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COMPLETE EXPECTED IMPROVEMENT CONVERGES
TO AN OPTIMAL BUDGET ALLOCATION
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Abstract

The ranking and selection problem is a well-known mathematical framework for the
formal study of optimal information collection. Expected improvement (EI) is a leading
algorithmic approach to this problem; the practical benefits of EI have repeatedly been
demonstrated in the literature, especially in the widely studied setting of Gaussian
sampling distributions. However, it was recently proved that some of the most well-
known EI-type methods achieve suboptimal convergence rates. We investigate a recently
proposed variant of EI (known as ‘complete EI’) and prove that, with some minor
modifications, it can be made to converge to the rate-optimal static budget allocation
without requiring any tuning.
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1. Introduction

In the ranking and selection (R&S) problem, there are M ‘alternatives’ (or ‘systems’), and
each alternative j ∈ {1, . . . , M} has an unknown value μ( j) ∈R (for simplicity, suppose that
μ(i) �= μ( j) for i �= j). We wish to identify the unique best alternative j∗ = arg maxj μ

( j). For
any j, we have the ability to collect noisy samples of the form W( j) ∼N (

μ( j), (λ( j))2
)
, but

we are limited to a total of N samples that have to be allocated among the alternatives, under
independence assumptions ensuring that samples of j do not provide any information about
i �= j. After the sampling budget has been consumed, we select the alternative with the highest
sample mean. We say that ‘correct selection’ occurs if the selected alternative is identical to j∗.
We seek to allocate the budget in a way that maximizes the probability of correct selection.

The R&S problem has a long history dating back to [1], and continues to be an active
area of research; see [3] and [11]. Most modern research on this problem considers sequential
allocation strategies, in which the decision maker may spend part of the sampling budget,
observe the results, and adjust the allocation of the remaining samples accordingly. The
literature has developed various algorithmic approaches, including indifference-zone methods
[14], optimal computing budget allocation [4], and expected improvement [13]. The related
literature on multiarmed bandits [8] has contributed other approaches, such as Thompson
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sampling [21], although the bandit problem uses a different objective function from the R&S
problem and, thus, a good method for one problem may work poorly in the other [20].

Glynn and Juneja [9] gave a rigorous foundation for the notion of optimal budget allocation
with regard to probability of correct selection. Denote by 0 ≤ N( j) ≤ N the number of samples
assigned to alternative j (thus,

∑
j N( j) = N), and take N → ∞ while keeping the proportion

α( j) = N( j)/N constant. The optimal proportions α
( j)∗ (among all possible vectors α ∈R

M++
satisfying

∑
j α

( j) = 1) satisfy the following conditions.

• Proportion assigned to alternative j∗:

(
α

( j∗)∗
λ( j∗)

)2

=
∑
j �=j∗

(
α

( j)∗
λ( j)

)2

. (1.1)

• Proportions assigned to arbitrary i, j �= j∗:

(μ(i) − μ( j∗))2

(λ(i))2/α
(i)∗ + (λ( j∗))2/α

( j∗)∗
= (μ( j) − μ( j∗))2

(λ( j))2/α
( j)∗ + (λ( j∗))2/α

( j∗)∗
. (1.2)

Under this allocation, the probability of incorrect selection will converge to 0 at the fastest
possible rate (exponential with the best possible exponent). Of course, (1.1) and (1.2)
themselves depend on the unknown performance values. A common work-around is to replace
these values with plug-in estimators and repeatedly solve for the optimal proportions in a
sequential manner. Even then, the optimality conditions are cumbersome to solve, which
may explain why researchers and practitioners prefer suboptimal heuristics that are easier to
implement. To give a recent example, Pasupathy et al. [15] used large deviations theory to
derive optimality conditions, analogous to (1.1) and (1.2), for a general class of simulation-
based optimization problems, but advocated approximating the conditions to obtain a more
tractable solution.

In this paper we focus on one particular class of heuristics, namely expected improvement
(EI) methods, which have consistently demonstrated computational and practical advantages in
a wide variety of problem classes [2], [10], [24] ever since their introduction in [13]. Expected
improvement is a Bayesian approach to the R&S problem that allocates samples in a purely
sequential manner: each successive sample is used to update the posterior distributions of the
values μ( j), and the next sample is adaptively assigned using the so-called value of information
criterion. This notion will be formalized in Section 2; here we simply note that there are many
competing definitions, such as the classic EI criterion of [13], the knowledge gradient criterion
[17], or the LL1 criterion of [6]. Ryzhov [22] showed that the seemingly minor differences
between these variants produce very different asymptotic allocations, but also that all of these
allocations are suboptimal.

Recently, however, Salemi et al. [23] proposed a new criterion called complete expected
improvement (CEI). The formal definition of CEI is given in Section 3, but the main idea is
that, when we evaluate the potential of a seemingly suboptimal alternative to improve over
the current-best value, we treat both of the values in this comparison as random variables
(unlike classic EI, which only uses a plug-in estimate of the best value). Salemi et al. [23]
created and implemented this idea in the context of Gaussian Markov random fields, a more
sophisticated Bayesian learning model than the version of the R&S problem with independent
normal samples that we consider here. Although the Gaussian Markov model is far more
scalable and practical, it also presents greater difficulties for theoretical analysis: for example,
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no analog of (1.1) and (1.2) is available for statistical models with a Gaussian Markov structure.
In this paper we translate the CEI criterion to our simpler model, which enables us to study
its theoretical convergence rate, and ultimately leads to strong new theoretical arguments in
support of the CEI method.

Our main contribution in this paper is to prove that, with a slight modification to the method
as it was originally laid out in [23], this modified version of CEI achieves both (1.1) and (1.2)
asymptotically as N → ∞. Not only is this a new result for EI-type methods, it is also one of the
strongest guarantees for any R&S problem heuristic to date. To compare it with state-of-the-art
research, Russo [20] presented a class of heuristics, called ‘top-two methods’, which can also
achieve optimal allocations, but only when a tuning parameter is set optimally. A more recent
work by Qin et al. [18], which appeared while the present paper was under review, extended
the top-two approach to use CEI calculations, but kept the requirement of a tunable parameter.
From this work, it can be seen that top-two methods are structured similarly to our approach,

but essentially deflect the calculation of α
( j∗)∗ to the decision maker, whereas we develop a

simple, adaptive scheme that learns this quantity with no tuning whatsoever. Also related is the
work by Peng and Fu [16], who found a way to reverse-engineer the EI calculations to optimize
the rate, but this approach requires one to first solve (1.1) and (1.2) with plug-in estimators,
and the procedure does not have a natural interpretation as an EI criterion. By contrast, CEI
requires no additional computational effort compared to classic EI, and has a very simple and
intuitive interpretation. In this way, our paper bridges the gap between convergence rate theory
and the more practical concerns that motivate EI methods.

2. Preliminaries

We first provide some formal background for the optimality conditions (1.1)–(1.2) derived
in [9], and then give an overview of EI-type methods. It is important to note that the theoretical
framework of [9], as well as the theoretical analysis developed in this paper, relies on a
frequentist interpretation of the R&S problem, in which the value of alternative i is treated
as a fixed (though unknown) constant. On the other hand, EI methods are derived using
Bayesian arguments; however, once the derivation is complete, one is free to apply and study
the resulting algorithm in a frequentist setting (as we do in this paper). To avoid confusion,
we first describe the frequentist model, then introduce details of the Bayesian model where
necessary.

In the frequentist model the values μ(i) are fixed for i = 1, ..., M. Let { jn}∞n=0 be a sequence
of alternatives chosen for sampling. For each jn, we observe W( jn)

n+1 ∼N (
μ( jn),

(
λ( jn)

)2 )
,

where λ( j) > 0 is assumed to be known for all j. We let Fn be the σ -algebra generated
by j0, W( j0)

1 , ..., jn−1, W( jn−1)
n . The allocation { jn}∞n=0 is said to be adaptive if each jn

is Fn-measurable and static if all the jn are F0-measurable. We define I( j)
n = 1{jn=j}, and

let N( j)
n = ∑n−1

m=0 I( j)
m be the number of times that alternative j is sampled up to time index

n = 1, 2, ....
At time n, we can calculate the statistics

θ ( j)
n = 1

N( j)
n

n−1∑
m=0

I( j)
m W( j)

m+1, (2.1)

(σ ( j)
n )2 = (λ( j))2

N( j)
n

. (2.2)
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If our sampling budget is limited to n samples then j∗n = arg maxj θ
( j)
n will be the final selected

alternative. Correct selection occurs at time index n if j∗n = j∗. The probability of correct selec-
tion (PCS), written as P

(
j∗n = j∗

)
, depends on the rule used to allocate the samples. Glynn and

Juneja [9] proved that, for any static allocation that assigns a proportion α( j) > 0 of the budget
to each alternative j, the convergence rate of the PCS can be expressed in terms of the limit

�α = − lim
n→∞

1

n
log P ( j∗n �= j∗). (2.3)

That is, the probability of incorrect selection converges to 0 at an exponential rate, where
the exponent includes a constant �α that depends on the vector α of proportions. Equations
(1.1) and (1.2) characterize the proportions that optimize the rate (maximize �α) under the
assumption of independent normal samples. Although Glynn and Juneja [9] only considered
static allocations, nonetheless, to date, (2.3) continues to be one of the strongest rate results
for the R&S problem. Optimal static allocations derived through this framework can be used
as guidance for the design of dynamic allocations; see, for example, [12] and [15].

