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Abstract

The cross entropy is a well-known adaptive importance sampling method which requires
estimating an optimal importance sampling distribution within a parametric class. In this
paper we analyze an alternative version of the cross entropy, where the importance
sampling distribution is selected instead within a general semiparametric class of
distributions. We show that the semiparametric cross entropy method delivers efficient
estimators in a wide variety of rare-event problems. We illustrate the favourable
performance of the method with numerical experiments.
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1. Introduction

In this paper we further analyze both numerically and theoretically a semiparametric version
of the well-known cross entropy (CE) method for estimating rare-event probabilities of the type
� = P(X ∈ Aγ ), where Aγ is a family of rare events. Recall that for estimating such probabil-
ities, the CE proposes a methodology that selects an optimal multivariate importance sampling
distribution taken from some appropriate predefined parametric family of distributions. In con-
trast, the semiparametric version deviates from the standard CE approach by considering instead
a general class of importance sampling distributions with product-form densities. Such a rich
class is simply characterized by having independent and absolutely continuous components;
in particular, it can be proved that the optimal set of marginal components coincides with the
marginal densities of the zero-variance importance sampling distribution.

An outstanding advantage of the methodology advocated here is that a single and broadly-
applicable algorithm provides satisfactory practical performance on a wide range of rare-
event estimation problems. We consider several key cases for which we formally prove
that the resulting estimator can theoretical achieve either logarithmic or bounded relative
error efficiencies for estimating tail probabilities of sums of nonnegative random variables.
In particular, we consider the Weibull case where the decay of the tail probability is determined
by the tail index α: light-tailed (α ≥ 1) or heavy-tailed (α < 1). Remarkably, the proposed
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estimator delivers an efficient estimator for all values of the tail index 0 < α < 1, including the
elusive case where ln 3/2 ln 2 < α < 1 (unlike our proposal, other existing procedures feature
efficiency only for restricted sets of values of the tail index [2, Remark 3.1]). In addition,
we provide proofs of efficiency for a general class of light-tailed distributions known as the
exponential class and also for the archetypal regularly varying distribution: the Pareto case.

Numerically, we show that the proposed method not only performs satisfactorily for both
light- and heavy-tailed problems, but can sometimes deliver numerical accuracy superior to
that of estimation schemes specifically designed for heavy-tailed random variables.

Our numerical investigations suggest that the proposed methodology produces efficient
estimators in a wide variety of settings which cover cases well beyond the ones presented
in this paper. In fact, recently Perrakis et al. [14] have shown how the semiparametric idea
described here can be used to estimate the marginal likelihood in some Bayesian computational
problems.

The construction of the semiparametric CE estimator requires the following ingredients.
First, we execute a pilot run (using Markov chain Monte Carlo (MCMC), for example) to
generate random variables from a distribution which approximates the zero-variance importance
sampling distribution. The MCMC approach of generating from the zero-variance measure is
the same used in [12], for example. Second, with the sample at hand, we construct a conditional
(Rao–Blackwell) estimator of each of the marginal densities of the zero-variance importance
sampling distribution. Finally, we use the product of the (estimated) marginal densities as our
importance sampling density in order to estimate �.

The rest of the paper is organized as follows. In Section 2 we provide a brief review of
the parametric CE method and then we introduce its semiparametric version. In Section 3 we
provide a theoretical analysis of the efficiency of a simple version of the estimator for estimating
tail probabilities of sums of light- and heavy- tailed random variables. This is followed by a
number of examples in Section 4 with details about the practical implementation. The examples
show that, at least in the heavy-tailed case, the proposed algorithm can yield an improvement
in the relative error in the orders of magnitude.

2. The CE method

2.1. Parametric CE method

We wish to estimate � = P(S(X) > γ ), where X = (X1, . . . , Xd) is a random vector,
S : Rd → R is some given function, and γ is large. In order to introduce the semiparametric
version of the CE method for estimating the quantity �, we briefly review the CE method itself.
Assume that the random vector X = (X1, . . . , Xd) has a known density f (x) which belongs to a
parametric family of density functions F = {f (·; v) : Rd → R≥0 :

∫
f (x; v) dx = 1; v ∈ V},

where V ⊂ R
p is a feasible parameter set; hence, f (x) := f (x;u) ∈ F for some u ∈ V.

The objective is to find a parameter v ∈ V that yields an optimal importance sampling estimator
of the form: �̂CE = m−1∑m

i=1 1{S(Yi )>γ }f (Yi;u)/f (Yi; v), where Y1, . . . ,Ym ∼ f (y; v)

independent and identically distributed (i.i.d.) and 1 is the indicator function. In the CE method,
the optimal parameter v∗ ∈ V minimizes the cross entropy distance of f (·; v) ∈ F with re-
spect to the zero-variance importance sampling density π(x) := 1{S(x)>γ }f (x)/P(S(X) > γ ).

In other words,

v∗ = arg min
v∈V

∫
π(x) ln

(
π(x)

f (x; v)

)
dx = arg max

v∈V

∫
π(x) ln f (x; v) dx. (1)
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In practice, the integral
∫

π(x) ln(π(x)/f (x; v)) dx is estimated from a preliminary simulation
so that an estimator of the optimal parameter v∗ is given as v̂∗ = arg maxv∈V

∑n
i=1 ln f (Xi , v),

where X1, . . . ,Xn is a sample from a distribution approximating π . That sample can be
obtained by, for example, MCMC sampling over the restricted set {x : S(x) > γ }; see [4], [5],
and [12]. In this way we use a preliminary (pilot) run to learn about the optimal (in the cross
entropy sense) parameter v∗.

