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The constitutive relation for the granular flow of
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A perturbation expansion of the Boltzmann equation is used to derive constitutive
relations for the granular flow of rough spheres in the limit where the energy
dissipation in a collision is small compared to the energy of a particle. In the collision
model, the post-collisional relative normal velocity at the point of contact is −en

times the pre-collisional normal velocity, and the post-collisional relative tangential
velocity at the point of contact is −et times the pre-collisional relative tangential
velocity. A perturbation expansion is employed in the limit (1 − en) = ε2 � 1, and
(1 − e2

t ) ∝ ε2 � 1, so that et is close to ±1. In the ‘rough’ particle model, the normal
coefficient of restitution en is close to 1, and the tangential coefficient of restitution
et is close to 1. In the ‘partially rough’ particle model, the normal coefficient of
restitution en is close to 1; and the tangential coefficient of restitution et is close to
−1 if the angle between the relative velocity vector and the line joining the centres of
the particles is greater than the ‘roughness angle’ (chosen to be (π/4) in the present
calculation), and is close to 1 if the angle between the relative velocity vector and the
line joining the centres is less than the roughness angle. The conserved variables in
this case are mass and momentum; energy is not a conserved variable in the ‘adiabatic
limit’ considered here, when the length scale is large compared to the ‘conduction
length’. The results for the constitutive relations show that in the Navier–Stokes
approximation, the form of the constitutive relation is identical to that for smooth
particles, but the coefficient of shear viscosity for rough particles is 10 %–50 % higher
than that for smooth particles. The coefficient of bulk viscosity, which is zero in the
dilute limit for smooth particles, is found to be non-zero for rough and partially rough
particles, owing to the transport of energy between the translational and rotational
modes. In the Burnett approximation, there is an antisymmetric component in the
stress tensor for rough and partially rough particles, which is not present for smooth
particles.

The constitutive relations are used to analyse the ‘core region’ of a steady granular
flow down an inclined plane, where there is a local balance between the production of
energy due to the mean shear and the dissipation due to inelastic collisions. It is found
that realistic results, such as the decrease in density upon increase in the angle of
inclination near close packing, are obtained for the rough and partially rough particle
models when the Burnett coefficients are included in the stress tensor, but realistic
results are not obtained using the constitutive relations for smooth particles. This
shows that the flow dynamics is sensitive to the numerical values of the viscometric
coefficients, and provides an indication of the minimal model required to capture the
flow dynamics.
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2 V. Kumaran

1. Introduction

Much work has been done on the derivation of constitutive relations for granular
materials. Kinetic theory approaches make an analogy between the motion of the
particles in a granular material and the motion of molecules in a gas, and attempt to
write down constitutive relations similar to those derived by the Chapman–Enskog
procedure for hard sphere gases (Chapman & Cowling 1970). There have been
many formulations of the balance laws and constitutive relations for smooth inelastic
particles (Savage & Jeffrey 1981; Jenkins & Savage 1983; Lun et al. 1984; Jenkins &
Richman 1985). These models typically fall into two categories, the generalized
Navier–Stokes equations where the mass and momentum equations are similar to
those for a simple fluid, but where the energy equation has an additional term due
to the dissipation of energy in inelastic collisions (Jenkins & Savage 1983; Lun
et al. 1984; Sela, Goldhirsch & Noskowicz 1996; Sela & Goldhirsch 1998); and
the moment expansion models (Jenkins & Richman 1985; Chou & Richman 1998),
where the higher moments of the velocity distribution function are incorporated in
the description. There have been derivations of kinetic equations up to Burnett order
starting from the Boltzmann equation using an expansion with the Knudsen number
and the inelasticity of the particle collisions as the small parameters (Sela et al. 1996;
Sela & Goldhirsch 1998). Goldhirsch (2003) concluded that hydrodynamic models
have been unusually successful in describing rapid granular flows even though there
is not a large scale separation between the microscopic scale (particle diameter or
mean free path) and the flow scales.

There has been relatively less work on kinetic theories for rough inelastic particles,
where the rotation of the particles is also incorporated. Lun & Savage (1987)
developed a kinetic theory formulation for rough particles in the dense limit, where
the collisional stress is large compared to the kinetic stress. Lun (1991) determined
the kinetic contributions to the stresses for the dilute granular flow of slightly inelastic
and slightly rough spheres, and formulated conservation laws for the density, linear
and angular momenta and the linear and angular contributions to the kinetic energy.
A moment expansion method was used to express the fluxes in terms of the gradients
in the linear and angular velocities and temperatures. One discrepancy between the
above theories and the simulations of Campbell (1989) and Walton & Braun (1986)
is that the stresses in the simulations are anisotropic, whereas the theories predict
isotropic stresses.

The transport properties for a dilute gas of perfectly rough elastic molecules
have been calculated using the Chapman–Enskog procedure by Pidduck (1922) (see
Chapman & Cowling 1970 for a description). The major conclusion of this calculation
was that the equation of state for a gas of rough particles is identical to that for a gas of
smooth particles, while the shear viscosity and thermal conductivity for a gas of rough
particles differ by about 5 % from those for a gas of smooth particles. However, there
is a significant variation in the bulk viscosity, owing to the exchange of energy between
the translational and internal modes. A moment expansion method was formulated
by Theodosopulu & Dahler (1974a, b) for polyatomic molecules in the dense limit,
using the Boltzmann–Enskog closure approximation. In this approximation, the two-
particle velocity distribution function in the BBKGY hierarchy is approximated as
the product of the single-particle velocity distribution functions and the equilibrium
spatial pair correlation function at contact. This approximation incorporates the
increase in the pair distribution function due to excluded volume effects, but the
effect of correlated collisions between particles is neglected. Theodosopulu & Dahler
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Granular flow of rough particles 3

(1974a, b) wrote conservation equations for the density, linear and angular momenta
and the translational and rotational parts of the particle energies, and these were
solved by using an expansion in the moments of the distribution function for rough
particles as well as for ellipsoids. The authors found that the theory gave good results
even in the dense regime where kinetic theories, which neglect correlated collisions,
are not expected to be accurate.

In a gas of inelastic particles, energy is not conserved in particle collisions. It was
shown (Kumaran 2004) that it is appropriate to treat energy as a conserved (non-
conserved) variable if the length scale of perturbations is smaller (larger) than the
‘conduction length’, which is obtained as follows. If en is the coefficient of restitution,
the energy dissipated in a collision between two particles is O((1 − en)T ), where the
‘granular temperature’ T is the mean square velocity of the particles (the particle
mass is assumed to be 1 without loss of generality). It can be inferred, by examining
the energy balance equation, that fluctuations in energy are damped over a length
scale comparable to λ/(1 − en)

1/2, where λ is the mean free path. The rate of diffusion
of energy in the energy balance equation scales as O(DT T/L2), where the thermal
diffusivity DT ∼ λT 1/2 in the kinetic theory of gases, while the rate of dissipation of
energy is O((1−en)T

3/2/λ), since (T 1/2/λ) is the frequency of collisions. Equating these
two terms, it is clear that the rate of diffusion and rate of dissipation are of equal
magnitude when the length scale is comparable to the conduction length defined as
Lc = λ/(1 − en)

1/2. Here, we restrict attention to the ‘adiabatic’ limit (L � Lc), where
the rate of conduction of energy is small compared to the rates of production and
dissipation, and there is a local balance between the rates of production due to shear
and dissipation due to inelastic collisions. The conduction of energy is important
only in a region of thickness comparable to the conduction length near the walls.
It should be noted that the sum of the angular momenta of the particles in a
reference frame located at the particle centres is not conserved in a collision, and
perturbations to the angular momentum decay over time scales comparable to the
inverse of the collision frequency, or over length scales comparable to the mean free
path. The constitutive relations in the adiabatic limit for granular flows of smooth
inelastic particles were derived in Kumaran (2004). Here, we derive the constitutive
relations for rough particles, in order to examine the effect of particle rotation on the
constitutive relations.

The constitutive relations, correct to Burnett order, are derived using an expansion
in the parameter ε. Though the terms ‘Navier–Stokes’ and ‘Burnett’ are used here, it
should be noted that the procedure used here is qualitatively different from that used
for deriving macroscopic equations in the kinetic theory of gases. In that case, the
mean free path λ is small compared to the length scale of the flow L, and the mean
velocity U is small compared to the root mean square velocity of the gas T 1/2, so that
an expansion is used in the gradients of the density, velocity and temperature. The
number of spatial derivatives in the Burnett terms in the stress tensor is one higher
than that in the Newton’s law of viscosity. In the present case, an expansion is carried
out in the small parameter ε = (1 − en)

1/2, which represents the departure from elastic
(energy conserving) collisions. In this expansion, the leading-order contribution to the
stress tensor is the isotropic pressure, the O(ε) correction provides Newton’s law for
viscosity, while the O(ε2) correction provides the ‘Burnett’ terms.

Two models for particle interactions are considered here. In the case of rough
particles, the relative tangential velocity after collision is −et times the relative
tangential velocity before collision, and the coefficient of restitution et is (1 − O(ε2)).
In an ε expansion, terms proportional to ε are neglected in the leading approximation,
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4 V. Kumaran

and the relative tangential velocity at contact is reversed in a collision, leading to
energy conservation. A deficiency of the rough particle model is that the relative
tangential velocity at contact is reversed even for a grazing collision, for which there
is very little collisional impulse along the line joining the centres. A more realistic
model, which is the partially rough particle model, is also analysed here. In the
partially rough particle model, the collision is considered to be rough if the angle
between the line joining the centres and the relative velocity is less than the ‘roughness
angle’, and smooth if the angle between the line joining the centres and the relative
velocity is greater than the roughness angle. For simplicity, the roughness angle is
considered to be (π/4) in the present analysis, though other values of the roughness
angle can be analysed using a similar procedure. This model has the advantage
that head-on collisions are rough whereas grazing collisions are smooth. Energy is
conserved in the leading approximation in this case as well. Another model used
previously in literature is the ‘frictional particle’ model, in which the contact during
a collision could be of two types (Herbst, Huthmann & Zippelius 2000; Jenkins &
Zhang 2002). The first is the ‘sliding contact’ in which the tangential impulse between
colliding particles is given by the Coulomb friction law if the angle between the
relative velocity vector and the line joining the centres is greater than a ‘friction
angle’ θf . The second is ‘sticking collisions’, for which the tangential coefficient of
restitution is a constant, when the angle between the relative velocity and the line
joining the centres is less than θf . As discussed in Herbst et al. (2000), for a frictional
collision, the energy loss in a collision is small compared to the sum of the energies
of the particles only in two limits. The first is the smooth particle limit, where the
tangential coefficient of restitution is close to −1 and the coefficient of friction is
small. In this limit, constitutive relations correct to O(ε) were derived by Jenkins &
Zhang (2002), and it was found that the stress and the translational component
of the temperature are identical to those for smooth particles in the Navier–Stokes
approximation, though there is an additional contribution to the energy dissipation
owing to particle friction. In a similar manner, the results of the present calculation
indicate that the Burnett-order terms in the equation for the stress tensor are also
identical to those for smooth particles, though there is an additional contribution to
the energy dissipation owing to the friction of the particles. Consequently, this limit
is not examined in detail in the present analysis. The second limit is for θf → (π/2)
and µf → ∞ for sliding collisions and et → 1 for sticking collisions. The constitutive
relation derived correct to Burnett order for frictional particles, using a procedure
similar to that used here, is identical to that for rough particles, though there is an
additional contribution to the energy dissipation owing to friction. Consequently, the
details of this calculation are not provided.

In the kinetic theory of gases, the Burnett coefficients can be calculated only in
the dilute limit, where the assumption of molecular chaos is valid. If the shear stress
is expanded as a function of the strain rate γ̇ for a linear shear flow, the leading
(Navier–Stokes) term is proportional to γ̇ , while the next higher ‘Burnett’ term, is
proportional to γ̇ 2. When the number density increases, there is a contribution to the
stress owing to correlations in the particle positions prior to collision (Ernst et al.
1978) which are incorporated in the ‘ring kinetic equation’. The leading correction to
the stress due to correlated collisions is proportional to |γ̇ |3/2, which is large compared
to the Burnett terms in the limit γ̇ → 0, so that the Burnett coefficients diverge in this
case. For a granular flow, the temperature and the rate of deformation are related,
since the rate of deformation is the source of energy which sustains the fluctuating
velocity of the particles. An asymptotic analysis in the parameter ε = (1 − en)

1/2 is
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Granular flow of rough particles 5

used in the present analysis, and the ratio (γ̇ /T 1/2) ∝ ελ−1, where λ is the mean free
path, so that the non-analytic correction to the Burnett coefficients is significant for
(kλ) > ε1/2. However, the calculation of the Burnett coefficients is restricted to the
low-wavenumber regime (kλ) � ε, or (γ̇ /T 1/2) � k and the regular Burnett expansion
is valid in this limit.

The present analysis is more comprehensive than the kinetic theory analysis of
Pidduck (1924) because it is not restricted to the low-density regime. In addition,
the Burnett coefficients in the equation for the stress tensor are determined here,
whereas the earlier studies of Pidduck (1924) and Theodosopolou & Dahler (1974a,b)
for elastic spheres and Lun & Savage (1987) and Lun (1991) for inelastic spheres
were restricted to the viscometric coefficients in Newton’s law for viscosity. We use a
perturbation expansion in the small parameter ε = (1 − en)

1/2, and formulate balance
equations for only the conserved fields, which are the mass and momentum fields. The
angular momentum and energy fields, which are not conserved, are determined as a
function of the rate of deformation. This is simpler than the analysis of Lun & Savage
(1987) and Lun (1991) where fields for the angular momentum and the translational
and rotational energies were included in the description, and this simplification enables
the calculation of the Burnett coefficients in the expression for the stress tensor. The
expression for the shear viscosity calculated here turns out to be slightly different from
that of Pidduck (1924), because of a slight difference in the calculation procedure,
and this difference is explained in Appendix A.