We now describe EI, a prominent class of adaptive methods. EI uses a Bayesian model of the
learning process, which is very similar to the model presented above, but makes the additional
assumption that μ( j) ∼N (

θ
( j)
0 , (σ ( j)

0 )2
)
, where θ

( j)
0 and σ

( j)
0 are prespecified prior parameters.

It is also assumed that μ(i) and μ( j) are independent for all i �= j. Under these assumptions, it
is well known [7] that the posterior distribution of μ( j) given Fn is N (

θ
( j)
n , (σ ( j)

n )2
)
, where the

posterior mean and variance can be computed recursively. Under the noninformative prior
σ

( j)
0 = ∞, the Bayesian posterior parameters θ

( j)
n and σ

( j)
n are identical to the frequentist

statistics defined in (2.1) and (2.2), and so we can use the same notation for both settings.
One of the first (and probably the best-known) EI algorithms was introduced by Jones et al.

[13]. In this version of EI, as applied to our R&S model, we take jn = arg maxj v( j)
n , where

v( j)
n =E

(
max

{
μ( j) − θ

( j∗n)
n , 0

}|Fn
) = σ ( j)

n f

(
−

∣∣∣θ ( j)
n − θ

( j∗n)
n

∣∣∣
σ

( j)
n

)
, (2.4)

and f (z) = z� (z) + φ (z), with φ and � being the standard Gaussian PDF and CDF,
respectively. We can view (2.4) as a measure of the potential that the true value of j will
improve upon the current-best estimate θ

j∗n
n . The EI criterion v( j)

n may be recomputed at each
time stage n based on the most recent posterior parameters.

Ryzhov [22] gave the first convergence rate analysis of this algorithm. Under EI, we have

lim
n→∞

N( j∗)
n

n
= 1, (2.5)

lim
n→∞

N(i)
n

N( j)
n

=
(

λ(i)
∣∣μ( j) − μ( j∗)

∣∣
λ( j)

∣∣μ(i) − μ( j∗)
∣∣
)2

, i, j �= j∗, (2.6)

where the limits hold almost surely. Clearly, (2.5) and (2.6) do not match (1.1) and (1.2) except
in the limiting case where α

( j∗)∗ → 1. Because N( j)/n → 0 for j �= j∗, EI will not achieve an
exponential convergence rate for any finite M. Ryzhov [22] also derived the limiting allocations
for two other variants of EI, but they do not recover (1.1) and (1.2) either.
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3. Algorithm and main results

Salemi et al. [23] proposed to replace (2.4) with

v( j)
n =E

(
max

{
μ( j) − μ( j∗n), 0

}|Fn
)
, (3.1)

which can be written in closed form as

v( j)
n =

√(
σ

( j)
n

)2 + (
σ

( j∗n)
n

)2
f

⎛
⎝−

∣∣θ ( j)
n − θ

( j∗n)
n

∣∣√(
σ

( j)
n

)2 + (
σ

( j∗n)
n

)2

⎞
⎠ (3.2)

for any j �= j∗n. In this way, the value of collecting information about j depends not only on our
uncertainty about j, but also on our uncertainty about j∗n. Salemi et al. [23] considered a more
general Gaussian Markov model with correlated beliefs, so the original presentation of CEI
included a term representing the posterior covariance between μ( j) and μ( j∗n). In this paper we
only consider independent priors, so we work with (3.2), which translates the CEI concept to
our R&S model.

From (3.1), it follows that v
( j∗n)
n = 0 for all n. Thus, we cannot simply assign

jn = arg maxj v( j)
n because, in that case, j∗n would never be chosen. It is necessary to modify the

procedure by introducing some additional logic to handle samples assigned to j∗n. To the best of
our knowledge, this issue is not explicitly discussed in [23]. In fact, many adaptive methods are
unable to efficiently identify when j∗n should be measured; thus, both the classic EI method of
[13], and the popular Thompson sampling algorithm [21], will sample j∗n too often. The class
of top-two methods, first introduced in [20], addresses this problem by essentially assigning a
fixed proportion β of samples to j∗n, while using Thompson sampling or other means to choose
between the other alternatives. Optimal allocations can be attained if β is tuned correctly, but
the optimal choice of β is problem dependent and generally difficult to find.

Based on these considerations, we give a modified CEI (mCEI) procedure in Algorithm
3.1. The modification adds condition (3.3), which mimics (1.1) to decide whether j∗n should
be sampled. This condition is trivial to implement, and the mCEI algorithm is completely free
of tunable parameters. It was shown in [5] that the mCEI algorithm samples every alternative
infinitely often as n → ∞.

Algorithm 3.1. (mCEI algorithm for the R&S problem.) Let n = 0 and repeat the following.

• Check whether (
N

( j∗n)
n

λ( j∗n)

)2

<
∑
j �=j∗n

(
N( j)

n

λ( j)

)2

. (3.3)

If (3.3) holds, assign jn = j∗n. If (3.3) does not hold, assign jn = arg maxj �=j∗n v( j)
n , where

v( j)
n is given by (3.2).

• Observe W( jn)
n+1, update posterior parameters, and increment n by 1.

We now state our main results on the asymptotic rate optimality of mCEI. Essentially, these
theorems state that conditions (1.1) and (1.2) will hold in the limit as n → ∞. Both theorems
should be interpreted in the frequentist sense, that is, μ( j) is a fixed but unknown constant for
each j.
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Theorem 3.1. (Optimal alternative.) Let α
( j)
n = N( j)

n /n. Under the mCEI algorithm,

lim
n→∞

(
α

( j∗)
n

λ( j∗)

)2

−
∑
j �=j∗n

(
α

( j)
n

λ( j)

)2

= 0 almost surely.

Theorem 3.2. (Suboptimal alternatives.) For j �= j∗, define

τ ( j)
n = (μ( j) − μ( j∗))2

(λ( j))2/α
( j)
n + (λ( j∗))2/α

( j∗)
n

,

where α
( j)
n = N( j)

n /n. Under the mCEI algorithm,

lim
n→∞

τ
(i)
n

τ
( j)
n

= 1 almost surely

for any i, j �= j∗.

4. Proofs of the main results

For notational convenience, we assume that j∗ = 1 is the unique optimal alternative. Since,
under the mCEI algorithm, N( j)

n → ∞ for all j, on almost every sample path, we will always
have j∗n = 1 for all large enough n. It is therefore sufficient to prove Theorems 3.1 and 3.2 for a
simplified version of the mCEI algorithm with (3.2) replaced by

v( j)
n =

√
(λ( j))2

N( j)
n

+ (λ(1))2

N(1)
n

f

⎛
⎝−

∣∣θ ( j)
n − θ

(1)
n

∣∣√
(λ( j))2/N( j)

n + (λ(1))2/N(1)
n

⎞
⎠ , (4.1)

and (3.3) replaced by (
N(1)

n

λ(1)

)2

<
∑
j>1

(
N( j)

n

λ( j)

)2

. (4.2)

To simplify the presentation of the key arguments, we treat the noise parameters λ( j) as being
known. If in (2.2) we replace λ( j) by the sample standard deviation (as recommended, e.g.
in both [13] and [23]) then simply plug the resulting approximation into (3.2), the limiting
allocation will not be affected. Because the rate-optimality framework of Glynn and Juneja
[9] is frequentist and assumes that selection is based only on sample means, it does not make
any distinction between known and unknown variances in terms of characterizing an optimal
allocation.

4.1. Proof of Theorem 3.1

First, we define the quantity

�n :=
(

N(1)
n /λ(1)

n

)2

−
M∑

j=2

(
N( j)

n /λ( j)

n

)2
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and prove the following technical lemma. We remind the reader that, in this and all subsequent
proofs, we assume that sampling decisions are made by the mCEI algorithm with (4.1) and
(4.2) replacing (3.2) and (3.3).

Lemma 4.1. If alternative 1 is sampled at time n then �n+1 − �n > 0. If any other alternative
is sampled at time n then �n+1 − �n < 0.

Proof. Suppose that alternative 1 is sampled at time n. Then

�n+1 − �n

=
(

(N(1)
n + 1)/λ(1)

n + 1

)2

−
M∑

j=2

(
N( j)

n /λ( j)

n + 1

)2

−
((

N(1)
n /λ(1)

n

)2

−
M∑

j=2

(
N( j)

n /λ( j)

n

)2)

= 1

(λ(1))2

((
(N(1)

n + 1)

n + 1

)2

−
(

N(1)
n

n

)2)
+

( M∑
j=2

(
N( j)

n /λ( j)

n

)2

−
M∑

j=2

(
N( j)

n /λ( j)

n + 1

)2)

> 0.

