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The statistics of the deformation and breakup of neutrally buoyant sub-Kolmogorov
ellipsoidal drops is investigated via Lagrangian simulations of homogeneous isotropic
turbulence. The mean lifetime of a drop is also studied as a function of the initial
drop size and the capillary number. A vector model of a drop previously introduced
by Olbricht et al. (J. Non-Newtonian Fluid Mech., vol. 10, 1982, pp. 291–318) is used
to predict the behaviour of the above quantities analytically.
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1. Introduction

The dispersion of drops of one fluid in another fluid that is turbulent and immiscible
with the first has numerous applications. Emulsion processing in chemical engineering,
for instance, often uses turbulent flow conditions (Walstra 1993; Schuchmann &
Schubert 2003), and the design of efficient emulsion apparatus requires a detailed
understanding of single-drop dynamics in turbulent flows (Windhab et al. 2005).

The theory of Kolmogorov (1949) and Hinze (1955) predicts two different regimes
according to whether a drop is larger or smaller, respectively, than the Kolmogorov
dissipation scale `K . In the former case, the dynamics of the drop results from the
competition between the inertial hydrodynamic stress, which distorts the drop, and the
stress due to surface tension, which restores the drop to its equilibrium configuration.
In the latter case, the competition is between surface tension and the viscous stress.
The literature on drop dynamics in turbulent flows has largely focused on drops
whose size lies in the inertial range. The sub-Kolmogorov regime, albeit difficult
to examine both experimentally and numerically, is of practical significance as well.
For viscous oils, turbulent emulsification is indeed known to be more efficient in
the sub-Kolmogorov regime (Vankova et al. 2007). In addition, even if the initial
drop sizes are larger than `K , in high-Reynolds-number flows subsequent breakups
can generate sub-Kolmogorov drops at long times (Cristini et al. 2003). Another
mechanism for the formation of small drops in a turbulent flow was recently reported
in Prabhakaran et al. (2017): it consists in the nucleation of microdroplets in the

† Email address for correspondence: dario.vincenzi@unice.fr

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

45
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0003-3332-3802
mailto:dario.vincenzi@unice.fr
https://doi.org/10.1017/jfm.2018.453


314 S. S. Ray and D. Vincenzi

wake of a large cold drop crossing a supersaturated environment. Drops smaller than
`K were also used as tracers in laboratory experiments with the purpose of examining
the statistics of the Lagrangian acceleration in turbulent flows (Ayyalasomayajula,
Collins & Warhaft 2008; Ayyalasomayajula, Gylfason & Warhaft 2008).

The deformation and breakup of a drop in a chaotic flow were first studied by
Muzzio, Tjahjadi & Ottino (1991) and Tjahjadi & Ottino (1991) by means of a
‘journal-bearing’ flow generated by the periodic motion of two rotating eccentric
cylinders. The fluid trajectories are chaotic in this flow, so a drop becomes highly
stretched, folds and eventually breaks. Subsequent breakups of the drop fragments
lead to a population of drops with different sizes; various modes of breakup were
observed, including capillary-wave instabilities, necking, and end and fold pinching.

Cristini et al. (2003) studied the dynamics of a sub-Kolmogorov drop in a numerical
simulation of homogeneous and isotropic turbulence at moderate Reynolds number.
The trajectory of the centre of mass of the drop was approximated by a fluid trajectory,
under the assumption of a small density contrast between the fluids inside and outside
the drop. The dynamics of the drop was calculated via a boundary integral approach
by using the Stokes equations with appropriate boundary conditions at the drop
interface and with a far field given by a linear expansion of the external turbulent
flow about the position of the centre of mass. The statistics of drop length, orientation
and breakup was studied as a function of the viscosity ratio between the inner and
outer fluids and of the capillary number. This latter determines the relative intensity
of the viscous and surface-tension forces. It was shown, in particular, that under
moderate-deformation conditions drop reorientation is mainly due to the deformation
of the drop surface rather than the rotation of the drop by the flow.

For high Reynolds numbers, the direct numerical simulation of sub-Kolmogorov
drops is still impractical with the available computational facilities, especially when a
very large number of drops needs to be considered in order to resolve the statistical
properties of drop dynamics. An alternative approach consists in using simplified
models of drops. Biferale, Meneveau & Verzicco (2014) coupled the model of
Maffettone & Minale (1998), which describes neutrally buoyant ellipsoidal drops,
with a Lagrangian simulation of high-Reynolds-number, homogeneous and isotropic
turbulence. The model of Maffettone & Minale (1998) was originally derived for
linear flows but can be applied to turbulent flows if the Reynolds number at the
scale of the drop is smaller than unity, i.e. the size of the drop is smaller than `K .
This approach allowed the authors to obtain a detailed statistical characterization of
drop deformation and orientation. In particular, the statistics of the deformation was
related to that of the stretching rates of the flow via an analogy between the model of
Maffettone & Minale (1998) and the Oldroyd-B model for flexible polymers (e.g. Bird
et al. 1987). A critical capillary number for breakup was thus identified for the case
in which the viscosities of the fluids inside and outside the drop coincide. Spandan,
Lohse & Verzicco (2016) recently applied the model of Maffettone & Minale (1998)
to a turbulent Taylor–Couette flow, in order to examine the dependence of drop
dynamics on the flow geometry.

