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SUMMARY
A new motion-free iterative closest point (ICP) algorithm is proposed for building a two-dimensional
(2D) map for mobile robot navigation. A laser range finder (LRF) sensor is installed on a mobile
robot to scan and measure the depth data of the environment to form a 2D map during mobile robot
navigation. Because the scanning and navigation motions are performed independently, the scanned
data contain distortions from the motions of the mobile robot. To compensate for the distortions, the
proposed motion-free ICP algorithm estimates the effects of the dynamic motions of the robot on
the scanning process. That is, the motion-free algorithm compensates for the distance measurement
errors related to the dynamic changes in the mobile robot’s velocity. Experiments were performed
with actual velocity changes of a mobile robot to demonstrate and verify the effective performance
of the proposed algorithm.
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1. Introduction
A mobile robot must be able to move to a destination in order to carry out necessary tasks. To carry
out operations successfully, the mobile robot must be able to locate its current position.1−5 Recently,
the social need for an aerial or mobile robot’s localization has become widespread with enormous
speed. As a consequence of these latest trends, newly developed mobile platforms that are adaptive
and robust to unstructured environments have appeared. In an urban environment, mobile robots such
as the Google self-driving car and Amazon drone have been demonstrated to perform tasks at a high
level. In order to satisfy the social needs for mobile robots, this paper focuses on the development of
high-speed localization techniques for projected two-dimensional (2D) spaces.

The mobile robot needs to recognize the surrounding environment with a sensor during its motion.
By utilizing information on the environment, the mobile robot can create a map, or a graphic
symbolic representation of significant features for part of the Earth’s surface, for navigation. Based
on the completed map of the environment, the robot can estimate its position, plan a path to follow,
and manage autonomous driving. Depending on how the information on the motion and environment
is saved, the map can be classified as an occupancy grid, feature-based, topological, or scan matching
map.6−13 When a 2D map is established, distance-estimation algorithms based on the extended
Kalman filter or particle filter can be used. The estimation allows a map-matching algorithm to
combine information on distances and remove duplicate parts prior to integration. Among the map-
matching methods, the iterative closest point (ICP) algorithm is known to be the most accurate in
combining and optimizing data.14

A mobile robot can move at a constant velocity while mapping or stop its motion before measuring
the surrounding environment. However, such methods for mapping make it impossible to handle
any changes in the velocity of the mobile robot. Naturally, the motion of the mobile robot produces
errors. In this work, a 2D map was drawn by using environmental data measured with a laser range
finder (LRF) sensor. Particular focus was given to developing compensations for the 2D map based
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1846 Robust 2D map building

on variable changes related to the driving velocity of the robot. Parameters that require careful
consideration for processing the data of an LRF sensor attached to a mobile robot include the
measurement time for the sensor data and the position of the robot at that moment.

The attached LRF should obtain distance information with the mobile robot at various speeds.
Speed fluctuations obviously have a large impact on the LRF accuracy, which inevitably degrades
the map-building performance. As the mobile robot moves faster, the tracking and map-building
performance worsens because the mobile platform’s speed fluctuation can be relatively large even
though the scan rate of the LRF is constant. Thus, sensor calibration and LRF error compensation are
essential processes for a high-speed test environment.

This paper introduces a new motion-free ICP algorithm to compensate for high-speed errors to
enhance the 2D map-building performance. The algorithm was verified for two representative test
environments: a long aisle in the shape of a square and an H-shaped aisle. The LRF sensor acquires
environmental information by reading the distance data. In such a case, the data may be from the
past because of the time delay when information is transmitted after raw data are processed. During
a rotation, the scanning LRF sensor reads various kinds of data; there may be a time delay present
in the measurement. Thus, there can be time differences during the interpretation of each dataset. In
this work, the URG-04LX laser sensor was used; it can scan 240◦ and process distance measurement
within 100 ms. Therefore, there can be a maximum time difference of 100 ms between the first and
last data points. When the data provided by the sensor are read while the mobile robot is moving at
a velocity of 1 m/s, there may be a maximum distance error of 0.1 m between the first and last data
points. Thus, the error increases with the movement speed of the mobile robot.

