
Acta Neuropsychiatrica 2015
All rights reserved
DOI: 10.1017/neu.2015.1

© Scandinavian College of Neuropsychopharmacology 2015

ACTA NEUROPSYCHIATRICA

Effects of sodium benzoate on pre-pulse
inhibition deficits and hyperlocomotion in
mice after administration of phencyclidine

Akiko Matsuura1,2,
Yuko Fujita1, Masaomi Iyo2,
Kenji Hashimoto1
1Division of Clinical Neuroscience, Chiba

University Center for Forensic Mental Health,

Chiba, Japan; and 2Department of Psychiatry,

Chiba University Graduate School of Medicine,

Chiba, Japan

Keywords: D-amino acid oxidase; D-serine;

phencyclidine; sodium benzoate

Dr. Kenji Hashimoto, Division of Clinical

Neuroscience, Chiba University Center for

Forensic Mental Health, 1-8-1 Inohana, Chiba

260-8670, Japan.

Tel: + 81-43-226-2517;

Fax: + 81-43-226-2561;

E-mail: hashimoto@faculty.chiba-u.jp

Accepted for publication January 2, 2015

First published online February 4, 2015

Matsuura A, Fujita Y, Iyo M, Hashimoto K. Effects of sodium benzoate on
pre-pulse inhibition deficits and hyperlocomotion in mice after
administration of phencyclidine.

Objective: A recent clinical study demonstrated that sodium benzoate
(SB), a prototype competitive D-amino acid oxidase inhibitor, was
effective in the treatment of several symptoms, such as positive and
negative symptoms, and cognitive impairment in medicated patients with
schizophrenia. The objective of the study was to examine the effects of
SB on behavioural abnormalities such as pre-pulse inhibition (PPI)
deficits and hyperlocomotion in mice after a single administration of the
N-methyl-D-aspartate (NMDA) receptor antagonist, phencyclidine (PCP).
Methods: The effects of SB on behavioural abnormalities (PPI deficits
and hyperlocomotion) in mice after PCP administration were examined.
Furthermore, effects of SB on tissue levels of amino acids were also
examined.
Results: A single oral dose of SB (100, 300, or 1000 mg/kg) attenuated
PPI deficits in mice after administration of PCP (3.0 mg/kg, s.c.) in a
dose-dependent manner. In contrast, L-701,324 (10 mg/kg), an antagonist
at the glycine site of the NMDA receptor, did not affect the effect of
SB (1000 mg/kg) on PCP-induced PPI deficits. Furthermore, a single oral
dose of SB (1000 mg/kg) significantly attenuated the hyperlocomotion in
mice after administration of PCP (3.0 mg/kg, s.c.). However, a single oral
dose of SB (1000 mg/kg) caused no changes to D-serine levels in plasma
or in the frontal cortex, hippocampus, and striatum of these animals.
Conclusion: This study suggests that SB induced antipsychotic effects in
the PCP model of schizophrenia, although it did not increase D-serine
levels in the brain.

Significance outcomes
∙ Pre-treatment with sodium benzoate (SB), a prototype D-amino acid oxidase inhibitor, attenuated
pre-pulse inhibition deficits and hyperlocomotion in mice after a single administration of phencyclidine.

∙ However, a single administration of SB did not affect D-serine levels in the blood and brain.

Limitations of the study

∙ In this study, we did not measure D-serine levels in the cerebellum where D-amino acid oxidase is rich.
∙ The effects of SB in other models of schizophrenia should be examined.
∙ The effects of chronic administration of SB on levels of amino acids in the brain should be
examined.
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Introduction

Multiple lines of evidence suggest that dysfunctional
glutamatergic neurotransmission via N-methyl-D-
aspartate (NMDA) receptors is involved in the
pathophysiology of schizophrenia (1–9). The NMDA
receptor antagonists, phencyclidine (PCP), and
ketamine induce schizophrenia-like symptoms,
including positive and negative symptoms, and
cognitive impairment in healthy individuals (1,10–12).
This resulted in the frequent use of PCP to generate
animal models of schizophrenia (13–22).