The goal of the present study is to further investigate and elucidate the statistical
properties of drop deformation and breakup in the sub-Kolmogorov regime. To
this end, we follow the approach proposed by Biferale, Meneveau & Verzicco
(2014) and use the model of Maffettone & Minale (1998) in combination with
Lagrangian simulations of homogeneous and isotropic turbulence. We perform a
detailed numerical analysis of the time-dependent and time-integrated probability
density functions of drop size as a function of the capillary number, the viscosity
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ratio between the inner and outer fluids and the initial drop-size distribution. We also
study the breakup rate and the mean lifetime of a drop as a function of the same
quantities. The results of the numerical simulations are then derived analytically by
means of a vector model of drop originally proposed by Olbricht, Rallison & Leal
(1982).

2. Deformation and breakup statistics
The model of Maffettone & Minale (1998) assumes that both the fluid of which the

drop is composed and the fluid in which it is immersed are Newtonian. The drop is
neutrally buoyant and is transported passively (i.e. it does not affect the surrounding
flow), it is ellipsoidal at all times, and its volume is preserved. In addition, the flow
about the drop is incompressible and linear. This latter assumption is appropriate for
turbulent flows if the size of the drop is smaller than `K . The volume fraction is very
low, so that hydrodynamic interactions between drops are negligible and attention can
be directed to the dynamics of a single drop.

The shape and the orientation of the drop are described by a second-rank symmetric
positive definite tensor M , whose eigenvectors are the semi-axes of the drop and whose
eigenvalues m2

1 >m2
2 >m2

3 yield the squared lengths of the same semi-axes. The centre
of mass of the drop evolves as a tracer, while the Lagrangian evolution of M is given
by the following equation:

Ṁ =GM +MG> −
f1(µ)

τ
[M − g(M)I], (2.1)

where G = f2(µ)S + Ω is an effective velocity gradient; Ω = [∇u − (∇u)>]/2 and
S= [∇u+ (∇u)>]/2 are the vorticity and rate-of-strain tensors evaluated at the centre
of mass of the drop, respectively. Note that here (∇u)ij = ∂jui. The coefficients f1(µ)
and f2(µ) depend on the ratio µ of the viscosity of the drop and that of the external
fluid and were chosen in such a way as to match theoretical predictions for small
capillary numbers (Maffettone & Minale 1998):

f1(µ)=
40(µ+ 1)

(2µ+ 3)(19µ+ 16)
, f2(µ)=

5
2µ+ 3

. (2.2a,b)

Note that f2(1) = 1 and hence, for µ = 1, G = ∇u. The last term in (2.1) describes
the capillary relaxation to the spherical shape with a time scale τ . Thanks to an
appropriate choice of the function g(M), the same term enforces that det M is constant
in time and hence the volume of the drop is preserved. The function g(M) has the
form g(M) = 3IIIM/IIM, where IIM and IIIM are the second and third invariants of
M , i.e. IIM = [(tr M)2 − tr M2

]/2 and IIIM = det M . Maffettone & Minale (1998) also
proposed an improved expression of f2 that depends on the capillary number and more
accurately describes the deformations observed in experiments for large strains and
high viscosity ratios. For the sake of simplicity, here we use the coefficients given in
(2.2); the improved version of the model of Maffettone & Minale (1998) is discussed
in § 4.

This section provides insight into the statistics of drop deformation and breakup in
three-dimensional homogeneous isotropic turbulence. We obtain such a turbulent flow
by performing direct numerical simulations of the three-dimensional Navier–Stokes
equation

∂tu+ u · ∇u=−∇p+ ν1u+F (2.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

45
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.453


316 S. S. Ray and D. Vincenzi

for the velocity field u (and pressure p) augmented with the incompressibility
condition ∇ · u = 0. We use the standard, fully de-aliased pseudo-spectral method
on a cubic domain of size 2π with 5123 collocation points and periodic boundary
conditions. By using these boundary conditions, we do not take into account the
interaction of the drops with the walls that confine the fluid. The flow is driven to
a non-equilibrium steady state by an external force F with a fixed energy input ε.
Our choice of ε and kinematic viscosity ν ensures a Taylor-scale Reynolds number
Reλ ≈ 111.