If some alternative j′ > 1 is sampled, then �n ≥ 0 and

�n+1 − �n =
(

N(1)
n /λ(1)

n + 1

)2

−
∑
j �=j′

(
N( j)

n /λ( j)

n + 1

)2

−
((

N( j′)
n + 1

)
/λ( j′)

n + 1

)2

−
((

N(1)
n /λ(1)

n

)2

−
M∑

j=2

(
N( j)

n /λ( j)

n

)2)

=
(

N(1)
n /λ(1)

n + 1

)2

−
M∑

j=2

(
N( j)

n /λ( j)

n + 1

)2

− 2N( j′)
n + 1

(λ( j′)(n + 1))2

−
((

N(1)
n /λ(1)

n

)2

−
M∑

j=2

(
N( j)

n /λ( j)

n

)2)

=
(

n2

(n + 1)2
− 1

)
�n − 2N( j′)

n + 1

(λ( j′)(n + 1))2

< 0,

which completes the proof. �
Let � = minj λ

( j) and recall that � > 0 by assumption. Now, for all ε > 0, there exists a
large enough n1 such that n1 > 2/�2ε − 1. Consider arbitrary n ≥ n1 and suppose that �n < 0.
This means that alternative 1 is sampled at time n, whence �n+1 − �n > 0 by Lemma 4.1.
Furthermore,

�n+1 =
((

N(1)
n + 1

)
/λ(1)

n + 1

)2

−
M∑

j=2

(
N( j)

n /λ( j)

n + 1

)2

= �n + 2N(1)
n + 1

(λ(1)(n + 1))2
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<
2n + 2

(λ(1)(n + 1))2

≤ 2

(λ(1))2(n1 + 1)

<
�2

(λ(1))2
ε

≤ ε.

Similarly, suppose that �n ≥ 0. This means that some j′ > 1 is sampled, whence �n+1 −
�n < 0 by Lemma 4.1. Using similar arguments as before, we find that

�n+1 =
(

N(1)
n /λ(1)

n + 1

)2

−
M∑

j=2

(
N( j)

n /λ( j)

n + 1

)2

− 2N( j′)
n + 1

(λ( j′)(n + 1))2

= �n − 2N( j′)
n + 1

(λ( j′)(n + 1))2

≥ − 2n + 2

(λ( j′)(n + 1))2

≥ −ε.

Thus, if there exists some large enough n2 satisfying n2 ≥ n1 and −ε < �n2 < ε, then it follows
that, for all n ≥ n2, we have �n ∈ (−ε, ε), which implies that limn→∞ �n = 0 and completes
the proof of Theorem 3.1. It only remains to show the existence of such n2.

Again, we consider two cases. First, suppose that �n1 < 0. Since the mCEI algorithm
samples every alternative infinitely often, we can let n2 = inf{n > n1 : �n ≥ 0}. Since n2 will be
the first time after n1 that any j′ > 1 is sampled, we have �n2−1 < 0 and n2 − 1 ≥ n1. From the
previous arguments we have 0 ≤ �n2 < ε. Similarly, in the second case where �n1 ≥ 0, we let
n2 = inf{n > n1 : �n < 0}, whence �n2−1 ≥ 0 and n2 − 1 ≥ n1. The previous arguments imply
that −ε < �n2 < 0. Thus, we can always find n2 ≥ n1 satisfying −ε < �n2 < ε, as required.

4.2. Proof of Theorem 3.2

The proof relies on several technical lemmas. To present the main argument more clearly,
these lemmas are stated here, and the full proofs are given in Appendix A. For notational
convenience, we define d( j)

n := ∣∣θ ( j)
n − θ

(1)
n

∣∣ and δ
( j)
n = (d( j)

n )2 for all j > 1. Furthermore, for
any j and any positive integer m, we define

k( j)
(n,n+m) := N( j)

n+m − N( j)
n

to be the number of samples allocated to alternative j from stage n to stage n + m − 1.
The first technical lemma implies that, for any two alternatives i and j, N(i)

n = �(N( j)
n ) and

N(i)
n = �(n).

Lemma 4.2. For any two alternatives i and j, lim supn→∞ N(i)
n /N( j)

n < ∞.

Now let

z( j)
n := d( j)

n√
(λ( j))2/N( j)

n + (λ(1))2/N(1)
n

, t( j)
n := (z( j)

n )2 = δ
( j)
n

(λ( j))2/N( j)
n + (λ(1))2/N(1)

n

.
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For any j, both z( j)
n and t( j)

n go to ∞ as n → ∞. We apply an expansion of the Mills ratio [19]
to v( j)

n . For all large enough n,

v( j)
n = d( j)

n

z( j)
n

f (−z( j)
n )

= d( j)
n

z( j)
n

φ(z( j)
n )

(
−z( j)

n
1 − �(z( j)

n )

φ(z( j)
n )

+ 1

)

= d( j)
n

z( j)
n

φ(z( j)
n )

(
−z( j)

n
1

z( j)
n

(
1 − 1

(z( j)
n )2

+ O

(
1

(z( j)
n )4

))
+ 1

)
(4.3)

= d( j)
n

(z( j)
n )3

φ(z( j)
n )

(
1 + O

(
1

(z( j)
n )2

))
,

where (4.3) comes from the Mills ratio. Then

2 log
(
v( j)

n

) = 2 log d( j)
n − 6 log z( j)

n + 2 log φ
(
z( j)

n

) + 2 log

(
1 + O

(
1

(z( j)
n )2

))

= log δ( j)
n − 3 log t( j)

n − log (2π ) − t( j)
n + 2 log

(
1 + O

(
1

t( j)
n

))

= −t( j)
n

(
1 + O

(
log t( j)

n

t( j)
n

))
.

For any two suboptimal alternatives i and j, define

r(i,j)
n := 2 log (v(i)

n )

2 log (v( j)
n )

= t(i)n

t( j)
n

1 + O(log t(i)n /t(i)n )

1 + O(log t( j)
n /t( j)

n )
, (4.4)

and note that both 1 + O(log t(i)n /t(i)n ) and 1 + O(log t( j)
n /t( j)

n ) converge to 1 as n → ∞. We will
show that r(i,j)

n → 1 for any suboptimal i and j; then (4.4) will yield t(i)n /t( j)
n → 1, completing

the proof of Theorem 3.2.
Note that, for any j, the CEI quantity v( j)

n can change when either j or the optimal alternative
is sampled. Thus, it is necessary to characterize the relative frequency of such samples. This
requires three other technical lemmas, which are stated below and proved in Appendix A. First,
Lemma 4.3 shows that the number of samples that could be allocated to the optimal alternative
between two samples of any suboptimal alternatives (not necessarily the same one) is O (1)

and vice versa; next, Lemma 4.4 shows that k(1)
(n,n+m) is O

(√
n log log n

)
; finally, Lemma 4.5

bounds n3/4
∣∣δ(i)

n+1 − δ
(i)
n

∣∣.
Lemma 4.3. Between two samples assigned to any suboptimal alternatives (i.e. two time
stages when condition (4.2) fails), the number of samples that could be allocated to the optimal
alternative is at most equal to some fixed constant B1; symmetrically, between two samples of
alternative 1, the number of samples that could be allocated to any suboptimal alternatives is
at most equal to some fixed constant B2.
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Lemma 4.4. On almost every sample path, there exists a fixed positive constant C < ∞ and
time n0 ≥ 3 such that, for any n ≥ n0 in which some suboptimal alternative i is sampled and

m := inf
{
l > 0: I(i)

n+l = 1
}
,

we have k(1)
(n,n+m) ≤ C

√
n log log n.

Lemma 4.5. For any alternative i, n3/4
∣∣δ(i)

n+1 − δ
(i)
n

∣∣ → 0 almost surely as n → ∞.

Let i, j > 1, and suppose that i is sampled at stage n. We will first place an O(1/n3/4) bound
on the increment r(i,j)

n+1 − r(i,j)
n . We will then place a bound of O(

√
n log log n/n3/4) on the

growth of (r(i,j)
n ) in between two samples of i (note that, by definition, r(i,j)

n ≤ 1 at any stage
n when i is sampled). As this bound vanishes to 0 as n → ∞, it will then be shown to follow
that r(i,j)

n → 1.
If i is sampled at stage n then r(i,j)

n ≤ 1 and

r(i,j)
n+1 − r(i,j)

n = log
(
v(i)

n+1

)
log

(
v( j)

n+1

) − log
(
v(i)

n
)

log
(
v( j)

n
)

= log
(
v(i)

n+1

) − log
(
v(i)

n
)

log
(
v( j)

n
)

≤
∣∣ log

(
v(i)

n+1

) − log
(
v(i)

n
)∣∣∣∣ log

(
v( j)

n
)∣∣

= n1/4

2
∣∣ log

(
v( j)

n
)∣∣ 1

n1/4

∣∣∣∣∣∣
⎛
⎝ δ

(i)
n+1

(λ(i))2

N(i)
n +1

+ (λ(1))2

N(1)
n

− δ
(i)
n

(λ(i))2

N(i)
n

+ (λ(1))2

N(1)
n

⎞
⎠

+ 3

⎛
⎜⎝log

δ
(i)
n+1

(λ(i))
2

N(i)
n +1

+ (λ(1))
2

N(1)
n

− log
δ

(i)
n

(λ(i))
2

N(i)
n

+ (λ(1))
2

N(1)
n

⎞
⎟⎠

− 2

[
log

(
1 + O

(
(λ(i))2

N(i)
n + 1

+ (λ(1))2

N(1)
n

))

− log

(
1 + O

(
(λ(i))2

N(i)
n

+ (λ(1))2

N(1)
n

))]

− ( log δ
(i)
n+1 − log δ(i)

n )

∣∣∣∣. (4.5)

By Lemma 4.2, there exists a positive constant C1 such that, for all large enough n,

2| log (v( j)
n )|

n1/4
= t( j)

n

n1/4

(
1 + O

(
log t( j)

n

t( j)
n

))

>
1

2n1/4

δ
( j)
n

(λ( j))2/N( j)
n + (λ(1))2/N(1)

n
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≥ C1
n

n1/4

= C1n3/4.