The constitutive relations are used to examine the variation of volume fraction
with the angle of inclination for the steady ‘bulk’ flow of granular material down an
inclined plane. Pouliquen (1999) experimentally studied the chute flow of a granular
material down a rough inclined plane. This study indicated that there is inception of
flow only when the angle of inclination of the base with respect to the horizontal
exceeds a minimum angle, and there is steady fully developed flow only when the
angle of inclination is between a minimum and a maximum value. The mean velocity
was found to increase as h3/2, where h is the layer height; this scaling is expected if
the stress is due to instantaneous collisions and the Bagnold law is used for the stress
as a function of strain rate (Silbert et al. 2001), though earlier studies have reported
an increase proportional to h1/2 when the stress is the sum of a kinetic part due to
instantaneous collisions and a frictional part due to enduring contacts (Louge & Keast
2001). The other significant result was the correlation between the average velocity
during flow, and the height of the layer after cessation of flow hstop . Though hstop was
typically much smaller than the height of the material during flow, the correlation
between these indicates that the same microscopic properties are responsible both for
the average velocity during flow and for determining the minimum height at which
flow stops.

Silbert et al. (2001) carried out large-scale simulations of the flow of granular
material down an inclined plane. Detailed profiles were obtained for the velocity
and the fluctuating energy. The broad features of the flow were similar to those in
the experiments of Pouliquen (1999), and it was observed that the flow inception
occurs at a minimum angle of inclination and that the flow becomes unstable and
continually accelerates beyond a maximum angle of inclination. One of the significant
observations of the study was that the constitutive relation for the stress is given by
the Bagnold law, which states that the stress is proportional to the square of the strain
rate. Pouliquen & Chevoir (2002) compared the ratio of the stress and strain rate, as
well as the shear and normal stresses, for two different configurations, the flow down
an inclined plane and the shear flow between two parallel plates. They observed that
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6 V. Kumaran

the ratio of the shear and normal stresses, as well as the dependence of the stresses on
the strain rate, were identical in both cases, indicating that the constitutive relation
at the microscopic scale is identical in both cases.

A model for the granular flow down a plane, based on kinetic theory, was formulated
by Louge (2003). The flow was divided into a ‘core region’ away from the bottom
boundary where the density is nearly a constant, a ‘basal layer’ near the bottom
surface and a ‘surface layer’ near the top surface. The density is nearly a constant in
the ‘core region’, while it increases slightly near the bottom and decreases to zero in
the surface layer. The stress was separated into a kinetic part due to instantaneous
collisions, and a frictional part due to enduring contacts. The frictional part was
assumed to satisfy the Coulomb law of friction, while the kinetic part was modelled
using kinetic theory. The ratio of the kinetic and frictional part of the stress tensor,
when inserted into the energy balance equation, resulted in a minimum angle required
for the inception of flow. One drawback of this model is that the density in the
core region cannot be explicitly determined, and a model based on the simulations
of Silbert et al. (2001) was used. The model of Bocquet, Errami & Lubensky (2002)
was based on the momentum equation which relates the pressure gradient to the
weight, and the heat conduction equation for the fluctuating energy of the particles.
Numerical solutions of the model equations showed many of the features observed in
the simulations.

The simulations of Silbert et al. (2001) have provided a large amount of detail
about the configuration, velocity and stress profiles for the flow down an inclined
plane. One of the striking features is the remarkable constancy of the volume fraction
in the bulk of the flow. In addition, the fact that the stress and velocity profiles obey
Bagnold scaling suggests that a kinetic theory approach may work for this case. The
Bagnold law for the stress is a dimensional necessity if the only time scale in the
problem is the inverse of the strain rate, and there are no material time scales. The
validity of Bagnold law suggests that there are no time scales in the problem relating
to the particle interactions, and that particle interactions can be modelled using
dimensionless parameters. There are two types of model where particle interactions
can be modelled by dimensionless parameters: the ‘quasi-static’ model which provides
a relation between the normal and tangential forces at contact; and the kinetic model
which assumes that the interaction between particles is due to instantaneous collisions.
Clearly, the quasi-static model is not applicable to the simulations of Silbert et al.
(2001), since the particles do not remain in extended contact, and the instantaneous
coordination number varies between 1 and 2 in most cases. This suggests that the flow
can be successfully modelled using a kinetic approach. The analysis in § 3 suggests
that this is indeed the case.

The viscometric coefficients in the Burnett approximation for rough and partially
rough particles are evaluated in the next section. These are then used to determine the
density as a function of the angle of inclination in § 3 for the flow down an inclined
plane. The important conclusions of the analysis are summarized in § 4.

2. Constitutive relations
The system consists of rough inelastic spheres of diameter d subjected to a two-

dimensional deformation field Gij = (∂Ui/∂xj ), where Ui is the mean velocity, and
indicial notation is used to represent vectors and tensors. The particle mass m and
diameter d are set equal to 1 without loss of generality, so that all mass and length
dimensions are non-dimensionalized by the particle mass and diameter, respectively.
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Granular flow of rough particles 7

The motion of the particles is described by their velocity ui and the angular velocity ωi .
The fluctuating velocity of the particles is defined as c = u − U , while the fluctuating
angular velocity is defined as � =ω − Ω , where Ω is the mean angular velocity. Note
that U is a linear function of depth, since the strain rate is assumed to be a constant
over distances comparable to the mean free path, while Ω is independent of position
for a homogeneous shear flow. The distribution function f (x, c, �, t) is defined such
that f (x, c, �, t) dc d� is the probability of finding a particle at location x and time
t in the differential volume dc about c in velocity space having angular velocity in the
interval d� about � . The Boltzmann equation for the distribution function is given
by

D(ρf )

Dt
+

∂(ρcif )

∂xi

+

(
ai − DUi

Dt

)
∂(ρf )

∂ci

− Gijcj

∂(ρf )

∂ci

=
∂c(ρf )

∂t
, (2.1)

where indicial notation is used to represent vectors and a repeated index implies a dot
product. In equation (2.1), ρ is the number density of the particles, a is the particle
acceleration due to body forces, and (D/Dt) ≡ (∂/∂t) + Ui(∂/∂xi) is the substantial
derivative. The second and third terms on the left-hand side of (2.1) are the rates of
change of the distribution function due to the motion of the particles in real space
and the motion in velocity space due to the acceleration of the particles. The fourth
term on the left-hand side is the rate of change of the distribution function due to the
change in the mean velocity with spatial position. The term on the right-hand side
is the rate of change of the distribution function due to particle collisions. Though
equation (2.1) appears to differ from the standard form used in the literature, it is
easily obtained when the particle velocity is expressed as the sum of the mean and
fluctuating velocity, as shown in Chapman & Cowling (1970).

The linear and angular velocity distributions in a homogeneous flow at steady state
are assumed to be of the form f (x, c, �, t) = fc(c)fω(� ), where

fc(c) =
1

(2π)3/2
√

Det(T)
exp

(
−

ciT
−1
ij cj

2

)
, (2.2)

fω(� ) =
1

(2π)3/2
√

Det(Υ )
exp

(
−

�iΥ
−1
ij �j

2

)
, (2.3)

where Tij = 〈cicj 〉 is the second-order tensor of second moments of the velocity
distribution function, and Υij = 〈�i�j 〉 is the second-order tensor of the second
moments of the angular velocity fluctuations, where the average 〈	〉 of a moment 	 is
defined as

〈	〉 =

∫
dc

∫
d�f (x, c, �, t) 	. (2.4)

The second moments Tij and Υij are determined from conservation equations for the
second moments of the velocity distribution, 〈cicj 〉, and the first and second moments
of the angular velocity distribution, 〈ωi〉 and 〈�i�j 〉,

ρ
DTij

Dt
+ ρ(GikTkj + GjkTki) =

∂cρ〈cicj 〉
∂t

, (2.5)

ρ
DΩi

Dt
=

∂c(ρωi)

∂t
, (2.6)

ρ
D(Υij + ΩiΩj )

Dt
=

∂c(ρωiωj )

∂t
. (2.7)
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8 V. Kumaran

In equations (2.5), (2.6) and (2.7), the mass conservation condition (Dρ/Dt)+ρGii = 0
has been used to simplify the expressions on the left-hand side. It should be noted
that Tij and Υij are functions of ε, and these are determined using an expansion
in ε in equation (2.14). This form of the distribution function was used to obtain
constitutive relations for smooth inelastic particles by Kumaran (2004), and it was
found that the results are identical to those of the Chapman–Enskog procedure
(Chapman & Cowling 1970) if only the first term in the Sonine-polynomial expansion
for the distribution function is retained. In addition, it was found that the errors are
numerically small even when the higher-order terms in the expansion are included.
In the present analysis, we verify that the results for the pressure and viscosity are
identical to those obtained by the Chapman–Enskog procedure for rough particles
when the leading term in the Sonine-polynomial expansion is retained.

The collision rules used for calculating the collision integral are as follows. Consider
a collision between two particles having velocities ui and u∗

i , and angular velocities ωi

and ω∗
i , in which the unit vector in the direction of the line joining the centres of the

particles from the particle at x to the particle at x∗ is k. In a collision that conserves
linear and angular momenta, the sum of the velocities (ui + u∗

i ) and the difference in
the angular velocities (ωi − ω∗

i ) are conserved in the collision. The velocity difference
between the two particles at the point of contact is gi = (ui − u∗

i ) − (εijl/2)kj (ωl + ω∗
l ).

The components of the relative velocity parallel and perpendicular to the line joining
the centres of the particles are,

giki = (ui − u∗
i )ki

= c
(−)
i ki − kiGij kj , (2.8)

(δij − kikj )gj = (δij − kikj )(uj − u∗
j ) + (εijl/2)kj (ωl + ω∗

l )

= (δij − kikj )
(
c

(−)
j − Gjkkk

)
+ (εijl/2)kjω

(+)
l , (2.9)

where c
(−)
i = ci − c∗

i is the difference in the fluctuating velocities of the particles,

ω
(+)
i = ωi +ω∗

i is the sum of the angular velocities, ki is the unit vector in the direction
of the line joining the centres of the particles, and εijl is the invariant antisymmetric
tensor. In the collisional model used here, the post-collisional tangential and normal
velocities are related to their pre-collisional values by

g′
iki = −engiki, (2.10)

(δij − kikj )g
′
j = −et (δij − kikj )gj , (2.11)

where 0 � en � 1 and −1 � et � 1 are the normal and tangential coefficients of restitu-
tion. In the direction along the line joining centres, en = 1 corresponds to elastic
collisions and en = 0 corresponds to perfectly inelastic collisions, while in the direction
normal to the line joining the centres, et = −1 corresponds to smooth spheres and
et = 1 corresponds to rough spheres for which the relative tangential velocity vector
changes sign upon collision. Using these collision laws, it is shown in Appendix B that
the post-collisional linear and angular velocities are related to their pre-collisional
values by

u′
i − ui = −((1 + en)/2)(uj − u∗

j )kjki − ((1 + et )/2)(4I/(1 + 4I))((δij − kikj )(uj − u∗
j ),

− (εijl/2)kj (ωl + ω∗
l )) (2.12)

ω′
i −ωi = −((1+et )/2)(4I/(1+4I))(1/2I)(εijlkj (ul −u∗

l )+(1/2)(δij −kikj )(ωj +ω∗
j )),

(2.13)
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Granular flow of rough particles 9

where I is the moment of inertia scaled by the product of the mass and the square
of the diameter of the particle. It is natural to use an expansion in the small parameter
en = (1 − ε2) (Kumaran 2004), so that the rate of dissipation of energy is given,
correct to leading order in small ε, by 4

√
πρ2χT 3/2ε2 for smooth spheres. The

collision integrals can be evaluated using an expansion in the parameter ε. The
resulting expressions, which are explicitly functions of the parameters I, are algebrai-
cally complicated, and so these are not provided in detail. In the present study, three
different models for particle collisions are considered,

(i) Smooth inelastic particles for which (1−en) = ε2 � 1 and et = −1, so that there
is no change in the angular velocities in a collision. These have already been analysed
(Kumaran 2004), and so are not analysed in detail here. In this case, the rate of
dissipation of energy, correct to leading order in ε, is given by 4

√
πρ2χT 3/2ε2.

(ii) Rough inelastic particles are those with en → 1 and et → 1, so that (1 −
en) = ε2 � 1. The rate of dissipation of energy is given by 2

√
πρ2χT 3/2((1 − e2

n)+ (1 −
e2
t )). In this case, the dissipation due to the translational and rotational modes are

comparable only when (1 − et ) ∼ ε2. The substitution (1 − e2
t ) = 2atε

2, is used where
at =(1 − e2

t )/(1 − e2
n) is a numerical O(1) factor. The rate of dissipation of energy is

then given by 4
√

πε2ρ2χT 3/2(1 + at ).
(iii) Partially rough particles are those with (1 − en) = ε2 � 1, and et = −1 if the

angle between the relative velocity and the line joining the centres of the particles is
greater than the ‘roughness angle’ (grazing collisions), and et → 1 if the angle between
the relative velocity and the line joining the centres is less than the ‘roughness angle’
(head-on collisions). The roughness angle is chosen to be equal to (π/4) in the present
analysis, though the same procedure can be used for other roughness angles as well.
The rate of dissipation of energy is given by 2

√
πρ2χT 3/2((1 − e2

n)+ (1 − e2
t )/4), which

is equivalent to 4
√

πρ2χT 3/2ε2(1 + at/4), where at is defined above.
As explained in § 1, the O(ε) correction to the distribution function is used to obtain

the Navier–Stokes terms in the stress tensor which are linear functions of the strain
rate, while the O(ε2) correction is used to obtain the Burnett coefficients which are
quadratic functions of the strain rates. The next higher correction to the stress, due
to the O(ε3) contribution to the stress tensor, results in corrections to the shear and
bulk viscosity coefficients. Here, the expansion is truncated at O(ε2), and since there
are no corrections to the Navier–Stokes terms due to the O(ε2) correction to the
distribution function, it is permissible to set ε = 0 while calculating the Navier–Stokes
and Burnett contributions to the stress tensor.

The mean square velocities and the mean angular velocity are evaluated using an
expansion in the parameter ε,

Tij = T
(0)
ij + εT

(1)
ij + ε2T

(2)
ij ,

Ωi = Ω
(0)
i + εΩ

(1)
i + ε2Ω

(2)
i ,

Υij = Υ
(0)
ij + εΥ

(1)
ij + ε2Υ

(2)
ij .