2.2. Semiparametric importance sampling

In the semiparametric CE method the objective is to find an optimal importance sampling
distribution amongst a family of distributions with product-form densities, while the optimality
criterion remains to minimize the cross-entropy distance from the zero-variance density. Denote
by G1 the set of all single-variate probability density functions; that is, if g ∈ G1 then g(x) : R→
R≥0 is absolutely continuous with

∫
g(x) dx = 1. Let G be the family of product-form densities

on R
d : G = {g(·) : Rd → R≥0 : g(x) = ∏d

i=1 gi(xi); gi ∈ G1, i = 1, . . . , d}. In this paper
we consider G as the target set of importance sampling densities. Hence, the objective is to
solve the functional optimization program ming∈G

∫
π(x) ln(π(x)/g(x)) dx. This is equivalent

to solving

g(x) = arg min
g1,...,gd∈G1

∫
π(x) ln

(
π(x)∏d

i=1 gi(xi)

)
dx = arg max

g1,...,gd∈G1

∫
π(x) ln

( d∏
i=1

gi(xi)

)
dx.

(2)

Lemma 1. Let πi(xi) be the ith marginal of the zero-variance density π(x). Then the solution
to the semiparametric CE program (2) is gi = πi for all i = 1, . . . , d.

In other words, the optimal importance sampling density within the space of all product-form
densities is given by the product of the marginals of π(x). The straightforward proof is given
in the appendix.

In practice, the marginal densities of π are typically unknown (just like the exact v∗
in (1) is not available), but these can be easily estimated using simulation. In this paper
we approximate the marginal densities of π as follows. Assume that both the conditional
densities π(xi | x−i ), i = 1, . . . , d, of the zero-variance importance sampling distribution
are known, and a sample Y1, . . . ,Yn from a distribution approximating π is available (for
example, from running the MCMC algorithm in [12]). Hence, we define the approximating
multivariate density ĝ(y) to the optimal semiparametric CE solution as ĝ(y) := ∏d

i=1 π̂i(yi),

where π̂i(xi) = (1/n)
∑n

k=1π(xi | Yk,−i ), i = 1, . . . , d.

The approximation above is motivated by the fact that the marginal densities of π can be
rewritten as πi(xi) = E[πi(xi | X−i )], where X ∼ π . Further, since the conditional densities
of the zero-variance importance distribution are assumed to be known then we naturally employ
the Gibbs sampler to generate the sample Y1, . . . ,Yn; see [12]. Finally, we can estimate � via
the importance sampling estimator

�̂ = 1

m

m∑
i=1

1{S(Yi )>γ }
f (Yi )

ĝ(Yi )
, (3)

where Y1, . . . ,Ym ∼ ĝ(y) i.i.d.

Remark 1. (Using the exact conditional density.) Once we have sampled Y1, . . . , Yd−1 from
π̂1, . . . , π̂d−1, respectively, we have the option of sampling the final Yd from the exact condi-
tional π(yd | Y1, . . . , Yd−1), instead of from the dth marginal π̂d . This reduces the cross entropy
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distance to π even further and yields the alternative, and typically more accurate, estimator (3)
with ĝ(y) redefined as ĝ(y)← π̂1(y1)× · · · × π̂d−1(yd−1)× π(yd | y1, . . . , yd−1).

3. Robustness properties of semiparametric CE estimator

Although the semiparametric CE method is broadly applicable, in order to achieve theoretical
tractability and clarity, we choose to examine its performance on the few frequently occurring
prototypical [3], [9] rare-event estimation problem � = �(γ ) = P(S(X) > γ ), with S(x) =
x1+· · ·+xd . We assume that the X1, . . . , Xd are i.i.d. continuous random variables with right
unbounded support and common distribution F(·). Let the Xi have density f (·). Let F ∗d denote
the d-fold convolution of F , so the probability of interest is �(γ ) = F ∗d(γ ). By integrating the
zero-variance importance sampling density we find that the ith marginal of the semiparametric
CE distribution is πi(xi) = f (xi)F ∗(d−1)(γ − xi)/�(γ ), so the single-run estimator Z can be
written as

Z = 1{S(X)>γ }
d∏

i=1

f (Xi)

πi(Xi)
= 1{S(X)>γ } �(γ )d∏d

i=1 F ∗(d−1)(γ −Xi)
, (4)

where X ∼ g(x) =∏d
i=1 πi(xi). Clearly, the estimator (4) is unbiased; furthermore, its second

moment is given by

EgZ
2 = EgZ

f (X)

g(X)
= Ef Z,

where Ef and Eg are the expectation operators under the densities f and g, respectively.
In the following, we study the robustness properties of the estimator (4) when γ → ∞,

so that �(γ ) → 0. We are interested in the behavior of the standard error of the estimator in
this regime, relative to its mean �(γ ). Since we take a finite constant sample size, it suffices to
analyze the robustness of the single-run estimator of �(γ ). We say that an estimator has bounded
relative error if lim supγ→∞

√
var(Z)/� <∞, which is equivalent to having a bounded relative

second moment: lim supγ→∞ EZ2/�2 <∞, [1].
For our analysis, we assume that the importance sampling density g =∏d

i=1 πi(xi) is avail-
able. In practice, we estimate g via ĝ from an MCMC simulation as discussed in Section 2.2.
In this respect, our analysis is similar in spirit to that conducted for the parametric cross entropy
method [6]. In the following, we will prove the efficiency of the semiparametric importance
sampling estimator (4) for a number of light- and heavy-tailed distributions.

3.1. Heavy-tailed case

In this section we assume that the Xi are subexponential [10]. For our proofs, it will be
useful to consider the following decomposition of the relative second moment:

EgZ
2

�2(γ )
= Eg 1{Md>γ } Z2

�2(γ )
+ Eg 1{Md≤γ } Z2

�2(γ )
, (5)

where Md := maxi≤d Xi . The rest of the proof is divided in two lemmas. In Lemma 2 below we
show that the first term in (5) is uniformly bounded if the Xi are subexponential. In Lemma 3
we provide an upper bound for the second term in (5), which will be examined later for each
particular subexponential distribution considered.

