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We analyze the onset of superconductivity, in a type II superconductor adjacent to a normal

material, via a generalized Ginzburg–Landau energy functional, which models the effects of

superconducting electron pairs diffusing into the normal part. We consider a superconductor

and a normal material, each filling a half-space, in the presence of a constant magnetic field

parallel to their interface. Among other results, we show that if the normal state conductivity

of the superconductor is less than or equal to the conductivity of the normal material,

then normal states are the only global minimizers down to the second critical field Hc2 .

Hence, we analytically confirm experimental predictions that surface superconductivity may

be suppressed by coating a superconductor with a normal metal.

1 Introduction

Experimental [5, 6] and theoretical [13, 10] investigations presented in the physics liter-

ature argue that when a superconductor is in contact with a normal metal the surface

superconducting sheath, usually observed in type II superconductors, may be absent. The

determining factor appears to be the relation between the normal state conductivities

of the two materials; with the suppression happening if the normal state conductiv-

ity of the superconductor, σs, is less than or equal to the conductivity of the normal

metal, σn.

For a type II superconductor placed in a vacuum one can define three critical fields,

commonly denoted by Hc1, Hc2 and Hc3, with Hc1 < Hc2 < Hc3. Above Hc3, the sample

is in the so-called normal state, in which no superconductivity is present; as the applied

field is decreased superconductivity starts to nucleate at the boundary in the form of a

superconducting sheath. The superconductor remains in a surface superconducting state

down to Hc2, where superconductivity starts appearing in the bulk of the material. Below

Hc1 the material is almost a perfect superconductor [9].

The papers mentioned above suggest that when the superconductor is adjacent to

a metal, the nucleation field (which we will denote by Hn
c3

to distinguish it from

the one in a vacuum) depends on the specific materials used, with Hn
c3

= Hn
c3

(
σs/σn

)
.

Coating the sample with a normal metal for which σs � σn should block surface nuc-

leation, and bring the upper critical field down to Hc2 , that is Hn
c3

= Hc2 . While if
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σs > σn, then Hc2 < Hn
c3

(
σs/σn

)
< Hc3 and the classical surface superconductivity should

be observed; with Hn
c3

(
σs/σn

)
→ Hc2 when σs/σn → 1+, and Hn

c3

(
σs/σn

)
→ Hc3 for

σs/σn → ∞.
We are interested in rigorously analysing the phenomenon in the setting of the

Ginzburg–Landau theory. Classically, the presence of a normal material is modelled

via the so-called de Gennes boundary condition: a Robin-type boundary condition de-

pending on the so-called extrapolation length parameter, d > 0. This boundary condition

maintains the gauge invariance of the model and the physical intuition that the super-

current flows tangentially at the boundary of the superconductor (i.e. with zero normal

component) [9]. The limiting case, d = ∞ corresponds to the Neumann boundary con-

dition and represents the case of a vacuum or insulator. The other limiting case d = 0

corresponds to the Dirichlet boundary condition, that is to the physical assumption that

the density of the superelectrons is zero at the boundary of the superconductor. Therefore,

the Dirichlet boundary condition gives zero supercurrent at the boundary rather than

just zero normal component, this might have unexpected mathematical consequences as

illustrated, for example, by the very interesting Theorem 4 in Lu & Pan [14]. Motivated

by the work of Chapman et al. [8] and Hurault [13] (see also Giorgi [11]), and the results

of Chapman [7], rather than using the de Gennes boundary condition, we start from

a physically-sound generalization of the Ginzburg–Landau free energy density, which

models the effects of superconducting electron pairs diffusing into the normal material.

Present in the model, see Section 2, there are two parameters mn and ms whose ratio

mn/ms is equal to σs/σn.

Following the physics literature (see for example [16]), to study the onset of super-

conductivity we consider a semi-infinite superconductor filling the half-space x < 0 in

contact with a normal material, which in turn fills the half-space x > 0, and a constant

applied magnetic field parallel to the surface, i.e. parallel to the z axis. This situation can

be analyzed using a one-dimensional version of the generalized Ginzburg–Landau energy

functional [13, 10].

Nucleation of superconductivity for the classical one-dimensional Ginzburg–Landau

energy has been studied rigorously in the fundamental works of Bolley & Helffer [4, 3]

for a superconductor in a vacuum, i.e d = ∞, and formally by Chapman [7] for the

more general case of the de Gennes boundary condition. Bolley and Helffer, among other

results, obtain a precise picture of the stability of normal states, and estimates on the

value of Hc3 .

Chapman [7] shows that the upper critical field Hn
c3

indeed depends on d, that is

the presence of a normal material influences its value. According to Chapman surface

nucleation occurs for all d > 0, with the upper critical field increasing and approaching

Hc3 as d increases, and decreasing to Hc2 as d goes to zero. Thus, the de Gennes boundary

condition does not account for the situation σs < σn, and the parameter d, appears to be in

the correspondence d → 0+, σs/σn → 1 and d → ∞, σs/σn → ∞. Deutscher & de Gennes

[10, pg 1028-1029] note that the influence of the normal material in high fields can be

modelled by this boundary condition if the extrapolation length is field-independent, an

assumption that can be made “only if the normal-state conductivity of S is much larger

than that of N”. The model we use is based on the one presented by Hurault [13], which

includes the effects of the applied magnetic field on the superconducting order parameter
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on the normal part, and should be more appropriate to describe the situation σs < σn, as

mentioned by Deutscher & de Gennes [10, pg 1031].

We recover the experimental and theoretical results presented by others [5, 6, 13, 10].

We have rigorous results analogous to the picture described by Chapman for type II

superconductors and normal materials which satisfy mn/ms > 1, see Theorems 3.3 and

5.1, and Lemma 5.6. For mn/ms � 1, we obtain that normal states are the only global

minimizers down to Hc2 , see Theorem 3.3, and that for fields close to but less than Hc2 ,

there are normal states which are not local minimizers (Theorem 5.1) i.e. Hn
c3

≡ Hc2 .

To connect our results to the situation of a vacuum, we prove that as mn/ms → ∞ any

normal state is a local minimizer down to Hc3 , see Theorem 5.7. Finally, Lemma 5.6 and

Theorem 5.1 imply the other limiting behaviour i.e. Hn
c3

→ Hc2 for mn/ms → 1+.

The paper is organized as follows. In § 2, we introduce the energy in a non-dimensional

form, and present the one-dimensional set-up. In § 3, we show that in the range of fields

of interest the energy is bounded below, and we look at existence of global minimizers

(Theorem 3.1 and Theorem 3.3). In § 4, we study under which condition a fixed normal

state is a local minimizer. In particular, this leads to the analysis of an eigenvalue problem

(Remark 4.4 and Theorem 4.2). In § 5 we show the existence of a transition field above

which every normal state is a local minimizer, and below which some normal states are

not local minimizers. We prove that this transition field is exactly Hc2 if mn/ms � 1

(Theorem 5.1, and Remarks 5.2 and 5.8). To conclude, we study the behaviour of normal

state solutions when mn/ms → ∞ (Theorem 5.7).

