
         

Extension of Usable Workspace of Rotational Axes in
Robot Planning
Zhen Huang and Y Lawrence Yao
Department of Mechanical Engineering, Columbia University, New York, NY 10027 (USA)

(Received in Final Form: September 3, 1998)

SUMMARY
Singularity of a robot manipulator is one of the obstacles
that influences its capabilities. This paper discusses con-
strained and allowable rotational motion resulting from lost
translational freedom when the robot is singular. A conven-
ient method and simple and clear expression to determine
the allowable rotational axes and the subspace that they
form, under Jacobian singularity, is analyzed and presented.
Different configurations, reciprocal screws, and subspaces
of allowable-rotational-axes are derived in a case study
involving a classic robot. The result is useful in applications
involving robot path planning in task space as it extends the
usable workspace of rotational axes.

KEYWORDS: Robot planning; Usable workspace; Rotational
axes; Singularity; Path planning.

1. INTRODUCTION
Robotic manipulators have been used in industry, but their
utilization is sometimes limited by the singularity of the
manipulators (i.e. the singularity of their Jacobian matrix).
When it is singular, a manipulator loses some of its
freedom, and the rank of its Jacobian reduces. As a result, its
workspace decreases and its kinematic and dynamic proper-
ties deteriorate.

This problem has been studied extensively,1–9 and most of
the studies are based on the screw theory.10–13 Baker
analyzed the relative motion of two-degree-of-freedom
mechanisms and determined the special configuration using
common reciprocal screws, which intersects with all the
kinematic pair axes of the mechanisms.1,2 Sugimoto
reported that a robot end effector cannot move along the
direction of a reciprocal screw.3 Waldron derived three
singular conditions of some industrial robot manipulators
and their corresponding reciprocal screws.4 Hunt solved the
reciprocal screw of some robot manipulators. He pointed
out that there are ∞ 4 twists in space belonging to five-
system, and determined the twists with different pitch.5,6 Liu
in reference [7] indicated the method of pseudo inverse of
Jacobian matrix and developed a differential motion
approach based on the singularity-robust inverse to deal
with the singularity problem. Using the method of pseudo
inverse sometimes results in discontinuities in joint space
variables.

Based on the screw theory and the work done by
Waldron4 and Hunt,5,6 the first named author has shown that

the constrained rotation of a body does not affect its
translation while the constrained translation of an object
does influence its rotation.14,15 Specifically, when the
translational freedom is constrained, the rotational freedom
is also partially constrained. As a result, the selection of
rotational axes during path planning reduced, i.e. the body
may still have rotational freedom, but it cannot rotate about
any arbitrarily chosen axes. Its allowable rotational axes
form only a subspace of the original space. The practical
implication is that at singular points, trajectory planning of
a manipulator in the task space may still proceed, but with
certain restrictions. This effectively extends the robot
workspace.

This paper further discusses the allowable rotational
freedom when translational freedom is constrained, and
demonstrates how to conveniently determine the allowable
rotation under singularity and further a usable subspace of
all rotational axes using a classical robot as an example. The
results presented in this paper can be implemented in
manipulator path planning software for industrial applica-
tions.

2. POSSIBLE MOVEMENT UNDER CONSTRAINTS
Assume two screws $1 and $2:

$1 =(S1; S01)=(l1 m1 n1; P1 Q1 R1)

$2 =(S2; S02)=(l2 m2 n2; P2 Q2 R2)
(2.1)

where S1, S2, S01, and S02 are four vectors, S1 •S1 =1,
S2 •S2 =1, S1 •S01 =0, and S2 •S02 =0. The reciprocal product
of two screws, $1 ° $2, is defined as:

$1 ° $2 =S1 •S02 +S2 •S01 (2.2)

where “°” represents the reciprocal multiplications. When
two screws are said to be reciprocal screws, the physical
meaning of the product is that when a constrained body
moves about an instantaneous screw axis, $1, a wrench
acting on a screw, $r, does not contribute to the rate at which
work is being done on the body. In such a circumstance $1

and $r can be expressed as the reciprocal product of two
screws being zero, that is:

