

ζ
−(a+1) j
M (2 − ζ jM − ζ− jM )m(ζ−2 jM q, q2 ,−1)

(2.10)

+ 1

M

M−1

∑
j=1

ζ
−a j
M (2 − ζ jM − ζ− jM )∆(ζ jM ; q)

= − 2

M

M−1

∑
j=0

ζ
−(a+1) j
M m(ζ−2 jM q, q2 ,−1) + 1

M

M−1

∑
j=0

ζ
−a j
M m(ζ−2 jM q, q2 ,−1)

+ 1

M

M−1

∑
j=0

ζ
−(a+2) j
M m(ζ−2 jM q, q2 ,−1) + 1

M

M−1

∑
j=1

ζ
−a j
M (2 − ζ jM − ζ− jM )∆(ζ jM ; q).

We first consider the case a = 0,M ≡ 0 (mod 2) and recall that T a ,m(q) will depend
on an arbitrary z. We write j = M

2
t + r, where 0 ≤ t ≤ 1 and 0 ≤ r ≤ M

2
− 1. �e first

summation in (2.10) is then

− 2

M

M−1

∑
j=0

ζ
− j
M m(ζ−2 jM q, q2 ,−1) = − 2

M

1

∑
t=0

(M/2)−1

∑
r=0

ζ
− M

2
t−r

M m(qζ− M

2
t−r

M

2

, q2 ,−1)

= − 2

M

1

∑
t=0

ζ−t2

(M/2)−1

∑
r=0

ζ−rM m(qζ− M

2
t−r

M

2

, q2 ,−1)
= 0.

For the second summation,

1

M

M−1

∑
j=0

m(ζ−2 jM q, q2 ,−1) = 1

M

1

∑
t=0

(M/2)−1

∑
r=0

m(qζ− M

2
t−r

M

2

, q2 ,−1)

= 2

M

(M/2)−1

∑
r=0

m(qζ−rM
2

, q2 ,−1).(2.11)

Substituting k, n, z, x and q by 0, M/2, −1, q and q2, respectively, in Lemma 2.1, we
find that

(M/2)−1

∑
r=0

m(qζ−rM
2

, q2 ,−1) = M

2
m((−1) M

2
+1q

M
2

4 , q
M
2

2 , z′)(2.12)

+ M

2
Ψ

M

2

0 (q,−1, z′; q2).(2.13)
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Combining (2.12) and (2.11), we are led to

1

M

M−1

∑
j=0

m(ζ−2 jM q, q2 ,−1) = m((−1) M

2
+1q

M
2

4 , q
M
2

2 , z′) +Ψ M

2

0 (q,−1, z′; q2).

Similarly, the third summation can be rewritten as

1

M

M−1

∑
j=0

ζ
−2 j
M m(ζ−2 jM q, q2 ,−1) = 1

M

1

∑
t=0

(M/2)−1

∑
r=0

ζ
−( M

2
t+r)

M

2

m(ζ−( M

2
t+r)

M

2

, q2 ,−1)

= 2

M

(M/2)−1

∑
r=0

ζ−rM
2

m(ζ−rM
2

, q2 ,−1).
Substituting k, n, z, x , and q by (M/2) − 1,M/2, −1, q, and q2, respectively, in Lemma
2.1, we find that

2

M

(M/2)−1

∑
r=0

ζ−rM
2

m(ζ−rM
2

, q2 ,−1) = (−1) M

2
−1q−

(M−2)2

4 m((−1) M

2
+1q−

M
2

4
+M , q

M
2

2 , z′)

+Ψ M

2
M

2
−1
(q,−1, z′; q2).

So for a = 0 and M ≡ 0 (mod 2),
D(0,M) = m((−1) M

2
+1q

M
2

4 , q
M
2

2 , z′) + (−1) M

2
−1q−

(M−2)2

4 m((−1) M

2
+1q−

M
2

4
+M , q

M
2

2 , z′)

+Ψ M

2

0 (q,−1, z′; q2) +Ψ
M

2
M

2
−1
(q,−1, z′; q2) + 1

M

M−1

∑
j=1
(2 − ζ jM − ζ− jM )∆(ζ jM ; q).

Set up (2.4) instead of (2.5) in the above equation, and we have

D(0,M) = h( − 1, (−1) M

2
+1q

M
2

4 ) + (−1) M

2
−1q

M

2
−1h( − q M

2

4
− M

2 , (−1) M

2
+1q

M
2

4 )
+Ψ M

2

0 (q,−1,−1; q2) +Ψ
M

2
M

2
−1
(q,−1,−q M

2

4
− M

2 ; q2)
+ 1

M

M−1

∑
j=1
(2 − ζ jM − ζ− jM )∆(ζ jM ; q).