On the other hand, for all large enough n, there also exists a positive constant C2 such that

1

n1/4

∣∣∣∣ δ
(i)
n+1

(λ(i))2/(N(i)
n + 1) + (λ(1))2/N(1)

n

− δ
(i)
n

(λ(i))2/N(i)
n + (λ(1))2/N(1)

n

∣∣∣∣
≤ 1

n1/4

(∣∣∣∣ δ
(i)
n+1

(λ(i))2/(N(i)
n + 1) + (λ(1))2/N(1)

n

− δ
(i)
n+1

(λ(i))2/N(i)
n + (λ(1))2/N(1)

n

∣∣∣∣
+

∣∣∣∣ δ
(i)
n+1

(λ(i))2/N(i)
n + (λ(1))2/N(1)

n

− δ
(i)
n

(λ(i))2/N(i)
n + (λ(1))2/N(1)

n

∣∣∣∣
)

= 1

n1/4

(
O(1) + O(n)

∣∣δ(i)
n+1 − δ(i)

n

∣∣)
= O(1)

( 1

n1/4
+ n3/4

∣∣δ(i)
n+1 − δ(i)

n

∣∣)
= O (1)

≤ C2,

where the first equality holds from Lemma 4.2 and the last equality holds from Lemma 4.5.
Then, for all large enough n, we have

3

n1/4

∣∣∣∣ log
δ

(i)
n+1(

λ(i)
)2

/(N(i)
n + 1) + (

λ(1)
)2

/N(1)
n

− log
δ

(i)
n(

λ(i)
)2

/N(i)
n + (

λ(1)
)2

/N(1)
n

∣∣∣∣
≤ 3

n1/4

∣∣∣∣ δ
(i)
n+1(

λ(i)
)2

/(N(i)
n + 1) + (

λ(1)
)2

/N(1)
n

− δ
(i)
n(

λ(i)
)2

/N(i)
n + (

λ(1)
)2

/N(1)
n

∣∣∣∣
≤ 3C2,

and ∣∣∣∣ 2

n1/4

[
log

(
1 + O

(
(λ(i))2

N(i)
n + 1

+ (λ(1))2

N(1)
n

))
− log

(
1 + O

(
(λ(i))2

N(i)
n

+ (λ(1))2

N(1)
n

))]∣∣∣∣
+ 1

n1/4

∣∣ log δ
(i)
n+1 − log δ(i)

n

∣∣
≤ 2

n1/4

[∣∣∣∣log

(
1 + O

(
(λ(i))2

N(i)
n + 1

+ (λ(1))2

N(1)
n

))∣∣∣∣ +
∣∣∣∣ log

(
1 + O

(
(λ(i))2

N(i)
n

+ (λ(1))2

N(1)
n

))∣∣∣∣
]

+ 1

n1/4

∣∣ log δ
(i)
n+1 − log δ(i)

n

∣∣
≤ C2.

We now have bounded all four terms in (4.5). Therefore, for all large enough n, we have

r(i,j)
n+1 − r(i,j)

n ≤ 5C2/C1

n3/4
,
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and

r(i,j)
n+1 − 1 ≤ r(i,j)

n − 1 + 5C2/C1

n3/4
≤ 5C2/C1

n3/4
.

Thus, we have established a bound on the growth of r(i,j)
n that can occur as a result of sampling

i at time n.
We now consider the growth of the ratio between stages n and n + m, where

m := inf
{
l > 0 : I(i)

n+l = 1
}
,

as in the statement of Lemma 4.4. In words, n + m is the index of the next time after n that
we sample i. For any stage n + s with 0 < s ≤ m, the inequality r(i,j)

n+s+1 > r(i,j)
n+s can only hold if

alternative j or the optimal alternative is sampled at stage n + s.
If alternative j is sampled at stage n + s then

r(i,j)
n+s+1 − r(i,j)

n+s = log
(
v(i)

n+s+1

)
log

(
v( j)

n+s+1

) − log
(
v(i)

n+s

)
log

(
v( j)

n+s

)
= log

(
v(i)

n+s

)
log

(
v( j)

n+s+1

) − log
(
v(i)

n+s

)
log

(
v( j)

n+s

)
≤

∣∣∣∣ log
(
v(i)

n+s

)
log

(
v( j)

n+s+1

)
∣∣∣∣
∣∣ log

(
v( j)

n+s+1

) − log
(
v( j)

n+s

)∣∣∣∣ log
(
v( j)

n+s

)∣∣ .

Using similar arguments as above, we have∣∣ log
(
v( j)

n+s+1

) − log
(
v( j)

n+s

)∣∣∣∣ log
(
v( j)

n+s)
∣∣ = O

(
(n + s)−3/4) = O(n−3/4),

and, by Lemma 4.2,

∣∣∣∣ log
(
v(i)

n+s

)
log

(
v( j)

n+s+1

)
∣∣∣∣ = O(1).

Thus, there exists a constant C3 such that

r(i,j)
n+s+1 − r(i,j)

n+s ≤ C3n−3/4.

On the other hand, if alternative 1 is sampled at stage n + s then

r(i,j)
n+s+1 − r(i,j)

n+s = log
(
v(i)

n+s+1

)
log

(
v( j)

n+s+1

) − log
(
v(i)

n+s

)
log

(
v( j)

n+s

)
≤

∣∣∣∣∣ log
(
v(i)

n+s+1

)
log

(
v( j)

n+s+1

) − log
(
v(i)

n+s

)
log

(
v( j)

n+s+1

)
∣∣∣∣∣ +

∣∣∣∣∣ log
(
v(i)

n+s

)
log

(
v( j)

n+s+1

) − log
(
v(i)

n+s

)
log

(
v( j)

n+s

)
∣∣∣∣∣

=
∣∣∣∣∣ log (v(i)

n+s+1) − log (v(i)
n+s)

log (v( j)
n+s+1)

∣∣∣∣∣ +
∣∣∣∣∣ log (v(i)

n+s)

log (v( j)
n+s+1)

∣∣∣∣∣
∣∣ log (v( j)

n+s+1) − log (v( j)
n+s)

∣∣∣∣ log (v( j)
n+s)

∣∣ .
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Similarly as above, we have ∣∣∣∣∣ log
(
v(i)

n+s+1

) − log
(
v(i)

n+s

)
log

(
v( j)

n+s+1

)
∣∣∣∣∣ = O

(
n−3/4),

∣∣∣∣∣ log
(
v(i)

n+s

)
log

(
v( j)

n+s+1

)
∣∣∣∣∣
∣∣ log

(
v( j)

n+s+1

) − log
(
v( j)

n+s

)∣∣∣∣ log
(
v( j)

n+s

)∣∣ = O
(
n−3/4).

Then there exists a constant C4 such that

r(i,j)
n+s+1 − r(i,j)

n+s ≤ C4n−3/4.

Therefore, in all cases, for all large enough n, we have

r(i,j)
n+s+1 − r(i,j)

n+s ≤ C5

n3/4
,

where C5 = max {5C2/C1, C3, C4}. It follows that

r(i,j)
n+s+1 − 1 ≤ r(i,j)

n+s − 1 + C5

n3/4

≤ r(i,j)
n − 1 + (

1 + k( j)
s + k(1)

s

) C5

n3/4

≤ (
1 + k( j)

s + k(1)
s

) C5

n3/4
.

However, from Lemma 4.4, we have k(1)
s ≤ k(1)

m = O
(√

n log log n
)

for all 0 < s ≤ m, and at
the same time, from Lemma 4.3, we know that at most B2 samples could be allocated to any
suboptimal alternatives between two samples of alternative 1. Then we also have k( j)

s ≤ k( j)
m ≤

B2
(
k(1)

m + 1
)
, whence k( j)

m = O
(√

n log log n
)
. It follows that

r(i,j)
n+s+1 − 1 ≤ (

1 + k( j)
m + k(1)

m

) C5

n3/4
= O

(√
n log log n

n3/4

)
,

whence lim supn→∞ r(i,j)
n = 1. By symmetry,

lim inf
n→∞ r(i,j)

n = lim sup
n→∞

r( j,i)
n = 1,

whence limn→∞ r(i,j)
n = 1. This completes the proof.