To solve such problems, this paper suggests a motion-free algorithm to compensate for the velocity
that is based on the ICP algorithm. The original ICP algorithm does not account for the scale factor
in the least squares (LS) problem.15,16 In practice, however, the scale factor exists universally in
registration because images acquired by real digitizers differ greatly in viewpoint, scanning resolution,
etc. In order to solve this kind of problem, the ICP algorithm can be combined with a model of the
mobile robot; this is referred to as the “motion-free ICP algorithm” in this paper.

This paper comprises six sections. Section 2 states a general LS problem and briefly reviews
the ICP algorithm. Section 3 explains the modeling process of the mobile robot for obtaining accurate
data when the mobile robot is in motion. The principle to compensate for the velocity of the mobile
robot is described. Section 4 explains the conversion of the motion coordinates and the motion-
free algorithm for drawing the 2D map. Section 5 presents a 2D map drawn by an actual mobile robot
in experiments to verify the proposed method. Lastly, Section 6 summarizes the results and suggests
some avenues of future research.

2. Problem Statement and ICP Algorithm

2.1. Problem formulation
In general, for the 2D map building by a moving robot, the ICP algorithm has been utilized. For the
precise map building by ICP algorithm, a reliable reference dataset is required, which comes from
the trajectory planning in general. However in the trajectory planning, the speed of the mobile robot
has not been considered, which causes distance errors in the matching process of the ICP algorithm.
In this research, the motion of the mobile robot has been estimated and utilized for modifying the
reference dataset.

The registration of model data (m-D) point sets is a difficult problem. In this work, the point set
registration was formulated as a general optimization problem.

Given two point sets in Rm, the model shape M ∈ {mi}Nm

i=1 and data shapeD ∈ {di}Nd

i=1,
(Nm, Nd ∈ N) can be assumed to have a large overlap. Two m-D point sets are matched by finding a
transformation T with which D is registered to be in the best alignment with M . Thus, the formulation
is based on the following LS problem:

e (R, t) = min
j∈{1,2,...,Nm}

(
Nd∑
i=1

∥∥mj − T di

∥∥2

)
, (1)
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where the error function e(R, t) is defined by the transformation T = [ R t
0 1 ] between two m-D point

sets.
In this research, the transformation T has been re-evaluated against the robot motion, and a

motion-free ICP algorithm has been proposed with this new reference data, T .

2.2. Motion-free ICP algorithm
The ICP algorithm proposed by Besl and Mckay17 is an efficient method for handling rigid registration
between two point sets.

Its objective is to find a rigid transformation with which D is registered to be in the best alignment
withM . That is, T = [ R t

0 1 ] of Eq. (1) comprises a rotation R and translation t. The rigid registration
between two point sets can be described in detail as follows:

e (R, t) = min
T ,J,t∈{1,2,...,Nm}

(
Nd∑
i=1

∥∥mj − (Rdi + t)
∥∥2

)
, (2)

where R ∈ R
3×3 is a rotation matrix, RTR = I (identity matrix), det(R) = 1, and t ∈ R

3 is a
translation vector.

The ICP algorithm in Eq. (2) can achieve a good and fast matching between the model and
measured datasets when there a precise model dataset is provided by the reliable reference dataset R

and t. The reference dataset can be obtained by the following two steps. First, the correspondence
between the two point sets mj and di is represented as

ck (i) = arg min
j∈{1,2,...,Nm}

(∥∥mj − (Rk−1di + tk−1)
∥∥2

)
. (3)

Second, a new transformation between two point sets {mck(i)}Nd

i=1 and {Rk−1di + tk−1}Nd

i=1 is
computed by minimizing the squared distance, which is represented as

(
R∗, t∗

) = arg min
R,t

(
Nd∑
i=1

∥∥mck(i) − R (Rk−1di + tk−1) + t
∥∥2

)
. (4)

Using Eqs. (3) and (4), Rk and tk can be updated as

Rk = R∗Rk−1 (5)

tk = R∗tk−1 + t∗. (6)

This new motion-free ICP algorithm is applied to the data shape and model shape obtained from
the mobile robot, which is assumed to move at a constant velocity.