�en we consider the case a ≡ M ≡ 0 (mod 2) and a ≠ 0. We write j = tM/2 + r,
where 0 ≤ t ≤ 1 and 0 ≤ r ≤ M/2 − 1. �e first summation in (2.10) is then

− 2

M

M−1

∑
j=0

ζ
−(a+1) j
M m(ζ−2 jM q, q2 ,−1)

= − 2

M

1

∑
t=0

(M/2)−1

∑
r=0

ζ
−(a+1)( M

2
t+r)

M m(qζ− M

2
t−r

M

2

, q2 ,−1)

= − 2

M

1

∑
t=0

ζ
−(a+1)t
2

(M/2)−1

∑
r=0

ζ
−(a+1)r
M m(qζ− M

2
t−r

M

2

, q2 ,−1)
= 0.
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�e second summation in (2.10) is then

1

M

M−1

∑
j=0

ζ
−a j
M m(ζ−2 jM q, q2 ,−1) = 2

M

(M/2)−1

∑
r=0

ζ
− a

2
j

M

2

m(qζ−rM
2

, q2 ,−1)

= (−1) M

2
− a

2 q−
(M−a)2

4 m((−1) M

2
+1q−

M
2

4
+ aM

2 , q
M
2

2 , z′)
+Ψ M

2
M

2
− a

2

(q,−1, z′; q2),

where the second equality follows from Lemma 2.1 with k = (M − a)/2, n = M/2, z =
−1, x = q, and q = q2.

�e third summation in (2.10) is then

1

M

M−1

∑
j=0

ζ
−(a+2) j
M m(ζ−2 jM q, q2 ,−1)

= 2

M

(M/2)−1

∑
r=0

ζ
− j( a

2
+1)

M

2

m(qζ−rM
2

, q2 ,−1)

= (−1) M

2
− a

2
−1q−

(M−a−2)2

4 m((−1) M

2
+1q−

M
2

4
+ aM

2
+M , q

M
2

2 , z′)
+Ψ M

2
M

2
− a

2
−1
(q,−1, z′; q2),

where the second equality follows from Lemma 2.1 with k = (M − a − 2)/2, n = M/2,
z = −1, x = q, and q = q2.

So for a ≡ M ≡ 0 (mod 2) with a ≠ 0,

D(a,M) = (−1) M

2
− a

2
+1q

aM

4
− a

2

4 h(q M
2

4
− aM

4 , (−1) M

2
+1q

M
2

4 )

+ (−1) M

2
− a

2 q
aM

4
+ M

2
− (a+2)

2

4 h(q M
2

4
− aM

4
− M

2 , (−1) M

2
+1q

M
2

4 )
+Ψ M

2
M

2
− a

2

(q,−1, q M
2

4
− aM

4 ; q2) +Ψ M

2
M

2
− a

2
−1
(q,−1, q M

2

4
− aM

4
− M

2 ; q2)

+ 1

M

M−1

∑
j=1

ζ
−a j
M (2 − ζ jM − ζ− jM )∆(ζ jM ; q).

�is completes the proof. ∎

3 On Generalisations of Dyson’s Rank Differences
for Overpartitions

In this section, we will reprove the result of Bringmann and Lovejoy in [5]. �ey
put identities involving rank differences for overpartitions in the framework of weak
Maass forms.
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�eorem 3.1 ([5, �eorem 1.6]) Suppose that ℓ ≥ 3 is prime, 0 ≤ s1 , s2 < ℓ, and 0 ≤
d < ℓ. If ( d

ℓ
) = −(−1

ℓ
), then
∞

∑
n=0
(N(s1 , ℓ, ℓn + d) − N(s2 , ℓ, ℓn + d))qℓn+d

is a weakly holomorphic modular form on Ŵ1(16ℓ4).
We find that for a given summand qmh(qMk , qM

2) in �eorem 1.1, if m ≡ d
(mod M), it can be determined that (a + b)2 ≡ −4d (mod M) where b = 0, 1, 2. For
example, taking the case M ≠ 1 and a ≡ M ≡ 1 (mod 2) in �eorem 1.1,

D(a,M) = 2(−1)M− a−1
2 q(

a+1
2
)(M− a+1

2
)h( − qM(M− a+1

2
) , qM

2)
+ (−1) M−a

2
+1q

M
2−a2

4 h(qM( M−a
2
), qM

2)
+ (−1) M−a

2
+1q

M
2−(a+2)2

4 h( − qM( M−a
2
−1) , qM

2) + T a ,M(q),(3.1)

For the first summand in (3.1), the condition

( a + 1
2
)(M − a + 1

2
) ≡ d (mod M)

implies

(a + 1)2 ≡ −4d (mod M).
Combining the properties of Legendre symbol and the condition ( d

M
) = −(−1

M
), we

have

(−4d
M
) = (−1

M
)( 2

M
)2( d

M
) = −(−1

M
)2( 2

M
)2 = −1.

If (−4d
M
) = −1, we will never have an m ≡ d (mod M), so the certain rank difference

is a weakly holomorphic modular form, which implies �eorem 3.1.
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