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1Freie Universität Berlin, Institut für Mathematik, Arnimallee 3, D-14195 Berlin,

Germany (finis@math.fu-berlin.de)
2Einstein Institute of Mathematics, The Hebrew University of Jerusalem,

Jerusalem, 91904, Israel
3Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100,

Israel (erez.m.lapid@gmail.com)
4Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn,

Endenicher Allee 60, D-53115 Bonn, Germany (mueller@math.uni-bonn.de)

(Received 20 July 2012; revised 26 March 2014; accepted 26 March 2014;

first published online 8 May 2014)

Abstract We study the limiting behavior of the discrete spectra associated to the principal congruence
subgroups of a reductive group over a number field. While this problem is well understood in the

cocompact case (i.e., when the group is anisotropic modulo the center), we treat groups of unbounded

rank. For the groups GL(n) and SL(n) we show that the suitably normalized spectra converge to the
Plancherel measure (the limit multiplicity property). For general reductive groups we obtain a substantial

reduction of the problem. Our main tool is the recent refinement of the spectral side of Arthur’s trace

formula obtained in [Finis, Lapid, and Müller, Ann. of Math. (2) 174(1) (2011), 173–195; Finis and
Lapid, Ann. of Math. (2) 174(1) (2011), 197–223], which allows us to show that for GL(n) and SL(n) the

contribution of the continuous spectrum is negligible in the limit.
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1. Introduction

Let (for now) G be a connected linear semisimple Lie group with a fixed choice of a Haar

measure. Since the group G is of type I, we can write unitary representations of G on

separable Hilbert spaces as direct integrals (with multiplicities) over the unitary dual

5(G), the set of isomorphism classes of irreducible unitary representations of G with

the Fell topology (cf. [30]). An important case is the regular representation of G×G on

L2(G), which can be decomposed as the direct integral of the tensor products π ⊗π∗
against the Plancherel measure µpl on 5(G). The support of the Plancherel measure is

called the tempered dual 5(G)temp ⊂ 5(G).
Other basic objects of interest are the regular representations R0 of G on L2(0\G)

for lattices 0 in G. We will focus on the discrete part L2
disc(0\G) of L2(0\G), namely

the sum of all irreducible subrepresentations, and we denote by R0,disc the corresponding

restriction of R0. For any π ∈ 5(G), let m0(π) be the multiplicity of π in L2(0\G).
Thus,

m0(π) = dim HomG(π, R0) = dim HomG(π, R0,disc).

These multiplicities are known to be finite [60, Theorem 3.3], at least under a weak

reduction-theoretic assumption on G and 0 [60, p. 62], which is satisfied if G has no

compact factors or if 0 is arithmetic. We define the discrete spectral measure on 5(G)
with respect to 0 by

µ0 = 1
vol(0\G)

∑
π∈5(G)

m0(π)δπ ,
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Limit multiplicities 591

where δπ is the Dirac measure at π . While one cannot hope to describe the multiplicity

functions m0 on 5(G) explicitly (apart from certain special cases, for example when π

belongs to the discrete series), it is feasible and interesting to study asymptotic questions.

The limit multiplicity problem concerns the asymptotic behavior of µ0 as vol(0\G)→∞.

To make this more explicit, we recall that, up to a closed subset of Plancherel measure

zero, the topological space 5(G)temp is homeomorphic to a countable union of Euclidean

spaces of bounded dimensions, and that under this homeomorphism the Plancherel

density is given by a continuous function. (The same is true in the case of p-adic reductive

groups considered below.)1 We call the relatively quasi-compact subsets of 5(G) bounded

(see § 2 below for a more explicit description). Note that µ0(A) <∞ for bounded sets

A ⊂ 5(G) under the reduction-theoretic assumption on G and 0 mentioned above [14].

By definition, a Jordan measurable subset A of 5(G)temp is a bounded set such that

µpl(∂A) = 0, where ∂A = Ā− A◦ is the boundary of A in 5(G)temp. A Riemann integrable

function on 5(G)temp is a bounded, compactly supported function which is continuous

almost everywhere with respect to the Plancherel measure.

Let 01, 02, . . . be a sequence of lattices in G. We say that the sequence (0n) has the

limit multiplicity property if the following two conditions are satisfied.

(1) For any Jordan measurable set A ⊂ 5(G)temp, we have

µ0n (A)→ µpl(A) as n→∞.
(2) For any bounded set A ⊂ 5(G) \5(G)temp, we have

µ0n (A)→ 0 as n→∞.
Note that we can rephrase the first condition by requiring that

lim
n→∞µ0n ( f ) = µpl( f )

for any Riemann integrable function (or, alternatively, for any continuous compactly

supported function) f on 5(G)temp.

A great deal is known about the limit multiplicity problem for uniform lattices, where

R0 decomposes discretely. The first results in this direction were proved by DeGeorge and

Wallach [27, 32, 72] for normal towers, i.e., descending sequences of finite index normal

subgroups of a given uniform lattice with trivial intersection. Subsequently, Delorme [26]

completely resolved the limit multiplicity problem for this case in the affirmative.