In order to study the deformation of droplets in a turbulent flow, we seed our
turbulent, statistically steady, flow with Lagrangian tracers and follow their trajectories,
by using a trilinear-interpolation scheme to obtain the tracer velocity from the Eulerian
velocity evaluated from (2.3); such trajectories define the motion of the centre of
mass of the droplets. We refer the reader to James & Ray (2017) for a more detailed
description of our numerical procedure.

The capillary number is defined as Ca = λτ , where λ is the Lyapunov exponent
of the flow. This latter represents the average stretching rate in a turbulent flow and
provides a measure of the ability of the flow to deform a drop. We calculate λ by
using the fluid velocity gradients along the trajectories and obtain λ≈ 4.22≈ 0.15τ−1

η

(where τη is the Kolmogorov time scale associated with the flow), consistent with
earlier results (Bec et al. 2006). (Note that Biferale, Meneveau & Verzicco (2014)
defined the capillary number in terms of the root mean square of ∂xux instead of λ.
However, this fact only leads to a different proportionality factor in the definition
of Ca, since in isotropic turbulence

√
〈(∂xux)2〉 = 1/

√
15τη and hence in our case√

〈(∂xux)2〉 = 1.72λ.)
Equation (2.1) is integrated by using the second-order Adam–Bashforth method

with the same time step as for the Navier–Stokes equation. The integration of (2.1)
must preserve the positive definite character of M . This is achieved by adapting
to (2.1) the Cholesky-decomposition method proposed by Vaithianathan & Collins
(2003) (see appendix A for details). Unless otherwise stated, the initial condition is
M(0)= I . As in Biferale, Meneveau & Verzicco (2014), it is assumed that drops break
when their aspect ratio |m1/m3| exceeds a threshold value α. In view of the fact that
we are only interested in the dynamics up to the first breakup and do not consider
secondary breakup events, drops are removed from the flow as soon as they break.
In the simulations presented below, the initial number of drops N(0)= 106.

The deformation of a drop is described in terms of the statistics of m2
1, i.e. the

squared length of the semi-major axis. Let p(m2
1, t) be the probability density function

(p.d.f.) of m2
1 and P(m2

1) ≡
∫
∞

0 p(m2
1, t) dt its time integral. Biferale, Meneveau

& Verzicco (2014) showed that P(m2
1) behaves as a power law for values of m2

1
smaller than its maximum value (it is easy to check that the conditions m2

1 >m2
2 >m2

3,
m2

1m2
2m2

3=1 and |m1/m3|6α imply that m2
1 is bounded and, more precisely, m2

1 6α
4/3).

The slope increases as a function of Ca for small Ca and saturates to −1 when Ca
exceeds a critical value Cac, which for µ = 1 was found to be Cac = f1(µ)/2.
Figure 1(a) shows that the behaviour of P(m2

1) is accurately reproduced in our
simulations. The power law is even clearer when the p.d.f of m2

1/m
2
3 is considered

(figure 1b).
It should be noted, however, that because of the breakups the total number of drops

decays in time. The fraction of drops surviving at time t, N(t)/N(0)≡
∫

p(m2
1, t) dm2

1,
indeed decreases exponentially, the decay rate growing rapidly when Ca exceeds Cac
(figure 2a). Accordingly, the statistics of drop sizes is not stationary and the p.d.f.
of m2

1 varies in time (see figure 2b, where the p.d.f.s are translated vertically in
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FIGURE 1. (Colour online) Time-integrated p.d.f. of (a) the largest eigenvalue of M and
(b) the ratio of the largest and the smallest eigenvalue of M for µ = 1, α = 103 and
different values of Ca. For this value of µ, Cac= 0.23 (see § 3). The p.d.f.s are artificially
translated in order to render their power-law behaviours more easily visible.
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FIGURE 2. (Colour online) (a) Fraction of surviving drops as a function of time for µ=1,
α = 103 and different values of Ca. Time is rescaled by the Kolmogorov time (τη) of
the flow. The inset shows the exponential decay rate of the fraction of surviving drops
versus the capillary number rescaled by its critical value. (b) Time-dependent p.d.f. of
m2

1 for µ = 1, α = 103, Ca = 1 and increasing time instants. In the legend, the fraction
of drops surviving at time t is also indicated. The red curve is the time-integrated p.d.f.
P(m2

1) corresponding to the same parameters. For the sake of comparison, the p.d.f.s are
translated vertically.

order to facilitate the comparison at different times). At long times p(m2
1, t) reaches

an asymptotic shape, but this does not show any definite power-law behaviour. The
power law observed by Biferale, Meneveau & Verzicco (2014) is thus recovered
only when the time-integrated p.d.f is considered; indeed the distributions shown in
Biferale, Meneveau & Verzicco (2014) were obtained by averaging over both the
Lagrangian trajectories and time.