2 Energy derivation

The Ginzburg–Landau theory describes the state of a superconducting body via a free

energy density involving a complex valued order parameter ψ, defined in the supercon-

ducting body and a vector field A, the magnetic potential, defined in the whole space.

To model the normal part together with the superconductor, we consider the following

non-dimensionalized Ginzburg–Landau free energy density [8, 13, 11]:

F(ψ,A,Ha) : =
|as|2
bs

{Fs − |ψ|2 +
1

2
|ψ|4 + | (i∇ + A) ψ |2

+ κ2|H|2 − 2κ2 H · Ha} χDDDs
+

|as|2
bs

{Fn +
an

|as|
|ψ|2 (2.1)

+
ms

mn
| (i∇ + A) ψ |2 +

µn

µs
κ2|H|2 − 2

µn

µs
κ2 H · Ha} χDDDn

,

where χDDDs
and χDDDn

denote the characteristic functions for the superconducting region DDDs

and the normal region DDDn respectively.

For fixed temperature T , we have as ≡ as(T ) = as(0)
(
1 − T/Tcs

)
and an ≡ an(T ) =

an(0)
(
1 − T/Tcn

)
, where as(0) < 0, an(0) < 0 are constants, and Tcs, Tcn are the zero-field

critical temperatures of the superconductor and the normal material, respectively. We

consider materials for which Tcn < Tcs and we are interested in the range of temperat-

ures Tcn < T < Tcs, so that as < 0 and an > 0. The positive constants ms, mn depend

on the physical parameters of the superconducting and normal materials, respectively;

and their ratio, mn/ms, is proportional to the ratio, σs/σn, of the normal conductivity
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of the superconducting region to the conductivity of the normal region. The constant

bs > 0 is characteristic of the superconducting body, and µs, µn > 0 denote the per-

meability densities of the superconducting and the normal part, respectively. The material

constant κ is the Ginzburg–Landau parameter of the superconducting material, Ha is

the external applied magnetic field and H = 1
µ
curlA is the induced magnetic field. We

define the piecewise function µ as µ = 1 in DDDs, and µ = µn/µs in DDDn. If we introduce

the piecewise function m defined as m = 1 in DDDs, and m = mn/ms in DDDn, we have that

j := 1
m

(
− i

2
(ψ∗∇ψ − ψ∇ψ∗) − A|ψ|2

)
is the supercurrent density.

Remark 2.1 The non-dimensionalization used to derive (2.1) is temperature-dependent.

Lengths are non-dimensionalized with respect to the coherence length at temperature T

of the superconducting material, ξs(T ). The order parameter is non-dimensionalized with

respect to the ratio |as(T )|/bs, and magnetic fields with respect to the second critical

field of the superconducting material, Hc2 = Hc2(T ). We are then interested in fields

h � hc2 ≡ 1. In particular, by comparing (2.1) with equation (4) in Hurault [13] we

see that mn/ms = σs/σn, and we expect the normal state to become unstable at a field

hnc3 (mn/ms) > 1 when mn/ms > 1, and to remain stable down to hc2 ≡ 1 when mn/ms � 1.

From previous works (see for example [4, 7, 2, 15]), we know that the nucleation field

in a vacuum satisfies Hc3 = Hc2/β
∗
0 , with β∗

0 defined as in Lemma 5.2 in [14]. Therefore,

we also expect hnc3 (mn/ms) < hc3 ≡ 1/β∗
0 for every mn/ms, with hc3 (mn/ms) → 1/β∗

0 for

mn/ms → ∞ and hnc3 (mn/ms) increasing in mn/ms > 1.

To investigate the influence of the normal part, we take DDDs = {(x, y, z), x < 0} and

DDDn = {(x, y, z), x > 0}, and assume the applied field is constant and parallel to the surface

of the superconductor, i.e. Ha = he3 with h > 0. In this situation, one expects that for

fields close to the nucleation field the induced magnetic field will be parallel to the applied

field, and the modulus of the order parameter will depend only on x [16]. Hence, one can

make the simplified assumption of considering only states of the form:

A(x, y, z) = (0, A(x), 0) ψ(x, y, z) = f(x) ei k2 y ei k3 z , (2.2)

with f(x) real-valued, and k2, k3 constants to be determined.

In this set-up the physically relevant quantities can be recovered as follows: |f|2 is the

superelectron density, −1/m (A− k2) f
2 is the supercurrent and 1/µ(0, 0, A′) is the induced

magnetic field. Note that A − k2 is the physically significant quantity, while individually

A and k2 are determined up to a constant. We will take the point of view of [4], and use

this degree of freedom in order to have a real order parameter, that is we will consider

k2 = 0. Therefore, if we substitute (2.2) in (2.1), set a = an/|as| � 0 and notice that for f

and A fixed the choice k3 = 0 lowers the energy, we are led to the energy

G(f, A, h) =

∫ ∞

−∞
[
1

m
(f′)2 − f2 χ− +

1

2
f4 χ− + a f2χ+

+
1

m
A2 f2 + µκ2

(
1

µ
A′ − h

)2

] dx. (2.3)
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Here, χ− denotes the characteristic function of the interval (−∞, 0) and χ+ the one of

(0,∞).

States can be assumed of the form (2.2) if h is close to or greater than hc2 ≡ 1. As a

consequence, we should not expect to be able to use (2.3) for the all possible ranges of

h. However, for the range of fields in which we are interested, we expect our system to

be in a state (f, A) which is a finite-energy global or local minimizer of (2.3). Moreover,

since we look at situations where the order parameter decays to zero at infinity, we will

consider (f, A) ∈ H1(R) ×H1
loc(R).

We define a normal (non-superconducting) state to be any state of the form (0, A) which

is a global minimizer of (2.3). It is easy to see that normal states are pairs of form

(0, h (µ x− ω)) for ω ∈ R fixed.

3 Global minimizers

The energy G(f, A, h) is not bounded below for every choice of h, even if (f, A) ∈
H1(R)×H1

loc(R), as one can see by taking h = 0 and following an idea presented in Bolley

& Helffer [4]. Consider the sequence (fn, 0) with

fn(x) =

⎧⎪⎪⎨
⎪⎪⎩

c(x+ n+ 1) −n− 1 < x < −n,
c −n < x < 0,

−c(x− 1) 0 � x < 1,

0 otherwise,

(3.1)

then G(fn, 0, 0) = c2
(
1 + ms/mn

)
− c2 n− c2/3 + n c4/2 + c4/5 + a c2/3, and for any choice

of |c| < 1 it follows limn→∞ G(fn, 0) = −∞. However, we can use a modification of the

argument of Bolley & Helffer [4, Proposition 14, p. 22] to show that our energy is bounded

below if h is large enough.

