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In this paper, we study the regularity of a weak solution for a coupled system derived from

a microwave-heating model. The main feature of this model is that electric conductivity

in the electromagnetic field is assumed to be temperature dependent. It is shown that the

weak solution of the coupled system possesses some regularity under certain conditions. In

particular, it is shown that the temperature is Hölder continuous, even if electric conductivity

has a jump discontinuity with respect to the temperature change. The main idea in the proof

is based on an estimate for a linear degenerate system in Campanato space. As an application,

the regularity result for the coupled system is used to derive the necessary condition for an

optimal control problem arising in microwave heating processes.
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1 Introduction

Let Ω be a bounded, simply connected domain in R3 with C2+α boundary ∂Ω and

QT = Ω× (0, T ] for any fixed T > 0. In this paper, we study the following coupled system.

Find a complex electric field E(x, t) and a temperature distribution u(x, t) such that

∇ × [γ(x)∇ × E] + ξ(x, u)E = 0, (x, t) ∈ QT , (1.1)

ut − ∇[k(x, t, u)∇u] =
1

2
Imξ(x, u)|E|2, (x, t) ∈ QT , (1.2)

n × E = n × G(x), (x, t) ∈ ST , (1.3)

un(x, t) = 0, (x, t) ∈ ST , (1.4)

u(x, 0) = u0(x), x ∈ Ω, (1.5)

where Imξ(x, u) represents the imaginary part of the complex coefficient ξ(x, u) (see

the explicit definition in (1.6)–(1.11) below), n is the outward unit normal on S = ∂Ω,

un(x, t) = ∇u ·n represents the normal derivative on ST = S ×[0, T ] and G(x) is the applied

electric field on S , generated by an external source. The functions γ(x), ξ(x, u) and k(x, t, u)
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are known. Here and thereafter, a bold letter represents a vector or a vector function in

R3.

The coupled system (1.1)–(1.5) is derived from a model which describes a microwave

heating process [16,17,21,24]. Indeed, it is well known that the classical Maxwell’s system

in a conductive medium satisfies the following system [11]:

εEt + σE = ∇ × H, μHt + ∇ × E = 0,

where ε, μ and σ represent, respectively, the electric permittivity, the magnetic permeability

and the electric conductivity of the medium.

If we assume that the electric and magnetic fields are time harmonic with frequency ω:

E(x, t) = Ê(x)eiωt, H(x, t) = Ĥ(x)eiωt,

then it is easy to see that Ê(x) and Ĥ(x) satisfy the following system:

(iωε + σ)Ê = ∇ × Ĥ, iωμĤ + ∇ × Ê = 0.

It follows that the time-harmonic electric field Ê(x) satisfies

∇ × [γ∇ × Ê] + ξÊ = 0, x ∈ Ω,

where

γ =
1

μ
, ξ = iω[iωε + σ].

In many industrial applications, electric conductivity σ is often used as a switch device

via temperature. A classical example is the thermistor model (see [1, 4, 9]), where the

electric field is assumed to be a gradient of a potential function. The resulting model

consists of an elliptic–parabolic system. This model has been studied extensively by many

researchers, for example, see [1,3,4,9]. These applications motivate us to study the system

(1.1)–(1.2) along with initial-boundary conditions (1.3)–(1.5). We focus on the case where

electric conductivity strongly depends on the temperature:

σ = σ(x, u),

while the electric permittivity ε and magnetic permeability μ are assumed only to be

functions of x. Those assumptions are typical in electronic device simulations (see [16,17]).

In dealing with microwave and inductive heating, we follow the monograph [17] in using

a unified approach and assume that the electric permittivity and magnetic permeability

are complex functions:

ε = ε0[ε1(x) − iε2(x)],

μ = μ0[μ1(x) − iμ2(x)].