Lemma 2. We have

sup
γ

Ef 1{Md>γ } Z
�2(γ )

<∞.
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Proof. Observe that, in {Md > γ }, there is a j such that Xj > γ , so F ∗(d−1)(γ −Xj) = 1,
while for all other i �= j it holds trivially that F ∗(d−1)(γ −Xi) ≥ F ∗(d−1)(γ ). Hence, using
(4), we have

Ef 1{Md>γ } Z
�2(γ )

≤ �(γ )d−2

(F ∗(d−1)(γ ))d−1
Ef 1{Md>γ } ≤ (F ∗d(γ ))d−1

(F (γ ))d−1
,

the last inequality follows from

Pf (Md > γ ) ≤ Pf (S(X) > γ ) = F ∗d(γ )

and F ∗(d−1)(γ ) ≥ F(γ ) (recall that �(γ ) = F ∗d(γ )). The lemma follows by using Kesten’s
bound [10]. �
Lemma 3. We have

Ef 1{Md≤γ } Z
�2(γ )

< cF(γ )d−2
Ef

1{Md<γ,Sd>γ }∏d
i=1 F(γ −Xi)

,

where c > 0 is fixed.

Proof. The result follows by substituting (4) and then applying F ∗(d−1)(x) ≥ F(x) for the
denominator, and Kesten’s bound [10] for the numerator. �

Next we analyze the bound provided by Lemma 3 for particular cases of subexponential
distributions. By definition, subexponential distributions are nonnegative but suitable general-
izations can be readily made for allowing distributions supported all over real numbers. First,
we consider the Weibull case, where the Xi have a density αxα−1e−xα

with α > 0. Recall that
if 0 < α < 1 then the Xi are subexponential.

Proposition 1. The semiparametric CE has bounded relative error in the Weibull case with tail
index 0 < α < 1.

Proof. It is enough to prove that the right-hand side of the bound in Lemma 3 is finite as
γ →∞. Consider the set C = {x : 0 < xi < γ,

∑
i xi > γ } and write the bound in Lemma 3

as
Ef 1{Md≤γ } Z

�2(γ )

< cαd

∫
· · ·

∫
C

( d∏
i=1

xα−1
i

)
exp

(
−(d − 2)γ α +

d∑
i=1

((γ − xi)
α − xα

i )

)
dx.

After the change of variable ui = xi/γ, i = 1, . . . , n, we obtain a Laplace-type integral:
αdγ dα

∫ ··· ∫D h(u)e−γ αφ(u) du, where D := {u : 0 < ui < 1,
∑

i ui > 1}, h(u) :=∏d
i=1 uα−1

i , and φ(u) := d − 2 +∑d
i=1(u

α
i − (1 − ui)

α). Laplace-type integrals have the
following properties. First, if D̄ denotes the closure of the open set D , the function φ(u)

attains its unique global minimum within the bounded domain D̄ ⊆ R
d on the boundary at

u∗ = (1/d, . . . , 1/d). This can be seen by either applying the Lagrange constraint optimization
method or more simply by noting that uα − (1 − u)α is monotonically increasing and φ(u)

is a invariant to permutations of the components of u. The minimum φ(u∗) = d − 2 +
d1−α − d1−α(d − 1)α, as a function of d is such that for d > 2 we have the strict inequality
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φ(u) ≥ φ(u∗) > 0 for all u ∈ D̄ . The point u∗ is not a critical point, since (∂φ/∂ui)(u) =
α(uα−1

i +(1−ui)
α−1) > 0 for all i and u ∈ D . Second, the function h : Rd → R is continuous

and the Hessian of the surface p(u1, . . . , ud−1) = φ(u1, u2, . . . , ud−1, 1−u1−u2−· · ·−ud−1)

is

∂2p

∂ui∂uj

= α(α − 1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1−

∑
k<d

uk

)α−2

−
(∑

k<d

uk

)α−2

, i �= j,

uα−2
i − (1− ui)

α−2 +
(

1−
∑
k<d

uk

)α−2

−
(∑

k<d

uk

)α−2

, i = j,

which when evaluated at u∗ yields a nondegenerate Hessian matrix. As a result of all these
conditions, we have the Laplace-type asymptotic expansion at a boundary point (see [15, p.
500]), which is not a critical point

∫ ··· ∫D h(u)e−γ αφ(u) du = O(γ−α(d+1)/2e−γ αφ(u∗)), where
the constant φ(u∗) > 0. It follows that

E 1{Md<γ } Z2

�2 ≤ c2α
dγ dα

∫
· · ·

∫
D

h(u)e−γ αφ(u) du

= O(γ α(d−1)/2e−γ αφ(u∗))

= O(eα(d−1)/2 ln γ−γ αφ(u∗))

→ 0 (γ →∞).

Hence, the second term in (5) vanishes as γ →∞. �

For our second example, we consider the Pareto case. More precisely, we assume that the Xi

have common density x−α with α > 0 and x > 1.

Proposition 2. The semiparametric CE is logarithmically efficient in the Pareto case.

Proof. Define

Hn(γ ) := Ef

[ n∏
k=1

F(γ )

F (γ −Xk)
;Bn

]
,

with Bn = {Sn−1 ≤ γ, Sn > γ, Mn ≤ γ } for n ≥ 2. Observing that {Md ≤ γ, Sd > γ } ⊂⋃d
n=2Bn and F(γ )/F (γ − x) ≤ 1, we arrive at (see also the proof of Lemma 3)

Ef 1{Md≤γ,Sd>γ } Z ≤ c

d∑
n=2

Ef

[ n∏
i=1

F(γ )

F (γ −Xi)
;Bn

]
= c

d∑
n=2

Hn(γ ). (6)

In particular, with the aid of an appropriate change of variable it is possible to rewrite the
quantities Hn(γ ) = αnγ−nαIn(γ, 1), where the function In(γ, 1) is the multiple integral

In(γ, ζ ) :=
∫ 1−(n−2)γ−1

γ−1

∫ 1−y1−(n−3)γ−1

γ−1

. . .