5. Conclusion

We have considered a ranking and selection problem with independent normal priors and
samples, and shown that an EI-type method (a modified version of the CEI method of [23])
achieves the rate-optimality conditions of [9] asymptotically. While convergence to the rate-
optimal static allocation need not preserve the convergence rate of that allocation, nonetheless,
the static framework of [9] is widely used by the simulation community as a guide for the
development of dynamic algorithms, and from this viewpoint it is noteworthy that simple and
efficient algorithms can learn optimal static allocations without tuning or approximations.
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This paper strengthens the existing body of theoretical support for EI-type methods in
general, and for the CEI method in particular. An interesting question is whether CEI would
continue to perform optimally in, e.g. the more general Gaussian Markov framework of [23].
However, the current theoretical understanding of such models is quite limited, and more
fundamental questions (for example, how correlated Bayesian models impact the rate of
convergence) should be answered before any particular algorithm can be analyzed.

Appendix A. Additional proofs

Below, we give the full proofs of some technical lemmas that were stated in the main text.

A.1. Proof of Lemma 4.2

We proceed by contradiction. Suppose that i, j > 1 satisfy lim supn→∞ N(i)
n /N( j)

n = ∞. Let

c = limn→∞ δ
( j)
n /δ

(i)
n + 1 = (μ( j) − μ(1))2/(μ(i) − μ(1))2 + 1. Then, there must exist a large

enough stage m such that

N(i)
m

N( j)
m

> max{c, 1} (λ(i))2 + λ(1)λ(i)

(λ( j))2
,

and we will sample alternative i to make N(i)
m+1/N( j)

m+1 > N(i)
m /N( j)

m . But, at this stage m,

v(i)
m =

√
(λ(i))2

N(i)
m

+ (λ(1))2

N(1)
m

f

⎛
⎝− d(i)

m√
(λ(i))2/N(i)

m + (λ(1))2/N(1)
m

⎞
⎠

≤
√√√√(

λ(i)
)2

N(i)
m

+ λ(1)λ(i)

N(i)
m

f

⎛
⎝− d(i)

m√
(λ(i))2/N(i)

m + λ(1)λ(i)/N(i)
m

⎞
⎠ (A.1)

=
√√√√(

λ(i)
)2 + λ(1)λ(i)

N(i)
m

f

⎛
⎝− d(i)

m√
((λ(i))2 + λ(1)λ(i))/N(i)

m

⎞
⎠

<

√√√√(
λ( j)

)2

N( j)
m

f

⎛
⎝− d( j)

m√
(λ( j))2/N( j)

m

⎞
⎠ (A.2)

<

√√√√(
λ( j)

)2

N( j)
m

+
(
λ(1)

)2

N(1)
m

f

⎛
⎝− d( j)

m√
(λ( j))2/N( j)

m + (λ(1))2/N(1)
m

⎞
⎠

= v( j)
m , (A.3)

where (A.1) holds because a suboptimal alternative is sampled at stage m, and (A.2)
holds because limm→∞ d( j)

m /d(i)
m = |(μ( j) − μ(1))|/|(μ(i) − μ(1))|. From the definition of the

mCEI algorithm, (A.3) implies that we cannot sample i at stage m. We conclude that
lim supn→∞ N(i)

n /N( j)
n < ∞ for any two suboptimal alternatives i and j.

From this result, we can see that, for i, j > 1, we have

0 < lim inf
n→∞

N(i)
n

N( j)
n

≤ lim sup
n→∞

N(i)
n

N( j)
n

< ∞.
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Together with Theorem 3.1, this implies that, for any i > 1, we have

0 < lim inf
n→∞

N(i)
n

N(1)
n

≤ lim sup
n→∞

N(i)
n

N(1)
n

< ∞,

completing the proof.

A.2. Proof of Lemma 4.3

Define Qn := (N(1)
n /λ(1))2 − ∑M

j=2 (N( j)
n /λ( j))2. Suppose that, at some stage n, Qn < 0 and

Qn+1 ≥ 0, which means that the optimal alternative is sampled at time n and then a suboptimal
alternative is sampled at time n + 1. Let m := inf {l > 0: Qn+l < 0}, i.e. stage n + m is the first
time that alternative 1 is sampled after stage n. Then, in order to show that between two samples
of alternative 1, the number of samples that could be allocated to suboptimal alternatives is
O (1), it is sufficient to show that m = O (1).

To show this, first we can see that

Qn+1 =
(

N(1)
n + 1

λ(1)

)2

−
M∑

j=2

(
N( j)

n

λ( j)

)2

=
(

N(1)
n

λ(1)

)2

−
M∑

j=2

(
N( j)

n

λ( j)

)2

+ 2N(1)
n + 1

(λ(1))2

= Qn + 2N(1)
n + 1

(λ(1))2

<
2N(1)

n + 1

(λ(1))2

≤ C1N(1)
n , (A.4)

where C1 is a suitable fixed positive constant and the first inequality holds because Qn < 0.
Then, for any stage n + s, where 0 < s < m, we have

Qn+s =
(

N(1)
n+s

λ(1)

)2

−
M∑

j=2

(
N( j)

n+s

λ( j)

)2

=
(

N(1)
n+1

λ(1)

)2

−
M∑

j=2

(
N( j)

n+s

λ( j)

)2

=
(

N(1)
n + 1

λ(1)

)2

−
M∑

j=2

(
N( j)

n

λ( j)

)2

−
( M∑

j=2

(
N( j)

n+s

λ( j)

)2

−
M∑

j=2

(
N( j)

n

λ( j)

)2)

< C1N(1)
n −

( M∑
j=2

(
N( j)

n+s

λ( j)

)2

−
M∑

j=2

(
N( j)

n

λ( j)

)2)
,

where the inequality holds because of (A.4). We can also see that, after stage n, the increment
of

∑M
j=2 (N( j)

n /λ( j))2 obtained by allocating a sample to alternative j is at least 2N( j)
n /(λ( j))2.
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Then, for all large enough n,

M∑
j=2

(
N( j)

n+s

λ( j)

)2

−
M∑

j=2

(
N( j)

n

λ( j)

)2

≥ 2s
min{j>1} N( j)

n

max{j>1} (λ( j))2
≥ C2sN(1)

n ,

where C2 is a suitable positive constant and the last inequality follows by Lemma 4.2.
Therefore, for any 0 < s < m, we have Qn+s < (C1 − C2s) N(1)

n . But, from the definition of m,
for any 0 < s < m, Qn+s ≥ 0 must hold. Thus, any 0 < s < m cannot be greater than C1/C2;
in other words, we must have m ≤ C1/C2 + 1, which implies that m = O (1) for all large
enough n. This proves the second claim of the lemma. The first claim of the lemma can be
proved in a similar way due to symmetry.

A.3. Proof of Lemma 4.4

We first introduce a technical lemma, which establishes a relationship between k(1)
(n,n+m) and

samples assigned to suboptimal alternatives. The lemma is proved in Appendix A.5.

Lemma A.1. Fix a sample path, and let C1 be any positive constant. For a time stage n at
which some suboptimal alternative i > 1 is sampled, define

m := inf
{
l > 0: I(i)

n+l = 1
}
, s := sup

{
l < m : I(1)

n+l = 0
}
.

Suppose that there are infinitely many time stages n in which the condition

C2
√

n log log n ≤ k(1)
(n,n+s) ≤ n

holds, where C2 is a positive constant whose value does not depend on these values of n (but
may depend on C1). Then, for such large enough n, there exists some suboptimal alternative
j �= i and a time stage n + u, where u ≤ s, such that j is sampled at stage n + u and

(
1 + C1

√
n log log n

n

)N( j)
n

N(1)
n

<
N( j)

n + k( j)
(n,n+u)

N(1)
n + k(1)

(n,n+s)

≤ N( j)
n + k( j)

(n,n+u)

N(1)
n + k(1)

(n,n+u)

, (A.5)

holds.

Essentially, Lemma A.1 will be used to prove the desired result by contradiction; we will
show that (A.5) cannot arise, and, therefore, k( j)

(n,n+m) must be O(
√

n log log n).
For convenience, we abbreviate k( j)

(n,n+m) by the notation k(j)
m . We will prove the lemma

by contradiction. Suppose that the conclusion of the lemma does not hold, that is,
k(1)

m /
√

n log log n can be arbitrarily large. Since we sample i > 1 at stage n, then, for any other
suboptimal alternative j �= i, we have

r(i,j)
n = t(i)n

t( j)
n

1 + O(log t(i)n /t(i)n )

1 + O(log t( j)
n /t( j)

n )
≤ 1.

Then, by Lemma 4.2, there must exist positive constants C1 and C2 such that, for all large
enough n,

t(i)n

t( j)
n

≤ 1 + C1

(
log t( j)

n

t( j)
n

+ log t(i)n

t(i)n

)
≤ 1 + C2

log n

n
,
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that is, equivalently,

δ
(i)
n (λ( j))2

N( j)
n

+ δ
(i)
n (λ(1))2

N(1)
n

≤ δ
( j)
n (λ(i))2(1 + C2( log n)/n)

N(i)
n

+ δ
( j)
n (λ(1))2(1 + C2( log n)/n)

N(1)
n

.