$1 ° $r =0 (2.3)

or l1P
r +m1Q

r +n1R
r +P1l

r +Q1m
r +R1n

r =0
Equation 2.3 can be rewritten as:

(h1 +hr) cos a2 asin a=0 (2.4)
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where h1 and hr are the screw pitchs of $1 and $r,
respectively, a the angle between the two screws, and a the
common normal of axes of the two screws. At this situation,
the robot will lose some possible movement when singular-
ity occurs. Its degree of freedom will also decrease. If
screws $i(si; s01), i=1, 2, 3, . . . , n, si •si =1 and si •s01 =0,
represent the axes of the kinematic joints of the robot, and
those screws are linearly independent. There exist (6-n)
reciprocal screws, $r, that are reciprocal to each screw of the
screw system and we have:

$1 ° $r =0 (i=1, 2, 3, . . . , n) (2.5)

If the force does no work on possible motion, it will only
be the constraint force. The end effector will lose the
corresponding freedom if there is some constraint force
exerted on it. Therefore, it is convenient to analyze both the
constrained motion and the possible motion of the mecha-
nism by using the reciprocal screw theory.

The screws exist in five different forms, but only three of
them are basic and are to be introduced here. If the
reciprocal screw acting on the object has the form (0; s) it is
a constraint couple with infinite pitch. If there is such a
couple acting on a body but doing no work, it means that the
body has no rotation about the axis that is colinear with the
couple. The following expression denotes the reciprocal, (0;
s), and the constrained motion, (s, r3 s):

(0; s)⇒ (s, r3 s) (2.6)

If the reciprocal screw has the form (s, r3 s), with zero
pitch, it is a line vector, 11, and expresses a constraint force
passing through point, r, along the s-direction (Fig. 1). If
there is such a force acting on a body and doing no work,
the body is constrained and has no motion along the s-
direction. Furthermore, if the body rotates about a possible
rotational axis (l2, (s9; r93 s9)) the projections of the velocity
vectors of those points, which lie on the line l1 and belong
to that body, must be zero. This can be derived from Eq. 2.3,
and it means that the rotational motion of the body is
constrained when that projection is not zero. The reciprocal
and constrained motion can be expressed as:

(s; r3 s)⇒H (0; s)

(s9; r93 s9), (r92r)3 s9·s?0
(2.7)

If the reciprocal is of the form (s; r3 s+hs) where the pitch
is not equal to zero (h?0), it is also a constraining wrench
passing through a point, r, along the s-direction. When a
body is acted on by such a constraining wrench without
doing any work, the body is constrained and has no twist
along the s-direction passing through the same point, r, with
pitch, H, not equal to 2h. Under this condition, the moving
twist with pitch H?h, including the rotational motion
(H=0) and the translational motion (H=∞ ). Besides,
rotation about an axis passing through the other skew lines
is constrained. A twist about an axis, which could be skew
to that reciprocal wrench or in direct intersection with that
wrench, is restricted as well. We may express the reciprocal
screw and the constrained motion as

(s; r3 s+hs)⇒
(s; r3 s+Hs), H?2h

(s9; r93 s9), s·(r93 s9)+s9·(r3 s+hs)?0

(s9; r93 s9+Hs9), s·(r93 s9+Hs9)+s9·(r3 s+hs)?0

(2.8)

When a body bears a reciprocal screw, the motion of the
body should satisfy Eq. 2.3. This reciprocal screw, $r =(sr;
•sr

0) acting on a body is a force where the pitch is zero when
sr •sr

0 =0. There are five degrees of freedom (DOF) including
two translational DOFs, which directions are orthogonal to
the force and three rotational DOFs, whose axes intersect
the force. On the other hand, those lines not intersecting
with the force cannot be selected as the axis of rotation.
When a body has two reciprocal screws with zero pitch, that
is, two forces, the body has only four DOFs. There is one
translational degree in the direction orthogonal to the two
reciprocal forces simultaneously, and three rotational
degrees. Each rotational axis intersects with the two acting
lines of the two reciprocal forces.