⎫⎪⎬
⎪⎭ (2.14)

In the leading approximation, the source and dissipation of energy are neglected, and
the system reduces to a gas of particles at equilibrium in the absence of deformation.
For rough particles, there is an equipartition of energy between the translational
and rotational degrees of freedom, and the leading-order mean square velocity and
angular velocity are given by

T
(0)
ij = T δij ,

Υ
(0)
ij = Υ δij ,

}
(2.15)
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10 V. Kumaran

where Υ =(T/I). The value of T is determined from a balance between the rates of
production and dissipation of energy. A simple energy balance argument (Kumaran
2004) can be used to show that Gij ∼ εT 1/2, so that all terms containing the mean
strain rate can also be expanded in a series in ε.

The collisional rates of change of the second moments of the linear and angular
velocities are calculated as follows. Consider a collision between two particles with
fluctuating linear velocities c and c∗, and angular velocities ω and ω∗, such that the
velocity of one of the particles transforms from c → c′ and ω → ω′. The rate of change
of a velocity dependent dynamical variable 	 due to collisions is given by

∂c〈	〉
∂t

= ρ(x∗)χ(φ)

∫
c,c∗

∫
ω,ω∗

∫
k
fc(ci)fc(c

∗
i )fω(ωi)fω(ω∗

i )(	
′ − 	)(ui − u∗

i )ki, (2.16)

where χ is the pair distribution function,∫
c,c∗

≡
∫

dc
∫

dc∗,

∫
ω,ω∗

≡
∫

dω

∫
dω∗,

∫
k

≡
∫

dk,

k is the unit vector along the line joining the centres of the particles, (ui − u∗
i ) = ci −

c∗
i − Gijkj is the difference in the total velocity of the two particles (the difference in

mean velocities is −Gijkj where Gij is the mean strain rate), and the k integral is
carried out for k · (u − u∗) > 0, so that the particles approach prior to collision. In
order to evaluate the collision integral, the distribution functions are first expressed
in a series in the parameter ε using the expansions (2.14) for Tij and Υij ,

fc(c) = Fc(c)
(
1 + εΦ (1)

c (c) + ε2Φ (2)
c (c)

)
, (2.17)

fω(ω) = Fω(ω)
(
1 + εΦ (1)

ω (ω) + ε2Φ (2)
ω (ω)

)
, (2.18)

where

Fc(c) =

(
1

2πT

)3/2

exp

(
− c2

i

2T

)
, (2.19)

Fω(ω) =

(
1

2πΥ

)3/2

exp

(
−� 2

i

2Υ

)
, (2.20)

Φ (1)
c and Φ (1)

ω are functions of T
(1)
ij and Υ

(1)
ij , respectively, and Φ (2)

c and Φ (2)
ω are

functions of (T (1)
ij , T

(2)
ij ) and (Υ (1)

ij , Υ
(2)
ij ), respectively.

The products of the velocity distribution functions in the integral (2.16) are
simplified as follows. The particle velocities are expressed in terms of the sum of
the velocities c(+) = c + c∗, and the velocity difference c(−) = c − c∗,

Fc(c)Fc(c∗) = Fc(+)

(
c(+)

)
Fc(−)

(
c(−)

)
, (2.21)

where

Fc±(c±) =

(
1

4πT

)3/2

exp

(
−c

±2
i

4T

)
. (2.22)

Similarly, the functions Φ (1)
c and Φ (2)

c are also expressed in terms of c(+) and c(−). In
a similar fashion, the product of the distribution function for the angular velocities,

Fω(ω)Fω(ω∗) = Fω(+)

(
ω(+)

)
Fω(−)

(
ω(−)

)
, (2.23)
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Granular flow of rough particles 11

where ω(+) = ω + ω∗ and ω(−) =ω − ω∗, and

Fω±(ω±) =

(
1

4πT

)3/2

exp

(
−ω

±2
i

4T

)
. (2.24)

Since the sum of the linear velocities, c(+), remains unchanged in a collision, the
integral over c(+) is carried out explicitly. A similar simplification cannot be carried
out for c(−) owing to the restriction (ui −u∗

i )ki > 0 for the particles to approach before
a collision.

The distribution function Fc(−) is expressed in terms of the total velocity difference
before collision, (u − u∗) = c(−) − G · k, where −G · k is the difference in the mean
velocities of the two particles.

Fc(−)

(
c(−)

)
=

(
1

4πT

)3/2

exp

(
− (ui − u∗

i − Gijkj )
2

4T

)
. (2.25)

In the above equation (u − u∗) is O(T 1/2), while a simple energy balance can be used
to show that G ∼ εT 1/2. Therefore, the distribution function Fc(−) can be expressed
in a series in ε, and the integral over the total velocity difference (u − u∗) and the
direction of the line joining the centres of the particles ki can be evaluated.

2.1. Rough particles

The calculation of the mean angular velocity is carried out in detail, in order to
illustrate the procedure used for the calculations, but the details of the calculations
for pressure, viscosity and the Burnett coefficients are not explained, and only the
final results are provided. For the purpose of calculation, the rate of deformation
tensor is expressed as

Gij = Sij + Aij + (δij /3)Gkk, (2.26)

where Sij = (1/2)(Gij +Gji − (2δij /3)Gkk) is the symmetric traceless part of the rate
of deformation tension, Aij = (1/2)(Gij − Gji) is the antisymmetric part of the rate of
deformation tensor, and the identity tensor δij is defined such that δij = 1 for i = j ,
and δij = 0 for i �= j . The rate of change of the mean angular momentum due to
inter-particle collisions, including terms that are quadratic in the rate of deformation
tensor, is

∂cρ〈ωi〉
∂t

= ρ2χ(φ)JK
[

−2
√

π(2Ωi + εijkAjk)

3
+

2πΩiGjj

9T 1/2
− 2πSijΩj

15T 1/2
+

2ε
√

πT
(1)
ij Ωj

15T 1/2

+
2πεijkAjkGll

15
− πSij εjklAkl

15
−

2
√

πεεijkT
(1)
j l Glk

15

−
8
√

πεΩiT
(1)
jj

5
− 11

√
πεεijkAjkT

(1)
ll

15

]
, (2.27)

where K = (1/2I), J = (4I(1 + et )/(1 + 4I)). This is inserted into equation (2.6)
and solved to obtain the mean angular velocity as a function of the local rate of
deformation. The mean angular velocity is expanded in a series in the parameter ε,
Ωi = Ω

(0)
i + εΩ

(1)
i , and inserted into equation (2.6). The leading-order solution for the

angular velocity, which is a linear function of the rate of deformation, is half the local
vorticity,

Ω
(0)
i = −εijkAjk

2
. (2.28)
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12 V. Kumaran

This is inserted into equations (2.6) and (2.27) to obtain the first correction to the
angular velocity,

εΩ
(1)
i =

−3

4
√

πJKρ2χ(φ)

DΩ
(0)
i

Dt
, (2.29)

where K = (1/2I), J = (4I(1 + et )/(1 + 4I)). The result T
(1)
ij = −QT T 1/2Sij −

QT IT
1/2δijGkk , obtained later in equations (2.36) and (2.45), has been used in deriving

equation (2.29). The substantial derivative of the leading contribution to the mean
angular velocity on the right-hand side of equation (2.29) is simplified as indicated in
Appendix C,

DΩ
(0)
i

Dt
= +

εijk

2

(
∂k

(
∂jp

ρ

)
− ∂j

(
∂kp

ρ

))
+ εijk(AjlSlk + SjlAlk), (2.30)

where the pressure p is defined in equation (2.56) below. This is used to obtain the
angular velocity, correct to second order in the rate of deformation tensor,

Ωi = −εijkAjk

2
− 3

4
√

πJKρ2χ

(
εijk(AjlSlk + SjlAlk) +

εijk

2

(
∂k

(
∂jp

ρ

)
− ∂j

(
∂kp

ρ

)))
,

(2.31)

where K = (1/2I), J =(4I(1 + et )/(1 + 4I)).
The collision integrals for the second moments of the velocity distribution are

inserted into the conservation equations to obtain the first corrections T
(1)
ij and Υ

(1)
ij .

The equation for the deviatoric part of the second moment for the velocity field is

ρT (Gij + Gji − (2/3)δijGkk) =
∂cρ〈cicj − δij c

2
k/3〉

∂t

∣∣∣∣
1

, (2.32)

where the first correction to the collision integral for the deviatoric part of the second
moment of the velocity distribution is

∂cρ
〈
cicj − δij c

2
k

/
3
)〉

∂t

∣∣∣∣∣
1

= ρ2χ

[
T 1/2Sij π

[
− 8

15
− 2J

3
+

2J2

15
+

J2Υ

30

]

+ ε
(
T

(1)
ij − (δij /3)T (1)

kk

)√
π

[
−16

5
+

4J2

5
− J2Υ

30T

]

−
ε
√

πJ2
(
Υ

(1)
ij − (δij /3)Υ (1)

kk

)
6

]
. (2.33)

The equation for the deviatoric part of the second moment for the angular velocity
field is

0 =
∂cρ

〈
ωiωj − ω2

kδij

/
3
〉

∂t

∣∣∣∣∣
1

, (2.34)

where the first correction to the collision integral for the second moment of the
angular velocity distribution is

∂c

〈
ωiωj − ω2

kδij

/
3
〉

∂t

∣∣∣∣∣
1

= ρ2χ

[
Sijπ

[
KJ(4KJ + (KJ − 4)Υ )

30

]

+ ε
(
T

(1)
ij − (δij /3)T (1)

kk

)√
πJK

[
−4KJ

5
+

2Υ

15
− KJΥ

30

]

+

√
πεJK

(
Υ

(1)
ij − (δij /3)Υ (1)

kk

)
(7JK − 40)

30

]
, (2.35)
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Granular flow of rough particles 13

where K = (1/2I), J = (4I(1 + et )/(1 + 4I)). Equations (2.32) and (2.34) (in which
the right-hand sides are given by (2.33) and (2.35), respectively) are simultaneous
tensor equations for T

(1)
ij and Υ

(1)
ij , and the inhomogeneous terms in these equations

are both proportional to the tensor Sij . Therefore, these can be solved simultaneously

to obtain the symmetric traceless parts of T
(1)
ij and Υ

(1)
ij , both of which are proportional

to Sij , (
T

(1)
ij − (δij /3)T (1)

kk

)
= −QT SijT

1/2,(
Υ

(1)
ij − (δij /3)Υ (1)

kk

)
= −QΥ SijT

1/2,

}
(2.36)

where the coefficients QT and QΥ , obtained by solving the simultaneous equations
(2.32) and (2.34), are

QT (J3KΥ − 5J2Υ − 4J3K + 80J2 + 56JK − 320)

= (
√

π/3)(160 + 200J − 28JK − 40J2 − 35J2K + 12J3K − 15Υ J2 + 3J3KΥ )

+
5
√

π(40 − 7JK)

6φχ
, (2.37)

QΥ (J3KΥ − 5J2Υ − 4J3K + 80J2 + 56JK − 320)

= (
√

π/3)(−192JK − 120J2K + 48J3K + 112Υ + 20JΥ − 28JKΥ

− 28J2Υ − 5J2KΥ + 12J3KΥ ) +
5
√

π(24JK − 4Υ + JKΥ )

6φχ
. (2.38)

For smooth particles in the limit J = 0, QT and QΥ are

QT =

(√
π

6
+

5
√

π

48φχ

)
, (2.39)

QΥ =
√

πΥ

(
7

60
+

1

96φχ

)
. (2.40)

Equation (2.39) is identical to the result derived in for the flow of smooth nearly
elastic spheres in Kumaran (2004). In the opposite limit of rough spheres, where
J = (8I/(1 + 4I)), QT and QΥ are

QT =

√
π(1 + 4I)(3 + 40I)(5 + 20I + 8φχ + 80Iφχ)

48(3 + 66I + 280I2)φχ
, (2.41)

QΥ = −5
√

π(1 + 4I)(5 + 20I + 8φχ + 80Iφχ)

12(3 + 66I + 280I2)φχ
. (2.42)

For a uniform sphere, I = 1/10, and QT and QΥ are

QT =
49

√
π(7 + 16φχ)

2976φχ
, (2.43)

QΥ = −35
√

π(7 + 16φχ)

744φχ
. (2.44)

The isotropic parts T
(1)
ii and Υ

(1)
ii are determined as follows. It can be assumed, without

loss of generality, that Υ
(1)
ii = −(T (1)

ii /I), so that the first correction to the total energy
of the system, (3(Tii + IΥii)/2), is zero. The energy balance equation, which is deter-
mined by writing the conservation equation for ((c2

i + Iω2
i )/2) in equation (2.49)

below, contains the substantial derivative of the leading-order temperature (DT/Dt).
In order to obtain a relation for T

(1)
ii as a function of the strain rate, it is necessary
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14 V. Kumaran

to obtain an equation which does not contain the substantial derivative of the
temperature. This is obtained by writing a balance equation for (c2

i /2 − Iω2
i /2). The

O(ε) correction to this equation provides an expression for T
(1)
ii ,

T
(1)
ii = −QT IGii,

Υ
(1)
ii = −QΥ IGii,

}
(2.45)

where

QT I =

√
π(J2 − 8IJ − 32I2 + 32JI2 − 16J2I2)

J(−5J + 40I − 16JI − 288I2 + 144JI2)

+
8
√

πI2

φχJ(−5J + 40I − 16JI − 288I2 + 144JI2)
, (2.46)

QΥ I = −(QT I/I). (2.47)

For J =8I/(1 + 4I), the constant QT I is given by

QT I =

√
π(1 + 4I)2(1 + 4φχ)

256Iφχ
. (2.48)

The total energy balance equation is obtained by writing an equation for (c2
i /2 +

Iω2
i /2). The resulting equation is of the form

ρCv

DT

Dt
+ pGii − 2µSikSki − µbG

2
ii + RT 3/2 = 0, (2.49)

where Cv , the specific heat at constant volume, is determined to be 3, in agreement with
the expectation from the equipartition of energy for a system with three translational
and three rotational degrees of freedom. The dissipation function in equation (2.49),
R, is

R = 4
√

πε2ρ2χT 3/2(1 + at ), (2.50)

and the pressure p, the shear and bulk viscosities µ and µb are provided in equation
(2.59).