Recently, there has been great progress in proving limit multiplicity for much more general

sequences of uniform lattices [1, 2]. In particular, families of non-commensurable lattices

were considered for the first time.

In the case of non-compact quotients 0\G, where the spectrum also contains a

continuous part, much less is known. Here, the limit multiplicity problem has been solved

for normal towers of arithmetic lattices and discrete series L-packets A ⊂ 5(G) (with

regular parameters) by Rohlfs and Speh [64]. Building on this work, the case of singleton

sets A and normal towers of congruence subgroups has been solved by Savin ([67],

1See [26, § 2.3] for the Archimedean case and [75] for the p-adic case.
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cf. also [74]). Earlier results on the discrete series had been obtained by DeGeorge [25]

and Barbasch and Moscovici [16] for groups of real rank one, and by Clozel [22] for

general groups (but with a weaker statement). The limit multiplicity problem for the

entire unitary dual has been solved for the principal congruence subgroups of SL2(Z)
by Sarnak [65] (cf. [39, p. 173], [29, § 5]). Also, a refined quantitative version of the

limit multiplicity property for the non-tempered spectrum of the subgroups 00(N ) has

been proven by Iwaniec [40].2 A partial result for certain normal towers of congruence

arithmetic lattices defined by groups of Q-rank one has been shown by Deitmar and

Hoffmann in [29]. Finally, generalizations to the distribution of Hecke eigenvalues have

been obtained by Sauvageot [66], Shin [68] and Shin and Templier [69].

In this paper we embark upon a general analysis of the case of non-compact quotients.

We consider the entire unitary dual and groups of unbounded rank. The main problem is

to show that the contribution of the continuous spectrum is negligible in the limit. This

was known up to now only in the case of GL(2) (or implicitly in the very special situation

considered in [64] and [67]). Our approach is based on a careful study of the spectral side

of Arthur’s trace formula in the recent form given in [33, 34]. As we shall see, this form

is crucial for the analysis. Our results are unconditional only for the groups GL(n) and

SL(n), but we obtain a substantial reduction of the problem in the general case.

Before stating our main result, we shift to an adelic setting which allows one to

incorporate Hecke operators into the picture (i.e., to consider the equidistribution of

Hecke eigenvalues). Thus, let now G be a reductive group defined over a number field F ,

and let S be a finite set of places of F containing the set S∞ of all Archimedean places.

Let FS be the product of the completions Fv for v ∈ S, AS the restricted product of the

Fv for v /∈ S, and A = FS ×AS the ring of adeles of F . In the special case when S = S∞,

we write F∞ = FS∞ and Afin = AS∞ . As usual, G(FS)
1 denotes the intersection of the

kernels of the homomorphisms |χ | : G(FS)→ R>0, where χ ranges over the F-rational

characters of G and |·| denotes the normalized absolute value on F∗S . Similarly, we define

the normal subgroup G(A)1 of G(A). Fix a Haar measure on G(A). For any open compact

subgroup K of G(AS), let µK = µG,S
K be the measure on 5(G(FS)

1) given by

µK = 1
vol(G(F)\G(A)1/K )

∑
π∈5(G(FS)1)

dim HomG(FS)1
(π, L2(G(F)\G(A)1/K )) δπ

= vol(K )
vol(G(F)\G(A)1)

∑
π∈5(G(A)1)

dim HomG(A)1(π, L2(G(F)\G(A)1)) dim(π S)K δπS .

We say that a collection K of open compact subgroups of G(AS) has the limit

multiplicity property if µK → µpl for K ∈ K in the sense that,

(1) for any Jordan measurable subset A ⊂ 5(G(FS)
1)temp, we have µK (A)→ µpl(A),

K ∈ K, and,

(2) for any bounded subset A ⊂ 5(G(FS)
1) \5(G(FS)

1)temp, we have µK (A)→ 0, K ∈
K.

2Recall that by Selberg’s eigenvalue conjecture the non-tempered spectrum should consist only of the
trivial representation in this case.
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Here, we write for example µK (A)→ µpl(A) to mean that for every ε > 0 there are

only finitely many subgroups K ∈ K such that
∣∣µK (A)−µpl(A)

∣∣ > ε. Once again, we can

rephrase the first condition by saying that for any Riemann integrable function f on

5(G(FS)
1)temp we have

µK ( f )→ µpl( f ), K ∈ K.

Remark 1.1. By a well-known result of Wallach, for any reductive group G, any local

factor of an irreducible representation which occurs in the residual spectrum (i.e., the

non-cuspidal discrete spectrum) is necessarily non-tempered (see [73, Theorem 4.3] for

the Archimedean and [23, Proposition 4.10] for the p-adic case). Therefore, once the limit

multiplicity property is established, it automatically holds for the cuspidal spectrum as

well.