With the above assumption, one can easily see that the coefficients in system (1.1) are

defined precisely as follows:

γ(x) = γ1(x) + iγ2(x), (1.6)
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ξ(x, u) = −ξ1(x, u) + iξ2(x, u), (1.7)

γ1(x) =
μ1(x)

μ1(x)2 + μ2(x)2
> 0, (1.8)

γ2(x) =
μ2(x)

μ1(x)2 + μ2(x)2
> 0, (1.9)

ξ1(x, u) = ω2ε0ε1(x) > 0, (1.10)

ξ2(x, u) = ω[σ(x, u) + ωε0ε2(x)] > 0. (1.11)

The reader is referred to the monograph [17] for a detailed explanation of physical

interpretation for all parameters.

Note that the time-harmonic system (1.1) is just an approximation of Maxwell’s equa-

tions since temperature is a function of t. However, this approximation can be justified

due to the fact that the time change for temperature is much slower than that for an

electromagnetic field. This approximation is frequently used in various industrial applica-

tions for governing electric and magnetic fields (see [16,17]). Note that, if we assume that

the electric field is just the gradient of a potential function, then the system (1.1)–(1.2)

becomes the classical model for a thermistor device.

The system (1.1)–(1.5) is first studied in [25], where the existence of a global weak

solution was established under certain conditions. A generalized existence result is estab-

lished in [21]. However, the regularity of the weak solution is not investigated in [21].

In particular, it is an open question about whether or not the temperature is uniformly

bounded. This is extremely important in device designing because of safety reasons [9].

We will answer this question in the present paper. We will show that the temperature is

Hölder continuous if σ(x, u) is bounded. This regularity result includes an interesting case

where σ(x, u) acts like a switch [3], namely,

σ(x, u) =

{
1, if u � K ,

0, if u > K ,

where K is a constant.

The main idea of our proof follows from a crucial result in [25], which deals with the

regularity of the following linear system:

∇ × [γ(x)∇ × E] + ξ(x)E = 0, x ∈ Ω. (1.12)

It is shown in [25] that the weak solution E(x) is Hölder continuous if γ(x) is bounded,

its real part has a positive lower bound and ξ(x) is Lipschitz continuous in Ω. This

regularity result is optimal (see [8,24] for a special case). However, when σ depends on the

temperature, the coefficient ξ(x, u) will also depend on temperature and the assumption

for ξ in [25] does not hold. Therefore, the known result cannot be used directly here since

E(x) may not be continuous when σ = σ(x, u) has a jump discontinuity with respect to

u-variable. We overcome this difficulty by using a certain symmetric feature for the system

(1.1). With some careful analysis, we are able to show that a magnetic field possesses

the desired regularity in Campanato space. With the help of a Campanato-type estimate

for a linear parabolic problem [22], we are able to show that temperature is indeed

Hölder continuous, even if σ(x, u) is discontinuous (see Remark 3.2). As an application,
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the regularity result obtained in this paper is used to obtain the necessary condition for

an optimal control problem considered in [21] (also see [12] for the original model).

The rest of the paper is organized as follows. In Section 2, after reviewing some known

results we prove a regularity result for the weak solution to a linear system (1.12) under

certain conditions. In Section 3, we prove the main regularity result for the weak solution

of (1.1)–(1.5), which includes the Hölder continuity for the temperature. Moreover, it is

shown that the weak solution is regular if the known data and coefficients are regular.

In Section 4, the necessary condition for an optimal control problem is established. A

concluding remark is given in Section 5.

2 Regularity of weak solution for a linear system

In this section, we recall some known results for the reader’s convenience since some of

those results such as Lemmas 2.3 and 2.4 are not standard in the literature.

We first introduce some basic Banach spaces. For a Banach space B and a positive

integer N, BN is the usual product space equipped with the product norm. For brevity,

we use B instead of BN without causing any confusion:

H(curl, Ω) = {G(x) ∈ L2(Ω) : ∇ × G ∈ L2(Ω)},
H0(curl, Ω) = {G(x) ∈ L2(Ω) : ∇ × G ∈ L2(Ω), n × G = 0 on ∂Ω, },
H(div, Ω) = {G(x) ∈ L2(Ω) : ∇ · G ∈ L2(Ω)},

H0(curl, Ω) and H(curl, Ω) are Hilbert spaces equipped with the inner product

< G,F >=

∫
Ω

[(∇ × G) · (∇ × F∗) + G · F∗]dx,

where F∗ represents the complex conjugate of F (see [7]).