Accumulating evidence suggests that disturbed
NMDA receptor neurotransmission, due to decreased
D-serine levels, may be a causative factor in the
pathophysiology of schizophrenia (6,7,23–25). These
findings include, first, lower levels of D-serine in the
blood, cerebrospinal fluid, and post-mortem brain
tissue from patients with schizophrenia relative to
normal controls (26–30). Second, treatment with
D-serine reduces positive, negative, and cognitive
symptoms in patients with schizophrenia (31–35).
In addition, a recent meta-analysis supports the
finding that D-serine is effective in the treatment
of schizophrenia (36). Third, mRNA expression and
the activity of D-amino acid oxidase (DAAO), the
enzyme that metabolises D-serine, is increased in
post-mortem brain samples from patients with
schizophrenia (37,38). Fourth, the G72 gene, located
at chromosome 13q, shows significant association
with schizophrenia (39,40). This gene has been
designated to code a DAAO activator, as the G72
protein interacts physically with DAAO (39).
Subsequent meta-analysis found highly significant
association between nucleotide variations in the
G72/G30 region and schizophrenia (41).

Klein and Kamin (42) first reported on sodium
benzoate (SB) as a prototype competitive DAAO
inhibitor (Ki≈16 μM), as early as in the 1940s (43).
More recently, Lane et al. (44) performed a randomised,
double-blind, placebo-controlled study using SB in
stabilised patients with schizophrenia. Given at a dose of
1 g/day for 6 weeks, SB produced a 21% improvement
in Positive and Negative Syndrome Scale (PANSS) total
scores and large effect sizes in the PANSS total and
subscales, Scales for the Assessment of Negative
Symptoms (SANSS)-20 items, Global Assessment of
Function, Quality of Life Scale, and Clinical Global
Impression, as well as improved neurocognition (44). In
addition, SB was well tolerated without significant
adverse effects. However, there are no reports
demonstrating the antipsychotic effects of SB in
animal models of schizophrenia, although SB could be
a potential therapeutic drug for this disorder.

In the present study, we examined whether SB
attenuated pre-pulse inhibition (PPI) deficits and

hyperlocomotion in mice after the administration of
PCP. In addition, we measured levels of D-serine in the
blood and in brain regions after oral administration
of SB. We also measured levels of other the amino
acids, L-serine, glycine, glutamate, glutamine, and
γ-aminobutyric acid (GABA), as they are involved in
the glutamine–glutamate–GABA cycle (9,45,46).

Materials and methods

Animals

Male ddY mice (8 weeks old) weighing 25–30 g were
purchased from SLC Japan (Hamamatsu, Shizuoka,
Japan). The mice were housed in clear polycarbonate
cages (22.5× 33.8 × 14.0 cm) in groups of five or six
per cage under a controlled 12/12 h light–dark cycle
(lights on from 07:00 a.m. to 07:00 p.m.), with room
temperature at 23± 1°C and humidity at 55± 5%. The
mice were given free access to water and food pellets.
The experimental procedure was approved by the
Animal Care and Use Committee of Chiba University.

Drugs

Sodium benzoate (SB; Wako Pure Chemical Co.,
Tokyo, Japan) was dissolved in 0.5% carboxymethy
cellulose (CMC) (Wako Pure Chemical Co.). PCP
hydrochloride was synthesised in our laboratory, and
the dose (3.0 mg/kg) of PCP was expressed as a
hydrochloride salt (22). L-701,324 (Sigma-Aldrich
Co., Ltd., St Louis, MO, USA) was dissolved in 20%
polyethylene glycol (PEG300; Wako Pure Chemical
Co.) with pH adjusted to 10 with 1M NaOH. Other
drugs were purchased from commercial sources.