Theorem 3.1 There exists h0, with 1√
2 κ

√
µs

µs+µn
< h0 < 4

κ
, such that for every (f, A) ∈

H1(R) × H1
loc(R), the energy functional G(f, A, h) is not bounded below for h < h0, and is

bounded below for h > h0,

Proof The function h ∈ [0,∞) −→ inf(f,A) G(f, A, h), where the inf is taken over (f, A) ∈
H1(R) × H1

loc(R), is monotonically increasing with values in [−∞, 0]. In fact, we already

know that the functional is unbounded below, while inf(f,A) G(f, A, h) � G(0, h (µx−ω)) =

0. For h fixed, given any A ∈ H1
loc(R) we can find a B ∈ H1

loc(R) with A = hB and vice

versa, thus we have that inf(f,A) G(f, A, h) = inf(f,B) G(f, hB, h), and clearly the right hand

side is a monotonically increasing function of h.

Fix h� 0, consider (fn, An) where fn is as in (3.1) with c = 1, and

An(x) =

⎧⎨
⎩

h(x+ n+ 1) x < −n− 1,
µn
µs
h (x− n− 1) x > n+ 1,

0 otherwise.

(3.2)
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A direct computation then yields

G(fn, An, h) =

(
1 +

ms

mn

)
− n− 1

3
+

1

2
n+

1

5
+
a

3
+ κ2 (1 +

µn

µs
)h2 (n+ 1),

hence if h < 1√
2 κ

√
µs

µs+µn
, we see that limn→∞ G(fn, An, h) = −∞.

Fix δ � 0, for any (f, A) ∈ H1(R) × H1
loc(R) either |A(x)|2 � 1 + δ for all x � 0 which

gives G(f, A, h) � 0 or there exists an x0 � 0 such that |A(x0)|2 < 1 + δ. In the latter case,

since A ∈ H1
loc(R), using the elementary inequality (α− β)2 � 1

2
α2 − β2, we derive

1

2
h2 (x− x0)

2 − 2(1 + δ) − 2 |x− x0|
∫ 0

−∞
|A′(t) − h|2 dt � |A(x)|2. (3.3)

The left-hand side of (3.3) is greater than or equal to (1 + δ) if |x− x0| > γ2, where

γ2 =
2

h2

⎡
⎣∫ 0

−∞
|A′(t) − h|2 dt+

√∣∣∣∣
∫ 0

−∞
|A′(t) − h|2 dt

∣∣∣∣
2

+ 3 (1 + δ)
h2

2

⎤
⎦ . (3.4)

Thus, we can conclude

∫
{x� 0}∩{|f|<

√
2}∩{|A(x)|2<1+δ}

f2 �
16

h2

∫ 0

−∞
|A′(t) − h|2 dt+ 4

√
6 (1 + δ)

h
. (3.5)

We find a lower bound for G(f, A, h) by noticing that if α �
√

2 then −α2 + 1
2
α4 � 0, so

that

G(f, A, h) �

∫ ∞

−∞

[
1

m
(f′)2 + a f2χ+ + µκ2

(
1

µ
A′ − h

)2
]
dx

+

∫ ∞

0

1

m
A2 f2 dx+

∫
{x� 0:|f|>

√
2}

(
−f2 +

1

2
f4

)
dx

+

∫
{x� 0:|f|<

√
2}

1

2
f4 dx+

∫
{x� 0:|f|>

√
2}
A2 f2 dx

+

∫
A+
δ ∩{|f|<

√
2}

(−f2 + A2 f2) dx+

∫
A−
δ ∩{|f|<

√
2}
A2 f2 dx

− 16

h2

∫ 0

−∞
|A′(t) − h|2 dt− 4

√
6 (1 + δ)

h
, (3.6)

where A+
δ = {x � 0 : |A(x)|2 > 1 + δ} and A−

δ = {x � 0 : |A(x)|2 < 1 + δ}. It follows that

G(f, A, h) �

∫ 0

−∞

(
κ2 − 16

h2

)
|A′(x) − h|2 dx− 4

√
6 (1 + δ)

h
, (3.7)

which if h � 4/κ gives G(f, A, h) � −4
√

6 (1 + δ) /h, for any δ � 0. �

Remark 3.2 In our non-dimensionalization magnetic fields are measured in units of Hc2 ,

Theorem 3.1 tells that there exists a value H0 ≡ h0Hc2 of the applied magnetic field,
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with 1√
2 κ

√
µs

µs+µn
Hc2 < H0 <

4
κ
Hc2 , above which our energy functional is bounded below.

Therefore, if κ > 4 we have that H0 < Hc2 , and our energy is bounded below in the range

of fields of interest.

In the literature Hc = Hc(T ) is defined as the field at which the energy of the normal

state and the energy of the purely superconducting state (i.e. in non-dimensional units, the

state |ψ| ≡ 1 and A ≡ 0) are equal, with Hc2 =
√

2 κHc. Since H0 > Hc

√
µs

µs+µn
, our bound

is consistent with this definition.

We will work with the weighted Sobolev space:

W
1,2
0,0 (R) =

{
u ∈ D′(R);

u(
1 + x2

)1/2
∈ L2(R); u′ ∈ L2(R)

}
;

here D′(R) denotes the dual space of C∞
0 (R). (see [1] for details)

The space W 1,2
0,0 (R) is a reflexive Banach space with respect to the norm

||u||
W

1,2
0,0 (R) ≡

⎧⎨
⎩
∣∣∣∣∣
∣∣∣∣∣ u(

1 + x2
)1/2

∣∣∣∣∣
∣∣∣∣∣
2

L2(R)

+ ||u′||2L2(R)

⎫⎬
⎭

1
2

,

and a Hilbert space with respect to the induced scalar product. Also, by Theorem 330 in

[12], one has for any u ∈ H1
loc(R) with u′ ∈ L2(R) that

∫ ∞

−∞

|u(x) − u(0)|2(
1 + x2

) dx � 4

∫ ∞

−∞
(u′)2 dx. (3.8)

Theorem 3.3 Let κ �
√

2/2 be fixed. If mn
ms

� 1 and h > 1 or if mn
ms
> 1 and h > mn

ms
then

normal states are the only global minimizers in the class of function (f, A) ∈ H1(R)×H1
loc(R),

with 1
µ

(A(x) − A(0)) − hx ∈ W
1,2
0,0 (R).