For a complex function ξ(x) ∈ L∞(Ω) with Re(ξ) � ξ0 on Ω (or Re(ξ) < −ξ0 ) for some

constant ξ0 > 0, we define a weighted Sobolev space H0(curl, divξ, Ω):

H0(curl, divξ, Ω) = {G ∈ H0(curl, Ω) : div(ξG) ∈ L2(Ω)}

equipped with the following norm

||G||2H0(curl,divξ ,Ω) =

∫
Ω

[|∇ × G|2 + |∇(ξG)|2 + |G|2]dx.

It is known that H0(curl, divξ, Ω) is also a Banach space. Moreover, the embedding operator

from H0(curl, divξ, Ω) into L2(Ω) is compact [7].

Other spaces such as H1(Ω),W 2,p(Ω) and W 2,1
p (QT ) are the usual Sobolev spaces (see

[10]). We also recall the Morrey–John–Nirenberg–Campanato space here. For any x0 ∈ Ω

and ρ > 0, let

B(x0, ρ) = {x ∈ Ω : |x − x0| < ρ}.
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For a function in L2(Ω) and a nonnegative constant μ � 0, define

[u]2,μ = sup
ρ>0,x0∈Ω

ρ−μ

∫
B(x0 ,ρ)

|u − (u)x0
|2dx,

where

(u)x0
=

1

|B(x0, ρ)|

∫
B(x0 ,ρ)

u(x)dx.

Define

L2,μ(Ω) = {f(x) ∈ L2(Ω) : ||f||2,μ = ||f||L2(Ω) + [f]2,μ < ∞}.
It is well known that L2,μ(Ω) is a Banach space for any μ � 0 (see [19]).

A more interesting result is the following lemma.

Lemma 2.1 (see [6, 19]) For μ ∈ (n, n + 2), the space L2,μ(Ω) is equivalent to Cα(Ω̄) algeb-

raically and topologically, where α = μ−n
2

.

When dealing with parabolic equations, we replace B(x0, ρ) by

Q(x0, t0; ρ) = B(x0, ρ) × (t0 − ρ2, t0], (x0, t0) ∈ QT .

One has a similar result to Lemma 2.1 with dimension n replaced by n + 2.

Before investigating the coupled system (1.1)–(1.5), we consider the following linear sys-

tem:

∇ × [γ(x)∇ × W] + ξ(x)W = J1(x) + ∇ × J2(x), x ∈ Ω, (2.1)

n × W(x) = 0, x ∈ S = ∂Ω, (2.2)

where γ(x) = γ1(x) + iγ2(x), ξ(x) = −ξ1(x) + iξ2(x). The vector fields J1(x) and J2(x) are

given on Ω.

It is clear that the linear system (2.1) is degenerate (sub-elliptic). The classical regularity

theory for elliptic systems (see [6]) is not valid here. Our question is to find conditions such

that the weak solution W(x) is Hölder continuous. First of all, the following conditions are

always assumed to ensure the existence of a unique weak solution.

H(2.1). (a) Assume that functions γ1(x), γ2(x), ξ1(x) and ξ2(x) are real and measurable in

Ω. There exist positive constants a0 and A0 such that

γ1(x), ξ1(x) � a0 > 0, ||γ||L∞(Ω) + ||ξ||L∞(Ω) � A0.

(b) Assume that J1(x), J2(x) ∈ L2(Ω). There exists a constant B0 such that

||J1||L2(Ω) + ||J2||L2(Ω) � B0.