A reciprocal screw, $r(s; s0), acts on a body and the pitch
does not equal zero (hr?0) if S•s0?0. The body still has five
DOFs corresponding to five linearly independent motions.
The twist colinear with the reciprocal screw may have the
pitch negative sign to the pitch of the reciprocal. The
allowed twist that is orthogonal to the axis of the reciprocal
may have any pitch. It is desirable to know if the allowed
movement is pure rotation or pure translation, and to be
used to decompose a complex motion into several transla-
tional and rotational motions. Therefore, the allowed
translational and rotational motions should be found when
an object is under a reciprocal screw with pitch, hr?0.

When a body is under a reciprocal screw with hr?0, we
put the coordinate frame on the body such that the Y-axis of
the frame coincides with the reciprocal, as shown in Figure
2. The reciprocal screw takes the form:

$r =(s; hrs)=(0 1 0; 0 hr 0) (2.9)

The axis, $m, of the rotational motion of the body has an
angle a with the Y-axis and is located at point a.
Rearranging Eq. 2.4 we have:Fig. 1. Constraining force influences rotation.
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hr

a
=tan a (2.10)

From Eq. 2.10, we see that when the reciprocal screw
with pitch hr?0, acts on the body, the allowed rotational
motion is skew to the reciprocal in space. The angle, a,
between the reciprocal and the axis of the motion, $1,
gradually becomes smaller when the perpendicular distance,
a, becomes longer. When the distance, a, is zero, two lines
intersect and a=90°. When the distance, a, is infinite
(a=∞ ), they are parallel. The function, a(a), is shown in
Figure 2b, where the upper branch is for hr > , and the lower
branch for hr <0.

3. EXTENDED APPLICABLE SUBWORKSPACE OF
ROBOT MANIPULATOR IN SINGULARITY
As mentioned before, there is an applicable subworkspace
when a manipulator is in a singular configuration. We take
the six DOF robot PUMA 560 as an example to analyze the
applicable subworkspace. The PUMA robot, which has
been studied extensively, is shown in Figure 3 in the D-H
approach. The third local moving reference system here is
selected as the mean system to set the Jacobian matrix of the
manipulator. That is the z3 axis is coincident with the axis of
the third revolute joint, and x3 is along the common normal,
a34, of axis 3 and 4. Those six original points of the six local
reference systems are denoted by 010203 . . . 06. Then those
six axes of the robot are expressed by screws $1$2$3 . . . $6

($i =(si; s0i)), where si is the axis direction vector of the ith

revolute joint, and s0i =ri3 si, where ri is the position vector
of one point in line vector s. Also note that si•si =1, and
si •s0i =0. The Jacobian matrix of PUMA 560 is:4

2s2+3 0 0 0 s4 2c4s5

2c2+3 0 0 1 0 c5

0 1 1 0 c4 s4s5
[J]=

2s22c2+3 a23s3 0 0 s44c4 s44s4s5
(3.1)

s22s2+3 a23c3 0 0 0 0

a23c2 0 0 0 2s44s4 s44c4s5

where si and ci indicate sin ui and cos ui, and si+j and ci+j

indicate sin(ui +uj) and cos(ui +uj), respectively. ui and uj are
revolute angles about zi and zj, respectively. sij indicates the
offset distance along the zi axis. aij is the length of the
common normal between axes zi and zj. In general, the
determinant of the Jacobian matrix is not zero, therefore, the
rank of the Jacobian matrix is six and the robot’s hand has
six DOFs, defined by three translations and three rotations.
In this case, the rotational axes can be along any line in the
three dimensional space.