Effect of SB on PPI deficits after a single administration of PCP

The mice were tested for their acoustic startle
reactivity in a startle chamber (SR-LAB; San Diego
Instruments, San Diego, CA, USA) using the
standard methods described previously (22,47–50).
The test sessions were started after an initial 10-min
acclimation period in the chamber. The mice were
subjected to one of the following six trials: (1) pulse
alone, as a 40 ms broadband burst; a pulse (40 ms
broadband burst) preceded by 100 ms with a 20 ms
pre-pulse that was (2) 4 dB, (3) 8 dB, (4) 12 dB, or
(5) 16 dB over background (65 dB); and (6) back-
ground only (no stimulus). The amount of pre-pulse
inhibition (PPI) was expressed as the percentage
decrease in the amplitude of the startle reactivity
caused by presentation of the pre-pulse (% PPI). SB
(30, 100, or 1000 mg/kg) or vehicle (0.5% CMC)
(10 ml/kg) was administered orally 60 min (including
the 10 min acclimation period) before the machine
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records, and PCP (3.0 mg/kg) or saline (10 ml/kg)
was administered subcutaneously (s.c.) 10 min
(including the 10 min acclimation period) before.
The PPI test lasted 20 min in total.

Effect of SB and L-701,324 on PPI deficits after a single
administration of PCP

In order to study the role of the glycine site of the
NMDA receptor, we examined the effects of
L-701,324, an antagonist of the glycine site of the
NMDA receptor, on the effect of SB on PCP-induced
PPI deficits in mice. Thirty minutes after oral
administration of SB (1000 mg/kg) or vehicle (0.5%
CMC) (10 ml/kg), L-701,324 (10 mg/kg) or vehicle
(20% PEG) was administered intraperitoneally (i.p.)
30 min later. Thirty minutes after the injection of
L-701,324 (or vehicle), PCP (3.0 mg/kg) or saline
(10 ml/kg) was administered s.c. The PPI test was
performed as described above.

Effect of SB on hyperlocomotion after a single administration
of PCP

After habituation (30 min) in the cage, SB or vehicle
was injected into the mice (each group n = 8–12).
One hour after a single oral administration of SB
(1000 mg/kg) or vehicle (10 ml/kg, 0.5% CMC),
PCP (3.0 mg/kg) or vehicle (physiological saline;
10 ml/kg) was administered s.c. into the mice.
Locomotor activity was measured using an animal
movement analysis system (SCANET MV-40;
Melquest, Toyama, Japan). The system consisted of
a rectangular enclosure (560 × 560 mm). The side
walls (height, 60 mm) of the enclosure were equipped
with 144 pairs of photosensors located at 6-mm
intervals at a height of 30 mm from the bottom edge.
An animal was placed in the observation cage 30 min
(habituation) before injection of vehicle or SB.
Vehicle or PCP was injected 60 min after oral
injection of vehicle or SB, and the locomotion
activity was measured for 60 min after injection of
vehicle or PCP. A pair of photosensors was scanned
every 0.1 s to detect the animal’s movements. The
intersection of paired photosensors (10 mm apart) in
the enclosure was counted as one unit of locomotor
activity. Data collected for total 150 min were used in
this study. The sum of locomotion in mice for 60 min
after the PCP administration was used for data
analysis.

Measurement of amino acids by high-performance liquid
chromatography (HPLC)

One hour after the single oral administration of SB
(1000 mg/kg), mice were killed by decapitation after

collecting blood samples. The brain was removed
and the frontal cortex, hippocampus, and striatum
were dissected on ice. Plasma and brain tissues were
frozen on dry ice and stored at −80°C until analysis.