Let κ � 4 be fixed. If mn
ms
> 1 and 1 � h � mn

ms
, there exists a global minimizer (f, A) ∈

H1(R) ×H1
loc(R), with 1

µ
(A(x) − A(0)) − hx ∈ W

1,2
0,0 (R).

Proof Fix h � 1 and consider (f, A) ∈ H1(R) × H1
loc(R). Note that, if we set f̂ =

f when |f| <
√

2 and f̂ =
√

2 otherwise, then f̂ ∈ H1(R), and from

∫
(−∞, 0) ∩ {|f| �

√
2}

(
− f2 +

1

2
f4

)
dx � 0,

one has G(f, A, h) � G(f̂, A, h). Therefore, without loss of generality we will assume

|f| �
√

2.

For a fixed (f, A) ∈ H1(R) × H1
loc(R) we have that either G(f, A, h) = ∞, and so

trivially G(f, A, h) � 0, or −∞ < G(f, A, h) < ∞. Hence, f f′ A ∈ L1(R), f2 A′ ∈ L1(R),

and f2 A ∈ W 1,1(R), which implies lim
|t|→∞

f2(t)A(t) = 0.
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If mn/ms � 1, using integration by parts, we obtain

G(f, A, h) �

∫ ∞

0

[
f2 (A′ − µn

µs
h) +

κ2 µs

µn

(
A′ − µn

µs
h

)2

+
µn

µs
hf2

]
dx

+

∫ 0

−∞

[
f2(A′ − h) + κ2

(
A′ − h

)2
+

1

2
f4

]
dx

+

∫ ∞

0

af2 dx+

∫ 0

−∞
(h− 1) f2 dx � min{a, h− 1} ||f||2L2(R),

where we observe that the first two integrals are positive for the range of values h and

κ considered and for |f| �
√

2. The theorem follows since the energy is lowest for states

satisfying f ≡ 0.

If mn/ms > 1, when h > mn/ms we can repeat the argument to find

G(f, A, h) � min{a, ms
mn

h− 1} ||f||2L2(R).

We consider next the case mn/ms > 1, 1 � h � mn/ms and κ > 4. Set I = inf G(f, A, h)

for (f, A) ∈ H1(R) ×H1
loc(R), from Theorem 3.1, we know

I � −4/h
√

6 (1 + δ)

for any δ � 0, so either I = 0, and we are done, or we can assume −4/h
√

6 (1 + δ) � I < 0.

Fix a δ > 0, and consider a minimizing sequence (fn, An). We can assume |fn| �
√

2, as

well as −4/h
√

6 (1 + δ) � G(fn, An, h) � −|I |/2. Under these conditions, inequality (3.6)

gives

−|I |
2

� G(fn, An, h) �

∫ ∞

−∞

[
1

m
(f′
n)

2 + a f2
nχ+ +

1

2
f4
nχ−

]
dx

+

∫ ∞

0

1

m
A2
n f

2
n dx+

∫ ∞

0

µn

µs
κ2

(
µs

µn
A′
n − h

)2

dx

+

∫
A+
n,δ

(−f2
n + A2

n f
2
n ) dx+

∫
A−
n,δ

A2
n f

2
n dx

+

∫ 0

−∞

(
κ2 − 16

h2

)
|A′

n − h|2 dx− 4
√

6 (1 + δ)

h
, (3.9)

from which we obtain that {1/µA′
n − h} and {1/mf′

n} are uniformly bounded in L2(R),

and
{∫

A+
n,δ

(
−f2

n + A2
n f

2
n

)
dx

}
is uniformly bounded.

The above bounds, together with inequality (3.5) and the fact that for δ > 0 one has∫
A+
n,δ

(
−f2

n + A2
n f

2
n

)
dx > δ

∫
A+
n,δ

f2
n dx,

imply that {fn} is uniformly bounded in H1(R). By inequality (3.8) the sequence{
1
µ

(An − An(0)) − h x
}

is uniformly bounded in W
1,2
0,0 (R). We conclude fn ⇀ f weakly

in H1(R) and 1
µ
(An(x) − An(0)) − h x ⇀ 1

µ
B(x) − h x weakly in W

1,2
0,0 (R). By a diagonal
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argument (up to subsequences) we can also assume fn → f in L2 and uniformly on

bounded sets, and 1
µ
(An − An(0)) → 1

µ
B uniformly on bounded sets, with B(0) = 0. Note

that due to Sobolev Embeddings fn, f, An, B are continuous functions.

Set A(0) ≡ lim infn→∞ An(0), we have either |A(0)| < ∞ or |A(0)| = ∞. In fact, we will

assume again up to a subsequence that A(0) = limn→∞ An(0).

We first consider the case |A(0)| < ∞. For x < 0 fixed, we can find a constant C

independent of n such that for any x < 0:

h x− C |x| 1
2 � An(x) − An(0) � h x+ C |x| 1

2 . (3.10)

Fix ε > 0, we choose an x̂ < 0 large and negative, depending on A(0), h, C, ε but not on

n > nε, for which |An(x)| − 1 � 0, for any x < x̂ and n large, and rewrite the energy in the

form

G(fn, An, h) =

∫ ∞

−∞

[
1

m
(f′
n)

2 + a f2
nχ+ +

1

2
f4
nχ−

]
dx

+

∫ ∞

0

1

m
A2
n f

2
n dx+

∫ ∞

−∞
µκ2

(
1

µ
A′
n − h

)2

dx (3.11)

+

∫ x̂

−∞
(−f2

n + A2
n f

2
n ) dx+

∫ 0

x̂

(−f2
n + A2

n f
2
n ) dx.

We then set A = B + A(0) and obtain G(f, A, h) � limn→∞ G(fn, An, h) = I, with (f, A) ∈
H1(R) ×H1

loc(R), 1
µ

(A(x) − A(0)) − hx ∈ W
1,2
0,0 (R).

Assume next |A(0)| = ∞, and set g(x) = lim infn→∞ 1/m |An(x) |fn(x)| a.e. By equation

(3.9), g ∈ L2(R) so that g(x) < ∞ a.e. For x fixed we know that An(x) −An(0) → B(x) and

fn(x) → f(x), where B(x), f(x) are finite numbers. Therefore, limn→∞ |An(0)| |fn(x)| < ∞
for any x fixed, which is possible only if limn→∞ |fn(x)| = 0 i.e. f ≡ 0, and which in turn

gives limn→∞ |An(0)| |f2
n (x)| = 0 for any x ∈ R. Using integration by parts, for our range

of values, we then have G(fn, An, ωn, h) �
(
1 − ms/mn

)
An(0) f2

n (0), that is I � 0, which is

a contradiction. �

Remark 3.4 For h fixed, consider (f, A) ∈ H1(R) × H1
loc(R), with f not identically equal

to zero. If −∞ < G(f, A, h) < ∞, define

ω(f, A) =

∫ ∞
−∞

1
m
A f2 dx∫ ∞

−∞
1
m
f2 dx

,

and Â = A − ω(f, A). Clearly, G(f, Â, h) � G(f, A, h), with strict inequality if ω(f, A) � 0,

and
∫ ∞

−∞
1
m
Â f2 dx = 0. In other words, superconducting global minimizers of our energy

functional satisfy the so-called zero-current condition.