3. Velocity Compensation of LRF Sensor Based on Driving Velocity of Mobile Robot
If the velocity of a mobile robot changes while it is traveling on a straight or curved path, the measured
data will have errors. More frequent changes in the velocity will increase the difficulty of setting the
optimal model. Thus, compensation based on the change in velocity is required. In order for a mobile
robot to measure an object accurately while changing velocity, it is necessary to first determine the
velocity of the mobile robot and trace the motion because the position of the LRF sensor measuring
the environmental information can differ depending on the velocity of the robot. In order to solve such
a problem, the velocity and traced motion of the robot are calculated through a mechanical analysis
of the mobile robot.

3.1. Modeling process of mobile robot
A mobile robot with a differential driving mechanism was used in this work. Based on the rotating
angular velocity of both wheels, a mobile robot can move with two degrees of freedom. The current
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Fig. 1. Mechanical analysis of mobile robot. (a) Coordinates of mobile robot. (b) Kinematics of mobile robot.

position of a mobile robot can be denoted as O ′18,19:

O ′ = [xk, yk, φk]T . (7)

Figure 1(a) shows the coordinates of a mobile robot; these are expressed as xk, yk, φk.
The relative coordinates of the robot are set so that the robot moves along the X′-axis at all

times. The reference coordinates are given by OXY , whereas the positional coordinate of the robot
is expressed by O ′. The difference in the rotational angle between the relative coordinates O ′X′Y ′
and reference coordinates OXY of the robot is given by φk .

Figure 1(b) shows the angular velocities of the left and right wheels, which are measured with
the encoder and are represented as ωL and ωR , respectively. The distance between both wheels is L,
while the radius of each wheel is r which defines the pointing vector r from the center of the wheel
to the contact point to the ground. The linear velocities of both wheels vL and vR can be calculated
as follows:

vL = ωL × r (8)

vR = ωR × r. (9)

Now, the linear velocity of the robot vk and the angular velocity �k can be calculated as follows:

vk = vR + vL

2
(10)

�k = tan−1

(
vR − vL

L

)
, (11)

where the angular velocity is calculated in the counterclockwise direction.
When the kth position of the mobile robot is known, the (k + 1)th position can be estimated as

follows: ⎡
⎣xk+1

yk+1

φk+1

⎤
⎦ =

⎡
⎣xk + |vk| · cos(φk + �k · cT )

yk + |vk| · sin(φk + �k · cT )
φk + �k · cT

⎤
⎦ , (12)

where cT is the control cycle of the mobile robot system.
Therefore, the nonlinear state equation of the dynamic model can be represented as follows:

⎡
⎣ ẋk

ẏk

φ̇k

⎤
⎦ =

⎡
⎣ |vk| · cos(φk−1 + �k · cT )

|vk| · sin(φk−1 + �k · cT )
�k · cT

⎤
⎦ , (13)
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Fig. 2. Measurement position of LRF sensor based on motion of mobile robot.

Fig. 3. Angular positions based on rotation of LRF sensor.

where pk = [xk, yk, φk]T can be defined as a state vector of the dynamic system, which represents the
origin of the mobile robot in Fig. 1(b).

3.2. Implementation of motion-free ICP algorithm
Because the LRF sensor on the mobile robot rotates to measure the distance to the environment,
the time differences of each measurement point need to be estimated for precise measurement of
the distance. Because of these characteristics, the distance errors of the sensor increase when the
mobile robot moves faster. In order to resolve this problem, the velocity at the measurement position of
the sensor needs to be calculated.

Figure 2 shows the measurement position of the sensor when the mobile robot moves along the
X′ direction and the scanning sensor is located at the position p(i)

k over the time t (i). In the figure, θS

shows the starting position of the measurement, whereas θE represents the finishing position. When
the mobile robot moves to the positions p(i−1)

k , p(i)
k , and p(i+1)

k , the measurement positions of the
sensor become aj−1, aj , and aj+1, respectively. Therefore, the measurement position of the LRF
sensor depending on the motion of the mobile robot must be derived to obtain accurate environmental
information.