The existence of a unique weak solution to (2.1)–(2.1) is well known (see, for example,

[5, 7]). A different proof is presented in [25] under weaker regularity assumptions for the

coefficients in (2.1).
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Lemma 2.2 Under the assumption H(2.1), the linear system (2.1)–(2.2) has a unique weak

solution with W(x) ∈ H0(curl, divξ, Ω). Moreover, there exists a constant C1 such that

∫
Ω

|∇ × W|2dx +

∫
Ω

|∇(ξW)|2dx � C1[||J1||L2(Ω) + ||J2||L2(Ω)], (2.3)

where C1 depends only on the constants in H(2.1).

The estimate in Lemma 2.2 is directly derived from the energy estimate.

To improve the regularity of W(x), we need additional conditions for the coefficients ξ(x)

and inhomogeneous terms J1(x) and J2(x).

H(2.2). (a) Let ξ(x) ∈ W 1,∞(Ω) with

||∇ξ||L∞(Ω) � A1.

(b) Let J1(x), J2(x) ∈ L2,μ0 (Ω) for some μ0 ∈ (1, 2) with

||J1||L2,μ0 (Ω) + ||J2||L2,μ0 (Ω) � A2.

Lemma 2.3 Under the assumptions H(2.1)–H(2.2), the weak solution W(x) is Hölder con-

tinuous on Ω̄. Moreover, there exists a constant C such that

||∇ × W||L2,μ0 (Ω) + ||W||Cα(Ω̄) � C2[||J1||L2,μ0 (Ω) + ||J2||L2,μ0 (Ω)],

where the Hölder exponent α = μ0−1
2

and the constant C2 depends only on a0, A0, B0, A1 and

A2.

Proof. The proof follows the same idea as in [24]. Here, we just give an outline of the

proof for the reader’s convenience. To prove the Hölder continuity, we may assume that

W(x) is a classical solution in the derivation since all estimates are independent of the

smoothness of the coefficients. Otherwise, one can simply use the smooth approximation

for all coefficients and known functions. All of the estimates depend only on the known

constants in H(2.1)–H(2.2) and the domain Ω. Indeed, since Ω is simply-connected, from

∇(ξ(x)W) = 0, x ∈ Ω,

we see that ξ(x)W(x) can be expressed by

ξ(x)W(x) = ∇ × G(x), ∇ · G(x) = 0, x ∈ Ω,

n · G(x) = 0, x ∈ S.

Since Re(ξ(x)) � a0 > 0 and ξ(x) ∈ W 1,∞(Ω), it follows that the weak solution

W(x) ∈ H1(Ω). Moreover,

||W||H1(Ω) � C[||J1||L2(Ω) + ||J2||L2(Ω)].
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Furthermore, by using the same argument as for elliptic systems (see [19]), we can show

that ∇ × W,∇ · W ∈ L2,μ0 (Ω) (see [24]). Moreover, there exists a constant C such that

||∇ × W||L2,μ0 (Ω) + ||∇ · W||L2,μ0 (Ω) � C[||J1||L2(Ω) + ||J2||L2,μ0 (Ω) + ||W||H1(Ω)],

where C depends only on known data.

Now we apply the embedding theorem to find that W(x) ∈ L2,μ0+2(Ω) and

||W||L2,2+μ0 (Ω) � C[||∇ × W||L2,μ0 (Ω) + ||∇ · W||L2,μ(Ω) + ||W||L2(Ω)] � C.

Since the space dimension for the system (2.1) n = 3 and μ = μ0 + 2 > 3 by H(2.2)(b), we

see W(x) ∈ Cα(Ω̄) with α = μ0−1
2

. �
Next, we state an estimate in Campanato space for the solution of a parabolic equation.

This result is essential in the proof of the main result in Section 3. Consider the following

parabolic equation:

ut − L[u] = f0(x, t) +

n∑
i=1

(fi(x, t))xi , (x, t) ∈ QT ,

un(x, t) = 0, (x, t) ∈ ST ,

u(x, 0) = u0(x), x ∈ Ω.

where

L[u] = (aij(x, t)uxi )xj + bi(x, t)uxi + c(x, t)u.

The following basic assumptions are needed.

H(2.3). (a) Let aij(x, t) be measurable in QT and satisfy the ellipticity condition:

a1|ξ|2 � aijξiξj � a2|ξ|2, ξ ∈ Rn, a1, a2 > 0.