We note that, when G satisfies the strong approximation property with respect to S∞
(which is tantamount to saying that G is semisimple, simply connected, and without any

F-simple factors H for which H(F∞) is compact [61, Theorem 7.12]) and K is an open

compact subgroup of G(Afin), we have

G(F)\G(A)/K ' 0K \G(F∞)
for the lattice 0K = G(F)∩ K in the connected semisimple Lie group G(F∞). Thus,

these lattices are incorporated in the adelic setting. A similar connection can be made

for general G, where however a single subgroup K will correspond to a finite set of lattices

in G(F∞).
An important step in the analysis of the limit multiplicity problem is to reduce it

to a question about the trace formula. This is non-trivial, not the least because of the

complicated nature of the unitary dual. This step was carried out by Delorme in the

case where S consists of the Archimedean places [26]. His argument was subsequently

extended by Sauvageot to the general case [66], where he also axiomatized the essential

property as a “density principle” (see § 2 below). Using the result of Sauvageot, we can

recast the limit multiplicity problem as follows. Let H(G(FS)
1) be the algebra of smooth,

compactly supported bi-KS-finite functions on G(FS)
1. For any h ∈ H(G(FS)

1), let ĥ be

the function on 5(G(FS)
1) given by ĥ(π) = trπ(h). Note that we have

µK (ĥ) = 1
vol(G(F)\G(A)1) tr Rdisc(h⊗ 1K )

and

µpl(ĥ) = h(1).

Then we have the following theorem.

Theorem 1.2 (Sauvageot). Suppose that the collection K has the property that for any

function h ∈ H(G(FS)
1) we have

µK (ĥ)→ h(1), K ∈ K. (1)

Then limit multiplicity holds for K.
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We will recall how to obtain this result from Sauvageot’s density principle in § 2.

Given this reduction, it is natural to attack assertion (1) via the trace formula. In

the cocompact case (i.e., when G/Z(G) is anisotropic over F) one can use the Selberg

trace formula. In the general case we use Arthur’s (non-invariant) trace formula, which

expresses a certain distribution h 7→ J (h) on C∞c (G(A)1) geometrically and spectrally [3,

5, 7–10]. The distribution J depends on the choice of a maximal F-split torus S0 of G
and a suitable maximal compact subgroup K = KSKS of G(A) (cf. §§ 3 and 4 below).

The main terms on the geometric side are the elliptic orbital integrals, most notably

the contribution vol(G(F)\G(A)1)h(1) of the identity element. The main term on the

spectral side is tr Rdisc(h).
The relation (1) can now be broken down into the following two statements.

For any h ∈ H(G(FS)
1), we have J (h⊗ 1K )− tr Rdisc(h⊗ 1K )→ 0, (2)

and,

for any h ∈ H(G(FS)
1), we have J (h⊗ 1K )→ vol(G(F)\G(A)1)h(1). (3)

We call these assertions the spectral and geometric limit properties, respectively.

In the cocompact case, the spectral limit property is trivial, since J (h) = tr Rdisc(h).
Also, in this case it is easy to see that for any tower K of normal subgroups K of KS and

for every h ∈ H(G(FS)
1) we have in fact J (h⊗ 1K ) = vol(G(F)\G(A)1)h(1) for almost all

K ∈ K. This is Sauvageot’s proof of the limit multiplicity property in this case.

In general, both properties are non-trivial. In this paper, we consider only the simplest

collection of normal subgroups of KS , namely the principal congruence subgroups KS(n)

of KS for non-zero ideals n of oF prime to S (see § 3). In this case, the geometric limit

property is a consequence of Arthur’s analysis of the unipotent contribution to the trace

formula in [9] (see § 3, in particular Corollary 3.3). The main task is to prove the spectral

limit property for this collection of subgroups. We are able to do this unconditionally for

the groups GL(n) and SL(n), and consequently obtain the following as our main result.

Theorem 1.3. Let G be either GL(n) or SL(n) over a number field F. Then limit

multiplicity holds for the collection of all principal congruence subgroups KS(n) of KS.

As explained above, for G = SL(n) over F and (for simplicity) S = S∞, the strong

approximation theorem [61, Theorem 7.12] allows for the following reformulation of this

result in terms of lattices in the semisimple Lie groups SL(n, F∞).

Corollary 1.4. Limit multiplicity holds for the collection of the principal congruence

subgroups

0(n) = {γ ∈ SL(n, oF ) : γ ≡ 1 (mod n)}
of the lattice SL(n, oF ) in the semisimple Lie group SL(n, F∞).

The key input for our approach to the spectral limit property is the refinement of the

spectral expansion of Arthur’s trace formula established in [34] (cf. Theorem 4.1 below).

This result enables us to set up an inductive argument which relies on two conjectural
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properties, one global and one local, which we call (TWN) (tempered winding numbers)

and (BD) (bounded degree), respectively. They are stated in § 5, and are expected to

hold for any reductive group G over a number field. Theorem 1.3 is proved for any group

G satisfying these properties (see Theorem 7.9).