Figure 3 represents the measurement range of the sensor as from θS to θE . The j th measurement
angle of the LRF sensor θj can be calculated as

θj = θs + (θE − θS)
j

M − 1
, (14)

where M is the total number of scanning sensor data points for a cycle. Note that tj needs to be
calculated because the measured data depend on the time. The measurement time tj can be obtained
as follows:

tj = ts + θj

2π
Ts + tND, (15)
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Fig. 4. The mobile robot speed is greater than VR .

where ts is the starting time of the scan, Ts represents the cycle time of the LRF sensor, and tND is
the network delay time from the sensor.

The environmental information gathered by the LRF sensor for a cycle Ts from the scan start time
ts is represented as Dt = {dj |j = 1, . . . , M}, where dj is the j th distance to the environment.

The absolute position of the environment measured by the scanner at the time tj can be represented
in terms of the robot position pk and dj . The absolute position of the environment at the time tj can
be obtained by interpolating the two points (pk

(i) , t (i)) and (pk
(i+1), t (i+1)) as follows:

pk = pk + (tj − t (i))
pk

(i+1) − pk
(i)

t (i+1) − t (i)
. (16)

Finally, the position of an obstacle in the global coordinate system (Wxj ,
Wyj ) at the time tj can

be represented bydj and aj based on pk = [xj , yj , φj ]T as follows:

Wxj = xj + dj cos(φj + ∠aj ) (17)

Wyj = yj + dj sin(φj + ∠aj ). (18)

The distance error of the LRF sensor based on the velocity of the mobile robot is denoted as ed

and can be calculated as

ed = vk · Ts

M
· n(Dt ), (19)

where n(Dt ) represents the number of scanned data points in a cycle.
By calculating the time at each position aj with the known mobile robot velocity ṗk , the distance

of each position can be estimated. For this purpose, the safety velocity VR of the mobile robot that
does not go beyond the measuring range of the sensor is defined as follows:

VR = ‖dL‖
Ts

. (20)

where dL is the maximum measurable distance vector of the LRF sensor.
The distance error ed changes with the velocity of mobile robot. Based on the relationship between

the safety velocity and mobile robot velocity, the distance error ed can be calculated.
Figure 4 shows a situation where the velocity of the mobile robot vk is greater than the safety

velocity VR .
When the velocity of the mobile robot is greater than VR , the distance to a′

j becomes dL + ed .
Then, the coordinates of the measured data a′

j = (a′
jx, a

′
jy) can be calculated as follows:

a′
jx = ||dL + ed || cos

(
θj

)
(21)

a′
jy = ||dL + ed ||sin

(
θj

)
. (22)
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Fig. 5. The mobile robot speed is less than VR .

Fig. 6. Coordinates of the mobile robot.

Figure 5 shows the case when the velocity of the mobile robot vk is less than the safety
velocity VR .

In this situation, the distance to a′′
j becomes dL − ed , and the measured data a′′

j = (a′′
jx,a

′′
jy) can

be obtained as follows:

a′′
jx = ||dL − ed || cos

(
θj

)
(23)

a′′
jy = ||dL − ed || sin

(
θj

)
. (24)

By using these formulas, the effects of the mobile robot motion with a certain velocity vk can be
compensated for to realize precise measurement. That is, the measured location of the environment
can be compensated from aj = (ajx,ajy) to either a′

j = (a′
jx,a

′
jy) or a′′

j = (a′′
jx,a

′′
jy) depending on the

velocity of the mobile robot.
By using the compensated datasets of aj = (ajx,ajy), error-free 2D data can be obtained as

M̂ (model set, M̂ = {m̂i |i=1...Nm}) for the given velocities of vk , and D̂ (measured dataset, D̂ =
{d̂j |j=1...Nd}) can be obtained in a single scan while the mobile robot is moving at an unknown
velocity vk .

A new error function can thus be defined as follows:20,21

e (R, t) =
Nm∑
i=1

Nd∑
j=1

wi,j

∥∥∥m̂i −
(
Rd̂j + t

)∥∥∥2
, (25)

where wi,j is 1 if m̂i is the same as d̂j . Otherwise, wi,j is 0.
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Fig. 7. Caterpillar-type mobile robot for experiments.