(b) Let bi(x, t) and ci(x, t) be of class L∞(QT ) with

n∑
i=1

||bi||L∞(QT ) + ||c||L∞(QT ) � A3.

(c) Let f0(x, t) ∈ L2,(μ−2)+(QT ), fi(x, t) ∈ L2,μ(QT ) for some μ > 0.

Lemma 2.4 ( [22]) Under the assumptions of H(2.3), the weak solution u(x, t) ∈
C([0, T ];H1(Ω)) satisfies the following estimate:

||∇u||L2,μ(QT ) � C[||f0||L2,(μ−2)+ (QT ) +

n∑
i=1

||fi||L2,μ(QT )],

where C is a constant that depends only on known data a1, a2, A3 and QT . Particularly, when

μ ∈ (n, n + 2), u(x, t) ∈ Cα, α2 (Q̄T ) with α = μ−n
2

.
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Remark 2.1 The significance of Lemma 2.4 is that when μ ∈ (n+ 2, n+ 4), the conditions

of f0, fi for the Hölder continuity of a weak solution are weaker than those for classical

results [2, 10, 14].

3 Regularity of weak solution

Now, we consider the system (1.1)–(1.5). To ensure the existence of a unique weak solution,

we assume the following conditions to be satisfied throughout this section.

H(3.1). (a) Assume that functions γ1(x), γ2(x), σ(x, u), ξ1(x) and ξ2(x) are real and meas-

urable. Moreover, there exist positive constants a0, A0 and A1 such that

γ1(x), ξ1(x) � a0 > 0, |γ(x)| + |ξ(x, u)| � A0,

0 � σ(x, u) � A1.

(b) The function γ(x) is of class W 1,∞(Ω) and there exists a constant B0 such that

||γ||W 1,∞(Ω) � B0.

(c) Let G(x),∇ × G(x) ∈ H(curl, Ω)
⋂

L2,μ0 (Ω) for some μ0 ∈ (1, 2).

H(3.2). (a) Let k(x, t, u) be a measurable function and there exist two constants k0, k1 such

that

0 < k0 � k(x, t, u) � k1.

(b) u0(x) ∈ Cα(Ω̄).

Now we are ready to state the main regularity result in this paper.

Theorem 3.1 Under the assumption of H(3.1)–H(3.2), there exists a unique weak solution

(E(x, t), u(x, t)) for the problem (1.1)–(1.5):

E(x, t) − G(x) ∈ L∞(0, T ;H0(curl, divξ, Ω)), u(x, t) ∈ C([0, T ];H1(Ω)).

Moreover, the weak solution possesses the following regularity:

∇ × E(x, t) ∈ L∞(0, T ;L2,μ0 (Ω)),∇u(x, t) ∈ L2,μ0+2(QT ).

In particular,

u(x, t) ∈ Cα, α2 (Q̄T ),

where α = μ0−1
2

.

Proof. First of all, the existence of a weak solution for (1.1)–(1.5) is a special case in

Theorem 3.1 of a recent paper [25]. Moreover, the weak solution (E(x, t), u(x, t)) has the

following regularity:

E(x, t) − G(x, t) ∈ L∞(0, T ;H0(curl, divξ, Ω)), u(x, t) ∈ C([0, T ];H1(Ω)).
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To illustrate the idea, we may assume that G(x, t) = 0 on ∂Ω. Otherwise, we just define

Ê(x, t) = E(x, t) − G(x).

Then, Ê satisfies (2.1) with

J1(x, t) = −ξ(x, u)G(x), J2(x, t) = γ(x)∇ × G(x).

We note that ξ(x, u) clearly does not satisfy the conditions in Lemma 2.3 since we do not

know whether or not that ∇u is bounded. Moreover, when σ(x, u) has a jump discontinuity

with respect to u-variable, ξ(x, u) may not be continuous.

To overcome this difficulty, we define

H(x, t) = γ(x)∇ × E(x, t). (x, t) ∈ QT .