The global property (TWN) is a uniform estimate on the winding number of the

normalizing scalars of the intertwining operators in the co-rank one case. For GL(n) and

SL(n), this property follows from known, but delicate, properties of the Rankin–Selberg

L-functions (Proposition 5.5). In order to describe the local property (BD), recall that

in the non-Archimedean case the matrix coefficients of the local intertwining operators

are rational functions of q−s , where q is the cardinality of the residue field, and that the

degrees of the denominators are bounded in terms of G only. Property (BD) gives an

upper bound on the degree of the numerator in terms of the level. This property was

studied in [35], where among other things it was proved for the groups G = GL(n) (and

implicitly also for SL(n)). The import of property (BD) is that it yields a good bound

for integrals of logarithmic derivatives of normalized intertwining operators (Proposition

5.16). The Archimedean analog of property (BD) (for a general real reductive group) had

been established in [54, Appendix].

The analysis is carried out by induction on the semisimple rank of G. Actually, for

the induction step it is necessary to verify that the collection of measures {µG,S∞
K(n) } is

polynomially bounded in the sense of Definition 6.2, a property that already shows up in

Delorme’s work [26]. This property is analyzed in § 6, where we prove Proposition 6.1, a

result on real reductive Lie groups which generalizes a part of Delorme’s argument, and

is (like Delorme’s work) based on the Paley–Wiener theorem of Clozel and Delorme [20].

Once we have that the collections {µM,S∞
KM (n)

} are polynomially bounded for all proper Levi

subgroups M of G, we can deduce the spectral limit property for G (Corollary 7.8).

We end this introduction with a few remarks on possible extensions of Theorems 1.3

and 7.9. For general sequences (0n) of distinct irreducible lattices in a semisimple Lie

group G, there is an obvious obstruction to the limit multiplicity property, namely the

possibility that the lattices 0n (or an infinite subsequence thereof) all contain a non-trivial

subgroup 1 of the center of G, which forces the corresponding representations R0n to

be 1-invariant. By passing to the quotient G/1, we can assume that this is not the

case. A less obvious obstruction is that the members of an infinite subsequence of (0n)

all contain a non-central normal subgroup of 01 (necessarily of infinite index). In such

a case the analog of the geometric limit property (3) fails. Indeed, for G = SL2(R) we

can find a descending sequence of finite index normal subgroups 0n of 0 = SL2(Z) such

that for all n the multiplicity in L2(0n\G) of either one of the two lowest discrete series

representations of G (or equivalently, the genus of the corresponding Riemann surface)

is equal to one [59]. Similarly, one can find a descending sequence of finite index normal

subgroups 0n of SL2(Z) such that the limiting measure of the sequence (µ0n ) has a

strictly positive density on the entire complementary spectrum 5(G) \5(G)temp [62].3

3It follows from [64] (or alternatively by direct calculation) that the limit multiplicity property holds
for the discrete series of SL2(R) and arbitrary normal towers of subgroups of SL2(Z), i.e., when the
intersection of the normal subgroups is trivial.
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By Margulis’s normal subgroup theorem, non-central normal subgroups of infinite index

do not exist for irreducible lattices 0 in semisimple Lie groups G of real rank at least two

and without compact factors ([51, p. 4, Theorem 4]; cf. also [51, IX.6.14]). (The paper [1]

is a major outgrowth of the Margulis normal subgroup theorem.) One expects that,

for irreducible arithmetic lattices, the limit multiplicity property holds at least for any

sequence of distinct congruence subgroups not containing non-trivial central elements.

In the adelic setting, let G be a reductive group defined over a number field F such that

the derived group Gder of G is F-simple and simply connected. Then we expect the limit

multiplicity property to be true for a collection K of open compact subgroups of G(AS),

if vol(K ∩Gder(AS))→ 0 for K ∈ K and every non-trivial element of the center of G(F)
is contained in only finitely many members of K. For this, a good understanding of the

structure of these subgroups seems to be necessary to deal with both the geometric side

and the spectral side. We hope to return to this problem in a future paper.

2. Sauvageot’s density principle

In this section, we recall the results of Sauvageot [66] and the proof of Theorem 1.2,

providing a close link between the limit multiplicity problem and the trace formula.

We continue to use the notation introduced before Theorem 1.2. Recall that a bounded

subset A ⊂ 5(G(FS)
1) is a relatively quasi-compact subset. Equivalently, A ⊂ 5(G(FS)

1)

is bounded if the Archimedean infinitesimal characters χπ∞ of the elements π ∈ A are

bounded and there exists an open compact subgroup K ⊂ G(FS−S∞) such that every

π ∈ A contains a non-trivial K -fixed vector.

The main result of [66] (Corollaire 6.2 and Théorème 7.3) is the following.4

Theorem 2.1 (Sauvageot). Let ε > 0 be arbitrary. Then, the following hold.