Since the dynamics of drops is not statistically stationary, P(m2
1) may depend on

the initial shape of drops, namely on the value of the aspect ratio at time t= 0. We
thus performed simulations in which the initial shape tensor is M(0)= diag(ρ0, 1, ρ−1

0 ),
where ρ0 > 1 is both the aspect ratio and the largest eigenvalue of M at t = 0. Two
different behaviours are observed depending on the value of Ca. For small Ca, the
shape of P(m2

1) is not affected significantly by the value of ρ0 (not shown). By
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FIGURE 3. (Colour online) (a) Time-integrated p.d.f. of the largest eigenvalue of M for
µ = 1, α = 103, Ca = 1 and different values of ρ0. The p.d.f.s are normalized to 1 to
facilitate the comparison. The dashed line is proportional to (m2

1)
−1. (b) Time-integrated

p.d.f. of the largest eigenvalue of M for µ= 1, ρ0 = 103 and different values of Ca.

contrast, for large Ca, the interval over which P(m2
1) ∼ (m2

1)
−1 shrinks as ρ0 is

increased and the drop volume is kept constant. In this case, indeed, P(m2
1)∼ (m

2
1)
−1

only for m2
1 � ρ0 (figure 3a). The (m2

1)
−1 behaviour may therefore be difficult to

detect when ρ0 approaches the critical aspect ratio for breakup. In fact, when ρ0 is
sufficiently large a second power law emerges for m2

1� ρ0 whose slope increases as
a function of Ca and can turn from negative to positive at large Ca (figure 3b).

The dependence of the deformation and breakup statistics on µ is shown in figure 4.
For small values of Ca, the slope of P(m2

1) varies with µ and is steeper for larger
viscosity ratios (figure 4a). It saturates to −1 beyond the critical capillary number,
but the transition to the supercritical regime is slower for larger values of µ. These
results differ somewhat from those of Biferale, Meneveau & Verzicco (2014). The
discrepancy may be explained by considering the time scales associated with the
breakup process. Whereas the time-integrated statistics displays a weak dependence
on the viscosity ratio, the time scale over which breakup occurs depends strongly on
µ, and the breakup process considerably slows down as µ increases (figure 4b). For
large values of µ, very long Lagrangian trajectories therefore need to be considered
in order to compute P(m2

1); otherwise small deformations are privileged and the slope
of P(m2

1) may be steeper than it actually should be. This point is elucidated further
in § 3.

Finally, we consider the mean lifetime of a drop, T(ρ0), i.e. the mean time it takes
for a drop of initial aspect ratio ρ0 to break. Two different behaviours are found
depending on whether Ca exceeds or not its critical value. The mean lifetime T(ρ0)

decreases as a power law of ρ0 if Ca<Cac and logarithmically if Ca>Cac (figure 5).
The deformation and breakup statistics presented above is derived analytically in the

next section.

3. Analytical predictions

For large deformations, the model of Maffettone & Minale (1998) is statistically
equivalent to a vector model proposed by Olbricht, Rallison & Leal (1982). The
assumptions on the drop and on the external fluid are essentially the same, and the
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FIGURE 4. (Colour online) (a) Time-integrated p.d.f. of the largest eigenvalue of M
for (from bottom to top) Ca = 0.21, 0.32, 0.51 and different values of µ. The p.d.f.s
corresponding to different values of Ca are translated vertically. (b) Exponential decay
rate of the number of surviving drops as a function of µ for Ca= 0.6.
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FIGURE 5. (Colour online) Mean lifetime as a function of the initial aspect ratio for (a)
µ= 1, α = 102, Ca< Cac and (b) µ= 1, α = 103, Ca> Cac. In (a) the Ca= 0.206 and
Ca = 0.137 curves are multiplied by a factor 3 and 1/3, respectively, in order to make
the three curves distinguishable.

semi-major axis r of the drop satisfies the equation

ṙ=G r−
f1(µ)

2τ
r+

√
r2

eqf1(µ)

τ
ξ(t), (3.1)

where req is the drop equilibrium size and ξ(t) is white noise describing thermal
fluctuations. Although thermal noise does not appear in the original model of Olbricht,
Rallison & Leal (1982), it is included in (3.1) in order to regularize the p.d.f. of r at
r = 0. It is in any case expected to play a minor role when the flow is turbulent or
when deformations larger than req are considered. In this linear model, the condition
for drop breakup is expressed in terms of r= |r|, i.e. it is assumed that a drop breaks
if r exceeds a threshold size `.