When a robot is in a singular configuration the determi-
nant of the Jacobian matrix is zero. As a result, the DOF of
the end effector is reduced, and the kinematic and dynamic
characteristics worsen. Such a configuration is normally
avoided, having become unavailable for planning purposes.
Using the method presented above, some extra subwork-

Fig. 2. Distribution of moving screws.

Fig. 3. PUMA 560 and its reference systems.
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space may be reclaimed where the end effector may work
normally. This effectively extends the applicable workspace
of the robot. Let the determinant of the Jacobian matrix
equal to zero:

det[J]=a23 s44 c3 s5(a23 c2 2s44 s2+3)=0 (3.2)

three conditions of special configuration are found, that is:

c3 =0

s5 =0

a23c2 2s44s2+3 =0

(3.3)

The three conditions indicate that when the forearm and
reararm stretch out and coaxis, the fourth and the sixth axes
are colinear, and the reference point on the wrist located on
a plane determined by axis 1 and 2, respectively. Under one
of the three conditions, the Jacobian matrix is singular, and
the rank of the Jacobian matrix, r, is less than six.
Reciprocal screws reciprocal to those screw system
($1$2$3 . . . $6) exist. Suppose that the unit reciprocal screw
is denoted as

$r =(a1, a2, a3; a4, a5, a6)

a2
1 +a2

2 +a2
3 =1 (3.4)

Substituting Eq. 3.4 into Eq. 2.4, that is

2a1s22c2+3 +a2s22s2+3 +a3a23c2 2a4s2+3 2a5c2+3 =0

a1a23s3 +a2a23a3 +a6 =0

a6 =0

a5 =0
(3.5)

a1s44c4 2a3s44s4 +a4s4 +a6c4 =0

a1s44s4s5 2a3s44c4s5 2a4c4s5 +a5c5 +a6s4s5 =0

As the six screws $1$2 . . . $6, are linearly dependent with
the rank equal to five, the first five equations in Eq. 3.5 can
be used to solve the unknown reciprocal screw. The result
is:

a1 =
(a23c2 2s44s2+3)c3s4

D

a2 =
(s44s2+3 2a23c2)s3s4

D

a3 =
s22s4x2 2s44s2+3c3c4

D
(3.6)

a4 =
s44c2(s22s4 2c4c3a23)

D

a5 =0

a6 =0

where

D= ÏS2
4(a23c2 2s44s2+3)

2 +(s44s2+3c3c4 2s22s4c2)
2 (3.7)

and the pitch of the reciprocal screw is:

h=(s•s0)/(s•s)=(a23c2 2s44s2+3)c3s4s44c2(s22s4 2c4c3a23)/D2

(3.8)

In Eq. 3.8, the pitch of the reciprocal screw will be zero,
hr =0, if one of the following five conditions are satisfied:

c2 =0

c3 =0

s4 =0 (3.9)

a23c2 2s44s2+3 =0

s22s4 2c4c3a23 =0

Comparing Eq. 3.3 and Eq. 3.9, we find that two of the
five conditions are the same as the singularity condition.
Thus, when we consider the three singular conditions and
the five pitch-vanishing conditions, there are twenty-one
combinations, as shown in Table I.

Among the twenty-one combinations, there are only ten
different independent configurations related to the recipro-
cal screws and the applicable subworkspace of PUMA.
They are discussed below.