(A.6)

Then, at stage n + u, where 0 < u < m, there must exist positive constants C3 and C4 such that,
for all large enough n,

r(i,j)
n+u = t(i)n+u

t( j)
n+u

1 + O(log t(i)n+u/t(i)n+u)

1 + O(log t( j)
n+u/t( j)

n+u)

≤ t(i)n+u

t( j)
n+u

1

1 − C3(log t(i)n+u/t(i)n+u + log t( j)
n+u/t( j)

n+u)

<
t(i)n+u

t( j)
n+u

1

1 − C4(log n)/n
.

Thus, for all large enough n, in order to have r(i,j)
n+u < 1, it is sufficient to require

t(i)n+u

t( j)
n+u

≤ 1 − C4
log n

n
,

or, equivalently,

δ
(i)
n+u(λ( j))2

N( j)
n + k( j)

u

+ δ
(i)
n+u(λ(1))2

N(1)
n + k(1)

u

≤ δ
( j)
n+u(λ(i))2(1 − C4(log n)/n)

N(i)
n + k(i)

u

+ δ
( j)
n+u(λ(1))2(1 − C4(log n)/n)

N(1)
n + k(1)

u

. (A.7)

Note that k(i)
u = 1. By the convergence of δ

(i)
n and δ

( j)
n , for all large enough n, we have

(
δ( j)

n − δ(i)
n

)(
δ( j)

n

(
1 + C2

log n

n

)
− δ(i)

n

)
> 0,

(
δ( j)

n − δ(i)
n

)(
δ( j)

n

(
1 − C4

log n

n

)
− δ(i)

n

)
> 0.

If limn→∞ δ
( j)
n

δ
(i)
n

> 1, i.e. μ( j) < μ(i), then by (A.6), we have

δ
(i)
n+u(λ( j))2

N( j)
n + k( j)

u

= δ
(i)
n+u

δ
(i)
n

δ
(i)
n (λ( j))2

N( j)
n

N( j)
n

N( j)
n + k( j)

u

≤ δ
(i)
n+u

δ
(i)
n

δ
( j)
n (λ(i))2(1 + C2(log n)/n)

N(i)
n

N( j)
n

N( j)
n + k( j)

u

+ δ
(i)
n+u

δ
(i)
n

δ
( j)
n (λ(1))2(1 + C2(log n)/n) − δ

(i)
n (λ(1))2

N(1)
n

N( j)
n

N( j)
n + k( j)

u
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= δ
(i)
n+u

δ
(i)
n

δ
( j)
n (λ(i))2(1 − C4(log n)/n)

N(i)
n + 1

(1 + C2(log n)/n)

(1 − C4(log n)/n)

N(i)
n + 1

N(i)
n

N( j)
n

N( j)
n + k( j)

u

+ δ
(i)
n+u

δ
(i)
n

δ
( j)
n (λ(1))2(1 + C2(log n)/n) − δ

(i)
n (λ(1))2

N(1)
n + k(1)

u

N(1)
n + k(1)

u

N(1)
n

N( j)
n

N( j)
n + k( j)

u

.

It follows that there must exist a positive constant C5 such that

δ
(i)
n+u(λ( j))2

N( j)
n + k( j)

u

≤ δ
(i)
n+u

δ
(i)
n

δ
( j)
n (λ(i))2(1 − C4(log n)/n)

N(i)
n + 1

(
1 + C5

log n

n

)N(i)
n + 1

N(i)
n

N( j)
n

N( j)
n + k( j)

u

+ δ
(i)
n+u

δ
(i)
n

δ
( j)
n (λ(1))2(1 + C2(log n)/n) − δ

(i)
n (λ(1))2

N(1)
n + k(1)

u

N(1)
n + k(1)

u

N(1)
n

N( j)
n

N( j)
n + k( j)

u

.

Thus, to satisfy (A.7), it is sufficient to have

δ
(i)
n+u

δ
(i)
n

δ
( j)
n

δ
( j)
n+u

(
1 + C5

log n

n

)N(i)
n + 1

N(i)
n

N( j)
n

N( j)
n + k( j)

u

≤ 1, (A.8)

δ
(i)
n+u

δ
(i)
n

δ
( j)
n (1 + C2(log n)/n) − δ

(i)
n

δ
( j)
n+u(1 − C4(log n)/n) − δ

(i)
n+u

N(1)
n + k(1)

u

N(1)
n

N( j)
n

N( j)
n + k( j)

u

≤ 1. (A.9)

Note that, for all large enough n and any alternative i �= 1, by Lemma 4.2, we have

∣∣δ(i)
n+u − δ(i)

n

∣∣ = ∣∣(d(i)
n+u

)2 − (
d(i)

n

)2∣∣
= ∣∣(θ (i)

n+u − θ
(1)
n+u

)2 − (
θ (i)

n − θ (1)
n

)2∣∣
= ∣∣(θ (i)

n+u − θ
(1)
n+u

) + (
θ (i)

n − θ (1)
n

)∣∣∣∣(θ (i)
n+u − θ (i)

n

) − (
θ

(1)
n+u − θ (1)

n

)∣∣
≤ ∣∣(θ (i)

n+u − θ
(1)
n+u

) + (
θ (i)

n − θ (1)
n

)∣∣
· (∣∣θ (i)

n+u − μ(i)
∣∣ + ∣∣θ (i)

n − μ(i)
∣∣ + ∣∣θ (1)

n+u − μ(1)
∣∣ + ∣∣θ (1)

n − μ(1)
∣∣)

= O

(√√√√ log log N(i)
n

N(i)
n

)
+ O

(√√√√ log log N(1)
n

N(1)
n

)

= O

(√
log log n

n

)
,

where the fourth equality holds because of the law of the iterated logarithm, and the last
equality holds by Lemma 4.2. Then, for all large enough n, we have

δ
(i)
n+u

δ
(i)
n

= δ
(i)
n+u − δ

(i)
n + δ

(i)
n

δ
(i)
n

= 1 + δ
(i)
n+u − δ

(i)
n

δ
(i)
n

= 1 + O

(√
log log n

n

)
,

δ
( j)
n

δ
( j)
n+u

= 1 + O

(√
log log n

n

)
,
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and

δ
( j)
n (1 + C2(log n)/n) − δ

(i)
n

δ
( j)
n+u(1 − C4(log n)/n) − δ

(i)
n+u

= 1 + δ
( j)
n (1 + C2(log n)/n) − δ

( j)
n+u(1 − C4(log n)/n) − (δ(i)

n − δ
(i)
n+u)

δ
( j)
n+u(1 − C4(log n)/n) − δ

(i)
n+u

≤ 1 + |δ( j)
n − δ

( j)
n+u| + |δ( j)

n C2(log n)/n| + |δ( j)
n+uC4(log n)/n| + |δ(i)

n − δ
(i)
n+u|

δ
( j)
n+u(1 − C4(log n)/n) − δ

(i)
n+u

= 1 + O
(√

log log n

n

)
.

Then together with Lemma 4.2, there exists a positive constant C6 such that, for all large
enough n, the left-hand side of (A.8) satisfies

δ
(i)
n+u

δ
(i)
n

δ
( j)
n

δ
( j)
n+u

(
1 + C5

log n

n

)N(i)
n + 1

N(i)
n

N( j)
n − N( j)

n

=
(

1 + O
(√

log log n

n

))(
1 + C5

log n

n

)(
1 + O

(1

n

))
N( j)

n − N( j)
n

≤ C6
√

n log log n,

while the left-hand side of (A.9) satisfies

δ
(i)
n+u

δ
(i)
n

δ
( j)
n (1 + C2(log n)/n) − δ

(i)
n

δ
( j)
n+u (1 − C4(log n)/n) − δ

(i)
n+u

N(1)
n + k(1)

u

N(1)
n

N( j)
n

N( j)
n + k( j)

u

=
(

1 + O
(√

log log n

n

))N(1)
n + k(1)

u

N(1)
n

N( j)
n

N( j)
n + k( j)

u

≤
(

1 + C6

√
n log log n

n

)N(1)
n + k(1)

u

N(1)
n

N( j)
n

N( j)
n + k( j)

u

.

Therefore, to satisfy (A.8), it is sufficient to have

C6
√

n log log n ≤ k( j)
u . (A.10)

Now define
s := sup

{
l < m : I(1)

n+l = 0
}
. (A.11)

Since k(1)
m /

√
n log log n can be arbitrarily large, we can suppose that k(1)

s > C7
√

n log log n,
where C7 is a positive constant to be specified. By Lemma A.1, since C6 is a fixed positive
constant, there must exist a constant C8 such that, if C7 ≥ C8, there exists a suboptimal j �= i,
and a stage n + u with u ≤ s, such that j is sampled at stage n + u and

(
1 + C6

√
n log log n

n

)N( j)
n

N(1)
n

<
N( j)

n + k( j)
u

N(1)
n + k(1)

s

≤ N( j)
n + k( j)

u

N(1)
n + k(1)

u

.
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Then, (A.9) holds at stage n + u. At the same time, since

N( j)
n + k( j)

u

N(1)
n + k(1)

s

>
(

1 + C6

√
n log log n

n

)N( j)
n

N(1)
n

≥ N( j)
n

N(1)
n

,

we have k( j)
u /k(1)

s ≥ N( j)
n /N(1)

n . From Lemma 4.2, there must exist a positive constant C9 such
that, for all large enough n,

k( j)
u ≥ C9k(1)

s ≥ C9C7
√

n log log n.