(1) For any bounded set A ⊂ 5(G(FS)
1) \5temp(G(FS)

1), there exists h ∈ H(G(FS)
1)

such that

(a) ĥ(π) > 0 for all π ∈ 5(G(FS)
1),

(b) ĥ(π) > 1 for all π ∈ A,

(c) h(1) = µpl(ĥ) < ε.

(2) For any Riemann integrable function f on 5temp(G(FS)
1), there exist h1, h2 ∈

H(G(FS)
1) such that the following hold.

(a)
∣∣∣ f (π)− ĥ1(π)

∣∣∣ 6 ĥ2(π) for all π ∈ 5(G(FS)
1), where we extend f by zero to

the entire unitary dual 5(G(FS)
1).

(b) h2(1) = µpl(ĥ2) < ε.

As in [66], this result easily implies Theorem 1.2. We recall the argument. Let A ⊂
5(G(FS)

1) \5temp(G(FS)
1) be a bounded set. For any ε > 0, let h ∈ H(G(FS)

1) be as

in the first part of Theorem 2.1. By assumption, we have
∣∣∣µK (ĥ)− h(1)

∣∣∣ < ε for all but

finitely many K ∈ K. For all such K , we have

4See the appendix of [68] for important corrections.
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µK (A) 6 µK (ĥ) 6
∣∣∣µK (ĥ)− h(1)

∣∣∣+ h(1) < 2ε.

Similarly, let f be a Riemann integrable function on 5temp(G(FS)
1). For any ε > 0, let

h1 and h2 be as in the second part of Theorem 2.1. By assumption, for all but finitely

many K ∈ K we have
∣∣∣µK (ĥi )− hi (1)

∣∣∣ < ε, i = 1, 2. Using µpl(ĥi ) = hi (1), we obtain

∣∣µK ( f )−µpl( f )
∣∣ 6 ∣∣∣µK ( f )−µK (ĥ1)

∣∣∣+ ∣∣∣µK (ĥ1)− h1(1)
∣∣∣+ ∣∣h1(1)−µpl( f )

∣∣
6
∣∣∣µK (ĥ1)− h1(1)

∣∣∣+µK (ĥ2)+ h2(1)

6
∣∣∣µK (ĥ1)− h1(1)

∣∣∣+ ∣∣∣µK (ĥ2)− h2(1)
∣∣∣+ 2h2(1) < 4ε.

Theorem 1.2 follows.

3. The geometric limit property

In this section, we prove the geometric limit property for the principal congruence

subgroups KS(n), where S is a finite set of places of F containing S∞. In fact, we obtain

a somewhat more precise estimate (cf. Proposition 3.1 below), which will be useful in the

inductive argument of § 7.

3.1. Notation

We will mostly use the notation of [34]. As before, G is a reductive group defined over a

number field F and A is the ring of adeles of F . Denote the adele norm on A× by |·|A× .

For a finite place v of F , let qv be the cardinality of the residue field of v. We write

F∞ = F ⊗R and Afin for the ring of finite adeles. As above, we fix a maximal compact

subgroup K =∏v Kv = K∞Kfin of G(A) = G(F∞)G(Afin). Let G(A)1 be the intersection

of the subgroups ker |χ |A× of G(A) as χ ranges over the F-rational characters of G.

Fix once and for all a faithful F-rational representation ρ : G → GL(V ) and an

oF -lattice 3 in the representation space V such that the stabilizer of 3̂ = ôF ⊗3 ⊂ Afin⊗
V in G(Afin) is the group Kfin. (Since the maximal compact subgroups of GL(Afin⊗ V )
are precisely the stabilizers of lattices, it is easy to see that such a lattice exists.) For any

non-zero ideal n of oF , let

K(n) = KG(n) = {g ∈ G(Afin) : ρ(g)v ≡ v (mod n3̂), v ∈ 3̂}
be the principal congruence subgroup of level n, a factorizable normal open subgroup of

Kfin. The groups K(n) form a neighborhood base of the identity element in G(Afin). We

denote by N(n) = [oF : n] the ideal norm of n. Similarly, for a finite set S ⊃ S∞ of places

of F and an ideal n prime to S, let KS(n) = KS
G(n) be the corresponding open normal

subgroup of KS =∏v /∈S Kv.

Throughout, unless otherwise mentioned, all algebraic subgroups of G that we will

consider are implicitly assumed to be defined over F .

We fix a maximal F-split torus S0 of G, and let M0 be its centralizer, which is a minimal

Levi subgroup. We assume that the maximal compact subgroup K ⊂ G(A) is admissible

https://doi.org/10.1017/S1474748014000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000103


598 T. Finis, E. Lapid and W. Müller

with respect to M0 [6, § 1]. Denote by A0 the identity component of S0(R), which is

viewed as a subgroup of S0(A) via the diagonal embedding of R into F∞.