Equation (3.1) is closely related to (2.1). Indeed, from the vector r one can form the
second-rank tensor M =〈r⊗ r〉ξ (〈·〉ξ denotes the average over the realizations of ξ(t)),
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which evolves according to the equation (Olbricht, Rallison & Leal 1982)

Ṁ =GM +MG> −
f1(µ)

τ
[M − r2

eqI]. (3.2)

The only difference between (2.1) and (3.2) is in the coefficient of the identity,
which in (2.1) preserves the volume of the drop whereas it does not enjoy this
property in (3.2). Notwithstanding, this term is negligible in both models when
the drops are sufficiently deformed. Moreover, when r is large M ≈ r ⊗ r, so r2 is
the largest eigenvalue of M and r the associate eigenvector. The statistics of large
drop deformations can therefore be deduced from (3.1), and potential discrepancies
between the two approaches are only expected for small deformations (see Vincenzi
et al. (2015) for a more detailed discussion of this point in the µ= 1 case).

Let us introduce the Kubo number Ku = λτc, where τc is the correlation time of
∇u. In three-dimensional homogeneous and isotropic turbulence Ku≈ 0.6 (Girimaji &
Pope 1990; Bec et al. 2006; Watanabe & Gotoh 2010). However, for µ = 1, it was
shown in Musacchio & Vincenzi (2011) that as long as Ku . 1, the p.d.f. of r does
not depend upon Ku appreciably. Furthermore, in Biferale, Meneveau & Verzicco
(2014) the qualitative features of the statistics of drop deformation were found not
to depend significantly on the intermittency of the turbulent flow. To make analytical
progress, we therefore study (3.1) under the assumption that ∇u has a Gaussian
statistics and τc vanishes. More specifically, we assume that Ω and S are zero-mean
Gaussian processes with correlations 〈Ωij(t)Ωpq(t′)〉 = (d + 2)C(δipδjq − δjpδiq)δ(t − t′)
and 〈Sij(t)Spq(t′)〉 = dC(δipδjq + δiqδjp − 2δijδpq/d)δ(t − t′), where d is the spatial
dimension of the flow and C> 0 determines the amplitude of the fluctuations of ∇u.
In this setting, G(t) is a multiplicative noise and is interpreted in the Stratonovich
sense (Falkovich, Gawȩdzki & Vergassola 2001). The form of the correlations ensures
that the flow is incompressible and statistically isotropic (e.g. Brunk & Koch 1998).
In addition, the Lyapunov exponent of this flow is λ = Cd(d − 1) (Le Jan 1984,
1985).

Owing to statistical isotropy, at long times the p.d.f. of r, p(r, t), satisfies the
Fokker–Planck equation

∂tp=−∂r(D1p)+ ∂2
r (D2p), (3.3)

where time has been rescaled by 2τ/f1(µ) (with a slight abuse of notation we continue
to denote the rescaled time by t) and

D1(r)=
[

2(d+ 1)γ (µ)Ca
d

− 1
]

r+ (d− 1)
r2

eq

r
, D2(r)=

2γ (µ)Ca
d

r2
+ r2

eq

(3.4a,b)

with γ (µ) = f2(µ)/f1(µ). This equation can be obtained from the µ = 1 case (see
Celani, Musacchio & Vincenzi 2005) by noting that the vorticity tensor does not
contribute to the time evolution of p(r, t). The assumptions that r is a positive
quantity and drops break at r= ` are implemented by imposing a reflecting boundary
condition at r= 0 (D1p− ∂r(D2p)= 0 at r= 0) and an absorbing boundary condition
at r= ` (p(`, t)= 0), respectively.

The form of the coefficients D1(r) and D2(r) shows that changing the viscosity ratio
merely rescales Ca by a factor of γ (µ). Also note that γ (µ) depends weakly upon
µ, since it varies from γ (0)= 2 to γ (∞)= 19/8= 2.375.
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3.1. Time-integrated distribution of drop sizes
Equation (3.3) can be used to derive the power-law behaviour of the time-integrated
p.d.f P(r) as well as its dependence on the initial drop-size distribution. From (3.3),
P(r) satisfies

−
d
dr
(D1P)+

d2

dr2
(D2P)=−p(r, 0), (3.5)

with boundary conditions D1P − ∂r(D2P)= 0 at r= 0 and P(`)= 0. To obtain (3.5),
we have used the fact that in the presence of an absorbing boundary limt→∞ p(r, t)= 0
for all r. It is now assumed that p(r, 0)= δ(r− r0) with r0 > req, i.e. a monodisperse
initial distribution. Integrating (3.5) from 0 to r and using the reflecting boundary
condition at r= 0 yields

−D1(r)P(r)+
d
dr
[D2(r)P(r)] =

{
0 if 0 6 r< r0, (3.6a)
−1 if r0 < r 6 `. (3.6b)

The solution of (3.6) takes the form (Risken 1989)

P(r)∝
{

e−Φ(r)[ϕ(`)− ϕ(r0)] if 0 6 r 6 r0,

e−Φ(r)[ϕ(`)− ϕ(r)] if r0 < r 6 `,
(3.7)

with

Φ(r)= ln D2(r)−
∫ r

r1

D1(ζ )