The second corrections T
(2)
ij and Υ

(2)
ij are determined from the second corrections

to the balance equations for the second moments of the velocity distribution.

ρ

(
DT

(1)
ij

Dt
+ T

(1)
ik Gkj + T

(1)
jk Gki

)
=

∂c(ρ〈cicj 〉)
∂t

∣∣∣∣
2

, (2.51)

ρ
DΥ

(1)
ij

Dt
=

∂c(ρ〈ωiωj 〉)
∂t

∣∣∣∣
2

. (2.52)

The substantial derivatives on the left-hand sides of equations (2.51) and (2.52) are
simplified as shown in Appendix C.

The stress σij , which is the rate of transport, per unit area, of i momentum across a
surface whose unit normal is in the j direction, consists of two parts. The first is the
kinetic part σ

(k)
ij , which is due to the physical transport of particles along the surface,

and the other is the collisional part σ
(c)
ij , which is due to the collision of particles on

one side of the surface with particles on the other side,

σ
(k)
ij = −ρ〈cicj 〉

= −ρ
(
T δij + ε1/2T

(1)
ij + εT

(2)
ij

)
, (2.53)
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Granular flow of rough particles 15

σ
(c)
ij = 1

2
ρ2χ(φ)

∫
k

∫
u

∫
u∗

f (x, u)f (x∗, u∗)(c′
i − ci)kj ((u − u∗) · k)

=
6ρφχ(φ)

π

(
−2πT δij

3
+

(8 + 3J)
√

πT Sij

15
+

4
√

πT δijGkk

9

− (4 + 3J)π

15

(
εT

(1)
ij + ε2T

(2)
ij

)
+

πε2δij

6

(
2 + T −1T

(1)
kl T

(1)
lk

)
− π(8 + 3J)SijGkk

90

− π

105
((8 + 3J)SikSkj + (2 − J)δijSklSlk) − πδijG

2
kk

27
+

√
πεT −1/2(4 + 3J)T (1)

ij Gkk

45

+

√
πεT −1/2

105

(
(8 + J)SikT

(1)
kj + 8(1 + J)T (1)

ik Skj + (4 − 3J)δijT
(1)
kl Slk

)
− 1

2Kρ2χ

(
AikSkj + SijAjk − 1

2

(
∂j

(
∂kσik

ρ

)
− ∂i

(
∂kσjk

ρ

))))
, (2.54)

where χ is the pair distribution function. The total stress tensor is of the form

σij = −p(φ, Sij , Gii)δij + 2µ(φ, SijGii)Sij + µb(φ, Sij , Gii)δijGkk

+ ASSSikSkj + ASGSijGkk + ASAS(SikAkj + SjkAki)

+ AAAAikAkj + ASAA(AikSkj − SikAkj )

+ CS

(
∂

∂xi

(
1

ρ

∂p

∂xj

)
+

∂

∂xj

(
1

ρ

∂p

∂xi

)
− 2δij

3

∂

∂xk

(
1

ρ

∂p

∂xk

))

+
δij

3

(
BSSSklSlk + BAAAklAlk + BGGG2

kk + CI

∂

∂xk

(
1

ρ

∂σkl

∂xl

))

+ CA

(
∂

∂xj

(
1

ρ

∂p

∂xi

)
− ∂

∂xi

(
1

ρ

∂p

∂xj

))
, (2.55)

where the pressure for rough particles is identical to that for smooth particles, and is
independent of the parameters I, J and K, but the shear and bulk viscosities do
depend on I, J and K,

p = ρT (1 + (4 − 2ε2)φχ), (2.56)

µ =
ρT 1/2QT

2
+

√
πρ2χT 1/2(8 + 3J + QT

√
π(4 + 3J))

30
, (2.57)

µb =
ρT 1/2QT I

3
+ ρ2χT 1/2

(
4
√

π

9
+

8πQT I

9

)
. (2.58)

For spherical particles I = 1/10, and in the rough limit J =8I/(1 + 4I), the shear
and bulk viscosities are

p = (6φ/π)T (1 + (4 − 2ε2)φχ),

µ =
408T 1/2φ2χ

35π3/2
+

7T 1/2(7 + 16φχ)2

992
√

πχ

= T 1/2

(
0.195078

χ
+ 0.891784φ + 3.11265φ2χ

)
,

µb =
16φ2T 1/2χ

π3/2
+

49T 1/2(1 + 4φχ)(1 + 16φχ)

320
√

πχ

= T 1/2

(
0.0863915

χ
+ 1.72783φ + 8.40245φ2χ

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.59)
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16 V. Kumaran

The expression for the bulk viscosity in equation (2.59) is identical to that derived
by Pidduck (1922) using the Enskog procedure in the dilute limit, but the expression
for the shear viscosity shows a slight variation from that of Pidduck (1922), and
the reasons for this are explained in Appendix A. The expressions for the Burnett
coefficients in equation (2.55) are algebraically complicated, and so they are provided
only for I = 1/10 and in the limit et → 1,

ρ−1ASS = −0.012873

(φχ)2
− 0.064821

φχ
− 0.544585 − 1.61492φχ,

ρ−1ASG = −0.0256376

φ2χ2
+

0.152234

φχ
+ 0.1292 − 1.99594χφ

− χρ

χ2

(
0.098524 +

0.043105

φχ

)
,

ρ−1ASAS = −0.020866

φ2χ2
− 0.09538

φχ
− 0.109015, ρ−1ASAA = − 1

2K = −0.1,

ρ−1AAA =
0.02257

φ2χ2
+

0.103175

φχ
+ 0.117914,

ρ−1BSS = −0.00057488

φ2χ2
+

0.09246

φχ
+ 0.156847 − 0.88121φχ,

ρ−1BAA = −0.004748

φ2χ2
− 0.002007

φχ
+ 0.0900485,

ρ−1BGG =
0.0031512

φ2χ2
− 0.046494

φχ
− 1.08326 − 2.84298φχ

− χρ

χ2

(
0.0777974 +

0.0340364

φχ

)
,

ρ−1CS = −0.0112848

φ2χ2
− 0.0515874

φχ
− 0.0589571,

ρ−1CI = −0.0178214

φ2χ2
− 0.11202

φχ
− 0.162938, ρ−1CA = −0.05.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.60)

The expressions for the pressure and viscosity for rough particles can be compared
with the equivalent expressions for smooth particles (Kumaran 2004). The expression
for the pressure is identical to that for smooth particles, and the expressions for the
viscosity and the dissipation function R in the energy balance equation, (2.49), are

µ = T 1/2

(
0.176309

χ
+ 0.56419φχ + 2.17539φ2χ

)
,

µb = 2.87339T 1/2φ2χ,

R = 4
√

πε2ρ2χT 3/2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.61)

It is observed that the shear viscosity shows the same qualitative variation with
density for both smooth and rough spheres, though the numerical coefficients for
rough spheres are larger. This difference is small (about 10 %) in the dilute limit,
but the difference is significant (about 50 %) in the dense regime. The bulk viscosity
for rough spheres is, however, qualitatively different from that for smooth spheres.
The bulk viscosity is zero in the dilute limit for smooth spheres, but is non-zero in
the case of rough spheres. This is due to the possibility of the transport of energy
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Granular flow of rough particles 17

between the translational and internal (rotational) modes in the case of rough spheres,
which is not present in smooth spheres. The bulk viscosity for rough spheres is also
larger by a factor of about 3 than that for smooth spheres. In addition, it should be
noted that the expression for smooth spheres cannot be recovered from the rough
sphere calculation by taking the limit I → 0; a similar situation is encountered in
the kinetic theories for rough elastic particles (Chapman & Cowling 1970). This is
because the limit I → 0 is a singular limit; while there is equipartition of energy
for all non-zero values of I, there is no interchange of angular momentum between
particles at I =0, thus preventing the equipartition of energy. All of these indicate
that the stress response to volumetric compression or expansion for rough particles
is significantly different from that for smooth particles, even though the response to
volume preserving extensional strain may be very similar.

The expressions for the Burnett coefficients can also be compared with the
equivalent expressions for smooth spheres (Kumaran 2004),

ρ−1ASS = −0.0121745

(φχ)2
− 0.0155833

φχ
− 0.242081 − 0.854446φχ,

ρ−1ASG = −0.015558

φ2χ2
− 0.047615

φχ
+ 0.164045 + 0.320649χφ

− χρ

χ2

(
0.030174 +

0.018856

φχ

)
,

ρ−1ASAS = −0.017044

φ2χ2
− 0.054541

φχ
− 0.043633,

ρ−1ASAA = 0,

ρ−1AAA =
0.017044

φ2χ2
+

0.054541

φχ
+ 0.043633,

ρ−1BSS =
0.0121745

(φχ)2
+

0.0155833

φχ
+ 0.242081 + 0.854446φχ,

ρ−1BAA = −0.017044

φ2χ2
− 0.054541

φχ
− 0.043633,

ρ−1BGG = 0,

ρ−1CS = −0.0085221

φ2χ2
− 0.027271

φχ
− 0.0218166,

ρ−1CI = 0,

ρ−1CA = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.62)

One striking difference between the Burnett coefficients for rough (equation (2.60))
and smooth (equation (2.62)) spheres is that there is an antisymmetric contribution
to the stress tensor (proportional to ASAA) that is not present for smooth spheres.
This contribution arises due to the substantial derivative of the mean angular velocity
in equation (2.31). This indicates that the stress tensor for rough particles is not
symmetric even when the mean angular velocity is equal to half the local vorticity,
and there is an antisymmetric contribution due to the convective transport of angular
momentum. It can easily be verified that this contribution is identically zero for a
linear shear flow, but it could be non-zero for more complicated velocity profiles.
There is also a significant difference in the coefficients ASG and BGG which multiply

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

02
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000279


18 V. Kumaran

the isotropic part of the rate of deformation tensor. This is consistent with the earlier
finding that the bulk viscosity for rough particles is significantly different from that for
smooth particles. The other coefficients are qualitatively similar for rough and smooth
particles, though there are numerical differences in the values of the coefficients.

It should be noted that the antisymmetric part of the stress tensor is typically
non-zero in flows of rough particles where the local angular velocity differs from
half the local vorticity. In this case, micropolar theories (McCoy, Sandler & Dahler
1966; Mitarai, Hayakawa & Nakanishi 2002; Mohan, Rao & Nott 2002) assume that
the antisymmetric part of the stress tensor is proportional to the difference between
the local angular velocity and half the local vorticity, and the antisymmetric part
of the stress tensor is identically equal to zero for a homogeneous linear shear flow
where the mean angular velocity is equal to half the vorticity. In the present analysis,
we predict a non-zero Burnett contribution to the antisymmetric part of the stress
tensor even for a homogeneous shear flow where the mean angular velocity is half
the vorticity.

2.2. Partially rough particles

For partially rough particles, the tangential coefficient of restitution et is chosen such
that et = −1 (J = 0) for collisions in which the angle between the direction of the
relative velocity and the line joining the centres of the particles is greater than (π/4),
or k · (u − u∗)/|u − u∗| < (1/

√
2). In this case, the relative velocity after a collision,

u′ − u∗′, is related to the relative velocity before a collision, u − u∗ by

(u′
i − u∗′

i ) = (δij − (1 + en)kikj )(uj − u∗
j ), (2.63)

while the angular velocities are unchanged in a collision. The tangential coefficient
of restitution is close to 1 for collisions in which the angle between the line joining
the centres and the direction of the relative velocity is less than (π/4), or (k · (u −
u∗))/|u − u∗| > (1/

√
2), and the collision rules are given by equations (2.12) and (2.13).

The analysis is carried out assuming that the leading-order velocity and angular
velocity distributions are given by equations (2.19) and (2.20). The mean angular
velocity and the mean square linear and angular velocities are expanded in a series in
ε ((2.17) and (2.18)). In the leading approximation, the equations for the mean square
linear and angular velocities are

T
(0)
ij = T δij ,

Υ
(0)
ij =Υ δij = (T/2I)δij .

}
(2.64)

Equation (2.64) indicates that energy is not equally partitioned between the linear and
angular degrees of freedom, since not all collisions transfer momentum tangential to
the contact surface. It might seem surprising that energy is not equally partitioned
between the translational and rotational modes for an energy conserving collisional
model in the limit where the strain rate approaches zero; however, it should be noted
that a different energy conservation condition applies for different collisions. When
the angle between the line of centres and relative velocity is lower than the roughness
angle, the sum of the kinetic energies due to translation and rotation is conserved,
whereas when the angle between the line of centres and the relative velocity is higher
than the roughness angle, the kinetic energy of translation is conserved. Since only
a fraction of the collisions result in interchange of energy between the translational
and rotational modes, the equipartition condition is not satisfied in this case. It can
also be shown that if the roughness angle is θr , the mean square angular velocity is
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Granular flow of rough particles 19

given by

Υ =
(4 cos (2θr ) − cos (4θr ) − 3)T

4I(cos (2θr ) − 1)
. (2.65)

It is easily verified that (2.65) reduces to (2.64) for roughness angle θr =(π/4), and
also predicts equipartition of energy for θr = (π/2). The value of T is determined from
a balance between the production and dissipation of energy.