Then we have

∇ × E(x, t) =
1

γ(x)
H(x, t). (3.1)

On the other hand, from equation (1.1) we see

∇ × H + ξ(x, u)E = 0, (x, t) ∈ QT . (3.2)

It follows that

E(x, t) = − 1

ξ(x, u)
∇ × H(x, t).

Hence, by applying curl operation we see

∇ ×
[

1

ξ(x, u)
∇ × H

]
+

1

γ(x)
H = 0, (x, t) ∈ QT . (3.3)

Now by the assumption H(3.1), we see that the coefficients 1
ξ(x,u)

and 1
γ(x)

satisfy the

conditions in Lemma 2.3. There exists a number μ0 ∈ (1, 2) such that H(x, t) has the

following regularity:

sup
t∈[0,T ]

||∇ × H||L2,μ0 (Ω) + sup
t∈[0,T ]

||∇ · H||L2,μ0 (Ω) � C,

where C depends only on known data.

It follows by the embedding property (see [23]) that H(x, t) ∈ L2,μ0+2(Ω) for each

t ∈ [0, T ]. Consequently, H(x, t) is Hölder continuous with respect to x for each t ∈ [0, T ].

Clearly, from the definition of Campanato space for a parabolic region QT we have

||∇ × H||L2,μ0+2(QT ) + ||∇ · H||L2,μ0+2(QT ) � C, (3.4)

where C depends only on known data.

It follows that

||H||
Cα, α

2 (Q̄T )
� C, (3.5)
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where C depends only on known data.

From equation (3.2), we see

sup
t∈[0,T ]

||E||L2,μ0 (Ω)) � C. (3.6)

Hence, in the parabolic region QT , we find

||E||L2,μ0+2(QT )) � C. (3.7)

To obtain more regularity for u(x, t), we perform the following conversion for the heat

source. From

E(x, t) =
1

ξ(x, u)
∇ × H(x, t),

we see that the local heat density can be expressed in terms of ∇ × H:

ξ2(x, u)|E|2 =
ξ2(x, u)

|ξ(x, u)|2 |∇ × H|2

= ρ(x, u)|∇ × H|2,

where

ρ(x, u) =
ξ2(x, u)

|ξ(x, u)|2 .

Note that by (3.2),

∇ × H + ξ(x, u)E = 0,

it follows that

ρ(x, u)∇ × H = −ρ(x, u)ξ(x, u)E.

Hence,

H × [ρ(x, u)∇ × H] = ρ(x, u)ξ(x, u)E × H.

Now, we use an identity of vector operation:

∇ · (F × G) = (∇ × F) · G − F · (∇ × G)

to find

ρ(x, u)|∇ × H|2 = ∇ · [H × (ρ(x, u)∇ × H] + ∇ · [ρ(x, u)ξ(x, u)E × H].

Now, we know that H is uniformly bounded in L∞(QT ). Moreover, the space L∞(QT )

is a multiplier of L2,μ(QT ) if 3 < μ < 5 (see [19] for space dimension N = 3).

Next, we can apply L2,μ-theory for parabolic equations, Lemma 2.4, to obtain

||∇u||L2,μ0+2(QT ) � C[||∇ × H||L2,μ0+2(QT ) + ||E||L2,μ0+2(QT )].

By standard embedding (see [2]), we see

u(x, t) ∈ L2,μ0+4(QT ).
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Since μ0 ∈ (1, 2), we see μ0 + 4 ∈ (5, 7). It follows that

u(x, t) ∈ Cα, α2 (Q̄T ),

where α = μ0−1
2

. �

Corollary 3.2 Under the assumptions of H(3.1)–H(3.2), the weak solution (E, u) is regular

if all coefficients and known data are smooth and the consistency conditions hold on

ST
⋂

{t = 0}.