Therefore, the double summation in Eq. (25) can be simplified as follows:

e (R, t) = 1

N

N∑
i=1

∥∥∥m̂i −
(
Rd̂i + t

)∥∥∥2
. (26)

Instead of finding an optimal set of R and t for Eq. (26) concurrently, the optimal R is obtained
first, and the optimal t is obtained later by using the optimal R. For this purpose, the average of the
points used for the matching process can be defined as follows:

cm = 1

N

N∑
i=1

mi (27)

cd = 1

N

N∑
i=1

di . (28)

Then, the augmented datasets are defined as follows:

M ′ = {
m′

i = mi − cm

}
i=1,...,N

(29)

D′ = {
d′

i = di − cd

}
i=1,...,N

. (30)

To obtain the optimal R from Eq. (26), the factor t is removed, and the augmented error function
is represented with the augmented datasets m̂′

i and d̂′
i as follows:

ẽ (R, t) =
N∑

i=1

∥∥∥m̂′
i − Rd̂′

i

∥∥∥2
. (31)

Because a rotation preserves the length, ‖Rd′
i‖2 = ‖d′

i‖2 for the augmented error function in
Eq. (31) is expanded as

ẽ (R, t) =
N∑

i=1

∥∥m′
i

∥∥2 − 2
N∑

i=1

m′
i ·Rd′

i +
N∑

i=1

∥∥d′
i

∥∥2
. (32)
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Fig. 8. Block diagram of overall system.

The rotation affects only the second term; thus, it is sufficient to maximize the second term, which

can be calculated as 2
N∑

i=1
m′

i
T × Rd′

i . The second term can be represented by using the trace of a

matrix as follows:22

tr

(
N∑

i=1

Rd′
i × m′

i
T

)
= tr(RH ), (33)

where

H =
N∑

i=1

d′
i × m′T

i . (34)

Now, the goal is to find a matrix R that maximizes tr(RH ). By singular value decomposition, H

is represented as follows:

H = U�VT, (35)

where U and V are orthonormal 2 × 2 matrices and � is a 2 × 2 diagonal matrix without negative
elements.

A candidate optimal R is selected for the given H as follows:

R = VUT. (36)

Then, from Eqs. (35) and (36)

RH = VUTU�VT.

= V�VT (37)

Note that the matrix RH is a symmetric, positive definite matrix. Therefore, for any given
orthonormal matrix G, the following inequality condition is satisfied:

tr(RH) ≥ tr(GRH). (38)
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Fig. 9. Real experimental environments. (a) Long and square-shaped experimental environment. (b) H-shaped
experimental environment.

That is, the candidate R( = VUT) becomes a real optimal R.23

Now, the optimal translation is calculated by using the optimal R for a given H as follows:

t = cm − Rcd . (39)

By Eqs. (36) and (39), the optimal rotation matrix and translation vector are obtained to finally
match the two datasets m̂′

i and d̂′
i .

4. Coordinate Transformation of Robot
In order to draw the 2D map by using the laser scanner installed on the mobile robot, it is necessary to
determine the coordinates for the position of the robot based on the global coordinates and the base
of the LRF sensor w.r.t. the robot coordinates.

As indicated in Fig. 6, the coordinates of the robot (Xrobot , Yrobot ) and the coordinates of the laser
(Xlaser , Ylaser ) w.r.t. the global frame can be represented as follows:

[
Xrobot

Yrobot

]
=

[
xk + |vk| × cos(φk + �k · cT )
yk + |vk| × sin(φk + �k · cT )

]
(40)

where xk and yk represent the rectangular coordinates for the moving distance of the robot on the X-
and Y -axes, respectively.
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Fig. 10. Model map of experimental environment. (a) Model of long and square-shaped test environment.
(b) Modeling of H-shaped test environment.

Now, the laser sensor position w.r.t. the robot coordinates can be defined as

[
XLaser

YLaser

]
=

[
cos(θj )
sin(θj )

]
× ||dL||, (41)

where θj represents the laser sensor angle (refer to Fig. 4) for the distance data measured by the LRF
sensor dL.