The balance equation for the angular velocity can be solved to obtain the mean
angular velocity, which is, analogous to (2.31),

Ωi = −εijkAjk

4
−

√
π(4 −

√
2)

48
εijkAjkGll +

√
π(4 −

√
2)

80
√

2
Sij εjklAkl

+
5εijkAjkT

(1)
ll

8
+

T
(1)
ij εjklAkl

4
− 3

2
√

πJKρ2χ

×
(

εijk(AjlSlk + SjlAlk) − εijk

2

(
∂k

(
∂lσjl

ρ

)
− ∂j

(
∂lσkl

ρ

)))
, (2.66)

where K = (1/2I), J = (4I(1 + et )/(1 + 4I)). It should be noted that in the leading
approximation, the mean angular velocity of partially rough particles is a quarter of
the vorticity, in contrast to rough particles where the mean angular velocity is half
the vorticity, as indicated by equation (2.28). This is because only half the collisions
result in an exchange of angular momentum between the colliding particles in the
present case. This result can be generalized for other roughness angles. If θr is the
roughness angle, the leading approximation to the mean angular velocity is given by

Ωi = −4 cos (2θr ) − cos (4θr ) − 3

8(cos (2θr ) − 1)
εijkAjk. (2.67)

It should also be noted that there is a collisional contribution to the first correction
to the mean angular velocity in equation (2.66), whereas there was no collisional
contribution to the first correction in the case of rough particles in equation (2.28), and
the first correction arises due to the substantial derivative in the Boltzmann equation.
The equations for the pressure, viscosity and Burnett coefficients for partially rough
particles were obtained in a manner similar to those for rough particles. The pressure,
viscosity and the dissipation coefficient are

p = ρT (1 + 4φχ),

µ = T 1/2

(
0.195973

χ
+ 0.712621φ + 2.46386φ2χ

)
,

µb = T 1/2

(
0.159492

χ
+ 1.12924φ + 4.65284φ2χ

)
,

R = 4
√

πε2ρ2χT 3/2(1 + at/4).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.68)

The expression for the pressure for partially rough spheres is identical to that for
rough and smooth spheres. The shear viscosity in the dilute limit is close to that
for rough spheres, but in the dense limit is significantly lower than that for rough
spheres. The bulk viscosity is about half that for rough spheres in the dense limit,
and about twice that for rough spheres in the dilute limit. The important conclusion
is that the coefficients have the same qualitative dependence on density as those for
rough spheres, though there are numerical differences. A similar conclusion applies
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20 V. Kumaran

to the Burnett coefficients, which are given by

ρ−1ASS = −0.0187355

(φχ)2
− 0.0837742

φχ
− 0.516313 − 1.27527φχ, (2.69a)

ρ−1ASG = −0.0207219

φ2χ2
− 0.218434

φχ
− 2.09266 − 3.85281χφ

− χρ

χ2

(
0.083363 +

0.044784

φχ

)
, (2.69b)

ρ−1ASAS = −0.021779

φ2χ2
− 0.079194

φχ
− 0.0719528 + 0.0132705φχ, (2.69c)

ρ−1ASAA = −0.1 − 0.043575φχ, (2.69d)

ρ−1AAA =
0.020223

φ2χ2
+

0.066589

φχ
+ 0.053879, (2.69e)

ρ−1BSS = −0.007833

φ2χ2
+

0.123102

φχ
+ 0.50489 − 2.5513φχ, (2.69f)

ρ−1BAA = −0.010095

φ2χ2
− 0.166484

φχ
− 0.079485, (2.69g)

ρ−1BGG =
0.00038113

φ2χ2
− 0.0639626

φχ
− 0.311739 − 3.82319φχ

− χρ

χ2

(
0.0658254 +

0.0353624

φχ

)
, (2.69h)

ρ−1CS = −0.010111

φ2χ2
− 0.033294

φχ
− 0.026939, (2.69i)

ρ−1CI = −0.010128

φ2χ2
− 0.042830

φχ
− 0.044632, (2.69j)

ρ−1CA = −0.05. (2.69k)

3. Flow down an inclined plane
The granular material is composed of hard spherical particles flowing down a

plane inclined at an angle θ to the horizontal, as shown in figure 1. A Cartesian
coordinate system is used, where the velocity and velocity gradient are in the x and y

directions, respectively, and the z-coordinate is in the spanwise direction. The flow is
considered to be steady, fully developed and two-dimensional, so that all dynamical
variables are invariant in the spanwise direction. The flow in the bulk region of the
granular material is considered where the distance from the top and the bottom
surface is large compared to the conduction length. In order to solve the velocity
and temperature profiles, it is necessary to specify the boundary conditions for the
velocity and temperature at the top and bottom surfaces. However, as explained in
§ 1, the rate of conduction of energy is small compared to the rate of dissipation in
the bulk of the flow, and so the rate of conduction of energy can be neglected in the
bulk in the leading approximation. The temperature in the bulk is determined from
the balance between the rates of production and dissipation, while the temperature
boundary condition only affects the temperature in the conduction regions near the
boundaries. It is necessary to specify the velocity boundary conditions in order to
determine the complete velocity profile, since momentum is a conserved variable.
However, it should be noted that only the strain rate is calculated from the stress
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L

θ

y x

z

Figure 1. Configuration and coordinate system used for analysing the flow down an
inclined plane.

balance conditions in the present analysis. The velocity is determined by integrating
the strain rate with respect to the y coordinate, and the velocity boundary condition
at the bottom can be used to determine the constant in the integration.

The normal and shear stresses balance the gravitational forces in the flow and
gradient directions,

(dσxy/dy) = ρg sin (θ), (dσyy/dy) = −ρg cos (θ). (3.1)

The ratio of the shear and normal stresses is a constant in the flow,

(σxy/σyy) = − tan (θ). (3.2)

Equation (3.2) relating the shear and normal stress provides the relation between the
angle of inclination and the volume fraction, as explained following equation (3.5).

The ratio of the shear and normal stresses are analysed for the three constitutive
models used here, the smooth particle model (equations (2.61) and (2.62)), the rough
particle model (equations (2.59) and (2.60)), and the partially rough particle model
(equations (2.68) and (2.69)). The ‘temperature’ T is determined, in terms of the strain
rate, from a balance between the source of energy due to the mean shear, and the
dissipation due to inelastic collisions,

µγ̇ 2 = RT 3/2, (3.3)

where R, given in equations (2.59), (2.61) and (2.68), is only a function of the volume
fraction of the particles and the coefficients of restitution. The energy balance can be
solved to obtain the strain rate,

γ̇ = T 3/4(R/µ)1/2. (3.4)

It can be inferred, from the temperature dependences of the viscosity and the
normal stress, that the volume fraction is independent of the y-coordinate in the flow.
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Equation (3.2) relating the shear and normal stress, together with equation (2.55) for
the shear and normal stresses, gives√

RµT 3/2(
p +

(
T 3/2R/µ

)
(3(AAA − ASS) + 6ASAS + 2(BAA − BSS))

/
12

) = tan θ. (3.5)

In equation (3.5), the numerator is proportional to T , since the viscosity µ is propor-
tional to T 1/2. In the denominator, both the pressure and the Burnett contributions
to the stress are proportional to T . Therefore, the left-hand side of the equation is
independent of T , and is dependent only on the volume fraction φ and the coefficient
of restitution. The right-hand side is a constant independent of φ, and so equation (3.5)
implies that φ is independent of position if the left-hand side is a monotonic function
of φ. This result is also applicable to more general forms of the constitutive relations
for the granular flow, if there is a balance between the local rate of production of
energy due to mean shear and the rate of dissipation due to inelastic collisions. Since
the inverse of the local strain rate provides the only time scale in the problem, the
temperature has to scale as the square of the strain rate, and the stress has to scale
as the square of the strain rate. Therefore, the volume fraction is independent of
position, and is only a function of the angle of inclination. The invariance of the
density in the cross-stream direction is observed in the simulations of Silbert et al.
(2001) when the height of the flow is greater than about 10 particle diameters, though
it is not applicable to very thin flows because the length scale is not large compared
to the conduction length and the adiabatic approximation is not valid. The other
flow parameters, such as the strain rate, temperature and the velocity profile are
determined from the value of the density as described a little later.

It might be intuitively expected that the volume fraction decreases as the angle of
inclination is increased, and the volume fraction is equal to the volume fraction at
close packing at the cessation of flow. Though this requirement seems fairly basic, not
all microscopic models satisfy this requirement, as shown a little later. The variation
of volume fraction with angle of inclination is first examined in the limits of low
density and near close packing, in order to examine whether the angle of inclination
is a decreasing function of density in these limits. Another reason for examining these
cases is that the results turn out to be independent of the form of the pair distribution
function. The intermediate regime is next considered, using two different forms of the
pair distribution function used previously in literature. The Carnahan–Starling pair
distribution function, which is a good model at low and moderate volume fractions,
is

χ(φ) =
2 − φ

2(1 − φ)3
, (3.6)

and the high density pair distribution function, which is a good model as the close
packing volume fraction is approached, is

χ(φ) =
1

1 − (φ/φc)1/3
, (3.7)

where φc, the volume fraction at close packing, is set equal to 0.65 in the results
presented here.

It should be noted that the criterion for the onset of flow as the angle of inclination
is increased could be different from the criterion for the cessation of flow as the angle
of inclination is decreased. As the angle of inclination is increased for a static granular
layer, the angle of inclination for the onset of flow is determined by the static yield
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condition, which depends, in general, on the conditions under which this layer was
prepared. The angle at which flow stops as the angle of inclination of a flowing layer
is decreased is the minimum angle required to sustain flow in equation (3.2), which
is the ratio of the shear and normal stress in the close packing limit. The minimum
angle calculated here is the angle at which there is cessation of flow when the angle
of inclination of a flowing layer is reduced. If the static angle of friction is larger
than the minimum angle required to sustain flow, then there will be a discontinuous
change in density at the onset of flow. The implications of the opposite case, where
the static angle of friction is smaller than the minimum flow angle, are not clear. It is
possible that the flow will be confined to a thin region at the bottom of the granular
layer, while the rest flows as a plug.

In the limit of small volume fraction, the left-hand side of equation (3.2) can be
expanded in a series in the volume fraction,

A0 + A1φχ + A2φ
2χ2 = tan (θ), (3.8)

where the functions A0, A1 and A2 are given by

A0 =
1.2522ε

1.12 − ε2
,

A1 =
−1.2022ε(2.8 − ε2)

(1.12 − ε2)2
,

A2 =
26.342ε(ε4 − 1.781ε2 + 0.8639)

(1.12 − ε2)3
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

for smooth particles,

A0 =
3.91086εr

3.32545 − ε2
r

,

A1 =
−10.1499εr

(
2.1976 − 2.56383ε2 − ε2

r

)
(
3.32545 − ε2

r

)2
,

A2 =
392.511εr (ε

4
r − 3.7048ε2

r + 0.495269ε2ε2
r + 0.440739ε4 − 1.25925ε2 + 1.34678)(

3.32545 − ε2
r

)3
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)

for rough particles, and

A0 =
5.85124εpr

4.964 − ε2
pr

,

A1 =
−160.763εpr

(
0.39411 − ε2

pr − 0.361345ε2
)

(
4.964 − ε2

pr

)2
,

A2 =
5468.4εpr

(
ε4
pr − 1.6392ε2

pr +0.603063ε2ε2
pr +0.105466ε4 −0.325986ε2+0.352274

)
(
4.496 − ε2

pr

)3
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.11)

for partially rough particles in the Burnett approximation, where εr = ε(1 + at )
1/2, and

εpr = ε(1 + at/4)1/2. The Navier–Stokes results for equations (3.9), (3.10) and (3.11) are
obtained by retaining only the terms proportional to ε in the limit ε → 0. These results
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indicate that the maximum angle for steady flow increases proportional to ε. Another
qualitative feature of the flow curve is the slope in the limit of low density, which is
given by A1. If the slope is negative, the angle of inclination decreases as the density
increases, indicating that the angle of inclination is a maximum in the limit of zero
density. If the slope is positive, the angle of inclination increases as density increases,
and the maximum angle of inclination corresponds to a flow with finite density. It is
observed that A1 is always negative for smooth particles, indicating that the maximum
angle of inclination corresponds to the limit of zero density. For rough particles, A1

is positive for ε2
r +2.56383ε2 > 2.1976, which is equivalent to en < 0.518475 for at =1.

However, it should be noted that the asymptotic analysis requires (1 − en) � 1, and
A1 is negative in this limit for rough particles. In the case of partially rough particles,
A1 is positive for ε2

pr + 0.361345ε2 − 0.39411 > 0, which is equivalent to en < 0.755416
for at = 1. Clearly, A1 is positive for a larger range of coefficients of restitution for
the partially rough sphere model.

When the volume fraction is near close packing, the left-hand side of (3.2) can be
expanded in a series in the inverse of the pair distribution function, since the pair
distribution function diverges near close packing. This results in an expression of the
form

B0 + B1(φχ)−1 + B2(φχ)−2 = tan (θ). (3.12)

The above expansion shows that there is dilation upon initiation of flow only if B1 > 0.
If B1 < 0, the flow becomes more dense as the angle of inclination is increased, in
contrast to the normally expected dilation upon commencement of flow. Densification
is a possibility when flow starts, if the volume fraction in the stationary state is lower
than the packing fraction at random close packing, but we do not examine this
further since it does not seem to have been seen in experiments or simulations, and
restrict attention to flows where B1 is positive.

In the Burnett approximation, the coefficients in equation (3.12) are

B0 =
3.40449ε

(3.46757 − ε2)
,

B1 = −0.136503ε(10.4061 − ε2)

(3.46757 − ε2)2
,

B2 =
0.671819ε(ε4 − 2.48775ε2 − 3.78982)

(3.46757 − ε2)3
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.13)

for smooth spheres,

B0 =
1.02693εr(

0.874417 + ε2
r − 0.437208ε2

) ,

B1 = −
0.254845εr

(
0.376137 + 0.252379ε2 − ε2

r

)
(
0.874417 + ε2

r − 0.437208ε2
)2

,

B2 =
0.121859εr

(
ε4
r +0.298183ε2

r +0.307759−0.4743089ε2
r ε

2 +0.033950ε4 −0.020421ε2
)

(
0.874417+ε2

r −0.437208ε2
)3

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)
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for rough spheres, and

B0 =
0.530463εpr(

0.50768 + ε2
pr − 0.25384ε2

) ,

B1 =
0.223654εpr

(
ε2
pr − 0.087067ε2 − 0.126896

)
(
0.50768 + ε2

pr − 0.25384ε2
)2

,

B2 =
0.11272εpr

(
ε4
pr − 0.022895ε2

pr − 0.197195ε2
prε

2 − 0.013628ε2 + 0.00889ε4 + 0.067511
)

(
0.50768 + ε2

pr − 0.25384ε2
)3

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

for partially rough spheres. The results in the Navier–Stokes approximation are
obtained by truncating the above equations at O(ε). Clearly, the coefficient B1 is
negative in all cases in the Navier–Stokes approximation, resulting in an increase in
density as the angle of inclination is increased near close packing in the Navier–Stokes
approximation. In the case of smooth nearly elastic spheres, it is observed that B1 is
positive only for ε2 = (1 − en) > 10.4061 in the Burnett approximation. This is clearly
not realizable, because the coefficient of restitution is always less than 1, and so the
Burnett approximation for smooth nearly elastic spheres also predicts that the granular
material becomes more dense as the angle of inclination is increased. For rough
nearly elastic spheres, B1 is positive for ε2

r − 0.252379ε2 > 0.376137. This is physically
realizable; for example, for at = 1, the coefficient B1 is positive for en < 0.784472. For
partially rough spheres, B1 is positive for (1 + at/4)ε2 − 0.087067ε2 > 0.126896, which
is equivalent to en < 0.89088 for at = 1. Therefore, the rough and partially rough
sphere models provide realistic results for the dependence of density on the angle of
inclination over a range of coefficients of restitution in the dense limit. The values of
ε at which B1 becomes positive, which is 0.46 for the rough sphere model and 0.33 for
the partially rough particle model, are not small compared to 1. However, it should
be noted that the error in the constitutive relations due to the neglect of higher-order
terms in the ε expansion is still small for these values of ε. The constitutive relations
are obtained correct to O(ε2), and the error in the constitutive relation is O(ε3) which
is about 10 % at ε = 0.46, and about 3.6 % at ε = 0.33.