Now let C7 = max{C8, C6/C9}. Then, both (A.9) and (A.10) are satisfied at stage n + u, so
(A.7) is satisfied, which means that

r(i,j)
n+u < 1 �⇒ v(i)

n+u > v( j)
n+u.

But the alternative j is sampled at stage n + u, which means v(i)
n+u ≤ v( j)

n+u. The desired
contradiction follows.

Now, consider the other case where limn→∞ δ
( j)
n /δ

(i)
n < 1, i.e. μ( j) > μ(i). By (A.6), we have

δ
( j)
n+u(λ(i))2(1 − C4(log n)/n)

N(i)
n + 1

= δ
( j)
n+u

δ
( j)
n

δ
( j)
n (λ(i))2(1 + C2(log n)/n)

N(i)
n

1 − C4(log n)/n

1 + C2(log n)/n

N(i)
n

N(i)
n + 1

≥ δ
( j)
n+u

δ
( j)
n

δ
(i)
n (λ( j))2

N( j)
n

1 − C4(log n)/n

1 + C2(log n)/n

N(i)
n

N(i)
n + 1

+ δ
( j)
n+u

δ
( j)
n

δ
(i)
n (λ(1))2 − δ

( j)
n (λ(1))2(1 + C2(log n)/n)

N(1)
n

1 − C4(log n)/n

1 + C2(log n)/n

N(i)
n

N(i)
n + 1

.

Then, there must exist a positive constant C10 such that, for all large enough n,

δ
( j)
n+u(λ(i))2 (1 − C4(log n)/n)

N(i)
n + 1

≥ δ
( j)
n+u

δ
( j)
n

δ
(i)
n (λ( j))2

N( j)
n

1

1 + C10(log n)/n

N(i)
n

N(i)
n + 1

+ δ
( j)
n+u

δ
( j)
n

δ
(i)
n (λ(1))2 − δ

( j)
n (λ(1))2(1 + C2(log n)/n)

N(1)
n

1

1 + C10(log n)/n

N(i)
n

N(i)
n + 1

.

Thus, to satisfy (A.7), for all large enough n, it is sufficient to have

δ
( j)
n+u

δ
( j)
n

δ
(i)
n

δ
(i)
n+u

1

N( j)
n

1

1 + C10(log n)/n

N(i)
n

N(i)
n + 1

≥ 1

N( j)
n + k( j)

u

,
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δ
( j)
n+u

δ
( j)
n

δ
(i)
n − δ

( j)
n (1 + C2(log n)/n)

N(1)
n

1

1 + C10(log n)/n

N(i)
n

N(i)
n + 1

≥ δ
(i)
n+u − δ

( j)
n+u (1 − C4(log n)/n)

N(1)
n + k(1)

u

,

which can equivalently be rewritten as

k( j)
u ≥ δ

( j)
n

δ
( j)
n+u

δ
(i)
n+u

δ
(i)
n

(
1 + C10

log n

n

)N(i)
n + 1

N(i)
n

N( j)
n − N( j)

n , (A.12)

k(1)
u ≥ δ

( j)
n

δ
( j)
n+u

(
1 + C10

log n

n

)δ
(i)
n+u − δ

( j)
n+u (1 − C4(log n)/n)

δ
(i)
n − δ

( j)
n (1 + C2(log n)/n)

N(i)
n + 1

N(i)
n

N(1)
n − N(1)

n . (A.13)

Similarly as above, by Lemma 4.2, there exist positive constants C11, C12, C13, and C14 such
that, for all large enough n,

δ
( j)
n

δ
( j)
n+u

δ
(i)
n+u

δ
(i)
n

(
1 + C10

log n

n

)N(i)
n + 1

N(i)
n

N( j)
n − N( j)

n ≤ C11
√

n log log n

and

δ
( j)
n

δ
( j)
n+u

(
1 + C10

log n

n

)δ
(i)
n+u − δ

( j)
n+u (1 − C4(log n)/n)

δ
(i)
n − δ

( j)
n (1 + C2(log n)/n)

N(i)
n + 1

N(i)
n

N(1)
n − N(1)

n

≤
(

1 + C10
log n

n

)(
1 + C12

√
log log n

n

)
N(i)

n + 1

N(i)
n

N(1)
n − N(1)

n

≤
(

1 + C13

√
log log n

n

)
N(i)

n + 1

N(i)
n

N(1)
n − N(1)

n

≤ C14
√

n log log n.

Therefore, to satisfy (A.12) and (A.13), it is sufficient to have

k( j)
u ≥ C11

√
n log log n, (A.14)

k(1)
u ≥ C14

√
n log log n. (A.15)

Again, define s as in (A.11). Since k(1)
m /

√
n log log n can be arbitrarily large, we can suppose

that k(1)
s > C15

√
n log log n, where C15 is a positive constant to be specified. By Lemma A.1,

since C11 is a fixed positive constant, there must exist a constant C16 such that, if C15 ≥ C16,
there exists a suboptimal alternative j �= i, and a stage n + u with u ≤ s, such that j is sampled
at stage n + u and(

1 + C11

√
n log log n

n

)
N( j)

n

N(1)
n

<
N( j)

n + k( j)
u

N(1)
n + k(1)

s

≤ N( j)
n + k( j)

u

N(1)
n + k(1)

u

,

whence

N( j)
n + k( j)

u

N(1)
n + k(1)

s

>

(
1 + C11

√
n log log n

n

)
N( j)

n

N(1)
n

≥ N( j)
n

N(1)
n

.
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Then, we have k( j)
u /k(1)

s ≥ N( j)
n /N(1)

n . From Lemma 4.2, there must exist a positive constant C17
such that, for all large enough n,

k( j)
u ≥ C17k(1)

s ≥ C17C15
√

n log log n.

At the same time, by Lemma 4.3, for all large enough n, we also have

k(1)
u ≥ k( j)

u + 1

B2
− 1 ≥ C17C15

√
n log log n + 1

B2
− 1 ≥ C17C15

√
n log log n

2B2
.

Now, let C15 = max{C16, C11/C17, 2B2C14/C17}. Then both (A.14) and (A.15) are satisfied
at stage n + u, so (A.7) is satisfied, which means that

r(i,j)
n+u < 1 �⇒ v(i)

n+u > v( j)
n+u.

But the alternative j is sampled at stage n + u, which means that v(i)
n+u ≤ v( j)

n+u. Again, we have
the desired contradiction.

A.4. Proof of Lemma 4.5

First, if an alternative j other than 1 or i is sampled at stage n, it is obvious that
n3/4|δ(i)

n+1 − δ
(i)
n | = 0.

Second, if alternative i is sampled at stage n then, for all large enough n, there exists a
constant C1 such that

n3/4
∣∣δ(i)

n+1 − δ(i)
n

∣∣ = n3/4
∣∣(d(i)

n+1

)2 − (
d(i)

n

)2∣∣ ≤ C1n3/4
∣∣d(i)

n+1 − d(i)
n

∣∣ = C1

n1/4
n
∣∣θ (i)

n+1 − θ (i)
n

∣∣,
where

n
∣∣θ (i)

n+1 − θ (i)
n

∣∣ = n
∣∣ 1

N(i)
n + 1

(
N(i)

n θ (i)
n + W(i)

n+1

) − θ (i)
n

∣∣
≤ n

N(i)
n + 1

∣∣θ (i)
n

∣∣ + n

N(i)
n + 1

∣∣W(i)
n+1

∣∣
= O(1)(1 + |W(i)

n+1|);
thus, there exists a constant C2 such that

n3/4
∣∣δ(i)

n+1 − δ(i)
n

∣∣ ≤ C2

n1/4

(
1 + ∣∣W(i)

n+1

∣∣).

Finally, if alternative 1 is sampled at stage n then, similarly as above, for all large enough n,
there exist constants C3 and C4 such that

n3/4
∣∣δ(i)

n+1 − δ(i)
n

∣∣ ≤ C3

n1/4
n
∣∣θ (1)

n+1 − θ (1)
n

∣∣ ≤ C4

n1/4

(
1 + ∣∣W(1)

n+1

∣∣).

Then it is sufficient to show that |W(i)
n+1|/n1/4 → 0 and |W(1)

n+1|/n1/4 → 0 almost surely. By
Markov’s inequality, for all ε > 0,

P

( |W(i)
n+1|

n1/4
≥ ε

)
≤ E

(
(W(i)

n+1)8

n2ε8

)
≤ C5

n2ε8
,
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where C5 is a fixed constant; thus, |W(i)
n+1|/n1/4 → 0 in probability. Furthermore, by the Borel–

Cantelli lemma, since

∑
n

P

( |W(i)
n+1|

n1/4
≥ ε

)
≤

∑
n

C5

n2ε8
< ∞,

then we have |W(i)
n+1|/n1/4 → 0 almost surely. Using similar arguments, we also have

|W(1)
n+1|/n1/4 → 0 almost surely, completing the proof.