In brief, plasma (20 µl) was homogenised in 180 µl
of methanol (HPLC grade) on ice. The homogenates
were centrifuged at 3000 × g for 6 min at 4°C, and
20 µl of the supernatant was evaporated to dryness at
40°C. To the residue, 20 µl of H2O (HPLC grade),
20 μl of 0.1M borate buffer (pH 8.0), and 60 μl of
50mM 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F;
Tokyo Kasei Kogyo Co., Ltd., Tokyo, Japan) in
CH3CN (HPLC grade) were added. The reaction
mixture was then heated at 60°C for 2 min, and was
immediately supplemented with 100 μl of H2O/
CH3CN (90/10) containing 0.1% trifluoroacetic acid
to stop the reaction. Brain tissues were homogenised
in 1.5 ml of methanol (HPLC grade) on ice. The
homogenates were centrifuged at 3000 × g for 6 min
at 4°C, and 20 μl of the supernatant was evaporated
to dryness at 40°C. To the residue, 20 μl of
H2O (HPLC grade), 20 μl of 0.1M borate buffer
(pH 8.0), and 60 μl of 50 mM NBD-F in CH3CN
(HPLC grade) were added. The reaction mixture was
then heated to 60°C for 2 min, and was immediately
supplemented with 100 μl of H2O/acetonitrile (90/10)
containing 0.1% trifluoroacetic acid (TFA) to stop the
reaction. Levels of amino acids (D-serine, L-serine,
glycine, glutamine, glutamate, and GABA) were
measured using high-performance liquid chromato-
graphy (HPLC) system (Shimadzu Corporation,
Kyoto, Japan), as previously reported (51–53).
Fluorescence detection was performed at 530 nm
with an excitation wavelength of 470 nm.

Statistical analysis

The data are presented as the mean± standard error
of the mean (SEM). The PPI data were analysed
by multivariate analysis of variance (MANOVA),
followed by post-hoc Fisher’s Least Significance
Difference (LSD) test. The data of hyperlocomotion
were analysed by one-way analysis of variance
(ANOVA), followed by post-hoc Fisher LSD test.
The data of amino acids were analysed using the
Student t-test. Significance for the results was set at
p< 0.05.

Results

Figure 1 shows the effects of SB (100, 300, or
1000mg/kg) on PCP (3.0mg/kg)-induced PPI deficits
in mice. The MANOVA analysis of all PPI data
revealed that there was a significant effect (Wilks
lambda = 0.346, p<0.001). Subsequent ANOVA
analysis revealed the significant differences (p<0.001)
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at all dB groups (69, 73, 77, and 81 dB). A post-hoc
analysis indicated a significant (p< 0.001) difference
in PPI deficits between the vehicle + vehicle group
and vehicle + PCP (3.0 mg/kg) group at all dB groups

(Fig. 1). Pre-treatment with SB (100, 300, or
1000 mg/kg) attenuated PCP-induced PPI deficits in
a dose-dependent manner. High dose (1000 mg/kg)
of SB significantly (p< 0.001) attenuated PCP-
induced PPI deficits at all dB groups (Fig. 1).
Moderate dose (300 mg/kg) of SB significantly
(p< 0.05 at 69–77 dB groups, p< 0.001 at 81 dB
group) attenuated PCP-induced PPI deficits at all dB
groups (Fig. 1). In contrast, PPI in mice after
administration of SB (1000 mg/kg) alone was similar
to control mice (Fig. 1).

In order to study the role of the glycine site of the
NMDA receptor, we examined the effect of L-701,324,
an antagonist at the glycine site of the NMDA receptor,
on the effect of SB on PCP-induced PPI deficits.
Figure 2 shows the effects of SB (1000mg/kg) and
L-701,324 (10mg/kg) on PCP (3.0 mg/kg)-induced
PPI deficits in mice. The MANOVA analysis of
all PPI data revealed that there was a significant
effect (Wilks lambda = 0.193, p< 0.001). A post-hoc
analysis indicated a significant (p< 0.001) difference
in PPI deficits between the vehicle + vehicle group and
vehicle +PCP (3.0 mg/kg) group at all dB groups
(Fig. 2). Pre-treatment with SB (1000mg/kg)
significantly attenuated PCP-induced PPI deficits.
However, L-701,324 (10 mg/kg) did not affect the
effect of SB on PCP-induced PPI deficits (Fig. 2).
Furthermore, L-701,324 (10 mg/kg) did not affect
PCP-induced PPI deficits in mice (Fig. 2).