Combining the coordinates of the robot w.r.t. the global frame and the LRF sensor data w.r.t. the
robot frame allows the 2D map data w.r.t. the global frame to be obtained as follows:

⎡
⎣Xmap

Ymap

1

⎤
⎦ =

⎡
⎣XRobot

YRobot

1

⎤
⎦ + WRR

⎡
⎣XLaser

YLaser

1

⎤
⎦ (42)
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Fig. 11. Velocities of the mobile robot along the corridor and the scanning results: (blue) stationary scan and
(red) dynamic scan. (a) Mapping result under squared aisle. (b) Velocity changes of mobile robot under squared
aisle.

where WRR represents the rotational matrix defined by the relation between the robot frame and
global frame.

5. Experimental Results
In order to verify the effectiveness of the proposed algorithm, a mobile robot equipped with a 10 W
class DC motor and an optical encoder with a precision level of 256 pulses per rotation was used.

The URG-04LX model is an indoor-environment laser scanner from Hokuyo and is equipped
with an RS-232 communication interface; it was used as the distance sensor. The 2D
plane measuring range of the LRF sensor was 240◦ with intervals of 0.36◦. The maximum
measuring distance was 4000 mm. The roll, pitch, and yaw angles of the mobile robot were
measured with an IMU sensor and a compass. Figure 7 shows the mobile robot used in the
experiments.24−29

As shown in Fig. 8, the mobile robot was equipped with various sensors for position measurement.
The main controller was designed with a PC. The moving parts can be controlled with two motors
and motor drivers, which were used to control forward/backward movements with variable velocities.
The ARM board controlled the mobile robot by receiving data provided by each sensor. The distance
information was obtained by using a single laser distance meter.

5.1. Experimental environment
The proposed algorithm was demonstrated for two different aisles. The first was long and square-
shaped. In this environment, the experimental results could be used to verify the repetitive tracking
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Fig. 12. Comparison of scanning errors according to the velocity: (blue) stationary scan and (red). (a) Velocity =
1 m/s; first part of region A in Fig. 11. (b) Velocity = 2 m/s; region B in Fig. 11. (c) Velocity = 3 m/s; middle
of region C in Fig. 11.
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Fig. 13. Comparison of conventional and motion-free ICP maps. (a) Conventional ICP map for the square-shaped
aisle. (b) Motion-free ICP map for the square-shaped aisle.

performance depending on the velocity fluctuation. The second was an H-shaped environment, where
acceleration and deceleration are relatively hard to perform. This was used to evaluate the tracking
performance according to rapid variations in the velocity of the mobile platform.

Figure 9(a) shows the long and square-shaped experimental environment, which was an indoor
hallway. Figure 9(b) illustrates the H-shaped test environment. In order to determine the distance
error depending on changes in the velocity, a corridor environment with walls on both sides was
selected.

Figure 10 shows the experimental environment, where the robot moved along a straight line with
changing velocities from the start to the goal. The route was divided into four sections with different
mobile robot speeds.
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Fig. 14. Distance error for the square-shaped aisle environment. (a) Tracking error w.r.t. the X-axis for the
square-shaped aisle. (b) Scanning error w.r.t. the Y -axis for the square-shaped aisle.

5.2. Experimental result 1: long and square-shaped environment
In Fig. 11(a), the blue line (1) represents the map data obtained by the stationary scan, whereas the
red line (2) shows the map obtained by the dynamic scan. The latter was obtained while the mobile
robot was moving at the given velocities. Even when there was no scanning error when the robot was
stationary, the error started to increase when the velocity of the robot was increased to 1 m/s. The
largest error was when the velocity became 3 m/s. Figure 11(b) shows the speed of mobile robot in
four sections. The results showed that scanning errors occurred when the mobile robot moved faster
while the scanning of the environment was kept the same.

Figure 12 shows the distance errors with different velocities of the mobile robot: (1) is the map
obtained by the stationary scan, and (2) is the occurrence of distance errors depending on the motion
of the mobile robot. The error increased with the velocity of the mobile robot.

Figure 13(a) shows a conventional ICP map drawn as the mobile robot moved. Errors occurred
because of the motion of the mobile robot. Figure 13(b) shows the map when the motion-free ICP
algorithm was applied in order to correct the distance errors in the environmental map. The distance
errors from the LRF measurement were confirmed to be removed by the motion-free ICP algorithm.