The dependence of the angle of inclination on the density in the intermediate regime
in the Navier–Stokes approximation is shown in figure 2 for two different forms of the
pair correlation function. Since tan (θ) ∝ ε in the limit ε → 0, figure 2 shows (tan (θ)/ε)
for smooth spheres, (tan (θ)/ε(1+ at )

1/2) for rough spheres and (tan (θ)/ε(1+ at/4)1/2)
for partially rough spheres. The curves have a qualitatively similar behaviour for both
the Carnahan–Starling and the high-density pair distribution functions. Both models
for the pair distribution provide results identical to (3.9), (3.10) and (3.11) in the low-
density limit. The high-density pair distribution function provides accurate results near
close packing, since it diverges in this limit. The Carnahan–Starling pair distribution
is not expected to provide exact results in this limit, since it does not diverge, but the
results are numerically close to those predicted by equations (3.13), (3.15) and (3.14).
In all cases, it is observed that the angle of inclination first decreases as the density is
increased, reaches a minimum and then increases as the density is further increased.
The slope in the high-density limit is always positive, indicating that the density
increases as the angle of inclination is increased. The physical implication of this is
as follows. The minimum angle at which steady flow can be sustained corresponds to
the minimum of the curves in figure 2, which occurs at around φ =0.2. This indicates
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Figure 2. Variation of (tan (θ )/ε) for smooth spheres (�), (tan (θ )/ε(1 + at )
1/2), for rough

spheres (�) and (tan (θ )/ε(1+at/4)1/2) for partially rough spheres (�) as a function of density
φ for the Carnahan–Starling pair distribution function equation (3.6) (solid line) and the
high-density pair distribution function (3.7) (broken line). The dotted line shows the results
for smooth particles when the pair distribution function is given by the high-density pair
distribution (3.7), and the viscosity is modified as shown in equation (3.30). Here, θ is the angle
of inclination from the horizontal, ε =

√
1 − en, and at = (1 − e2

t )/(1 − e2
n).

that as the angle of inclination is decreased, there is a discontinuous change in density
from 0.2 to the close packing density for a static assembly of particles when flow
stops. In addition, as the angle of inclination is increased from this minimum value,
there are two possible steady states, one corresponding to densification and the other
to a decrease in the density as the angle of inclination is increased. This seems to
be at variance with most experimental and simulation studies, which indicate that
the density is near close packing just before flow cessation, and one is forced to
conclude that the Navier–Stokes approximation does not provide accurate results for
the dependence of density on the angle of inclination.

Next, the flow curves are examined in the Burnett approximation over a range
of values of ε, and attention is restricted to the case at = 1 for rough and partially
rough particles for definiteness. Figure 3 shows the results for smooth particles. It is
observed that the angle of inclination exhibits a minimum at intermediate density as
ε is increased, but the value of the minimum is close to the value of the density at
close packing. This angle of inclination is nearly a constant as density is increased
beyond about 0.2 for ε2 > 0.3, indicating that a large variation in density could
be caused by a small variation in the angle of inclination. However, the angle of
inclination always increases with density near close packing in all cases. The results
for the Carnahan–Starling and the high-density pair distribution functions are in
agreement for φ > 0.3, though there is some disagreement at low densities where the
high-density pair distribution function is not expected to be accurate. The results for
rough particles are shown in figure 4, and it is observed that the angle of inclination is
a decreasing function of density near close packing for ε2 = 0.4 and 0.5. In addition,
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Figure 3. Variation of tan (θ ) for smooth spheres as a function of density φ for ε2 = 0.05 (�),
ε2 = 0.1 (�), ε2 = 0.2 (�), ε2 = 0.3 (∗), ε2 = 0.4 (×), ε2 = 0.5 (+) for the Carnahan–Starling pair
distribution function equation (3.6) (solid line) and the high-density pair distribution function
(3.7) (broken line). Here, θ is the angle of inclination from the horizontal, ε =

√
1 − en.
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Figure 4. Variation of tan (θ ) for rough spheres as a function of density φ for at = 1
and ε2 = 0.05 (�), ε2 = 0.1 (�), ε2 = 0.2 (�), ε2 = 0.3 (∗), ε2 = 0.4 (×), ε2 = 0.5 (+) for the
Carnahan–Starling pair distribution function equation (3.6) (solid line) and the high-density
pair distribution function (3.7) (broken line). Here, θ is the angle of inclination from the
horizontal, ε =

√
1 − en, and at =(1 − e2

t )/(1 − e2
n).
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Figure 5. As figure 4, but for partially rough spheres.

the angle of inclination does not show significant variation with the parameter ε2

when ε2 increases beyond about 0.3 near close packing, though there is significant
variation in the low-density limit. The results for partially rough particles, shown in
figure 5, indicate that the angle of inclination is a decreasing function of density over
a much larger range ε2 = 0.2 and higher. In addition, the angle of inclination is not
very sensitive to the parameter ε2 when this parameter increases beyond 0.2. Another
feature of interest is the slight increase in the angle of inclination with density in the
limit of low density for ε2 = 0.4 and ε2 = 0.5, as anticipated from equation (3.11).

It is of interest to examine the variation of the angles of inclination in the low-
density limit, θl , and near close packing, θc, with the coefficients of restitution. In
addition, if θ is not a monotonic function of φ, the maximum angle of inclination
θmax , could be different from the angle of inclination in the limit of low density (as in
the case of partially rough particles in figure 5), and the minimum angle of inclination,
θmin could be different from that in the limit of close packing (as in the case of smooth
particles in figure 3). Thus, there are four important angles of inclination, the angle
in the low-density limit θl , the maximum angle θmax at which a steady flow can be
sustained, the angle in the close packing limit θc, and the minimum angle for flow
θmin. These angles are shown as a function of ε2 for smooth particles in figure 6. All
of these angles increase proportional to ε in the limit ε → 0, as expected from the
Navier–Stokes approximation. It is observed that tan (θmin) is always slightly lower
than tan (θc), indicating that there is densification with an increase in the angle of
inclination in the dense limit, though the difference between θmin and θc is small.
However, both θc and θmin increase as ε2 is increased in the dilute limit. A similar
graph for rough particles is shown in figure 7. It is observed that θmin is lower than θc

only for ε2 < 0.192 for at =1, as expected from equation (3.14), while the minimum
of the angle of inclination occurs at close packing for ε2 > 0.192. In addition, it is
observed that θc, the minimum angle for flow, is relatively insensitive to variations
in ε2, and it varies from 25.6◦ at ε2 = 0.3 to 28.7◦ at ε2 = 0.8. However, there is a
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Figure 6. Variation of tan (θl) (dotted line), tan (θc) (dashed line) and tan (θmin) (solid line)
with ε2 for smooth particles. Here, θ is the angle of inclination from the horizontal, ε =

√
1 − en.
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ta
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Figure 7. Variation of tan (θl) (dotted line), tan (θc) (dashed line) and tan (θmin) (lower solid
line) and tan (θmax) (upper solid line) with ε2 for at = 1 for rough particles. Here, θ is the angle
of inclination from the horizontal, ε =

√
1 − en, and at = (1 − e2

t )/(1 − e2
n).

significant variation of θl with ε2. In addition, θmax is higher than θl for ε2 > 0.48.
The qualitative behaviour is similar for partially rough particles, as shown in figure 8,
though θc is lower than θmin onlyfor a much smaller range ε2 < 0.099 at at =1, and
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Figure 8. As figure 7, but for partially rough particles.

the minimum angle of inclination is at close packing for ε2 > 0.099. The variation
of θc with ε2 in this case is smaller than that for rough spheres, and θc varies from
19.79◦ at ε2 = 0.3 to 19.38◦ at ε2 = 0.8. The maximum angle θmax is higher than θl

over a larger range ε2 > 0.256 in this case.
To summarize the results so far, starting from the condition that the ratio of the

tangential and normal stresses is equal to tan (θ), it was shown following equation
(3.5) that the volume fraction of the particles is a constant across the flow. The
value of this constant was then evaluated using equations (2.59)–(2.62), (2.68) and
(2.69) for the different particle models. It was found that if the Burnett terms were
not included in the constitutive relation, there was densification when the angle of
inclination was increased for all particle models. A similar result was encountered for
smooth nearly elastic particles when the Burnett terms were included in the stress
tensor. However, when the Burnett terms were included in the stress tensor for rough
and partially rough particles, it was found that the volume fraction decreased as the
angle of inclination increased over a range of tangential and normal coefficients of
restitution. This indicates that the numerical value of the volume fraction is sensitive
to the model used for the stress tensor and for particle collisions.

One of the striking features of the simulations of Silbert et al. (2001) is that the
density profile at a fixed angle of inclination is remarkably insensitive to changes in
the coefficients of restitution. This feature is also observed in the present analysis for
rough and partially rough particles, where the variation of the angle of inclination
near close packing is insensitive to the parameter ε2 over a significant range in the
Burnett approximation in figures 7 and 8, though the same trend is not observed in
the Navier–Stokes approximation. This indicates that the Burnett approximation for
the stress does capture the lack of sensitivity θc to variations in the coefficients of
restitution over a range of values of ε.
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The first normal stress difference for the constitutive relation equation (2.55) is

σxx − σyy = −ASASγ̇
2. (3.16)

where γ̇ = (dux/dy) is the mean strain rate. Equations (2.60), (2.62) and (2.69) provide
the following predictions for the first normal stress difference,

σxx − σyy =

(
0.0325727

φχ2
+

0.104166

χ
+ 0.083333φ

)
γ̇ 2 (3.17)

for smooth particles,

σxx − σyy =

(
0.0398514

φχ2
+

0.182178

χ
+ 0.208203φ

)
γ̇ 2 (3.18)

for rough particles, and

σxx − σyy =

(
0.0415941

φχ2
+

0.151249

χ
+ 0.13742φ − 0.0253447φ2χ

)
γ̇ 2 (3.19)

for partially rough particles. The first normal stress difference is found to be positive
for smooth and rough particles, and is found to approach a finite value in the limit
of close packing. However, for partially rough particles, the normal stress difference
is negative and diverges proportional to χ in the close packing limit, but becomes
negative as the volume fraction is increased. In addition, it is found that the coefficient
of the φ2χ term in equation (3.19) is small, indicating that the transition from positive
to negative values of the normal stress difference takes place at φ = 0.598 for the
Carnahan–Starling pair distribution function 3.6 and φ = 0.508 for the high-density
pair distribution function (3.7), both of which are near close packing. This sensitivity
of the normal stress difference to the choice of model was also encountered in the
simulations of Silbert et al. (2001), where it was observed that the normal stress
difference is always positive for some of the particle models used, but underwent
a transition from positive values very near close packing to negative values as the
density is decreased for other particle models. (It should be noted that the sign
convention used for the stress in Silbert et al. (2001) is opposite to that used here, and
the leading contribution to the normal stress is equal to the negative of the pressure
in the present analysis, whereas it is equal to the pressure in the sign convention used
by Silbert et al.) In addition, it is also found that the value of the first normal stress
difference is small compared to the value of the normal stress itself. For example, in
the dense limit, the ratio (σxx −σyy)/p is (0.226429(1+at )ε

2/(φχ)) in the limit of close
packing for the rough particle model, and (−0.032419+0.193796/(φχ))(1+at/4)ε2 for
the partially rough particle model. The small relative magnitude of the first normal
stress difference was also reported by Silbert et al. (2001).

The second normal stress difference, σyy − σzz, is given by

σyy − σzz =

(
−AAA

4
+

ASAS

2
+

ASS

4

)
γ̇ 2 (3.20)

Equations (2.60), (2.62) and (2.69) provide the following predictions for the first
normal stress difference,

σyy − σzz =

(
−0.112131

χ
− 0.033139

χ2φ
− 0.310213φ − 0.420131χφ2

)
γ̇ 2 (3.21)
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for the smooth particle model,

σyy − σzz =

(
−0.171301

χ
− 0.0368475

χ2φ
− 0.420422φ − 0.771067χφ2

)
γ̇ 2 (3.22)

for the rough particle model, and

σyy − σzz =

(
−0.147418

χ
− 0.0393984

χ2φ
− 0.340957φ − 0.596222χφ2

)
γ̇ 2 (3.23)

for the partially rough particle model. Note that the second normal stress difference is
negative, in agreement with the observations of Silbert et al. (2001). It is also observed
that the second normal stress difference is significantly larger in magnitude than the
first normal stress difference for the rough and partially rough particle models, and
is negative in all cases. The ratio (σyy − σzz)/p is −0.838466(1 + at )ε

2 for the rough
particle model in the dense limit, and −0.762656(1 + at/4)ε2 for the partially rough
particle model. Silbert et al. (2001) reported that this ratio was about 15 % in the
simulations, which is consistent with our results for at =1 at en = 0.9 for the rough
particle model, and en = 0.84 for the partially rough particle model.