∫ 1−y1−···−yn−2

γ−1

∫ 1

(1−y1−···−yn−1)∨γ−1

n∏
k=1

L(yk) dyn dyn−1 · · · dy2 dy1,
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with L(y) := (1− y)αy−(α+1), y ∈ (0, 1]. Moreover, In(γ, ζ ) can be defined recursively via

In(γ, ζ ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ 1

ζ∨γ−1
L(y) dy, n = 1, (7)

∫ ζ−(n−2)γ−1

γ−1
L(y)In−1(γ, ζ − y) dy, n ≥ 2.

Next, we prove that, for n = 2, 3, . . . , it holds that

lim sup
γ→∞

In(γ, 1)

γ α(n−2) ln γ
= 0. (8)

From Lemma 5 in the appendix, we have a recursive expression for the derivative of the functions
In(γ, ζ ), i.e.

∂

∂γ
In(γ, ζ ) = nL(γ−1)In−1(γ, ζ − γ−1)γ−2, n = 2, 3, . . . .

Therefore, we obtain, for n = 2, 3, . . . ,

lim sup
γ→∞

In(γ, 1)

γ α(n−2) ln γ
= lim sup

γ→∞
(d/dγ )In(γ, 1)

(d/dγ )γ α(n−2) ln γ

= lim sup
γ→∞

nL(γ−1)In−1(γ, 1− γ−1)γ−2

(1+ α(n− 2) ln γ )γ α(n−2)−1
.

For n = 2, the last expression can be written as 2L(γ−1)I1(γ, 1− γ−1)γ−1. Furthermore,
observe that L(γ−1) = (1− γ−1)αγ α+1 = O(γ α+1), while

I1(γ, 1− γ−1) =
∫ 1

1−γ−1
L(y) dy ≤ γ−1L(1− γ−1) = O(γ−(α+1))

(the inequality follows because the function L(y) is decreasing on (0, 1]). Hence,

lim sup
γ→∞

2L(γ−1)I1(γ, 1− γ−1)

γ
= lim sup

γ→∞
c1 × γ α+1γ−(α+1)

γ
= 0.

Assume that (8) holds for n ≥ 2. Then reasoning as above and using Lemma 6 in the appendix
for (7), we obtain, for n+ 1,

lim sup
γ→∞

In+1(γ, 1)

γ α(n−1) ln γ
= lim sup

γ→∞
(d/dγ )In+1(γ, 1)

(d/dγ )γ α(n−1) ln γ

= lim sup
γ→∞

(n+ 1)L(γ−1)In(γ, 1− γ−1)γ−2

(1+ α(n− 1) ln γ )γ α(n−1)−1

= lim sup
γ→∞

(n+ 1)L(γ−1)(In(γ, 1)+ o(1))γ−2

(1+ α(n− 1) ln γ )γ α(n−1)−1
(from (7))

= lim sup
γ→∞

c2γ
α+1In(γ, 1)γ−2 + o(1)

c3γ α(n−1)−1 ln γ

= lim sup
γ→∞

c4
In(γ, 1)+ o(1)

γ α(n−2) ln γ

= 0.
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Combining these arguments, we can complete the proof of the proposition, i.e.

lim sup
γ→∞

E 1{Md≤γ } Z2

�2−ε
≤ lim sup

γ→∞
c
∑d

n=2 Hn(γ )

�2−ε
(from (6))

= c lim sup
γ→∞

d∑
n=2

αnIn(γ )

γ αn�2−ε
.

Note that � = F ∗d(γ ) ≥ F(γ ) = γ−α; thus, for ε < 1/α (i.e. εα < 1), we have �2−ε ≥
γ−2α γ αε ≥ γ−2α ln γ, γ →∞. Combining this with the above, we obtain

lim sup
γ→∞

d∑
n=2

αnIn(γ )

γ αn�2−ε
≤

d∑
n=2

αn lim sup
γ→∞

In(γ )

γ α(n−2) ln γ
= 0. �

Remark 2. (Sensitivity to deviations from g.) Quantifying the error in approximating g via
the MCMC approximation ĝ is beyond the scope of this paper. Nevertheless, similar to [6,
Proposition 5.2], we consider whether any deviation from the true, but unknown, product
of marginals probability density function (PDF) g(x) = ∏

i πi(x) wrecks the asymptotic
efficiency of (4).

The following argument illustrates that, even though g is the best (in the cross entropy sense)
importance sampling PDF of product form, it is not the only product-form PDF giving the same
asymptotic efficiency. Suppose that instead of the exact πi(xi) in (4), we use the much simpler
π̆i(xi) = f (xi)G(γ − xi)/F ∗G(γ ), where G is a weak tail equivalent to F [10, p. 45], and
F ∗G denotes the convolution of F and G. Then, in the subexponential case,

∏
i

πi(xi)

π̆i(xi)
=

∏
i

F ∗(d−1)(γ − xi) F ∗G(γ )

G(γ − xi) �(γ )

≤
(

F ∗G(γ )

F (γ )

)d ∏
i

F ∗(d−1)(γ − xi)

G(γ − xi)

≤
(

F ∗G(γ )

F (γ )

)d ∏
i

c1F(γ − xi)

G(γ − xi)
(Kesten’s bound)

≤
(

F ∗G(γ )

F (γ )

)d ∏
i

c1c2

= c3

(
F ∗G(γ )

F (γ )

)d

(tail equivalence)

for some constants c1, c2, c3. Hence, if Z̆ = Z
∏

i (πi(Xi)/π̆i(Xi)) is the estimator using the
simpler marginals, then

Ef Z̆ = Ef Z
∏
i

πi(Xi)

π̆i(Xi)
≤ c3

(
F ∗G(γ )

F (γ )

)d

Ef Z.

In other words, lim supγ Ef Z̆/Ef Z <∞, since for subexponential F , we have

F ∗G(γ )

F (γ )
= O(1) as γ ↑ ∞
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using [10, Corollary 3.19]. The last inequality suggests that Z̆ inherits the asymptotic properties
of Z in the subexponential case. As a consequence, if Ẑ = 1{S(X)>γ }

∏
i f (Xi)/π̂i(Xi) with

X ∼ ĝ(x) is the estimator using the approximate marginals {π̂i}, then the combined estimator
Z̃ = wẐ + (1− w)Z̆, where w ∈ (0, 1) and w = O(F (γ )) has relative error of the same order
as the relative error of (4).