Denote by a∗0 the R-vector space spanned by the lattice X∗(M0) of F-rational characters

of M0 (or equivalently by the lattice X∗(S0)). We write a0 for the dual space of a∗0, which

is spanned by the co-characters of S0. More generally, for a Levi subgroup M ⊃ M0
we write SM for the split part of the identity component of the center of M , and set

AM = A0 ∩ Z(M) = A0 ∩SM (R).
We will use the notation A � B to mean that there exists a constant c (independent

of the parameters under consideration) such that |A| 6 cB. The implied constant may

depend on G and ρ, as well as on the field F . If it depends on additional parameters

(e.g., ε), we write A �ε B.

3.2. The geometric side of the trace formula

Arthur’s trace formula provides two alternative expressions for a certain distribution J
on G(A)1 which depends on the choice of M0 and K. Let d0 be the semisimple F-rank

of G. For h ∈ C∞c (G(A)1), Arthur defines J (h) to be the value at the point T = T0
specified in [6, Lemma 1.1] of a certain polynomial J T (h) on a0 of degree at most d0.

The polynomial J T (h) depends on the additional choice of a parabolic subgroup P0 of G
with Levi part M0, which we fix throughout. Consider the equivalence relation on G(F)
defined by γ ∼ γ ′ whenever the semisimple parts of γ and γ ′ are G(F)-conjugate, and

denote by O the set of all resulting equivalence classes. They are indexed by (but are

not identical with) the conjugacy classes of semisimple elements of G(F). The coarse

geometric expansion [3] is

J T (h) =
∑
o∈O

J T
o (h), (4)

where the summands J T
o (h) are again polynomials in T of degree at most d0. Write

Jo(h) = J T0
o (h), which depends only on M0 and K. Then Jo(h) = 0 if the support of h

is disjoint from all conjugacy classes of G(A) intersecting o (cf. [10, Theorem 8.1]). Let

� ⊂ G(A)1 be a compact set, and denote by C∞� (G(A)1) the space of smooth functions

on G(A)1 supported in �. By [10, Lemma 9.1] (together with the descent formula of [6,

§ 2]), there exists a finite subset O(�) ⊂ O such that for h ∈ C∞� (G(A)1) we may restrict

summation in (4) to o ∈ O(�). In particular, the sum is always finite. When o consists

of the unipotent elements of G(F), we write J T
unip(h) for J T

o (h).
For each k > 0, fix a basis Bk of U(Lie G∞⊗C)6k , equipped with the usual filtration,

and set

‖h‖k =
∑

X∈Bk

‖X ? h‖L1(G(A)1)

for functions h ∈ C∞c (G(A)1), where we view X as a left-invariant differential operator on

G(F∞). For a compact subset� ⊂ G(A)1, the norms ‖·‖k give C∞� (G(A)1) the structure of

a Fréchet space. (Note here that it is equivalent to use the seminorms supx∈� |(X ? h)(x)|
for X ∈ U(Lie G∞⊗C) instead of the norms ‖h‖k , k > 0.)
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Analogously, we set

‖h‖k =
∑

X∈Bk

‖X ? h‖L1(G(FS)1)

for k > 0 and h ∈ C∞c (G(FS)
1). As above, for a compact subset �S ⊂ G(FS)

1, these norms

give C∞�S
(G(FS)

1) the structure of a Fréchet space.

3.3. An estimate for the unipotent contribution

By [9, Theorem 4.2], the unipotent contribution J T
unip can be split into the contributions

of the finitely many G(F̄)-conjugacy classes of unipotent elements of G(F). By [9,

Corollary 4.4], the contribution of the unit element is simply the constant polynomial

vol(G(F)\G(A)1)h(1). Write

J T
unip−{1}(h) = J T

unip(h)− vol(G(F)\G(A)1)h(1), h ∈ C∞c (G(A)1).

We want to estimate Junip−{1}(h) = J T0
unip−{1}(h) for h = hS ⊗ 1K S(n).

Proposition 3.1. There exists an integer k > 0 such that for any compact subset �S ⊂
G(FS)

1 and any integral ideals nS and n of oF , where nS is a product of prime ideals of

places in S and n is prime to S, we have

∣∣Junip−{1}(hS ⊗ 1KS(n))
∣∣��S

(1+ log N(nSn))
d0

N(n)
‖hS‖k

for any bi-KS−S∞(nS)-invariant function hS ∈ C∞�S
(G(FS)

1).

Remark 3.2. Let G = GL(2), let K(n) be the standard principal congruence subgroups,

and assume for simplicity that S = S∞. Then we have the explicit formula

Junip−{1}(h∞⊗ 1K(n)) = vol(M0(F)\M0(A)1)
N(n)

(∫
F∞

∫
K∞

h∞(k−1
(

1 x
0 1

)
k) log |x |∞ dk dx

+ (γF − log N(n))
∫

F∞

∫
K∞

h∞(k−1
(

1 x
0 1

)
k) dk dx

)
,

where γF = c0,F/c−1,F is the quotient of the two leading coefficients in the Laurent

expansion ζF (s) = c−1,F (s− 1)−1+ c0,F + · · · of the Dedekind zeta function of F at s =
1 (cf. [36, 43]). This shows that (regarding the dependency on N(n)) the estimate of

Proposition 3.1 is best possible in this case. For general groups, we will give an improved

estimate in Proposition 3.8 below.