4 Normal states as local minimizers

We define, following physical intuition, the nucleation field hnc3 (mn/ms) as the field below

which there are normal states that are not local minimizers, and above which every normal

state is a local minimizer. Theorem 3.3 provides an upper bound for hnc3 (mn/ms). We need
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an estimate of the value of h at which normal states cease to be global as well as local

minimizers.

We fix ω, and we study for which values of h the normal state (0, h (µ x−ω)) is a local

minimizer with respect to small perturbations in the class of admissible states. Pick any

(g, Q) ∈ H1(R) ×H1
loc(R), with 1

µ
(Q− Q(0)) ∈ W

1,2
0,0 (R), and consider for t ∈ R the energy

of the normal state perturbed in the direction given by (g, Q):

G(0 + t g, h (µ x− ω) + t Q, h)

= t2
∫ ∞

−∞

[
1

m
(g′)2 + (a+ 1) g2χ+ +

h2

m
(µ x− ω)2 g2 − g2

]
dx

+ t2
∫ ∞

−∞

κ2

µ
(Q′)2 dx+ t3

∫ ∞

−∞

2h

m
(µ x− ω)Qg2 dx

+ t4
∫ ∞

−∞

[
1

2
g4 χ− +

1

m
Q2 g2

]
dx. (4.1)

Since the energy of any normal state is zero, and Q ≡ 0 is an admissible choice, the

higher order term in (4.1) leads to the eigenvalue problem

τ

(
a,
mn

ms
,
µn

µs
, h, ω

)

= inf∫ ∞
−∞ g

2 dx=1

g∈H1(R)

∫ ∞

−∞

[
1

m
(g′)2 +

h2

m
(µ x− ω)2 g2 + (a+ 1) g2χ+

]
dx. (4.2)

Remark 4.1 Following the general idea of Proposition 0.1 in Bolley & Helffer [3], with

due modifications, one can show that if τ > 1 then there is a t0 independent of (g, Q)

such that for any t < t0 one has G(0 + t g, h (µ x − ω) + t Q, h) > 0 for (g, Q) � (0, 0), and

||g||H1(R) + || 1
µ
(Q − Q(0))||

W
1,2
0,0 (R) = 1, that is if τ > 1 the energy of the normal state can

not be lowered using small perturbations.

Theorem 4.2 Let h � 0, ω ∈ R, and mn, ms, a, µn, µs be fixed. For g ∈ H1(R), we define the

functional

F(h, ω, g) =

∫ ∞

−∞

[
1

m
(g′)2 +

h2

m
(µ x− ω)2 g2 + (a+ 1) g2χ+

]
dx,

and consider τ(h, ω) = inf
{g∈H1(R),

∫ ∞
−∞ g

2 dx=1}
F(h, ω, g).

If h� 0, there is g ∈ H1(R) with
∫ ∞

−∞ g
2 dx = 1 and τ(h, ω) = F(h, ω, g).

Proof Let v(x) = 1/( 4
√

π) e−x2/2, then F(h, ω, v) < ∞ and so 0 � τ(h, ω) < ∞. Set τ ≡
τ(h, ω), F(·) ≡ F(h, ω, ·), and take a sequence {gn} ⊂ H1(R),

∫ ∞
−∞ g

2
n dx = 1, with F(gn) → τ

as n → ∞. Since, {gn} is uniformly bounded in H1(R), up to subsequences using a diagonal

argument, we can find a function ĝ ∈ H1(R) with gn converging to ĝ pointwise, weakly

in H1(R) and uniformly and in L2 on bounded sets. By Fatou’s Lemma we conclude

0 � F(ĝ) � τ.
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Since we are working on R, we need to exclude the possibility F(ĝ) = 0. If so, the

definition of F would imply ĝ′ ≡ 0 in L2(R) , i.e. ĝ ≡constant, and
∫ ∞

0
(a + 1) ĝ2 dx = 0,

which gives ĝ ≡ 0, so that gn → 0 uniformly on bounded sets. We then choose c > 0

and C > 0, which depend possibly on h, ω, m and µ, such that h2

m
(µx − ω)2 > c (x2 + 1)

for |x| > C, and, due to the uniform convergence in [−N,N], pick an N > C for which

there exists n(N) such that for any n > n(N), it holds |gn| < 1/(
√

2N) in [−N,N]. This

yields τ � limn→∞
∫ ∞

−∞ h2m (µx − ω)2 g2
n dx > c (N2 + 1) (1 − 1

N
), for any N > C , which is

a contradiction since τ is bounded. We then have F(ĝ) > 0 and as a consequence ĝ� 0,

τ� 0.

We know limn→∞ ||gn − ĝ||2
L2(R)

= 1 − ||ĝ||2
L2(R)

by classical analysis, since ||gn||2L2(R)
= 1.

If limn→∞ ||gn − ĝ||2
L2(R)

= 0, then ||ĝ||2
L2(R)

= 1 and we are done as we can take g = ĝ.

Otherwise, since by the definition of F and weak convergence we have F(gn − ĝ) +F(ĝ) −
F(gn) → 0 as n → ∞, for ε > 0 we can consider nε such that for n > nε the following

inequalities are true: τ− ε < F(gn) < τ+ ε, 1 − ε < ||gn − ĝ||2
L2(R)

+ ||ĝ||2
L2(R)

< 1 + ε, and

F(gn) − ε < F(gn − ĝ)+F(ĝ) < F(gn)+ ε. We multiply the second inequality by τ, combine

it with the first and substitute the result in the third, to obtain

0 < τ ||ĝ||2L2(R) � F(ĝ) � τ ε+ 2ε+ τ ||ĝ||2L2(R) for any ε > 0,

where we took in to account that by definition τ ||u||2L2(R) � F(u) for any u ∈ H1(R).

Define g = ĝ/||ĝ||L2(R) and the theorem is proven. �

The following lemma tells us that a fixed normal state, i.e. for fixed ω, besides being a

global minimizers for h � max{1, mn/ms} it remains stable even below such a field, note

the strict inequalities. It will allow us as well to consider only ω < 0, when looking at the

supremum of fields at which normal states become unstable.