Case 1: In the case of a23c2 2s44s2+3 =0, as shown in Fig.
4a, the geometric characteristic is that the reference point,
04, of the robot wrist sets on plane A determined by $1 and
$2. The mechanism is in a special configuration, and the
rank of the Jacobian matrix is five. There is one reciprocal
screw, $r, with pitch equal to zero, and this reciprocal
screw’s axis intersects all axes of the six revolving joints.
The reciprocal, $r, lies on an intersection line, a–a, of two
planes, which are plane A and another plane determined by
point 04 and axis $3. In this case, the allowed motion
including two translations orthogonal to a–a, and three
rotations which extend the workspace. The extended
subspace considering only rotational motion can be repre-
sented by the possible rotational axes, which are all lines

Table I Two-condition combinations

Conditions 0 I II III IV V

I s5 =0 Case 10
II a23c2 2s44s2+3 =0 Case 1 Case 1
III c2 =0 Case 2 Case 2 Case 8
IV s4 =0 ---- Case 3 Case 1 Case 2
V s22s4 2c4c3a23 =0 ---- Case 5 Case 1 Case 2 ----
VI c2 =0 ---- Case 6 Case 8 Case 8 ---- ----

Multi-condition combinations: (1) I III IV - Case 4
(2) I IV VI - Case 7
(3) I III IV VI - Case 9
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Fig. 4. Ten independent configurations related to the applicable subworkspaces of PUMA 560.
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Fig. 4. Continued.
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Fig. 4. Continued.
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intersecting line a–a and expressed as:

d1 ={lines | intersecting with line a–a} (3.10)

Case 2: In the case of c3 =0, as shown in Fig. 4b, the
forearm and reararm stretch out and are coaxial. The rank of
the Jacobian matrix is five. A reciprocal screw with zero
pitch lies on a line determined by 01 and 04. The allowed
motions include two translations orthogonal to the line 0104

and three revolutions whose axes are in an extended
subspace expressed as:

d2 ={lines | intersection with line 0104} (3.11)

Case 3: In the case of s4 =0 and s5 =0, as shown in Fig.
4c, Axis 3 is parallel with Axis 5. Axes 4 and 6 are coaxial.
The rank of the Jacobian matrix is five. A reciprocal screw,
$r, with pitch hr =0, lies on a line passing through the
intersecting line c–c of plane C and a plane determined by
two axes, $3 and $4. The extended subspace, d3 of all
allowed axes, which the body rotates about, is:

d3 ={lines | intersecting line c–c} (3.12)

Case 4: In the case of c3 =0, s4 =0, and s5 =0, as shown in
Fig. 4d, the forearm, reararm, and the effector bar are
colinear and in the same direction. Axes 3 and 5 are parallel,
and the five screws, $2$3 . . . $6, are in the same plane, D.
The screws are linear dependent and the rank of the
Jacobian matrix is four. Therefore, there are two reciprocal
screws, $r and $r2, reciprocal to all the six screws and
intersecting those six axes. The two reciprocal screws are
both in plane D and pass through point O1. Thus the allowed
motions are: one translation along the direction orthogonal
to those two reciprocals and three rotations. The possible
rotational axes intersects both reciprocal screws simultane-
ously. Those rotational axes can be along any line in plane
D or lines not in plane D but passing through point O1. Thus
the extended subspace, d4, of allowed axes which the body
rotates about is:

d4 ={lines | in plane D < in space and

pass through point 01} (3.13)

Case 5: In the case of s5 =0 and s22s4 2c4c323 =0, as
shown in Fig. 4e, axes 4 and 6 are coaxial and axis 5
intersects line 0103. The rank of the Jacobian matrix is five
and a reciprocal screw with h=0 exists acting along line
0103. Thus the extended subspace, d5, of allowed axes which
the body rotates about is:

d5 ={lines | intersecting line 0103} (14)

Case 6: In the case of c2 =0 and s5 =0, as shown in Fig.
4f, the reararm is in a vertical position, and axes 4 and 6 are
coaxial. The rank of the Jacobian matrix is five. One
reciprocal screw lies in line f–f, the intersection of plane
F,and a plane determined by point 03 and axis $5. The
extended subspace is:

d6 ={lines | intersecting line f–f} (3.15)

Case 7: In the case of c2 =0, s4 =0, as shown in Fig. 4g,
the reararm is in a vertical position, axes 4 and 6 are coaxial
and axes 3 and 5 are parallel. The rank of the Jacobian
matrix is five. The reciprocal screw with zero pitch, $r, is

colinear with axis 3. Thus the extended subspace is:

d7 ={lines | intersecting axis line 3} (3.16)