A single administration of PCP (3.0 mg/kg, s.c.)
markedly increased locomotion in mice. One-way

Fig. 1. Effect of sodium benzoate (SB) on phencyclidine (PCP)-
induced pre-pulse inhibition (PPI) deficits in mice. One hour
after the single oral administration of vehicle (10 ml/kg) or SB
(100, 300, or 1000 mg/kg), PCP (3 mg/kg) or saline (10 ml/kg)
was administered subcutaneously (s.c.) to the mice. Each
value is the mean±SEM (n = 17–21 per group). *p< 0.05,
***p< 0.001 as compared with the vehicle + PCP-treated
group.

Fig. 2. Effects of sodium benzoate (SB) and L-701,324 on phencyclidine (PCP)-induced pre-pulse inhibition (PPI) deficits in mice.
Thirty minutes after the single oral administration of vehicle (10 ml/kg) or SB (1000 mg/kg), L-701,304 (10 mg/kg) or vehicle
(10 ml/kg) was administered intraperitoneally (i.p.) to the mice. Thirty minutes after i.p. injection of L-701,304 (or vehicle), PCP
(3 mg/kg) or saline (10 ml/kg) was administered subcutaneously (s.c.) to the mice. Each value is the mean±SEM (n = 8–11 per
group). *p< 0.05, **p< 0.01, ***p< 0.001 as compared with the vehicle + PCP-treated group.
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ANOVA revealed significant differences among
the four groups [F(3, 35) = 6.17, p = 0.002]. Pre-
treatment with SB (1000 mg/kg) significantly
(p< 0.01) attenuated PCP-induced hyperlocomotion
in mice (Fig. 2). In contrast, administration of SB
(1000 mg/kg) alone did not affect spontaneous
locomotion in mice.
A single oral administration of SB (1000mg/kg)

did not alter plasma levels of D-serine, L-serine, and
glycine. In contrast, SB significantly decreased plasma
levels of glutamine, whereas SB significantly
increased plasma levels of glutamate (Table 1).
Furthermore, SB significantly increased the ratio of
L-serine to glycine in plasma, suggesting that SB may
affect the L-serine–glycine cycle (Table 2). Moreover,
SB significantly decreased the ratio of glutamine to
glutamate in plasma, suggesting that SB may affect the
glutamine–glutamate cycle (Table 2).

A single oral administration of SB (1000 mg/kg)
did not alter tissue levels of D-serine and other amino
acids except L-serine levels in the striatum (Table 1).
However, SB significantly increased the ratio of
D-serine to L-serine in the striatum, but not in the
frontal cortex and hippocampus. Furthermore, SB
significantly decreased the ratio of glutamine to
glutamate in the striatum, but not in the frontal cortex
and hippocampus. These findings suggest that SB
may affect D-serine–L-serine cycle and glutamine–
glutamate cycle in the striatum (Table 2).

Discussion

In this study, we found that SB attenuated PPI
deficits and hyperlocomotion in mice after the
administration of PCP. Furthermore, L-701,324 did
not affect the effect of SB on PCP-induced PPI

Table 1. Levels of amino acids in the plasma, frontal cortex, hippocampus, and striatum 1 h after a single oral administration of vehicle and sodium benzoate (SB: 1000 mg/kg)

D-Serine L-Serine Glycine Glutamine Glutamate GABA

Plasma (nM)

Vehicle 4.42± 0.76 127.95± 6.20 263.52± 11.38 529.09± 22.53 62.53± 6.20 nd

SB 3.99± 0.52 106.47± 10.43 146.66± 7.65 387.06± 23.33** 76.90± 4.13*** nd

Frontal cortex (nmol/mg tissue)