D2(ζ )
dζ , ϕ(r)=

∫ r

r1

eΦ(ζ)

D2(ζ )
dζ , (3.8a,b)

where the specific value of r1 is irrelevant. To examine the behaviour of P(r) for
req � r� `, we now insert the limiting forms of D1(r) and D2(r) for req→ 0 into
(3.8) and obtain eΦ(r) ∼ rβ and ϕ(r)∼ rβ−1 with β = 1− d + d/2γ (µ)Ca. Therefore,
there exists a critical value of the capillary number, Cac = 1/2γ (µ), such that for
Ca<Cac

P(r)∼
{ (

`β−1
− rβ−1

0

)
r−β if req� r� r0, (3.9a)

`β−1r−β if r0� r� `, (3.9b)

whereas for Ca>Cac

P(r)∼
{ (

`β−1
− rβ−1

0

)
r−β if req� r� r0, (3.10a)

r−1 if r0� r� `. (3.10b)

(The exact form of P(r) over the entire interval 0 6 r 6 ` may be calculated by
using the full expressions of D1(r) and D2(r) in (3.4) and involves a hypergeometric
function; the details, however, are omitted.) Since γ (µ) depends weakly on µ, the
same holds true for Cac. The above value of Cac was also found by Biferale,
Meneveau & Verzicco (2014) for more general flows; they applied a criterion based
on the statistics of the finite-time Lyapunov exponents of the flow that was previously
used to study the deformation of flexible polymers (Balkovsky, Fouxon & Lebedev
2001). Likewise, the prediction of Biferale, Meneveau & Verzicco (2014) for the
exponent β in the Ca< Cac case reduces to the expression above when ∇u has the
properties considered here.
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The scaling of P(r2) can be deduced from that of P(r) by using P(r2) =
(1/2)r−1P(r). The above power-law behaviours thus reproduce the numerical results
shown in figures 1 and 3 for the time-integrated p.d.f.s of the squared length of the
semi-major axis. It should be noted that whereas the power-law behaviour of P(r)
for small r is specific to a monodisperse initial distribution, the large-r power law
holds for any p(r, 0) that vanishes beyond a given r? < `. Integrating (3.5) from 0 to
r> r? indeed yields (3.6b) and hence (3.9b) or (3.10b) depending on the value of Ca.
If, by contrast, the initial size of the drops can approach `, in general P(r) does not
display a power-law behaviour.

3.2. Time-dependent distribution of drop sizes and breakup frequency
The eigenfunctions of the Fokker–Planck operator that satisfy the reflecting boundary
condition at r = 0 are of the form fν(r) = rd−1

2F1(c−ν , c+ν , d/2, −εr2) (Celani,
Musacchio & Vincenzi 2005), where 2F1 is the Gauss hypergeometric function
with ε = 2γ (µ)Ca/dr2

eq and

c±ν =
d
4

[
1

2γ (µ)Ca
+ 1
]
±

1
4

√
d2

[
1

2γ (µ)Ca
− 1
]2

−
2dν

γ (µ)Ca
. (3.11)

The absorbing boundary condition fν(`) = 0 selects a discrete set of acceptable
eigenfunctions. The p.d.f. of r can thus be expanded as p(r, t) =

∑
∞

n=1 ane−νntfνn(r),
and hence

p(r, t)∼ e−ν1tfν1(r) as t→∞. (3.12)

This result confirms that at long times p(r, t) approaches an asymptotic shape, but this
does not show a power-law behaviour (figure 2a). From (3.12), the fraction of drops
surviving at time t decays as

N(t)/N(0)≡
∫ `

0
p(r, t) dr∼ e−ν1t as t→∞, (3.13)

where ν1 is the smallest solution of the equation fνn(`)= 0. Figure 6(a) shows that the
decay rate of the drop number increases rapidly as a function of Ca when Ca exceeds
its critical value, whereas it decreases as a function of µ. In addition, although Cac
depends weakly on µ, the transition to the supercritical regime is much steeper at
small µ (see also figure 6(b)). These results reproduce the behaviours observed in the
numerical simulations (figures 2(b) and 4).