3.2. Light-tailed case

We consider the case when F belongs to a subfamily of light-tailed distributions as defined by
Embrechts and Goldie [8]. We say that a distribution F belongs to the Embrechts–Goldie family
of distributions indexed by θ ≥ 0 and denoted by L(θ) if limγ→∞ F(γ + x)/F (γ ) = e−θx .
If θ is strictly larger than 0 then L(θ) contains light-tailed distributions exclusively and the
whole class is often referred to as the exponential class. The exponential class is very rich as it
contains distributions with an exponential-type tail decay. For instance, the class of nonnegative
matrix exponential distributions (a dense class within the continuous nonnegative distributions)
is a particular subset of the exponential class. In contrast, if θ = 0 then L(0) corresponds to
the class of long-tailed (and thus heavy-tailed) distributions.

We concentrate on the efficiency of the semiparametric CE method for estimating tail
probabilities of sums of random variables in the light-tailed exponential class (i.e. θ > 0).
In doing so, we require some results of the so-called long-tailed functions (cf. [10, Definition
2.14]). Recall that h is long-tailed if it is ultimately positive and limγ→∞ h(γ + x)/h(γ ) = 1
for all x. Thus, if F ∈ L(0) then the tail probability F is long-tailed. We summarize important
properties for both the exponential class and long-tailed functions as follows:

(i) L(θ) is closed under convolutions [8, Theorem 3];

(ii) If F ∈ L and we let G(x) := 1− (F (x))α , then G ∈ L(αθ) for all α > 0;

(iii) If F ∈ L(θ) then F(γ ) = e−θγ h(γ ), with h long-tailed.

(iv) If h is long-tailed then we have the long-decay condition limγ→∞ h(γ )/e−εγ = ∞
for all ε > 0; hence, a long-tailed function decays at a slower asymptotic rate than any
exponential function [10, Lemma 2.17].

These properties will be employed in order to construct an asymptotic upper bound for
the semiparametric estimator. In particular, in the following lemma we show that the ratio of
two tail convolutions of a distribution in L(θ) cannot increase/decrease at a faster rate than
exponential.

Lemma 4. Let F ∈ L(θ), θ > 0, and d1, d2 ∈ N. Then F ∗d1(γ )/F ∗d2(γ ) = o(eεγ ) for all
ε > 0.

Proof. By property (i), L(θ) is closed by convolution. Hence, by (iii) both F ∗d1 , F ∗d2 ∈
L(θ), and their tail distributions have decompositions as in F(γ ) = e−θγ h(γ ) for some long-
tailed functions h1 and h2. Therefore,

F ∗d1(γ )

F ∗d2(γ )
= h1(γ )e−θγ

h2(γ )e−θγ
= h1(γ )

h2(γ )
.

First, we argue that both h1(·)/h2(·) and its reciprocal function are long-tailed. This holds,
since they are ultimately positive, and

h1(γ + x)h1(γ )

h2(γ )h2(γ + x)
= h1(γ + x)h2(γ )

h1(γ )h2(γ + x)
→ 1.
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The reciprocal function behaves similarly. Thus, h2(·)/h1(·) satisfies the long-decay condition
(property (iv)), which says limγ→∞ h2(γ )/h1(γ )e−εγ = ∞. Clearly, this is equivalent to
limγ→∞ h1(γ )/h2(γ )eεγ = 0. �

We also have the following mild assumption. For instance, it is trivially satisfied by the
exponential and gamma distributions.

Assumption 1. Let F(x) = h(x)e−θx , where h is a long-tailed function. We assume that

G(γ ) := sup

{
h(γ )

h(x)
: 0 ≤ x ≤ γ

}
= o(eεγ ) for all ε > 0.

Proposition 3. Let F ∈ L(θ). If Assumption 1 holds then the semiparametric CE estimator is
logarithmically efficient.

Proof. Recall that EZ2 = Ef 1{S(X)>γ }
∏d

i=1 F ∗d(γ )/F ∗(d−1)(γ −Xi). Since F ∗(d−1) ∈
L(θ), we can use the decomposition F(γ ) = e−θγ h(γ ) to write F ∗(d−1)(γ ) = h(γ )e−θγ for
some h(·) long-tailed function, and θ > 0. Then, we obtain the bound

d∏
i=1

F ∗(d−1)(γ )

F ∗(d−1)(γ −Xi)
=

d∏
i=1

h(γ )

h(γ −Xi)

e−θγ

e−θ(γ−Xi)

≤
(

sup
0≤x≤γ

h(γ )

h(γ − x)

)d d∏
i=1

e−θXi

= (G(γ ))de−θS(X).

Define H(γ ) = [F ∗d(γ )
/
F ∗(d−1)(γ )]d , then, using the bound and θ > 0,

EZ2

�2−ε(γ )
= H(γ )

�2−ε(γ )
Ef 1{S(X)>γ }

d∏
i=1

F ∗(d−1)(γ )

F ∗(d−1)(γ −Xi)

≤ H(γ )Gd(γ )

�2−ε(γ )
Ef 1{S(X)>γ } e−θS(X)

≤ H(γ )Gd(γ )

�2−ε(γ )
e−θγ

Pf (S(X) > γ )

= H(γ )Gd(γ )e−θγ

�1−ε(γ )
.

Applying the properties of the exponential class, we obtain �1−ε(γ ) = (F ∗d(γ ))1−ε =
e−θ(1−ε)γ h1−ε

d (γ ) for some long-tailed function hd . In consequence,

lim sup
γ→∞

EZ2

�2−ε(γ )
≤ lim sup

γ→∞
H(γ )Gd(γ )e−θγ

�1−ε(γ )
= lim sup

γ→∞
H(γ )Gd(γ )

h1−ε
d (γ )

e−εθγ .