Lemma 4.3 Let ω and mn
ms

be fixed. Under the hypothesis of Theorem 4.2, the following

holds:

(1) There exists a unique h = h(ω, mn
ms

) such that τ(h(ω, mn
ms

), ω) = 1;

(2) If mn
ms

� 1, then h(ω, mn
ms

) < 1. Moreover, if ω < 0 then 1
3
< h(ω, mn

ms
);

(3) If mn
ms
> 1 and ω < 0, then 1

3
< h(ω, mn

ms
) < mn

ms
, while if ω � 0 then h(ω, mn

ms
) < 1.

Proof In our proof, we use eigenvalue estimates obtained by Lu & Pan [14]. Following

their notation, we let λ(z) and βγ(z) denote

λ(z) = inf
u∈H1

0 ([0,∞))

∫ ∞
0 {|u′|2 + (z + t)2 |u|2} dt∫ ∞

0
|u|2 dt

, (4.3)

and

βγ(z) = inf
u∈H1([0,∞))

∫ ∞
0

{|u′|2 + (z + t)2 |u|2} dt+ γ |u(0)|∫ ∞
0 |u|2 dt

, (4.4)

where both infima are attained. Since τ(h, ω) is also attained, the change of variables
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x = −h−1/2 t for x < 0, x = (
µn

µs
h)−1/2 t for x > 0, and straightforward computations yield

τ(h, ω) � h λ(h1/2ω), (4.5)

as well as, for any eigenfunction gh associated with τ(h, ω),

τ(h, ω)

∫ ∞

−∞
g2
h dx � h β0(h

1/2ω)

∫ 0

−∞
g2
h dx

+ h
µn ms

µs mn
β0

(
−

(
µs h

µn

)1/2

ω

) ∫ ∞

0

g2
h dx+ (a+ 1)

∫ ∞

0

g2
h dx. (4.6)

Also, it is easy to check that

τ(h, ω) = h λ(h1/2ω) if

∫ ∞

0

g2
h dx = 0. (4.7)

We find another simple but helpful lower bound for F(h, ω, f) with f ∈ H1(R), by

following the argument used to derive (3.9):

F(h, ω, f) � h min(1,
ms

mn
)

[∫ 0

−∞
f2 dx+

µn

µs

∫ ∞

0

f2 dx

]
+ (a+ 1)

∫ ∞

0

f2 dx. (4.8)

Proof of 1 For ω fixed, a direct computation shows that τ(h, ω) is a continuous strictly

increasing function of h > 0. Therefore, it is enough to show that for h small τ(h, ω) < 1,

while if h is large then τ(h, ω) > 1. The later is an easy consequence of (4.8), as for

h > (a + 1)/min(1, ms
mn

) it implies F(h, ω, f) > (a + 1)
∫ ∞

−∞ f
2 dx for any f ∈ H1(R). On

the other hand, we fix L > 0 and pick the test function defined as gL(x) = sin( πx
L

) for

−L < x < 0, and gL(x) = 0 otherwise, to obtain

τ(h, ω) �
π2

L2
+ h2

∫ 0

−L(µx− ω)2 sin2( πx
L

) dx∫ 0

−L sin2( πx
L

) dx
any L > 0. (4.9)

Which leads to the desired estimate, by choosing L large enough and h small enough.

Proof of 2 If mn
ms

� 1, inequality (4.8) implies that when h � 1 it holds τ(h, ω) �

1 + µn
µs

∫ ∞
0
g2
h dx+ a

∫ ∞
0
g2
h dx, from which we deduce h(ω, mn

ms
) < 1 whenever

∫ ∞
0
g2
h dx� 0.

Strict inequality for the case
∫ ∞

0 g2
h dx = 0 is consequence of (4.7) due to Lemma 6.2

pg 1266 in [14] which tells us that λ(z) > 1 for any z ∈ R. The same lemma gives the

lower bound for ω � 0 thanks to (4.5), as λ(z) is a strictly increasing continuous function

with λ(0) = 3.

Proof of 3 If mn
ms
> 1 as above we have h(ω, mn

ms
) < mn

ms
for every ω ∈ R. When ω � 0,

Lemma 7.6 pg 1273 in [14] tells us that β0(z) � 1 for z � 0, thus inequality (4.6) implies

h(ω, mn
ms

) < 1 if
∫ ∞

0
g2
h dx� 0. Strict inequality when

∫ ∞
0
g2
h dx = 0 follows as in part 2., and

so does the lower bound for ω < 0. �

Remark 4.4 For ω fixed, we denote by gω the eigenfunction associated with the eigenvalue

τ(h(ω, mn
ms

), ω) = 1. Remark 4.1 implies that if h > h(ω, mn
ms

) the normal state (0, h(µ x−ω))
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is a local minimizer, while if h < h(ω, mn
ms

) it is not. On the other hand, (4.1) shows

that at h = h(ω, mn
ms

) it is a local minimizer if gω verifies the zero-current condition:∫ ∞
−∞

1
m

(µ x− ω) g2
ω dx = 0.

5 Onset of superconductivity

This final section is dedicated to the determination of the value and properties of the

nucleation field hnc3 (mn/ms). We are able to recover the experimental picture found in

Burger et al. [5, 6].

Theorem 5.1 For ω ∈ R, let h(ω, mn
ms

) defined as in Lemma 4.3. We have that

(1) If mn
ms

� 1, then

h∗
(
mn

ms

)
≡ sup

ω∈R
h(ω,

mn

ms
) = 1, (5.1)

the value h∗(mn
ms

) is not attained, and for every h > h∗(mn
ms

) every normal state is a

local minimizer, while for h � h∗(mn
ms

) there are normal states which are not local

minimizers;

(2) If mn
ms
> 1, then there exists an ω∗ < 0 such that

h(ω∗,
mn

ms
) = h∗

(
mn

ms

)
≡ sup

ω∈R
h(ω,

mn

ms
) > 1. (5.2)

For every h � h∗(mn
ms

) every normal state is a local minimizer, while for h < h∗(mn
ms

) there

are normal states which are not local minimizers. The eigenfunction gω∗ associated

with ω∗, h∗(mn
ms

) satisfies the zero-current condition.

Proof of 1 If mn
ms

� 1, by Lemma 4.3 we know that h(ω, mn
ms

) < 1, hence it is enough to

show that limω→−∞ h(ω,mn/ms) = 1. For ω < 0, Lemma 4.3 implies 1
3
< h(ω, mn

ms
) < 1.