3.3. Mean lifetime of a drop
The average time it takes for a drop of initial size r0 to break can be calculated from
P(r) as follows. Consider the transition probability p(r, t|r0, 0), which is the solution
of (3.3) that satisfies the initial condition p(r,0|r0,0)= δ(r− r0). Let T(r0) be the time
it takes for the drop to break in a given realization of the flow and of thermal noise,
and let P(r0, t) be the probability of T(r0) taking the value t. Note that P(r0, t)=−∂tF,
where F(r0, t)=

∫
∞

t P(r0, s) ds is the probability that T(r0)> t and can be written as
F(r0, t)=

∫ `
0 p(r, t|r0, 0) dr. Therefore, the average of T(r0) is (Gardiner 1983)

T(r0)=

∫
∞

0
t P(r0, t) dt=−

∫
∞

0
t[∂tF(r0, t)] dt=

∫
∞

0
F(r0, t) dt, (3.14)
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FIGURE 6. (Colour online) Exponential decay rate of the number of drops for d= 3 and
` = 103 (a) as a function of µ and Ca and (b) as a function of the capillary number
rescaled by its critical value for fixed µ= 0.1, 1, 10 (from top to bottom).

where we used limt→∞ F(r0, t)=0, a consequence of the absorbing boundary condition
for p(r, t|r0, 0). By changing the order of integration, we finally obtain

T(r0)=

∫ `

0
P(r) dr, (3.15)

where P(r) is the solution of (3.5) corresponding to the initial condition p(r, 0) =
δ(r − r0). Inserting now the asymptotic behaviours (3.9b) and (3.10b) into (3.15)
yields

T(r0)∼


(
`

req

)β−1

−

(
r0

req

)β−1

if Ca<Cac,

ln
(
`

r0

)
if Ca>Cac,

(3.16)

as seen in figure 5.

4. Improved version of the model of Maffettone & Minale (1998)

Maffettone & Minale (1998) proposed a modification of their model that improves
the agreement with experimental data for high viscosity ratios and large capillary
numbers. In the modified model, the coefficient in front of the strain tensor also
depends on Ca, i.e. f2(µ) is replaced with

f̃2(µ,Ca)= f2(µ)+
3(σCa)2

2+ 6(σCa)2
, (4.1)

where the coefficient σ accounts for the fact that here Ca is defined in terms of λ
(hence in our case σ = 1.72). The above expression still reproduces the theoretical
limits, for both small Ca and large µ, as well as the affine deformation of the drop
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FIGURE 7. (Colour online) (a) Dependence of the critical capillary number on the
viscosity ratio in the original model (red solid curve) and in the improved model (blue
dashed curve). (b) Exponential decay rate of the number of drops for d= 3 and `= 103

as a function of Ca and µ for the improved model.

when µ = 1 and Ca→∞. Using f̃2 instead of f2 yields significantly more accurate
predictions for a pure shear; for an elongational flow, the effect is much weaker
(Maffettone & Minale 1998).

It should be noted that the original model and the improved one can be mapped
into each other by suitably modifying the viscosity ratio and the capillary relaxation
time. The original model with parameters µ, τ is indeed the same as the improved
one with parameters µ′, τ ′, where µ′ and τ ′ are the solutions of the system

f1(µ
′)/τ ′ = f1(µ)/τ , f̃2(µ

′, σλτ ′)= f2(µ). (4.2a,b)

Therefore, for fixed µ and Ca, the results described in the previous sections also
hold for the improved model, provided the parameters are suitably adjusted. The
reader should note that such a nonlinear transformation of the parameters leads to
a slight variation, quantitatively, of the results without changing the overall picture.
It is nonetheless important to examine the effect of the modified coefficient f̃2
on quantities such as the critical capillary number, the rate of decay of the drop
fraction and the exponent β that defines the power-law behaviour of both the p.d.f.
of the size and the mean lifetime. This is achieved by replacing γ (µ) in § 3 with
γ̃ (µ, Ca) = f̃2(µ, Ca)/f1(µ). Thus, the differences between the two versions of the
model are mainly due to the fact that γ (µ) varies weakly with µ and is bounded
for µ→∞, whereas γ̃ (µ,Ca)→∞ in the same limit. It is shown below that, for a
turbulent flow, these differences impact our predictions only marginally.

When the improved model is considered, the critical capillary number is the solution
of the cubic equation γ̃ (µ,Cac)Cac= 1/2. It can be checked that the discriminant of
this equation is negative for all values of µ and hence there is only one real root.
Figure 7(a) compares the critical capillary number in the original model and in the
improved one. In both cases, Cac is a decreasing function of µ. The main difference
is that, for µ→∞, Cac tends to the asymptotic value 4/19 ≈ 0.21 in the original
model, whereas it tends to zero in the improved one. Nevertheless, for the values of
µ typically found in experiments, Cac does not differ considerably in the two models.
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FIGURE 8. (Colour online) Exponent β as a function of the capillary number for d = 3
(a) in the original model and (b) in the improved model.

In the improved model, the rate of decay of the number of drops is slightly greater
and decreases less rapidly as a function of µ (compare figures 6a and 7b). The
exponent β takes the form β = 1 − d + d/2γ̃ (µ, Ca)Ca; it is smaller than in the
original model and varies more with µ, as a consequence of the different behaviour
of γ̃ (µ,Ca) (figure 8). Both for β and the decay rate, the discrepancies between the
two models are, however, small.