Now, property F(γ ) = e−θγ h(γ ), Lemma 4, and Assumption 1 imply that all of the func-
tions H , G, hε−1

d , and their products increase at less than exponential rate; namely,

H(γ )Gd(γ )

h1−ε
d (γ )

= o(eθεγ ).

Hence, the last limit is 0. �
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Remark 3. (Sensitivity to deviations from g.) Similar to Remark 2, we comment on how robust
the estimator Z is to deviations from the true, but unknown, product importance sampling PDF g.
As in [6, Proposition 4.2], we consider the case in which fi(x) = e−x, x ≥ 0 . Recall that Xi

in (4) is generated from the exact marginal πi(·). Assume that, instead of the true Xi , we can
only simulate the noise-polluted X̃i = Xi + Ni , where Ni is normally distributed noise with
mean 0 and variance σ 2

i (small relative to the mean of Xi), independent from Xi , and with
PDF φi . The PDF of X̃i is then given by the convolution π̃i(xi) = (πi ∗ φi)(xi). After some
manipulation, the ith likelihood ratio can be expressed as

π̃i(xi)

πi(xi)
=

∫ ∞
0

fi(y)φi(xi − y)
F ∗(d−1)(γ − y)

F ∗(d−1)(γ − xi)
dy

/
fi(xi).

Denote the numerator of this expression by Dγ,i(xi), and define

Lγ,i(xi) = πi(xi)

π̃(xi)
, Li(xi) = fi(xi)

(f ∗ φi)(xi)
,

Lγ (x) =
∏
i

Lγ,i(xi) = g(x)

g̃(x)
, L(x) =

∏
i

Li(xi).

It is not difficult to show that

(i) for each xi ,

lim
γ→∞Dγ,i(xi) =

∫ ∞
0

fi(y)φi(xi − y) dy = (fi ∗ φi)(xi);

(ii) the convergence in mean limγ→∞ Ef [Lγ (X)] = Ef [L(X)];
(iii) the exact estimator (4) and the likelihood ratio Lγ are negatively correlated.

As a consequence, for the perturbed (noise-polluted) estimator Z̃ = 1{S(X)>γ }f (X)/g̃(X),

we obtain

Eg̃[Z̃2] = Ef [Z̃] = Ef [ZLγ (X)] ≤ Ef [Z]Ef [Lγ (X)] = Ef [Z] × (Ef [L(X)] + o(1)),

implying that the estimator Z is robust to Gaussian perturbations in the marginal densities {πi}.

4. Examples and practical implementation

The proposed semiparametric CE estimator can yield practical performance which compares
very favorably with respect to alternative procedures such as the Asmussen–Kroese (AK)
estimator [2]. To improve the relative time variance of our estimator of P(X1 + · · · + Xd >

γ ) = P(S > γ ), we exploit a decomposition proposed in [13] and written as

� = 1− P(Md < γ )+ dP(Xd = Md < γ )P(S > γ | Xd = Md < γ )

= 1− [F(γ )]d︸ ︷︷ ︸
Dominant term

+P(Md < γ ) P̃(S > γ )︸ ︷︷ ︸
Residual probability

,

where the probability measure P̃(·) := P(· | Xd = Md < γ ) with corresponding density

f̃ (x) = f (x | Xd = Md < γ ) = df (x)

[F(γ )]d 1{Md<γ,Xd=Md } .
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Table 1: Comparison of importance sampling method with the AK estimator. Algorithmic parameters
were chosen to be n = 103, m = 106, and d = 10. The AK estimator is based on m = 106 replications.

γ �̂ Relative Error Ratio τAK/τ RTVP

α = 0.1

1010 4.54× 104 1.7× 106 132 0.4 71
1011 3.40× 105 4.1× 107 222 0.4 197
1012 1.30× 106 6.4× 108 722 0.4 2071
1013 2.16× 108 8.0× 109 592 0.4 1429
1015 1.84× 1013 1.3× 1010 1252 0.4 5944

α = 0.2

104 1.97× 102 6.5× 105 3.02 0.4 3.7
105 4.64× 104 1.8× 105 5.62 0.4 12
106 1.31× 106 3.0× 106 9.22 0.4 33
107 1.23× 1010 4.3× 107 10.02 0.4 42
108 5.13× 1017 6.5× 108 7.02 0.4 20

α = 0.6

102 9.47× 106 2.6× 104 192 0.4 130
150 7.83× 108 1.5× 104 412 0.3 550
200 1.34× 109 1.5× 104 632 0.3 1376
500 1.83× 1017 1.7× 104 5.52 0.4 11
103 7.00× 1027 9.5× 105 62 0.4 13

α = 0.9

30 1.33× 104 9× 104 132 0.3 50
40 6.27× 107 9× 104 782 0.3 1758.7
50 2.25× 109 1× 103 2542 0.3 17746
60 7.01× 1012 1× 103 5562 0.3 87103

100 4.34× 1022 1× 103 3002 0.3 23768

Estimating the residual probability, we obtain the replication estimator for � as

�̂ = 1− [F(γ )]d + f̃ (Y )

ĝ(Y )
1{S(Y )>γ }, Y ∼ ĝ(y), (9)

where ĝ(y) := π̂1(y1) · · · π̂d−1(yd−1)π(yd | y1, . . . , yd−1) is the estimated importance sam-
pling PDF described in Remark 1. In the next three examples, we employ the following
performance measures: the relative time variance product (RTVP) and the ratio (R) of relative
errors as a measure of efficiency, i.e. R := σ̂AK/σ̂ and RTVP := R2(τAK/τ), where σ̂AK and σ̂

are the sample standard deviations of the AK estimator and �̂ (all based on m replications),
respectively; and τAK and τ are the processor times taken to compute the respective estimators.
The quantity τ includes the processor time needed for the preliminary MCMC simulations.