Hence, from (4.5) and (4.6), which tell us that

1

λ(h1/2(ω, mn
ms

)ω)
� h(ω,

mn

ms
) �

1

β0(h1/2(ω, mn
ms

)ω)
, (5.3)

and Lemmas 5.2, 6.2 in [14], which give lim
z→−∞

β0(z) = lim
z→−∞

λ(z) = 1, we conclude

lim
ω→−∞

h(ω,mn/ms) = 1. Note that (5.3) holds for mn/ms > 1, as well.

Proof of 2 We start by proving that the sup is strictly greater than 1. We use the fact that

for ω fixed τ is strictly increasing in h, and show that if mn
ms
> 1 there exists an ω < 0 such

that τ(1, ω) < 1.

Since mn/ms > 1, we can find a δ > 0 with 2mn/ms−1 = (1+δ)2+δ. Additionally, we can

pick an ω1 < 0 such that for any ω < ω1 and x � 0 we have mn
ms

(a+1) < δ ω2 � δ (x−ω)2.

For ω fixed, consider the test function fω(x) = 1/( 4
√

π) e− (x−ω)2

2 , and notice that from

Lemma 5.4 below, if ω < ω2, it holds∫ ∞

0

(
µn

µs
x− ω)2 f2

ω dx < (1 + δ)2
∫ ∞

0

(x− ω)2 f2
ω dx, (5.4)
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the inequality is trivially true for every ω < 0 if µn/µs < 1. For ω < min(ω1, ω2), we then

have

∫ ∞

0

[(
µn

µs
x− ω

)2

+
mn

ms
(a+ 1)

]
f2
ω dx <

(
2
mn

ms
− 1

) ∫ ∞

0

(x− ω)2 f2
ω dx, (5.5)

and we conclude τ(1, ω) < 2
∫ ∞

−∞ (x− ω)2 f2
ω dx = 1.

To show that the sup is obtained we use Lemma 5.5, and consider K = [ω0, 0], where

ω0 < 0 is such that h(ω,mn/ms) < supω∈R h(ω,mn/ms) for every ω < ω0. That such ω0

exists is due to the fact that limω→−∞ h(ω,mn/ms) = 1. This limit is obtained as in part 1.

since for ω < 0 Lemma 4.3 implies 1/3 < h(ω,mn/ms) < mn/ms.

Let h∗(mn/ms) = supω∈R h(ω,mn/ms), we know from Lemma 4.3 that h(ω,mn/ms) < 1 for

ω � 0, thus we can find a sequence {ωl} with ωl ∈ K , such that h(ωl, mn/ms) → h∗(mn/ms).

Since K is compact we can assume (up to a subsequence) that ωl → ω∗. But, then∣∣∣∣τ
(
h∗

(
mn

ms

)
, ω∗

)
− 1| � |τ

(
h∗

(
mn

ms

)
, ω∗

)
− τ

(
h∗

(
mn

ms

)
, ωl

) ∣∣∣∣
+

∣∣∣∣τ
(
h∗

(
mn

ms

)
, ωl

)
− τ

(
h

(
ωl,

mn

ms

)
, ωl

) ∣∣∣∣,
and as l → ∞ the terms in the left hand side tend to zero: the first because τ is

continuous in ω for h fixed, the second due to Lemma 5.5 as by Lemma 4.3 we have

h(ωl, mn/ms) > 1/3, and so h∗(mn/ms), ωl) � 1/3. Therefore, τ(ω∗, h∗(mn/ms)) = 1 and

since for ω fixed τ is strictly increasing in h, this implies h∗(mn/ms) = h(ω∗, mn/ms).

Set ω̂∗ =
(∫ ∞

−∞
1
m
µ x g2

ω∗ dx
)
/
(∫ ∞

−∞
1
m
g2
ω∗ dx

)
and assume ω∗ � ω̂∗. A direct com-

putation yields
∫ ∞

−∞
1
m

(µ x − ω̂∗)2g2
ω∗ dx <

∫ ∞
−∞

1
m

(µ x − ω∗)2g2
ω∗ dx, which translates to

τ(h(ω∗, mn/ms), ω̂
∗) < τ(h(ω∗, mn/ms), ω

∗) = 1, that is h(ω̂∗, mn/ms) > h(ω∗, mn/ms). This is

in contradiction with the definition of h∗ (mn/ms) = h(ω∗, mn/ms). Hence, ω∗ = ω̂∗ and

gω∗ satisfies the zero-current condition. �

Remark 5.2 In physical terms, the previous theorem establishes that the nucleation field

Hn
c3 depends on σs/σn, with Hn

c3 = Hc2 when σs/σn � 1, and Hn
c3 > Hc2 otherwise. Note

that h∗ = hnc3 .

Remark 5.3 In the case of a bounded domain, and in the absence of the jump discontinuity

at the interface, standard arguments imply that h(ω,mn/ms) is analytic in ω. In here,

although a typical direct computation does imply that τ(h, ω) is continuous and strictly

increasing in h > 0, the traditional line of arguments do not facilely lead to the assertions

that ∂τ/∂h is continuous, strictly positive, and that ∂τ/∂ω is continuous, from which

analyticity of h follows via the implicit function theorem.

Lemma 5.4 For ω fixed, consider the test function fω(x) =
1
4

√
π
e− (x−ω)2

2 , then

lim
ω→−∞

∫ ∞
0 ( µn

µs
x− ω)2 f2

ω dx∫ ∞
0 (x− ω)2 f2

ω dx
= 1.
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In particular, for any δ > 0 and µn
µs

� 1, there exists an ω2 < 0 such that for ω < ω2 we

have

1 �

∫ ∞
0

( µn
µs
x− ω)2 f2

ω dx∫ ∞
0

(x− ω)2 f2
ω dx

�

(
1 +

δ

2

)2

. (5.6)

Proof We make the change of variable s = −ω and the substitution t = x + s, we then

expand the square at the numerator and apply L’Hôpital’s Rule to gather

I = lim
s→∞

∫ ∞
s

[
2 µn
µs
t(1 − µn

µs
) + 2s(1 − µn

µs
)2
]
e−t2 dt

−s2 e−s2 + 1.

We apply L’Hôpital’s Rule again to the new limit in the right hand side:

I = 1 + 2

(
1 − µn

µs

)2

lim
s→∞

∫ ∞
s
e−t2 dt

2(s3 − s) e−s2 . (5.7)

The lemma follows after applying L’Hôpital’s Rule on the limit in (5.7). �

Lemma 5.5 Let τ(h, ω) be defined as in Theorem 4.2 and c > 0 fixed. If ω ∈ R− then τ is

uniformly continuous in h > c.

Proof Let ω ∈ R−, h > 0 and gh denote the eigenfunction associated to τ(h, ω) with

L2−norm equal to 1. Consider ∆h > 0, since τ is strictly increasing in h for ω fixed, we

have τ(h, ω) < τ(h+ ∆h, ω) � τ(h, ω) + (2 h+ ∆h) ∆h
c2
τ(h, ω).