Vehicle 0.33± 0.12 0.71± 0.03 0.74± 0.05 4.45± 0.15 8.90± 0.29 3.17± 0.36

SB 0.32± 0.14 0.63± 0.02 0.70± 0.02 4.90± 0.15 9.65± 0.19 2.50± 0.14

Hippocampus (nmol/mg tissue)

Vehicle 0.28± 0.01 0.71± 0.02 0.83± 0.04 4.66± 0.20 9.10± 0.38 2.61± 0.05

SB 0.29± 0.01 0.71± 0.04 0.88± 0.03 4.76± 0.12 9.34± 0.28 2.87± 0.10

Striatum (nmol/mg tissue)

Vehicle 0.27± 0.09 0.71± 0.16 0.88± 0.03 7.41± 0.43 7.41± 0.43 3.24± 0.09

SB 0.28± 0.12 0.61± 0.27** 0.79± 0.05 8.40± 0.24 8.40± 0.24 3.27± 0.17

ND, not determined.

Data are expressed as the mean± SEM (vehicle: n = 8, SB: n = 8).

**p< 0.01, ***p< 0.001 compared with vehicle-treated group (Student’s t-test).

Table 2. Ratios of amino acid levels in the plasma, frontal cortex, hippocampus, and striatum 1 h after a single oral administration of vehicle and

sodium benzoate (SB: 1000 mg/kg)

D-Serine/L-serine L-Serine/glycine Glutamine/glutamate GABA/glutamate

Plasma

Vehicle 0.035± 0.006 0.489± 0.027 8.984± 0.860 nd

SB 0.040± 0.006 0.720± 0.049** 5.095± 0.316** nd

Frontal cortex

Vehicle 0.466± 0.008 0.979± 0.055 0.503± 0.023 0.363± 0.054

SB 0.519± 0.024 0.912± 0.065 0.510± 0.025 0.262± 0.022

Hippocampus

Vehicle 0.388± 0.011 0.872± 0.050 0.513± 0.012 0.290± 0.014

SB 0.421± 0.020 0.808± 0.053 0.511± 0.008 0.307± 0.008

Striatum

Vehicle 0.387± 0.006 0.818± 0.035 0.699± 0.027 0.450± 0.033

SB 0.465± 0.011*** 0.788± 0.054 0.583± 0.020** 0.391± 0.021

ND, not determined.

Data are expressed as the mean± SEM (Control: n = 8, SB: n = 8).

**p< 0.01, ***p< 0.001 compared with vehicle-treated group (Student’s t-test).
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deficits, suggesting that activation at the glycine site
of the NMDA receptor may not be involved in the
mechanism of action of SB. This is the first report to
demonstrate that SB is effective in the PCP model of
schizophrenia. However, SB (1000 mg/kg) did not
increase the tissue levels of D-serine in the mouse
brain, indicating that D-serine in the brain may not be
involved in the acute therapeutic action of SB in this
model. In contrast, a single dose of SB significantly
increased the ratio of D-serine to L-serine in the
striatum, suggesting that SB may affect the D-serine–
L-serine cycle. Therefore, it is likely that repeated
administration of SB increases D-serine levels in
the brain, although a further study is needed to
confirm this.