Proof. The proof is based on the bootstrap technique. Indeed, since u(x, t) ∈ Cα, α2 (Q̄T ),

from equation (3.3), the coefficient 1
γ(x,u)

is Hölder continuous and the real part has a

positive lower bound. Moreover, the coefficient 1
γ(x)

is uniformly bounded in Ω. It follows

from [23] that H(x, t) ∈ C1+α(Ω) for each t ∈ [0, T ]. Moreover,

sup
0�t�T

||u||C1+α(Ω̄) � C.

It follows that the local heat source

ξ2(x, u)|E|2 = ρ(x, u)|∇ × H|2

is Hölder continuous in Q̄T .

Now we use the regularity theory for the parabolic equation (1.2) to obtain

u ∈ C1+α, 1+α
2 (Q̄T ).

Since k(x, t, u) is smooth, we can use Schauder’s theory to conclude that

u(x, t) ∈ C2+α,1+ α
2 (Q̄T ).

Moreover, from equation (1.1) we use the theory of elliptic systems to conclude that

E(x, t) ∈ C2+α,1+ α
2 (Q̄T ).

Remark 3.1 From the proof of Theorem 3.1, we see that the magnetic field H(x, t) is

Hölder continuous. However, the electric field E(x, t) may not be continuous.

Remark 3.2 The regularity result in Theorem 3.1 includes a large number of important

cases in applications for the electric conductivity σ.

For example, in the microwave heating model, electric conductivity for certain materials

has the following form:

σ(x, u) = (1 + u)−p, (p > 0), or σ(x, u) = 1 + e−u.

Then, the problem (1.1)–(1.5) possesses a unique weak solution. In particular, the temper-

ature u(x, t) is uniformly bounded and is Hölder continuous in QT .
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Another important case in practice is that σ(x, u) serves as a switch:

σ(x, u) = 1, if u � K and σ(x, u) = 0, if u > K.

The regularity result in Theorem 3.1 yields that the temperature is Hölder continuous.

For the scalar case, this result is established by Chen and Friedman in [3].

4 A necessary condition for a optimal control problem

In a recent paper [21], the authors considered an optimal control problem associated with

the system (1.1)–(1.5). The external electric field G(x) is chosen to be the control variable

such that the terminal temperature reaches the desired distribution. We recall the problem

here for the reader’s convenience.

Optimal control problem (P). Given T > 0 and a desired temperature uT (x) ∈ L2(Ω) at a

final time T , find an optimal control G0 ∈ Uad such that the cost functional

J(G; E, u) :=

∫
Ω

|u(x, T ) − uT (x)|2dx +
λ

2

∫
∂Ω

|G(x)|2ds (4.1)

reaches its minimum at (u0,E0) for all G ∈ Uad, where (E, u) and (E0, u0) are weak solutions

of the coupled system (1.1)–(1.5) corresponding to G and G0, respectively. The number

λ > 0 is the typical regularization parameter (see [15, 18, 20]).

The admissible control set Uad is defined as follows:

Uad = {G ∈ L2(S) : ‖G‖L2(S ) � A0 < ∞},

where A0 is a constant.

It is shown in [21] that there exists an optimal control G0 ∈ Uad. However, due to the

lack of the desired regularity of the temperature u(x, t), the necessary condition is derived

only for a special case. Now with the result of Theorem 3.1, we can derive the necessary

condition.

Theorem 4.1 In addition to the assumptions H(3.1) and H(3.2), assume that ξ(x, t) is

differentiable with respect to u, then the mapping G �→ (E, u) is differentiable in the following

sense:

Eε(x, t) :=
E(G + εH) − E(G)

ε
−→ E(x, t),weakly-* in L∞(0, T ;H1(Ω)),

Uε(x, t) :=
u(G + εH) − u(G)

ε
−→ U(x, t),weakly in W [0, T ],

for any G,H ∈ Uad such that G + εH ∈ Uad for sufficiently small ε. E ∈ W0[0, T ] and

U ∈ H1(0, T ;L2(Ω))
⋂
Cα, α2 (Q̄T ) satisfy

∇ × [γ(x)∇ × E] + [−ξ1(x, u) + iξ2(x, u)]E

= [(ξ1)u(x, u) − i(ξ2)u(x, u)]UE, in QT , (4.2)
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Ut − ∇[k(x, t, u)∇U] = ∇[(ku(x, t, u)∇u)U]

+
1

2
(ξ2)u(x, u)|w|2U + ξ2(x, u)wW, inQT , (4.3)

n × E(x, t) = n × H(x), on ST , (4.4)

Un(x, t) = 0, on ST , (4.5)

U(x, 0) = 0, in Ω, (4.6)

where we denote by u = u(G) and E = E(G) the solution of (1.1)–(1.5) corresponding to

G(x).