The dependence of the volume fraction on the angle of inclination near close
packing can be determined as follows. If we only retain the terms proportional to B0

and B1 in the expansion (3.12), we obtain

φχ(φ) = B1(tan (θ) − tan (θ0))
−1 ≈ B1

(
B2

0 + 1
)−1

(θ − θ0)
−1 (3.24)

when the angle θ is close to θ0. Thus, φχ(φ) diverges proportional to (θ − θ0)
−1 when

the angle of inclination is close to θ0, and the dependence of the density on the
angle of inclination depends on the model used for the pair distribution function.
The high-density pair distribution function (3.7) diverges as χ ′(φc − φ)−1 in the close
packing limit limit φ → φc.

(φc − φ) =
(
B2

0 + 1
)
χ ′φc(θ − θ0)/B1. (3.25)

This linear dependence of the volume fraction on the angle of inclination is in
agreement with the simulation results of Silbert et al. (2001).

The flow dynamics can be described using the ‘Bagnold law’ for the shear stress,

σxy = A2
Bγ̇ 2. (3.26)

Since the tangential stress is given by ρg(h − y) sin (θ), equation (3.26) gives the strain
rate as a function of height once AB is known (note that AB is independent of position
because it is only a function of the volume fraction, which is independent of position).
Once the strain rate is known, the flow rate can be calculated for a given height. The
Bagnold constant can be evaluated from the constitutive relation

µγ̇ = A2
Bγ̇ 2. (3.27)

Using the energy conservation equation (3.3), this provides

A2
B =

(
(µ/T 1/2

)3/2/
R1/2

)
. (3.28)

Since both (µ/T 1/2) and R diverge proportional to φ2χ(φ) in the limit φ → φc, equation
(3.28) indicates that AB ∝ φcχ(φ)1/2 near close packing,

A2
B ∝ (φc − φ)−1. (3.29)
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Thus, equation (3.29) indicates that the Bagnold coefficient diverges proportional to
χ1/2 ∼ (φc − φ)−1/2 in the limit φ → φc. From equation (3.25), (φc − φ) ∝ (θ − θ0), and
the Bagnold coefficient diverges proportional to (θ − θ0)

−1/2.
The variation of the Bagnold coefficient with θ has been reported by Silbert et al.

(2001) (their figure 18 actually shows the inverse of the Bagnold coefficient), and
the Bagnold coefficient does diverge at θ0 in the three-dimensional simulations. In
two-dimensional simulations, it appears that the static angle of repose is larger than
θ0, and the Bagnold coefficient does not diverge at the static angle of repose. This
makes it important to make a distinction between the static angle of repose, which
is the angle at which flow is initiated as the angle of inclination is decreased, and
the dynamic angle of friction θ0 obtained from the kinetic theory calculation, which
is the minimum angle at which the shear production of energy is sufficient to sustain
the flow as the angle of inclination is decreased.

The analysis of Louge (2003), was similar to that presented here, in identifying
a region of steady flow in the centre and boundary layers at the top and bottom
surfaces. Bocquet et al. (2002) used a slightly different hydrodynamic model from the
present one, and it is useful to compare the two studies. The hydrodynamic model
used by Bocquet et al. (2002) is similar to the Navier–Stokes model used here, where
the stress tensor contains a pressure term and a viscous term given by Newton’s
law of viscosity. However, the coefficient of viscosity used in Bocquet et al. (2002)
has a stronger divergence than the pair distribution function, and it diverges as
(1 − φ/φc)

−β near close packing, where the coefficient β is greater than 1 (it was
assumed to be 1.5 in Bocquet et al. 2002). This results in qualitatively different results
for the following reason. In equation (3.2), the ratio of shear and normal stresses is
proportional to (µR)1/2/p in the Navier–Stokes approximation, where R is the rate
of dissipation of energy. This ratio approaches a constant value if µ, R and p diverge
proportional to the pair distribution function, as expected in the kinetic theory for
dense gases. However, if the viscosity diverges faster than the rate of dissipation
and pressure as the close packing density is approached, this ratio diverges. This
indicates that flow occurs near close packing only if tan (θ) → ∞ or θ → (π/2), and the
density increases as the angle of inclination is decreased below (π/2). This behaviour is
illustrated in figure 2 for a modified viscosity µm defined in a manner slightly different
from Bocquet et al. (2002), but which has the same behaviour in the high-density
limit,

µm = µ

(
1 +

α0.5

(1 − φ/φc)0.5

)
, (3.30)

where α is a cutoff value for (1 − φ/φc), which is assumed to be 0.005 in figure 2. It is
apparent that equation (3.30) converges to the dense gas viscosity µ for (1−φ/φc) � α,
while it has a divergence proportional to (1 − φ/φc)

−1.5 for (1 − φ/φc) � α. The result
of this viscosity modification on the flow curves is shown in figure 2, and it is
observed that tan (θ) is close to the value for smooth particles at low volume fraction,
but diverges as the close packing volume fraction is approached in the adiabatic
approximation.

Finally, we examine the minimal model that is required to provide realistic results for
the flow down an inclined plane, and indicate how the coefficients in the model could
be obtained independently from simulations for collisional models different from
those discussed here. The simplest simulation requiredfor obtaining the coefficients
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in the constitutive relations is the shear flow in the absence of gravity, using
Lees–Edwards boundary conditions. Since there is no imposed time scale in the
problem, it is convenient to express all variables in terms of the strain rate γ̇ . The
shear viscosity µ in this case is the ratio of the shear stress and the strain rate. The
dissipation coefficient R can then be determined from the energy balance equation at
steady state using the measured mean square velocity T (note that Gii is zero for a
steady shear flow). The isotropic part of the stress tensor, obtained from simulations,
is (−p + (BSS − BAA)γ̇ 2/12), while the first and second normal stress differences
are ASASγ̇

2 and (cASAS/2 + (ASS − AAA)/4)γ̇ 2. Therefore, the measurement of all
the components of the stress tensor can be used to provide the modified pressure
p̄ = (−p+(BSS −BAA)γ̇ 2/12), as well as the coefficients ASAS and (ASS −AAA). These
coefficients could be determined as a function of the volume fraction, and then used
to predict density as a function of angle of inclination in the flow. The coefficients
ASS and AAA cannot be determined independently in a linear shear flow, but the
coefficient AAA could be determined for a rotating flow, for which the symmetric
part of the rate of deformation tensor is identically zero. The Burnett correction with
the modified pressure (which includes all the isotropic components), and the terms
proportional to ASS , AAA and ASAS would constitute the minimal model required to
capture accurately the dynamics of a flow with no radial component, such as the flow
down an inclined plane. These coefficients could be used to determine the angle of
inclination as a function of density. The Bagnold coefficient could then be calculated
using equation (3.28), and this could be used to specify the strain rate as a function
of the angle of inclination.

4. Conclusions
The constitutive relation for the stress tensor for the granular flow of rough particles

was derived using a simple collision model for rough particles which contains a
normal and tangential coefficient of restitution. A more realistic ‘partially rough’
particle model was also considered, in which frontal collisions are rough, whereas
grazing collisions are smooth. A perturbation expansion of the Boltzmann equation
can be employed only if the dissipation of energy in a collision is small compared
to the energy of a particle. The small parameter in the expansion ε is defined such
that ε2 is equal to 1 − en, and ε2 is proportional to the difference between et and
±1. Though this model is not realistic, it is useful because it can be solved using
an expansion in a small parameter, and it provides the qualitative form of the stress
tensor expected for more realistic models.

An important length scale in the system is the ‘conduction length’ (λ/(1 − en)
1/2),

where λ is the mean free path. The analysis is restricted to the case where the length
scale is large compared to the conduction length, so that the rate of conduction of
energy is small compared to the rates of production (due to shear) and dissipation
(due to inelastic collisions). It is appropriate to use the ‘adiabatic approximation’,
where there is a local balance between the rates of production of energy due to shear
and the collisional dissipation. A hydrodynamic description in this case incorporates
only the mass and momenta, since energy is not a conserved variable.

In the granular flow of rough particles, the angular momentum is not conserved
in a reference frame moving with the particles, and so the local angular velocity
is expressed in terms of the local rate of deformation using the conservation
equation for the particle angular velocity. The local angular velocity is equal to
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half the vorticity in the leading approximation for rough particles, though there are
higher-order contributions due to streaming terms in the Boltzmann equation. The
principle of equipartition of energy is applicable in the rough particle limit, and
the energy in the rotational modes is equal to that in the translational modes in
the leading approximation. The pressure–density relationship for rough particles is
identical to that of smooth particles. The shear viscosity for rough particles is higher
by about 10 % in the dilute limit, and about 50 % in the dense limit than that
for smooth particles. There is a significant difference in the bulk viscosity, however,
and it is found that the bulk viscosity for rough particles is finite in the dilute
limit, whereas the bulk viscosity for smooth particles is zero in this limit. This is
due to the possibility of transport of energy between the translational and internal
modes in the rough particle system. In the Burnett-order contributions to the stress
tensor, it is found that there is an antisymmetric contribution to the stress tensor
for the rough particles even when the local angular velocity is equal to half the
vorticity, which is not present in the flow of smooth particles. It turns out that this
contribution is identically zero for a linear shear flow, but could be non-zero for other
types of flows. There are numerical differences in the other Burnett coefficients as
well.

In the case of partially rough particles, it is found that the local angular velocity
is equal to a quarter of the vorticity (which is half the angular velocity for rough
particles) since exchange of angular velocity takes place in only half the collisions when
the roughness angle is (π/4). In addition, the average energy in the rotational modes
is equal to half the energy in the translational modes in the leading approximation,
indicating that the equipartition principle does not apply in this case even in the energy
conserving limit where the coefficients of restitution approach ±1 and the strain rate
approaches zero. The results of the partially rough particle model have important
implications for micropolar theories of granular flows, in which constitutive relations
are written for the stress and the ‘couple stress’. In the constitutive relations, the
stress contains an antisymmetric component proportional to the difference between
the local angular velocity and half the local vorticity. In the absence of gradients in
the angular velocity, these theories predict that the angular velocity is always equal
to half the vorticity. The present ‘partially rough’ particle analysis indicates that for
realistic collisions involving stick and slip, the angular velocity is not always equal
to half the vorticity, but could be some other fraction of the vorticity depending
on the collision model. Therefore, it would be necessary to modify the conventional
micropolar theories if they are to be used for granular flows with realistic collision
models.

The constitutive relations obtained here were applied to the granular flow down
an inclined plane under gravity. Several qualitative features which are observed in
simulations are predicted by the constitutive relations for rough and partially rough
particles, if the Burnett terms are incorporated.

(a) The constant density in the bulk of the flow if the height is large compared to
the conduction length, and the rate of conduction of energy is neglected in the energy
equation.

(b) The minimum angle required for the onset of flow, and the maximum angle
beyond which there is no steady flow. In the present analysis, the minimum angle
is not determined by a dynamical friction condition, but by the energy balance
requirement that it is necessary to generate sufficient energy by the mean shear to
balance the rate of dissipation due to particle interactions.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

02
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000279


36 V. Kumaran

(c) The analysis also shows that this minimum angle is remarkably insensitive to
the values of the coefficients of restitution. However, this prediction should be treated
with caution, since we are using a perturbation expansion about the limit of elastic
collisions.

(d) The decrease in the volume fraction as the angle of inclination is increased.
(e) The small first normal stress difference, and its variation between positive and

negative values for different collision models.
(f) The negative second normal stress difference which is much larger in magnitude

than the first normal stress difference.
It should be noted that the above results are obtained only for the rough and

partially rough models if the Burnett terms are included in the expression for the
stress tensor. These are not obtained if the Burnett terms are not included, and they
are not obtained for the smooth particle model even if the Burnett terms are included.

This suggests that the essential dynamics of the flow down an inclined plane is
successfully captured by a kinetic theory approach, though it is necessary to include
sufficient detail in the collision model and to incorporate at least the second-order term
in the constitutive relation for the stress. In order to proceed further, it is necessary
to make numerical comparisons of the stresses between theory and simulations for
the same collision model. The simulation models used so far incorporate frictional
collisions with a friction coefficient, which is difficult to handle analytically in kinetic
theory. Therefore, it is necessary to incorporate simpler collision models in simulations,
as well as to try and extend kinetic theory to frictional collisions. Another source
of difficulty in numerical comparisons is the form of the pair distribution function.
The pair distribution function in a shear flow is likely to be anisotropic in general,
and different from the simple forms, such as the Carnahan–Starling form, presently
used in kinetic theories. A systematic calculation of the pair distribution function is
an additional input required for the numerical prediction of stresses using the kinetic
theory approach.

This research was supported by the Swarnajayanthi Fellowship, Department of
Science and Technology, Government of India.

Appendix A. Comparison of Chapman–Enskog procedure and present
procedure

The Chapman–Enskog procedure for determining the transport coefficients is as
follows. At equilibrium, the velocity distribution function has the form

F (c, ω) =
1

(2πT )3
exp

(
− c2

i

2T
− Iω2

i

2T

)
, (A 1)

where T is the temperature. In a system close to equilibrium, it is assumed that
the variation of the distribution function with position and time is due only to the
spatial variation of the density, mean velocity and temperature. The perturbation to
the distribution function is of the form

f (x, c, ω) = F (ci, ωi)
[
1 + ΦT

i ∂iT + ΦS
ij ∂iUj + ΦB∂iUi

]
, (A 2)

where F (ci, ωi) is the Maxwell–Boltzmann distribution, and the superscripts T , S and
B indicate that the corresponding corrections to the equilibrium distribution give
rise to the thermal conductivity, shear viscosity and bulk viscosity, respectively. The
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transport rates are determined as a function of these coefficients,

λ= −1

2

∫
c,ω

F (ci, ωi)(c
2 + Iω2)ciΦ

T
i ,

µ =

∫
c,ω

F (ci, ωi)
(
cicj − (δij /3)c2

k

)
ΦS

ij ,

µB =

∫
c,ω

F (ci, ωi)c
2ΦB,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 3)

where
∫

c,ω ≡
∫

dc
∫

dω. The leading-order distribution function, (A 1), is inserted into
the left-hand side of the Boltzmann equation (2.1), to obtain

F

[(
c2

2T
− Iω2

2T
− 1

)
ci∂iT

T
+

cicj ∂iUj

T
+

(
c2
i

3
− Iω2

i

3

)
∂kUk

]
=

∂cf

∂t

∣∣∣∣
1

, (A 4)

where 	|1 is the first correction to 	. Equation (A 2) is inserted into the right-hand
side of (A 4), and solved in order to obtain the ΦT

i and ΦS
ij and ΦB in (A 2).