We take as test function g(x) = sin(x−ω+π) if ω− π < x < ω and g(x) = 0 otherwise,

to find (here recall that we are looking only at ω � 0) the bound

τ(h, ω) � 1 + h2 2

π

∫ ω

ω−π

(x− ω)2 sin2(x− ω + π) dx � 1 +
2

3
h2 π2, (5.8)

which together with the previous inequality gives

0 � τ(h+ ∆h, ω) − τ(h, ω) � (2 h+ ∆h)
∆h

c2
(1 +

2

3
h2 π2). (5.9)

Similarly, if ∆h < 0 is small enough so that h+ ∆h > c we derive

0 � τ(h, ω) − τ(h+ ∆h, ω) � (2 h+ ∆h)
|∆h|
c2

(
1 +

2

3
(h+ ∆h)2 π2

)
, (5.10)

and the lemma follows. �

Due to the observations of Hurault [13] and Chapman [7], one expects hnc3 to be a

strictly increasing function of its argument for values greater than one, which is what we

prove in the following lemma.

Lemma 5.6 Let a, µn, µs be fixed and h∗ defined as in Theorem 5.1. If 1 < m1 < m2 then

h∗(m1) < h∗(m2). (5.11)
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Proof Using the notation and results of Theorem 5.1, we know that there exists an ω∗
1 < 0

such that h∗(m1) = h(ω∗
1 , m1) with τ(h(ω∗

1 , m1), ω
∗
1) = 1.

From m1 < m2 and Theorem 4.2, it is easy to see that

τ

(
a, m2,

µn

µs
, h, ω

)
< τ

(
a, m1,

µn

µs
, h, ω

)
for any h > 0, ω ∈ R.

Hence, τ(a, m2,
µn
µs
, h(ω∗

1 , m1), ω
∗
1) < τ(a, m1,

µn
µs
, h(ω∗

1 , m1), ω
∗
1) = 1, and using once again that

τ is strictly increasing in h for all the other variables fixed, we can say that h(ω∗
1 , m2) >

h(ω∗
1 , m1), which implies h∗(m2) ≡ supω∈R h(ω,m2) � h(ω∗

1 , m2) > h(ω∗
1 , m1) = h∗(m1). �

We conclude our study, by examining the behaviour of hnc3 as we let our model

approximate the case of the superconductor in a vacuum, i.e. as we consider mn/ms
increasing toward infinity. Again, what we expect and we are able to prove is that in this

case hnc3 approaches the third upper critical field, which in our units is hc3 = 1/β∗
0 , see

Remark 2.1.

Theorem 5.7 Let a, µn, µs be fixed and h∗ defined as in Theorem 5.1. For β∗
0 as in Lu & Pan

[14, Lemma 5.2], it holds

lim
mn
ms

→∞
h∗

(
mn

ms

)
=

1

β∗
0

. (5.12)

Proof Consider the eigenvalue β0(z) given in (4.4), Lu & Pan [14] show that there exists

z0 < 0 and β∗
0 which verify β0(z0) = β∗

0 = infz∈R β0(z). Inequality (5.3) then implies

h(ω,mn/ms) � 1/β∗
0 , for every ω < 0, and by Theorem 5.1: h∗ (mn/ms) � 1/β∗

0 , for every

mn/ms > 1. Therefore, thanks to Lemma 5.6 it is enough to prove that for every ε > 0

small there exist mε ≡ mεn/m
ε
s and ωε such that h(ωε, mε) > 1/β∗

0 − ε.

Denote by u the eigenfunction corresponding to β0(z0) with
∫ ∞

0 u2(t) dt = 1, and recall

that u′(0) = 0 and u(0)� 0.

For 0 < 2ε < 1/β∗
0 and mε > 1 to be chosen later, we pick

ωε =
z0(

1
β∗

0
− ε

)1/2
< 0 hε =

1

β∗
0

− ε, (5.13)

and consider the test function

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u(−
√
hεx) x < 0,

u(0) 0 < x < 1
2

√
mε
,

2
√
mε u(0)

(
1√
mε

− x
)

1
2

√
mε

� x � 1√
mε
,

0 x > 1√
mε
.

(5.14)
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Direct computations yield

∫ ∞

−∞
f2(x) dx =

1√
hε

+
2

3

u2(0)
√
mε
,

∫ 0

−∞

{
(f′(x))2 + h2

ε (x− ωε)
2 f2(x)

}
dx =

√
hε β

∗
0 ,

and

1

mε

∫ ∞

0

[
(f′(x))2 + h2

ε

(
µn

µs
x− ωε

)2

f2(x) + (a+ 1) f2(x)

]
dx

�
u2(0)
√
mε

(
2 +

1

mε

[
1

(β∗
0 )

2

(
µn

µs
− 2 z0 β

∗
0

)2

+ a+ 1

])
.

Then, according to the definition of τ, the previous calculations imply

τ(a, mε,
µn

µs
, hε, ωε)

(
1√
hε

+
2

3

u2(0)
√
mε

)
�

√
hε β

∗
0 +

C(z0, β
∗
0 , a, u

2(0))
√
mε

,

that is τ(a, mε,
µn
µs
, hε, ωε) � 1 − β∗

0 + C(z0, β
∗
0 , a, u

2(0))/
(
mε β

∗
0

)1/2
.

Choose mε > 1, so to have 2C(z0, β
∗
0 , a, u

2(0))/
(
mε β

∗
0

)1/2
< β∗

0ε, then

τ

(
a, mε,

µn

µs
, hε, ωε

)
< 1 − β∗

0ε/2 < 1,

and again since τ is increasing in h for the other parameters fixed, we conclude h∗(mε) >

h(ωε, mε) > hε = 1/β∗
0 − ε. �

Remark 5.8 Theorem 5.7 and Lemma 5.6 imply that for mn/ms > 1 the nucleation field

Hn
c3

is strictly less than Hc3 , which is the last result we needed to completely recover the

experimental picture.

6 Conclusion

We studied a one-dimensional superconducting/normal system, in the framework of the

Ginzburg–Landau theory. We explored the dependence of the nucleation field Hc3 on the

ratio of the normal state conductivities of the two materials. Through the analysis of an

eigenvalue problem defined on the whole real line and with discontinuous coefficients,

we confirm experimental and theoretical predictions. We prove the existence of a critical

value of the conductivities ratio above which the nucleation field is an increasing function,

with the vacuum nucleation field as upper limit, and the second critical field Hc2 as lower

limit. For values of the ratio below the critical one, we conclude all normal states are

local (global) minimizers down to Hc2 and start losing stability at Hc2 .
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