Example 1. (Weibull case.) In this example, we assume that the Xi are i.i.d.Weibull distributed.
The results of our numerical experimentations are presented in Table 1. The proposed semipara-
metric CE estimator provides an improvement in RTVP with respect to all other estimators and
for all values of the parameters α and γ considered. The improvement, however, is not uniform.
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For instance, if α = 0.1 then the RTVP varies in the range 71 to 5944. The general trend is that
large gains in efficiency occur for smaller values of γ and α > 0.6 or α < 0.3. In comparison
to (9), the AK estimator delivers less efficient estimators for α �∈ [0.3, 0.6] and more efficient
in the range α ∈ [0.3, 0.7]. Note that the AK estimator is much faster to evaluate than (9), but
this speed is insufficient to offset the substantial gains in squared relative error.

Example 2. (Compound sum.) We are interested in estimating the tail probability of a com-
pound sum of the form P(X1 + · · · + XR > γ ), where the jumps Xi are i.i.d. with Weibull
distribution with parameter 0 < α < 1, and (without loss of generality) R ∼ geom() is a
geometric random variable with PDF (1− )r−1, r = 1, 2, . . . . We have

P(SR > γ ) = 

∞∑
r=1

(1− )r−1
P(Sr > γ )

= F(γ )

F (γ )+ F(γ )︸ ︷︷ ︸
Dominant term

+(1− )(F (γ ))2

F(γ )+ F(γ )
P̃(SR > γ )︸ ︷︷ ︸

Residual probability

,

where under the new probability measure P̃, we have (R−1) ∼ geom(F (γ )+F(γ )) with PDF
P̃(R = r) = fR(r), r = 2, 3, . . . , and X1, X2, . . . ∼ f (x) i.i.d. with PDF given by the trun-
catedWeibull densityf (x) = αxα−1e−xα

/(1− e−γ α
), 0 < x < γ . Hence, we can again apply

our importance sampling estimator to estimate the residual probability P̃(SR > γ ). The zero-
variance PDF for the estimation of the residual is π(y, r) ∝ fR(r)

∏r
j=1 f (yj ) 1{Sr>γ }, which

can easily be sampled from using the Gibbs sampler, noting that

π(r | Y ) ∝ fR(r)1{r≥r∗(Y )}, r∗(Y ) := min{r : Y1 + · · · + Yr > γ }.
In Table 2 we present the results of a number of numerical experiments. The results of our
proposed method are significantly better in all cases, except α = 0.2 with 1/ ∈ {50, 100}.
In the latter case, the variance reduction achieved by the proposed method is not sufficient
to offset the computational cost of simulating compound sums of expected length of 1/.
Note that, for α ≥ 0.5, the proposed method can be thousands of times more efficient. Our
proposed method also compares favorably to other methods [7], [12], and in several examples
exhibits better empirical efficiency. For example, based on the reported variances and computing
time for the improved AK estimator [11, Table 2], in terms of the RTVP our estimator is from
8.5 to 45 times more efficient. We must note, however, that the results given in [11, Table
2] appear to be incorrect. For example, for  = 0.15, α = 0.75, and γ = 63.361, Table 2
reports the estimate 5.23×10−4 with relative error of 0.4%. In contrast, we obtain the estimate
5.38× 10−4 with relative error 0.03%, which we verify with a crude Monte Carlo simulation
using 109 repetitions.

Example 3. (M/M/1 queue.) Consider the classical example corresponding to the M/M/1
queue; see, for example, [1, Example VI.2.3]. Let X1, X2, . . . ∼ f (x) i.i.d., where f (x)

is the density of Eμ − Eλ, with Eμ and Eλ being independent exponential waiting times
with means 1/μ and 1/λ, respectively, and μ > λ. We are interested in estimating � =
P(max{S1, S2, . . .} > γ ) = P(τ < ∞), where τ = min{n : Sn > γ }. We compare the
semiparametric method with the classical Siegmund’s estimator, which suggests the importance
sampling scheme, in which the rates of Eμ and Eλ are switched from (μ, λ) to (λ, μ). Given n

trajectories {Xk,1, Xk,2, . . . , Xk,τk
} approximately drawn from the zero-variance measure via
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Table 2: Compound Weibull sum with expected number of jumps 1/. Here n = 104 and m = 106.

1/ �̂ Relative Error Ratio τAK/τ RTVP

α = 0.2 with γ = 106 fixed

5 6.56× 107 1.4× 105 3.62 0.70 9.60
10 1.31× 106 3.1× 105 2.82 0.40 3.50
20 2.65× 106 5.1× 105 2.22 0.20 1.20
50 6.81× 106 1.7× 104 1.42 0.02 0.03

100 1.42× 105 1.7× 104 2.02 0.01 0.04

α = 0.5 with γ = 500 fixed

3 7.34× 1010 7.3× 104 4.02 1.00 16
5 1.60× 109 1.0× 103 4.12 0.70 12

10 1.17× 108 1.7× 103 472 0.20 445
20 1.24× 105 7.2× 104 2462 0.10 7300
50 7.90× 103 2.1× 104 582 0.03 110

α = 0.8 with γ = 30/ depending on 

3 6.29× 1011 1.2× 103 3302 0.400 46000
5 1.65× 1011 6.4× 104 9302 0.200 200 000

10 6.94× 1012 3.8× 104 25612 0.100 780 000
20 4.64× 1012 2.7× 104 36362 0.003 34000
50 3.68× 1012 2.1× 104 14852 0.010 27000

α = 0.95 with γ = 30/ depending on 

5 2.61× 1013 4.8× 104 106 0.1 > 105

10 2.18× 1013 3.0× 104 > 106 0.1 > 105

20 2.00× 1013 2.2× 104 > 106 0.1 > 105

50 1.91× 1013 1.9× 104 > 106 0.1 > 105

100 1.88× 1013 1.7× 104 > 106 0.1 > 105

MCMC, one can estimate the marginal density π1(x1) via

π̂1(x1) = 1

n

n∑
k=1

f (x1 | x1 > γ −max{0, Xk,2, Xk,2 +Xk,3, . . .}).