In conclusion, despite some quantitative differences, for realistic values of µ and Ca
the qualitative behaviour of the model of Maffettone & Minale (1998) in a turbulent
flow is largely insensitive to the use of either f2(µ) or f̃2(µ,Ca).

5. Conclusions
The Lagrangian dynamics of a sub-Kolmogorov drop in a turbulent flow is

determined by the statistics of the velocity gradient. Strong fluctuations of the
strain along the trajectory of the drop highly modify the shape and the size of the
drop and ultimately break it. We have performed a detailed numerical and analytical
study of the deformation and breakup statistics of neutrally buoyant, sub-Kolmogorov,
ellipsoidal drops in homogeneous and isotropic turbulence as a function of the
capillary number, the viscosity ratio between the inner and outer fluids and the
initial drop-size distribution. In particular, we have analytically derived some of the
numerical observations reported in Biferale, Meneveau & Verzicco (2014) and have
extended the prediction for the critical capillary number to viscosity ratios different
from unity. We have also examined further properties of the breakup process, such
as the temporal dependence of the number of drops and of the statistics of the size,
the role of the initial distribution of the drop sizes and the mean lifetime of a drop.

Our study relies on the model of Maffettone & Minale (1998). Potential extensions
concern the impact on the deformation and breakup dynamics of effects that are not
taken into account by this model. These include deviations from the ellipsoidal shape,
nonlinear deformations near to breakup, large density contrasts between the fluids
inside and outside the drop or secondary breakups. More refined models of drop
dynamics have indeed been proposed in the literature (e.g. Minale 2010). However,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

45
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.453


326 S. S. Ray and D. Vincenzi

such models generally depend in a highly nonlinear way on the shape of the drop,
and this renders their analytical study very challenging.

It would also be interesting to understand possible intermittency effects for such sub-
Kolmogorov-scale droplets (Biferale, Meneveau & Verzicco 2014) (and also studied
for larger droplets (Perlekar et al. 2012)) and if there are analogues of transparency
effects, seen in oscillatory, laminar flows (Milan et al. 2018) for droplets in fully
developed turbulence.

Finally, Maffettone & Minale (1998) observe that, for µ= 1, their model is closely
related to the Oldroyd-B model for solutions of flexible polymers (Bird et al. 1987).
Likewise, when µ = 1 and hence G = ∇u the vector model of Olbricht, Rallison &
Leal (1982) reduces to the Hookean dumbbell model, which describes the evolution
of the end-to-end separation vector of an extensible polymer molecule in the limit
in which nonlinear elastic effects are negligible (Bird et al. 1987). Therefore, after
appropriate redefinition of the parameters, our results also apply to the degradation of
polymers in turbulent flows.
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Appendix A. Cholesky decomposition of the tensor M

The Cholesky decomposition of M is M=LL>, where L is a lower triangular matrix.
The elements of L satisfy:

L̇11 = G11L11 +G12L21 +G13L31 + cτ

[
cg

L11
− L11

]
(A 1)

L̇21 = G21L11 +G22L21 +G23L31 +G12
L2

22

L11
+G13

L32L22

L11
− cτ

[
L21 + cg

L21

L2
11

]
(A 2)

L̇31 = G31L11 +G32L21 +G33L31 +G12
L22L32

L11
+G13

L2
32 + L2

33

L11
− cτ

[
L31 + cg

L31

L2
11

]
(A 3)

L̇22 = G22L22 +G23L32 −G12
L21L22

L11
−G13

L32L21

L11
+ cτ

[
−L22 +

cg

L22
+ cg

L2
21

L2
11L22

]
(A 4)

L̇32 = G32L22 +G33L32 −G12
L22L31

L11
−G13

L31L32

L11
+G23

L2
33

L22
−G13

L21L2
33

L11L22

+ 2cτcg
L21L31

L2
11L22
+ cτ

[
−L32 − cg

L32

L2
22
− cg

L2
21L32

L2
11L2

22

]
(A 5)
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L̇33 = G33L33 −G13
L31L33

L11
−G23

L32L33

L22
+G13

L21L32L33

L11L22
− 2cτcg

L21L31L32

L2
11L22L33

+ cτ

[
−L33 +

cg

L33
+ cg

L2
31

L2
11L33
+ cg

L2
32

L2
22L33
+ cg

L2
21L2

32

L2
11L2

22L33

]
, (A 6)

with cτ = f1(µ)/2τ and cg = g(LL>) (the functions f1 and g are defined after (2.1)).
The above equations can be derived by adapting to (2.1) the equations obtained in
Vaithianathan & Collins (2003) for a constitutive model of viscoelastic fluid (see also
Perlekar, Mitra & Pandit (2006), where a misprint is corrected in the equation for
L32). The positivity of Lii, i = 1, 2, 3, is enforced by evolving ln Lii instead of Lii
(Vaithianathan & Collins 2003).
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