Although DAAO inhibitors were proposed as new
therapeutic drugs for schizophrenia, their clinical use
has been largely unsuccessful (54,55). Ferraris et al.
(43) reported 5-chloro-benzo[d]isoxazol-3-ol (CBIO;
IC50 = 1680 nM) as being a more potent DAAO
inhibitor than SB (Ki≈16 μM). In a subsequent
report, we found that a single oral dose of CBIO
(30 mg/kg) did not increase levels of D-serine in the
plasma or in the frontal cortex, and that CBIO alone
did not improve the NMDA receptor antagonist
dizocilpine-induced PPI deficits in mice (48). In
addition, we found that a low dose of D-serine
(30 mg/kg) did not improve dizocilpine-induced PPI
deficits in mice, although this dose significantly

increased plasma levels of D-serine (48). Taken
together, it is likely that the extensive inhibition
of DAAO in the periphery and brain has a limited
effect on brain or extracellular levels of D-serine,
and that the behavioural effects of DAAO inhibitors
may be very weak. In contrast, we found that
co-administration of CBIO with D-serine (or D-alanine)
increased levels of D-serine in the brain compared
with D-serine (or D-alanine) alone, and that CBIO
potentiated the effects of D-serine (or D-alanine) on
dizocilpine-induced PPI deficits in mice (43,48,49).
Therefore, we proposed that combination therapy
of D-serine (or D-alanine) with a DAAO inhibitor
could reduce doses of D-serine (or D-alanine)
in humans, particularly because the clinical doses
of D-serine (or D-alanine) are quite high (30–60 mg/
kg) (43,48,49).

DAAO exhibits very low activity in adult
forebrains, with high activity in the adult cerebellum.
Therefore, it is possible that this increase in cerebellar
D-serine levels by DAAO inhibition may, in part,
confer antipsychotic effects by augmenting D-serine-
mediated regulation of NMDA receptors in the
cerebellum (9,56), although we did not measure
these levels in the present study. Recent reports
show that SB upregulated brain-derived neurotrophic
factor (BDNF) in mice (9,57). This implies that
the therapeutic effect of SB may be mediated through
increased BDNF levels, as the TrkB agonist,
7,8-dihydroxyflavone, attenuated the behavioural
abnormalities of hyperlocomotion and PPI deficits
in mice after administration of the stimulant
methamphetamine (50,58).

The glutamine–glutamate cycle in the glia–neuron
communication is involved in the glutamatergic
neurotransmission in the brain (6,45,46). In this
study, we found that SB significantly increased the
ratio of glutamine to glutamate, a marker for the
glutamine–glutamate cycle, in the plasma and
striatum. These findings suggest that SB can affect
the glutamine–glutamate cycle in the striatum and
plasma, resulting in the regulation of the NMDA
receptor.

Accumulating evidence suggests a role for
inflammation and oxidative stress in the
pathophysiology of schizophrenia (59–63). SB is
thought to have a potent anti-inflammatory effect via
modulation of the mevalonate pathway and p21ras

(64). In addition, SB upregulates the neuroprotective
protein, DJ-1, a Parkinson disease protein, also via
the modulation of the mevalonate pathway (65).
Previously, we reported that potent anti-inflammatory
molecules and antioxidants, including minocycline and
sulphoraphane, attenuate behavioural abnormalities in
mice after administration of PCP or methamphetamine
(21,22,47,66,67). Taken together, it is possible that

Fig. 3. Effect of sodium benzoate (SB) on phencyclidine (PCP)-
induced hyperlocomotion in mice. One hour after the single
oral administration of vehicle (10 ml/kg) or SB (1000 mg/kg),
PCP (3.0 mg/kg) or saline (10 ml/kg) was administered
subcutaneously (s.c.) into the mice. Behaviour (locomotion)
in the mice was evaluated for 1 h after administration of PCP.
Each value is the mean±SEM (n = 8–12 per group).
**p< 0.01, ***p< 0.001 as compared with the vehicle +
PCP group.
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SB mediates its therapeutic action through anti-
inflammatory and antioxidant pathways. Further
detailed studies on molecular targets of SB are needed.

Conclusions

Our study suggests that SB shows potential anti-
psychotic activity in animal models of schizophrenia.
It is possible that SB could be used for the effective
and safe treatment of schizophrenia, particularly
because SB is generally recognised as a safe food
preservative. In addition, the use of amino acids
including D-serine as biomarkers for treatment efficacy
will be an interesting future development.
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