The computation times of the proposed motion-free ICP algorithm and conventional ICP algorithm
were calculated for 15 iterations. The motion-free ICP algorithm was found to be more efficient; the
average computation times of the conventional ICP and motion-free ICP were 645 and 525 ms,
respectively.
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Fig. 15. Velocity changes of mobile robot and mapping result. (a) Mapping result for the H-shaped aisle.
(b) Velocities at regions A, B, and C in (a).

Figure 14(a) shows the X-axis distance errors by the motion-free ICP and ICP algorithms,
respectively. The ICP algorithm showed a slightly better improvement initially. However, it soon
converged to a constant value and did not show any further improvement. The motion-free
ICP algorithm showed a lower convergence speed than the ICP algorithm initially. However, it
monotonically converged to a small value. The RMS (root mean square) value was used for an
accurate comparison in case the distance errors were negative values.

Because the mobile robot moved forward in the direction of the X-axis, the moving direction was
usually parallel to continuous objects such as walls. Objects placed in front of the mobile robot were
in the X-axis direction, unlike the ones placed on the sides of the mobile robot in the Y -axis direction
during motion. Thus, the Y coordinate was constant in most cases. In this sense, the Y -axis required
a shorter computation time than the X-axis.

Figure 14(b) shows the Y -axis distance errors of the motion-free ICP and ICP algorithms. The
initial error for the ICP algorithm was smaller, but the errors with the motion-free ICP algorithm
converged to a lower value as the number of iterations was increased.

5.3. Experimental result 2: H-shaped environment
Figure 15(a) shows the mapping results for the H-shaped aisle environment. The blue line (1)
represents the map data obtained by the stationary scan, whereas the red line (2) shows the map
obtained by scanning from the moving mobile robot, which produced large distance errors. Figure
15(b) shows the speed of the mobile robot from region A to region C. The mobile platform accelerated
to 1 m/s, turned right at the center point of the H shape, further accelerated to 3 m/s, and finally
decelerated to 1 m/s.
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Fig. 16. Comparison of conventional and motion-free ICP maps. (a) Conventional ICP map for the H-shaped
aisle. (b) Motion-free ICP map for the H-shaped aisle.

Figure 16(a) illustrates the conventional ICP map for the H-shaped aisle. A displacement error
occurred because of the lack of velocity compensation for the mobile robot. In contrast, Fig. 16(b)
shows the proposed motion-free ICP algorithm map for the same experimental environment. The
motions of the mobile robot were compensated for by the motion-free ICP algorithm in real-time. For
the experiments, the computation times of the conventional and proposed methods were evaluated for
15 iterations; the computation times of the two algorithms were 845 and 785 ms, respectively. Note
that the scanning error increased around the edge of corner with the conventional ICP algorithm,
which is an inevitable characteristic of using a mobile robot.

Figure 17 shows the X-axis distance errors with the motion-free ICP and ICP algorithms. The
velocity fluctuation was more frequent in the H-shaped test environment than that in the square-
shaped environment, so the degrees of the tracking error correspondingly decreased. Based on the
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Fig. 17. Distance error for the H-shaped environment. (a) Tracking error w.r.t. the X-axis for the H-shaped aisle.

above two environments, the proposed motion-free ICP algorithm provides a more stable and faster
performance.

6. Conclusion
This paper presents a method of building a 2D map in an indoor environment that corrects errors based
on changes in the velocity of the robot and the results of an experiment performed for verification. The
motion-free ICP algorithm makes it possible to determine the occurrence of distance errors based on
changes in the velocity of a mobile robot and the sensor characteristics of different experiments. This
paper solves such problems with the motion-free ICP algorithm, which combines the ICP algorithm
with compensation for the movement of a mobile robot. Actual experiments were performed with
a mobile robot to demonstrate the effectiveness of the proposed algorithm. Future work with the
motion-free ICP algorithm will involve drawing a 3D map by using an LRF on a fast-moving mobile
robot. The estimation accuracy can be improved by the stochastic methods,30,31 which are left as for
future research.
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