Similarly, for all π̂j (xj ), j ≤ max τk .
With this setup, we obtain Table 3, which shows the performance of the semiparametric

procedure relative to Sigmund’s algorithm with m = 105 independent replications. From the
results we can draw the following conclusions. The semiparametric approach can yield lower
relative errors than Siegmund’s exponential change of measure (as seen from the ‘ratio’column).
However, this relative error advantage quickly disappears as γ becomes larger and larger.
The results confirm that asymptotically Siegmund’s algorithm cannot be improved (within
a state-independent importance sampling framework) and that the semiparametric approach
can successfully estimate this optimal change of measure. This example also points to the
limitations of our method—the reduction in the relative error here is not enough to offset
the computational overhead of estimating the optimal change of measure (as seen from the
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Table 3: The M/M/1 queue example for two values of (μ, λ). Here n = 104 and m = 105.

γ �̂ Relative Error Ratio τSig/τ RTVP

(μ, λ) = (2, 1
2 )

1 5.570× 10−2 0.20% 1.802 6× 10−3 0.02

2 1.240× 10−2 0.24% 1.302 6× 10−3 0.01

5 1.380× 10−4 0.31% 1.102 2× 10−2 0.02

7 6.832× 10−6 0.33% 1.082 2× 10−2 0.02

10 7.653× 10−8 0.35% 1.032 2× 10−2 0.02

(μ, λ) = (8, 1
2 )

0.1 2.943× 10−2 0.14% 6.02 6× 10−3 0.20

0.5 1.474× 10−3 0.25% 3.32 6× 10−3 0.06

1.0 3.445× 10−5 0.39% 2.12 1× 10−2 0.05
2.0 1.950× 10−8 0.51% 1.62 1× 10−2 0.03
3.0 1.063× 10−11 0.85% 1.42 1× 10−2 0.02

RTVP column). Nevertheless, our main point stands—a single broadly applicable importance
sampling scheme can estimate the optimal change of measure in both light- and heavy-tailed
settings, and in the heavy-tailed setting can be more efficient than current tailor-made schemes.

5. Conclusions

In this paper we have studied the theoretical and empirical performance of the semiparametric
cross entropy method for estimating a rare-event probability. We show that the same procedure
is efficient in both light- and heavy-tailed cases. The numerical examples confirm that the same
scheme works in both light- and heavy-tailed settings. Compared to current state-of-the-art
estimators, our estimator gives significantly better efficiency in the heavy-tailed case. This is
especially relevant for probabilities involving the Weibull distribution with tail index α < 1, but
close to unity. This setting yields behavior intermediate between the typical heavy- and light-
tailed behavior expected of rare events. As a result, while existing procedures are inefficient
or fail completely, our method estimates reliably Weibull probabilities for any values of α,
including α > 1.

Appendix

Proof of Lemma 1. First note that for any single-variate function h,∫
Rd

h(x1)π(x) dx =
∫

R

h(x1)

(∫
Rd−1

π(x1, x2, . . . , xd) dx2 · · · dxd

)
dx1

=
∫

h(x1)π1(x1) dx1.

Next, using the properties of the cross-entropy distance, we have

π1 = arg min
g1∈G1

∫
π1(x1) ln

(
π1(x1)

g1(x1)

)
dx1 = arg max

g1∈G1

∫
π1(x1) ln g1(x1) dx1.

https://doi.org/10.1017/jpr.2016.31 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.31


648 Z. I. BOTEV ET AL.

Applying these two observations for any i = 1, . . . , d, we obtain

arg max
g1,...,gd∈G1

∫
π(x) ln

( d∏
i=1

gi(xi)

)
dx = arg max

g1,...,gd∈G1

d∑
i=1

∫
π(x) ln gi(xi) dx

= arg max
g1,...,gd∈G1

d∑
i=1

∫
πi(xi) ln gi(xi) dxi

=
d∑

i=1

arg max
gi∈G1

∫
πi(xi) ln gi(xi) dxi,

from where we obtain the solution gi = πi for all i = 1, . . . , d. �
Lemma 5. Assume that ζ ≥ nγ−1. Then

∂

∂γ
In(γ, ζ ) = nL(γ−1)In−1(γ, ζ − γ−1)γ−2, n = 2, 3, . . . .

Proof. Recall the recursive property of the In functions, i.e.

I1(γ, ζ ) =
∫ 1

ζ∨γ−1
L(y) dy,

In(γ, ζ ) =
∫ ζ−(n−2)γ−1

γ−1
L(y)In−1(γ, ζ − y) dy, n = 2, 3, . . .

The proof is by induction with respect to n, working out carefully the differentation. These are
standard algebraic manipulations. �
Lemma 6. For n = 1, 2, . . ., we have In(γ, ζ − γ−1) = In(γ, ζ )+ o(1) as γ →∞.

Proof. Apply induction and the recursive definition of In functions. For n = 1, we have

I1(γ, ζ − γ−1) =
∫ 1

ζ−γ−1
L(y) dy = I1(γ, ζ )+

∫ ζ

ζ−γ−1
L(y) dy = I1(γ, ζ )+ γ−1L(η)

for some η ∈ (ζ −γ−1, ζ ) (mean value theorem). Clearly, the second term is o(1) for γ →∞.
Now assume that the statement of Lemma 6 holds for n ≥ 1. Then

In+1(γ, ζ − γ−1) =
∫ ζ−nγ−1

γ−1
L(y)In(γ, ζ − γ−1 − y) dy

=
∫ ζ−(n−1)γ−1

γ−1
L(y)(In(γ, ζ − y)+ o(1)) dy

−
∫ ζ−(n−1)γ−1

ζ−nγ−1
L(y)In(γ, ζ − γ−1 − y) dy

= In+1(γ, ζ )+ o(1)

∫ ζ−(n−1)γ−1

γ−1
L(y) dy − γ−1L(η)In(γ, ζ − γ−1 − η)

= In+1(γ, ζ )+ o(1), γ →∞. �
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