Case 8: In the case of c3 =0 and a23c2 2s44s2+3 =0, as
shown in Fig. 4h, the forearm and the reararm stretch out
and are in vertical positions. The rank of the Jacobian matrix
is four. There are two reciprocal screws, $r

1 and $r
2, lying in

plane H and passing through point 04. The end effector has
four degrees of freedom: one translation perpendicular to
both $r

1 and $r
2 and three rotations. The rotational axes are

allowed to select in the subspace, which is the extended
subspace of:

d8 ={lines | in plane H , in space and

pass through point 04} (3.17)

Case 9: In the case of c2 =c3 =s4 =s5 =0, as shown in Fig.
4i, the entire arm is stretched out and in a vertical position.
Axes 3 and 5 are parallel, and six axes lines are in the same
plane I. The rank of the screw system is only three. There
are three reciprocal screws. Two of them are forces with
h=0, lying on plane I. Another is a couple with h=∞ , and
perpendicular to plane I. The allowed motions under
constraints are one translation orthogonal to plane I, and
two rotations about the axes located inside plane I. Thus the
subspace of the rotational axes is:

d9 ={lines | inside plane I} (3.18)

Case 10: In the case of only s5 =0, as shown in Fig. 4j,
the only geometrical condition is that the axes 4 and 6 are
colinear. The rank of the Jacobian is five and there exists a
reciprocal screw. The pitch of the reciprocal is not equal to
zero, h≠0. This screw, $r, and its pitch, hr, can both be
obtained using Eq. 3.6 and Eq. 3.8. The position of the
acting line of the reciprocal screw can be expressed by the
line vector of the reciprocal screw. From Eq. 3.6, the
reciprocal is denoted as:

$r =(sr; sr
0)=(a, b, c; d, 0, 0) (3.19)

The acting line of the reciprocal is:

$1 =(sr; sr
0 2hrsr) (3.20)

Therefore, we have:

r13 sr =sr
0 2hrsr (3.21)

From Eq. 3.21, the position vector r1 is obtained. The
constrained motions are denoted in Eq. 2.8. The allowed
rotations and translations are distributed in three dimension
space around the reciprocal, as shown in Fig. 2. The
translations are in the directions orthogonal and intersecting
to the reciprocal. The rotational motions are all skew to the
reciprocal. The skew angle, a, is determined by the pitch of
the reciprocal and the distance to the reciprocal of Eq. 2.10.
The subspace of the rotational axes is:

d10 ={lines | satisfying Eq. 2.10} (3.22)

As there exist the above mentioned ten subworkspaces
including the translational and the rotational, d1, d2, . . . . ,
d10, the workspace is effectively extended which may be
useful when carrying out trajectory planing in the task
space.
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4. CONCLUSION
When an object has six DOF, its three-dimensional rotation
has sufficient freedom. Any line in space including three
coordinate axes may be chosen as a rotational axis for the
body. When its Jacobian matrix is singular, the robot is in a
special configuration. Its end effector often loses some
translational degrees of freedom, with the reciprocal screws
of the motions screw system of the serial kinematic chain as
constraining forces. If so, the rotational motion may also be
partially restricted. The rotating axis can be chosen so that
it intersects with all the constraint force vectors acting on
the same body. Under singularity the robot hand still has
some utilizable rotational freedom and the subspace the
rotational axis may be selected from.

PUMA 560 has three different conditions of special
configuration and five conditions of screw-pitch-vanishing.
By combination, there are ten different forms of reciprocal
screws and ten different subworkspaces, including transla-
tional DOFs and rotational DOF subspaces. The ten
subworkspaces effectively extend the usable workspace of
the robot manipulator. As a result, trajectory planning in the
task space may still proceed at singular points.
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