Proof. The proof follows the same steps as in [21]. Here, we only give an outline.

We write uε = u(Gε),Eε = E(Gε) the solution of (1.1)–(1.5) corresponding to Gε :=

G + εH for any H ∈ Uad.

Step 1. There exist constants C1 and C2 such that

∫
Ω

[|∇ × Eε|2 + |∇ · (ξW|2 + |Wε|2]dx � C1,

sup
0�t�T

∫
Ω

|Uε|2dx +

∫ ∫
QT

|∇Uε|2dx dt � C2.

These estimates follow the same steps as in [21]. Since u is uniformly bounded, all

energy estimates can be carried out for E.

Step 2. Now we are ready to derive the system (4.2)–(4.6). The estimates in step 1 imply

that there exist a subsequence of ε → 0 and an U ∈ W [0, T ] and E ∈ L∞(0, T ;H1(Ω))

such that

Uε =
uε − u

ε
−→ U, weakly in W [0, T ];

Wε =
wε − w

ε
−→ W, weakly in L∞(0, T ;H1(Ω));

Uε −→ U, strongly in L2(QT );

Wε −→ W, strongly in L∞(0, T ;L2(Ω))

as ε → 0. Furthermore, by selecting a subsequence if necessary, for a.e. t ∈ [0, T ],

Uε −→ U(x, t), a.e., x ∈ Ω, (4.7)

Wε −→ W (x, t), a.e., x ∈ Ω, (4.8)

as ε → 0.

The rest of the calculation is similar to the scalar case (see [21]). �
One can also derive the adjoint system corresponding to the optimal control (see [20,21]).

Theorem 4.2 Under the conditions of Theorem 4.1, if G0 ∈ Uad is an optimal control and

corresponding state (E0, u0) which satisfies (1.1)–(1.5), then there exist (p,Q) ∈ W [0, T ] ×
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H(0, T ;H1(Ω)), which satisfy the adjoint system:

∇ × (γ(x)∇ × Q) + [(−ξ1(x, u
0) + iξ2(x, u

0))]pQ = 0, in QT , (4.9)

pt − ∇[k(x, t, u)∇p] =
1

2
(ξ2(x, u))u|E0|2p

+(−(ξ1(x, u
0))u + i(ξ2(x, u

0)u)E
0 · Q, in QT , (4.10)

pn(x, t) = 0, (x, t) ∈ ST , (4.11)

n × Q(x, t) = 0, (x, t) ∈ ST , (4.12)

p(x, T ) = u0(x, T ) − uT (x), x ∈ Ω. (4.13)

Moreover, the following inequality is satisfied:

∫ T

0

∫
S

[(γ(x)G + λG0) · (G − G0)]ds dt � 0, ∀G ∈ Uad. (4.14)

The proof is similar to the standard calculation for a single elliptic or parabolic equation

(see [13, 15, 20]). We skip the detail here.

5 Conclusion

In this paper, we studied an elliptic–parabolic system which models microwave heating.

The electric and magnetic fields are assumed to be time harmonic and electric conduct-

ivity is assumed to be temperature dependent. The Hölder continuity of temperature is

established without the smoothness condition on the electric conductivity. In particular,

this regularity result includes the important case where the electric conductivity serves like

a switch. This result provides the theoretical foundation in designing thermally controlled

electric devices. On the other hand, the method developed in this paper provides a new

tool to deal with time-harmonic Maxwell’s system with rough coefficients.
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