Proposition 3.1 will be proved below. It has the following consequence.

Corollary 3.3 (Geometric limit property). For any hS ∈ C∞c (G(FS)
1), we have

lim
n

J (hS ⊗ 1KS(n)) = vol(G(F)\G(A)1)hS(1).
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Proof. Fix hS ∈ C∞c (G(FS)
1), and let �S ⊂ G(FS)

1 be the support of hS . Then the

support of the test function hS ⊗ 1KS(n) is �SKS(n) ⊂ �SKS , and therefore there are only

finitely many classes o ∈ O that contribute to the geometric side of the trace formula (4)

for the functions hS ⊗ 1KS(n). Moreover, the only class o ∈ O for which the union of the

G(A)-conjugacy classes of elements of o meets G(FS)KS(n) for infinitely many ideals n

is the unipotent class. For assume that o has this property, and let f ∈ F[X ] be the

characteristic polynomial of the linear map ρ(γ )− 1 ∈ End(V ) for arbitrary γ ∈ o. The

assumption on o implies that every coefficient of f (except the leading coefficient 1) is

either arbitrarily close to 0 at some place v /∈ S or has absolute value <1 at infinitely

many places. Therefore, necessarily, f = Xdim V , and γ is unipotent.

As a result, the geometric side reduces to Junip(hS ⊗ 1KS(n)) for all but finitely many

ideals n, and the assertion follows from Proposition 3.1.

The proof of Proposition 3.1 consists of a slight extension of Arthur’s arguments in [9].

The case where F = Q and n is a power of a fixed prime is in fact already covered by

Arthur’s arguments. We also remark that, when we restrict the prime divisors of n to a

fixed finite set, we can appeal directly to Arthur’s fine geometric expansion [10] to obtain

the geometric limit property (cf. [29, Proposition 1.7]).

We first quote Arthur’s asymptotic formula for J T
unip−{1} [9] in a form suitable for

our purposes. Let U ⊂ G be the unipotent variety of G, so that U(F) consists of the

unipotent elements of G(F). Fix a Euclidean norm ‖·‖ on a0 which is invariant under

the Weyl group, and let d(T ) = minα∈10〈α, T 〉 for T ∈ a0. Here, 10 is the set of simple

roots of S0 with respect to P0. For a parabolic subgroup P ⊃ P0 with Levi subgroup

M ⊃ M0, write AP = AM , and set AP (T1) = {a ∈ AM : logα(a) > 〈α, T1〉∀α ∈ 1P } for

T1 ∈ a0, where 1P are the simple roots of SM with respect to P (viewed as elements

of a∗0). As in [3, p. 941], we fix a suitable vector T1, which depends only on G, P0, and

K, such that G(A) = G(F)U0(A)M0(A)1 AP0(T1)K. Finally, recall the truncation function

F(·, T ) = FG(·, T ) for T ∈ a0, which is the characteristic function of a certain compact

subset of G(F)\G(A)1 depending on T ([3, p. 941], [9, p. 1242]).

Theorem 3.4 [9, Theorem 4.2]. There exist k,m > 0 and ε > 0 with the following property.

For any compact set � ⊂ G(A)1, there exists a constant d� > 0 such that, for all non-zero

ideals n of oF with K(n)�K(n) = �, and any bi-K(n)-invariant function h ∈ C∞� (G(A)1),
we have∣∣∣∣∣∣J T

unip−{1}(h)−
∫

G(F)\G(A)1
F(x, T )

∑
γ∈U(F), γ 6=1

h(x−1γ x) dx

∣∣∣∣∣∣
�� ‖h‖k N(n)m(1+‖T ‖)d0e−εd(T )

for all T ∈ a0 with d(T ) > d�.

Note that Theorem 3.4 differs slightly from the formulation in [9]. Namely, we

introduced a different sequence of norms on C∞� (G(A)1) (defining the same topology),

we combined all the (finitely many) non-trivial geometric unipotent orbits, made the

dependence on n explicit, and included the factor (1+‖T ‖)d0 instead of assuming that
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‖T ‖ > ε0d(T ) for a suitable ε0 > 0. The last change is allowed, since [9, Theorem 4.2] is

based on [9, Theorem 3.1], where one can clearly make the corresponding change (see [9,

p. 1249] for the relevant part of Arthur’s proof).

Next, we bound the truncated integral∫
G(F)\G(A)1

F(x, T )
∑

γ∈U(F), γ 6=1

(hS ⊗ 1KS(n))(x
−1γ x) dx

in terms of N(n). By the dominated convergence theorem, for fixed T the integral

approaches zero as N(n)→∞. We make this quantitative as follows.