A.5. Proof of Lemma A.1

For convenience, we abbreviate k( j)
(n,n+m) by the notation k( j)

m for all j. First, since C2 is a

constant and limn→∞
√

n log log n/n = 0, it follows that, for all large enough n, we must have
C2

√
n log log n ≤ n. Intuitively, from the definition of m and s, stage n + m is the first time that

alternative i is sampled after stage n, and stage n + s is the last time that a suboptimal alternative
is sampled before stage n + m. Recall that, by assumption, we must have C2

√
n log log n ≤

k(1)
s ≤ n for some positive constant C2 to be specified.

At stage n, since we sample a suboptimal i by assumption, we must have

(
N(1)

n

λ(1)

)2

≥
M∑

j=2

(
N( j)

n

λ( j)

)2

. (A.16)

At stage n + s, from the definition of s, it is also some suboptimal alternative that is sampled.
Repeating the arguments in the proof of Theorem 3.1, we obtain

(
(N(1)

n + k(1)
s

)
/λ(1)

n + s

)2

−
M∑

j=2

(
(N( j)

n + k( j)
s )/λ( j)

n + s

)2

≤ C3

n

for some fixed positive constant C3. Note that k(i)
s = 1, whence

∑
j≥2, j �=i

(
(N( j)

n + k( j)
s )/λ( j)

(N(1)
n + k(1)

s )/λ(1)

)2

+
(

(N(i)
n + 1)/λ(i)

(N(1)
n + k(1)

s )/λ(1)

)2

+ C3

n

(
n + s

(N(1)
n + k(1)

s )/λ(1)

)2

≥ 1.

From Lemma 4.2, we know that lim infn→∞ N(1)
n /n > 0. Then there must exist some constant

C4 such that

C3

(
n + s

(N(1)
n + k(1)

s )/λ(1)

)2

≤ C4,

whence

∑
j≥2,j �=i

(
(N( j)

n + k( j)
s )/λ( j)

(N(1)
n + k(1)

s )/λ(1)

)2

≥ 1 −
(

(N(i)
n + 1)/λ(i)

(N(1)
n + k(1)

s )/λ(1)

)2

− C4

n
,
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and, for all large enough n,

∑
j≥2, j �=i

[(
(N( j)

n + k( j)
s )/λ( j)

(N(1)
n + k(1)

s )/λ(1)

)2

−
(

N( j)
n /λ( j)

N(1)
n /λ(1)

)2]

≥ 1 −
∑

j≥2, j �=i

(
N( j)

n /λ( j)

N(1)
n /λ(1)

)2

−
(

(N(i)
n + 1)/λ(i)

(N(1)
n + k(1)

s )/λ(1)

)2

− C4

n

≥
( N(i)

n /λ(i)

N(1)
n /λ(1)

)2 −
(

(N(i)
n + 1)/λ(i)

(N(1)
n + k(1)

s )/λ(1)

)2

− C4

n
(A.17)

=
(λ(1)

λ(i)

)2 (N(i)
n )2(N(1)

n + k(1)
s )2 − (N(1)

n )2(N(i)
n + 1)2

(N(1)
n + k(1)

s )2(N(1)
n )2

− C4

n

=
(λ(1)

λ(i)

)2 (N(i)
n )2(2N(1)

n k(1)
s + (k(1)

s )2) − (N(1)
n )2(2N(i)

n + 1)

(N(1)
n + k(1)

s )2(N(1)
n )2

− C4

n

=
(λ(1)

λ(i)

)2 (N(i)
n )2

(
2N(1)

n (k(1)
s − N(1)

n /N(i)
n ) + (k(1)

s )2 − (N(1)
n /N(i)

n )2
)

(N(1)
n + k(1)

s )2(N(1)
n )2

− C4

n

>
(λ(1)

λ(i)

)2 (N(i)
n )2(2N(1)

n (k(1)
s /2) + (k(1)

s )2/2)

(N(1)
n + k(1)

s )2(N(1)
n )2

− C4

n
(A.18)

= 1

2

(λ(1)

λ(i)

)2 1

(N(1)
n + k(1)

s )2

( N(i)
n

N(1)
n

)2
(2N(1)

n k(1)
s + (k(1)

s )2) − C4

n
,

where (A.17) holds due to (A.16), while (A.18) holds since lim infn→∞ N(i)
n /N(1)

n > 0
and k(1)

s ≥ C2
√

n log log n for a positive constant C2. Since lim infn→∞ N(i)
n /N(1)

n > 0 and
lim infn→∞ N(1)

n /n > 0, there must exist positive constants C5, C6, C7, C8, and C9 such that,
for all large enough n, we have

1

2

(
λ(1)

λ(i)

)2 1

(N(1)
n + k(1)

s )2

(
N(i)

n

N(1)
n

)2

(2N(1)
n k(1)

s + (k(1)
s )2) − C4

n

≥ C5
1

(N(1)
n + k(1)

s )2
(2N(1)

n k(1)
s + (k(1)

s )2) − C4

N(1)
n

= C5

(N(1)
n + k(1)

s )2

(
2N(1)

n k(1)
s + (k(1)

s )2 − C6
(N(1)

n + k(1)
s )2

N(1)
n

)

≥ C5

(N(1)
n + k(1)

s )2
(2N(1)

n k(1)
s + (k(1)

s )2 − 2C7N(1)
n ) (A.19)

≥ C5

(N(1)
n + k(1)

s )2
2(k(1)

s − C7)N(1)
n

≥ C8(k(1)
s − C7)

N(1)
n

(A.20)
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≥ C8(C2
√

n log log n − C7)

n

≥ C9C2
√

n log log n

n
,

where (A.19) and (A.20) hold because k(1)
s ≤ n. Then

∑
j≥2, j �=i

[(
(N( j)

n + k( j)
s )/λ( j)

(N(1)
n + k(1)

s )/λ(1)

)2

−
(

N( j)
n /λ( j)

N(1)
n /λ(1)

)2]
>

C9C2
√

n log log n

n
,

so there must be some suboptimal j such that

(
(N( j)

n + k( j)
s )/λ( j)

(N(1)
n + k(1)

s )/λ(1)

)2

−
(

N( j)
n /λ( j)

N(1)
n /λ(1)

)2

>
1

M − 2

C9C2
√

n log log n

n
.

Let C10 = C9/(M − 2) and C11 = C10C2/4. Then,

(
(N( j)

n + k( j)
s )/(N(1)

n + k(1)
s )

N( j)
n /N(1)

n

)2

> 1 + C10C2
√

n log log n

n
,

and, for all large enough n, we have

(N( j)
n + k( j)

s )/(N(1)
n + k(1)

s )

N( j)
n /N(1)

n

> 1 + C11
√

n log log n

n
,

whence
N( j)

n + k( j)
s

N(1)
n + k(1)

s

>
(

1 + C11

√
n log log n

n

)N( j)
n

N(1)
n

. (A.21)

For the alternative j that satisfies (A.21), let

u := sup
{
l ≤ s : I( j)

n+l = 1
}
.

Then, stage n + u is the last time that alternative j is sampled before or at stage n + m. Since
k( j)

s is monotonically increasing in s, we have

N( j)
n + k( j)

u

N(1)
n + k(1)

u

≥ N( j)
n + k( j)

u

N(1)
n + k(1)

s

≥ N( j)
n + k( j)

s − 1

N(1)
n + k(1)

s

=
(

1 − 1

N( j)
n + k( j)

s

) N( j)
n + k( j)

s

N(1)
n + k(1)

s

>
(

1 − 1

N( j)
n + k( j)

s

)(
1 + C11

√
n log log n

n

)N( j)
n

N(1)
n

,
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where the last line follows from (A.21). By Lemma 4.2, there must exist a positive constant
C12 such that, for all large enough n,

(
1 − 1

N( j)
n + k( j)

s

)(
1 + C11

√
n log log n

n

)N( j)
n

N(1)
n

≥
(

1 − C12

n

)(
1 + C11

√
n log log n

n

)N( j)
n

N(1)
n

=
(

1 + C11

√
n log log n

n
− C12

n
− C12C11

√
n log log n

n2

)N( j)
n

N(1)
n

≥
(

1 + C11

2

√
n log log n

n

)N( j)
n

N(1)
n

=
(

1 + C13

√
n log log n

n

)N( j)
n

N(1)
n

,

where C13 = C11/2 = C10C2/8. Note that constants C3 through C10 are fixed and do not
depend on C1 or C2. Thus, for all large enough n, if we take C2 to be sufficiently large, i.e.
C2 ≥ 8C1/C10, to make C13 ≥ C1, then

N( j)
n + k( j)

u

N(1)
n + k(1)

s

>
(

1 + C1

√
n log log n

n

)N( j)
n

N(1)
n

,

which completes the proof.
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