For a gas of smooth particles, ΦT , ΦS and ΦB can be expressed in terms of the
fluctuating velocities as

ΦT
i = φT (c)ci

(
c2

2T
− 5

2

)
,

ΦS
ij = φS(c)(cicj − (δij /3)c2),

ΦB = φB(c)

(
c2

2T
− 3

2

)
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 5)

where φT , φS and φB are scalar functions of the velocity fluctuations. The above forms
for ΦT

i , ΦS
ij and ΦB are deduced from their respective tensor order, as well as from the

requirement that the perturbation to the distribution function has to be orthogonal
to the homogeneous solution for the existence of a solution for the inhomogeneous
equation (A 4). The solution for φT is obtained by multiplying the Boltzmann equation
by ci and integrating over the particle velocities. An expansion in Sonine polynomials
is used for φT . However, it is found that the results are numerically accurate to
within 1.2 % if only the leading term in the Sonine polynomial expansion is retained,
which is equivalent to considering φT to be a constant. Similarly, ΦS is obtained
by multiplying the Boltzmann equation by (cicj − (δij /3)c2), and integrating over all
particle velocities. In this case also, the results are numerically accurate to within
1.2 % if φS is considered to be a constant. The thermal conductivity and the viscosity
are then obtained from the known values of φT and φS . The constant φB is found to
be identically zero in the dilute limit.

For a gas of rough particles, the most general expressions for ΦT and ΦU also
include dependences on the angular velocities of the particles,

ΦT
i = φT (c, ω)ci

[(
c2

2T
− 5

2

)
+

(
Iω2

2T
− 3

2

)]
,

ΦS
ij = φS1(c, ω)(cicj − (δij /3)c2) + φS2(c, ω)(ωiωj − (δij /3)ω2),

ΦB = φB(c, ω)

[(
c2

2T
− 3

2

)
−

(
Iω2

2T
− 3

2

)]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 6)

These forms of the perturbations are inserted into the Boltzmann equation, and the
equation is solved to obtain the functions φT , φS1, φS2 and φB , which are functions

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

02
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000279


38 V. Kumaran

of the magnitudes of the fluctuating velocities and angular velocities. A Sonine
polynomial expansion is used for these functions, but numerically accurate results are
obtained if only the first term in the series is retained. The transport properties are
then obtained using equations (A 3).

The conductivity obtained using the Chapman–Enskog procedure in the dilute limit
is given by

λ =
9

16

√
T

π

(1 + 4I)2(37 + 604I + 50I2)

12 + 300I + 404I2 + 816I2
. (A 7)

The bulk viscosity obtained using the Chapman–Enskog procedure,

µB =
1

128

√
T

π

(1 + 4I)2

I (A 8)

is identical to that obtained by the present moment expansion procedure (equation
(2.59)). This is because the procedure used here, which is to multiply the Boltzmann
equation by (c2

i /2−Iω2
i /2) and integrate over velocity space, is equivalent to inserting

the correction proportional to ΦB in equation (A 2), and averaging over all velocities
(assuming that φB in equation (A 6) is a constant). However, the term proportional
to φS2 in the equation for ΦS , is neglected in the expansion of Pidduck (1922), and
the resultant expression for the viscosity is

µ =
15

16

√
T

π

(1 + 4I)2

3 + 26I . (A 9)

In the present analysis, the terms proportional to φS1 and φS2 are retained in the
expansion in (A 6), and so the viscosity obtained (equation (2.59)) is higher than that
for gases of smooth particles by about 10 %, whereas the Pidduck expression (A 9) is
higher than that for gases of smooth particles by only 5%.

Appendix B. Velocity and angular velocity change in a collision between
rough particles

Consider a collision between two particles with positions x and x∗, with velocities
and angular velocities (u, ω) and (u∗, ω∗), such that the unit vector from the particle
at x to the particle at position x∗ is k. The position of the contact is then xc = x +
k/2 = x∗ − k/2 (note that we are non-dimensionalizing all lengths by the diameter of
a particle, so that the distance from the centre to a position on the surface is just 1/2
in dimensionless units.) The relative velocity at the point of contact is

g = u − u∗ −
(
(xc − x) × ω − (xc − x∗) × ω∗)

= u − u∗ − 1
2
k × (ω + ω∗). (B 1)

Here, we use the convention that for a rigid body rotating with angular velocity ω,
the linear velocity u at a point located at a vector distance r from the centre of
rotation is u = ω × r . In indicial notation, equation (B 1) is written as

gi = ui − u∗
i − (εijl/2)kj (ωl + ω∗

l ). (B 2)

The components of the relative velocity parallel and perpendicular to the line joining
centres at the point of contact before collision are,

giki = (ui − u∗
i )ki,

(δij − kikj )gj = (δij − kikj )(uj − u∗
j ) − (εijlkj /2)(ωl + ω∗

l ).

}
(B 3)
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The post-collisional relative velocity at the point of contact, g′
i , is related in an

identical manner to the post-collisional linear and angular velocities, (u′
i , ω

′
i) and

(u∗′
i , ω∗′

i ). In the collision model employed here, the post-collisional relative velocity
in the direction of the line joining is −en times its pre-collisional value, while the
post-collisional relative velocity in the direction perpendicular to the line joining the
centres is −et times its pre-collisional value.

g′
iki = −engiki,

(δij − kikj )g
′
j = −et (δij − kikj )gj .

}
(B 4)

If Ji is the impulse exerted on the particle at x by the particle at x∗ in a collision, the
linear and angular velocities of the particles before and after collision are,

u′
i = ui + Ji, u∗′

i = u∗
i − Ji,

ω′
i =ωi + (εijk/2I)kjJk, ω∗′

i = ω∗
i + (εijk/2I)kjJk,

}
(B 5)

where I is the moment of inertia scaled by the particle mass and the square of the
diameter. (Note that the particle mass has been set equal to 1 while calculating the
impulse.) In calculating the angular velocity difference, we have used the convention
that if a force F is exerted at a position with displacement r from the centre
of a rigid body, then the torque L is given by L = r × F. Using the above
expressions, we can write the impulse in terms of the relative velocities at the point of
contact,

ki(g
′
i − gi) = 2Jiki,

(δij − kikj )(g
′
j − gj ) = 2(δij − kikj )Jj ((1 + 4I)/4I).

}
(B 6)

Using equation (B 4) for the pre- and post-collisional velocities of surface at the
point of contact, the impulse Ji in equation (B 6) can be expressed in terms of the
pre-collisional linear and angular velocities,

Jiki = −((1 + en)/2)(ui − u∗
i )ki,

(δij − kikj )Jj = −((1 + et )/2)(4I/(1 + 4I))((δij − kikj )(uj − u∗
j )

−(εijl/2)kj (ωl + ω∗
l )).

⎫⎪⎬
⎪⎭ (B 7)

Using equation (B 7) for the impulse and equation (B 5) for the relations between the
pre- and post-collisional velocities, we find,

u′
i − ui = −((1 + en)/2)(uj − u∗

j )kjki − ((1 + et )/2)(4I/(1 + 4I))

× ((δij − kikj )(uj − u∗
j ) − (εijl/2)kj (ωl + ω∗

l )),

ω′
i − ωi = −((1 + et )/2)(4I/(1 + 4I))(1/2I)(εijlkj (ul − u∗

l )

+ (1/2)(δij − kikj )(ωj + ω∗
j )).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B 8)
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Appendix C. Calculation of substantial derivatives
The convective terms in the first correction to the second moment equations (2.51)

and (2.52) are calculated as follows. The left-hand side of equation (2.51) is given by

ρ
DT

(1)
ij

Dt
+ ρ

(
T

(1)
ik Gkj + T

(1)
jk Gki

)
= ρ

D
(

− QT T 1/2Sij − (δij /3)QT IT
1/2Gkk

)
Dt

+ ρ
(

− T 1/2QT (SikGkj + SjkGki)

− T 1/2QT I (Gkk/3)(Gij + Gji)
)
,

= ρ
D(−QT T 1/2Sij )

Dt
− ρδij

3

D
(
QT IT

1/2Gkk

)
Dt

− ρT 1/2QT (2SikSkj + SikAkj + SjkAki + (2/3)SijGll)

− ρT 1/2QT I

(
(2SijGkk/3) +

(
2δijG

2
kk/9

))
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 1)

The first two terms on the left-hand side of equation (C 1) can be simplified as follows.

ρ
D

(
QT T 1/2Sij

)
Dt

= ρ

(
QT T 1/2 DSij

Dt
+ SijT

1/2 dQT

dρ

Dρ

Dt
+

QT Sij

2T 1/2

DT

Dt

)

= ρ

(
QT T 1/2 DSij

Dt
− SijT

1/2ρGkk

dQT

dρ
− QT Sij

2T 1/2

pGkk

ρCv

)

= ρ

(
QT T 1/2 DSij

Dt
− SijT

1/2ρGkk

dQT

dρ
− QT SijT

1/2(1 + 4φχ)Gkk

Cv

)
,

(C 2)

and

ρ
D(QT IT

1/2Gkk)

Dt
= ρ

(
QT IT

1/2 DGkk

Dt
+ GkkT

1/2 dQT I

dρ

Dρ

Dt
+

QT Gkk

2T 1/2

DT

Dt

)

= ρ

(
QT IT

1/2 DGkk

Dt
− G2

kkT
1/2ρ

dQT I

dρ
− QT IGkk

2T 1/2

pGkk

ρCv

)

= ρ

(
QT IT

1/2 DGkk

Dt
− G2

kkT
1/2ρ

dQT I

dρ
− QT IG

2
kkT

1/2(1 + 4φχ)

Cv

)
(C 3)

where the mass conservation equation (Dρ/Dt) = ρGkk and the leading order energy
conservation equation (DT/Dt) = −(pGkk/ρCv) have been used to simplify the right
sides of equations (C 2) and (C 3). The substantial derivative of the symmetric traceless
and isotropic parts of the rate of deformation tensor is simplified as

DSij

Dt
=

1

2

(
∂

∂t
+ ul

∂

∂xl

)(
∂ui

∂xj

+
∂uj

∂xi

− 2δij

3

∂uk

∂xk

)

=
1

2

(
∂

∂xj

Dui

Dt
− GikGkj +

∂

∂xi

Duj

Dt
− GjkGki − 2δij

3

∂

∂xk

Duk

Dt
+

2δij

3
GklGlk

)

=
1

2

(
∂

∂xj

(
1

ρ

∂σik

∂xk

)
+

∂

∂xi

(
1

ρ

∂σjk

∂xk

)
− 2δij

3

∂

∂xk

(
1

ρ

∂σkl

∂xl

))

−SikSkj − AikAkj − 2SijGkk

3
+

δij (SklSlk + AklAlk)

3
(C 4)
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DGkk

Dt
=

(
∂

∂t
+ ul

∂

∂xl

)(
∂uk

∂xk

)

=
∂

∂xk

Duk

Dt
− GklGlk

=
∂

∂xk

(
∂σkl

∂xl

)
− SklSlk − AklAlk − G2

kk

3
(C 5)

where σij is the stress tensor, and the momentum conservation equation (Dui/Dt) =
ρ−1(∂σij /∂xj ) has been used to simplify the right sides of equations (C 4) and (C 5).
Adding these contributions, we get

ρ
DT

(1)
ij

Dt
+ ρ

(
T

(1)
ik Gkj + T

(1)
jk Gki

)
= ρQT T 1/2

(
SijGkk

(
ρ

QT

dQT

dρ
+

1 + 4φχ

Cv

)

− ρQT T 1/2

2

(
∂

∂xj

(
1

ρ

∂σik

∂xk

)
+

∂

∂xi

(
1

ρ

∂σjk

∂xk

)
− 2δij

3

∂

∂xk

(
1

ρ

∂σkl

∂xl

)))

− ρQT T 1/2

(
SikSkj +

δij

3
SklSlk + SikAkj + SjkAki − AikAkj +

δij

3
AklAlk

)

+
ρQT IT

1/2δij

3

(
G2

kk

(
ρ

QT I

dQT I

dρ
+

1 + 4φχ

Cv

)

− ∂

∂xk

(
1

ρ

∂σkl

∂xl

)
+ SklSlk + AklAlk− G2

kk

3

)
− 2ρT 1/2QT ISijGkk

3
(C 6)

A similar procedure is used for simplifying the left side of equation (2.52).

ρ
DΥ

(1)
ij

Dt
= ρQΥ T 1/2

(
SijGkk

(
ρ

QΥ

dQΥ

dρ
+

1 + 4φχ

Cv

)

− ρQΥ T 1/2

2

(
∂

∂xj

(
1

ρ

∂σik

∂xk

)
+

∂

∂xi

(
1

ρ

∂σjk

∂xk

)
− 2δij

3

∂

∂xk

(
1

ρ

∂σkl

∂xl

)))

+ ρQΥ T 1/2

(
SikSkj − δij

3
SklSlk + AikAkj − δij

3
AklAlk

)

+
ρQΥ IT

1/2δij

3

(
G2

kk

(
ρ

QT I

dQT I

dρ
+

1 + 4φχ

Cv

)

− ∂

∂xk

(
1

ρ

∂σkl

∂xl

)
+ SklSlk + AklAlk +

G2
kk

3

)
. (C 7)

Similarly, the substantial derivative of the leading contribution to the mean vorticity
field (equation (2.31)) can be simplified as

DΩ
(0)
i

Dt
= (∂t + ul∂l)Ω

(0)
i

= −εijk

2
(∂t + ul∂l)Ajk

= −εijk

2
(∂t + ul∂l)(∂kuj − ∂juk)

= −εijk

2
(∂k((∂t + ul∂l)uj ) − ∂j ((∂t + ul∂l)uk) − (∂kul)(∂luj ) + (∂jul)(∂luk))

= −εijk

2

(
∂k

(
∂lσjl

ρ

)
− ∂j

(
∂lσkl

ρ

))
+ εijk(AjlSlk + SjlAlk). (C 8)
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