Lemma 3.5. Let �S ⊂ G(FS)
1 be a compact set. Then∫

G(F)\G(A)1
F(x, T )

∑
γ∈G(F), γ 6=1

∣∣∣(hS ⊗ 1KS(n))(x
−1γ x)

∣∣∣ dx ��S

sup |hS|
N(n)

(1+‖T ‖)d0 , (5)

for all bounded measurable functions hS on G(FS)
1 with support contained in �S and all

T with d(T ) > d�S = d�SKS .

The proof of this estimate is based on an elementary estimate for a lattice-point

counting problem which we will prove below. We first recall the following standard result

from algebraic number theory (cf. [49, p. 102, Theorem 0] for a more precise result).

Lemma 3.6. Let 3 be a fractional ideal of F, and let D ⊂ F∞ be a compact set. Then,

for any a > 0 and a non-zero (integral) ideal n of oF , we have

|aD ∩ (n3−{0})| �D,3
a[F :Q]

N(n)
.

Lemma 3.7. Let P = M nUP be a standard parabolic subgroup of G, let uP be the Lie

algebra of UP , let 3 ⊂ uP (F) be an oF -lattice, and let D ⊂ uP (F∞) be a compact set.

Then, for all a ∈ AP (T1) and non-zero integral ideals n, we have

|Ad(a)D ∩ (n3−{0})| �D,3,T1

δP (a)
N(n)

.

Proof. Let e1, . . . , en be an F-basis of uP (F) consisting of eigenvectors with respect to

SM , and let α1, . . . , αn be the associated eigencharacters (i.e., the roots of SM on UP).

By passing to a larger 3 and D, if necessary, we can assume that 3 =∑i 3i ei with

fractional ideals 31, . . . , 3n ⊂ F and D =∑i Di ei with compact sets D1, . . . , Dn ⊂ F∞.

Since a non-zero vector has at least one non-zero coordinate, we can estimate

|Ad(a)D ∩ (n3−{0})| 6
n∑

i=1

|αi (a)Di ∩ (n3i −{0})|
∏
j 6=i

|α j (a)D j ∩ n3 j |.

We now use the estimate of Lemma 3.6 for |αi (a)Di ∩ (n3i −{0})|, while for the other

coordinates we use the trivial estimate |α j (a)D j ∩ n3 j | �D j ,3 j α j (a)[F :Q]+ 1. This gives

the desired result, since δP (a) =
∏n

j=1 α j (a)[F :Q], and the values α j (a) are bounded away

from 0 (in terms of T1).
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Proof of Lemma 3.5. By Arthur’s discussion in [9, § 5], we can bound the left-hand side

of (5) by the product of (1+‖T ‖)d0 and

sup
a∈AP0 (T1)

δP0(a)
−1

∑
γ∈U(F), γ 6=1

φ(a−1γ a), (6)

where

φ(x) = sup
y∈0

∣∣∣(hS ⊗ 1KS(n))(y
−1xy)

∣∣∣
for a compact set 0 ⊂ G(A)1 depending only on G, P0, and K. Of course, we can assume

that 0 =∏v 0v with 0v = Kv for all v /∈ S′, where S′ ⊃ S∞ is a finite set of places of F .

In a second step, Arthur bounds (6) by∑
P⊃P0

∑
µ∈MP (F)

sup
a1∈AP (T1)

δP (a1)
−1

∑
ν∈UP (F):µν 6=1

φµ(a−1
1 νa1),

where MP is the Levi part of P containing M0 and

φµ(u) = sup
b∈B

δP0(b)
−1φ(b−1µub), u ∈ UP (A),

for a fixed compact set B ⊂ A0.

Here, for a given P, we need to sum only over all µ belonging to the intersection of

MP (F) with a compact set that depends only on �S , or equivalently over a finite subset

of MP (F) that depends only on �S . Considering each possibility for µ separately, we see

that for all but at most finitely many n (depending on �S) only µ = 1 will contribute.

Furthermore, from the definition of φ1 we can estimate

φ1(u)��S sup |hS| 1�′S Ad(0S)(KS(n))∩UP (A)(u), u ∈ UP (A),

for a compact set �′S ⊂ G(FS)
1 which depends only on �S . Let pv be the prime ideal of

the ring of integers of Fv. There exist exponents ev > 0 for v /∈ S, with ev = 0 for v /∈ S′,
such that

Ad(0v)(Kv(p
f
v )) ⊂ Kv(p

f−ev
v )

for f > ev. Write n =∏v /∈S p
fv
v . We conclude that Ad(0S)(KS(n)) ⊂∏v /∈S Lv, fv , where

for v /∈ S and f > 0 we set Lv, f = Ad(0v)(Kv) when f < ev (which implies that v ∈ S′)
and Lv, f = Kv(p

f−ev
v ), otherwise. Identify the unipotent radical UP with its Lie algebra

uP via the exponential map. Then the lemma reduces to an application of Lemma 3.7

(with n replaced by n′ =∏v: fv>ev p
fv−ev
v ).

To finish the argument, we follow Arthur’s interpolation argument in [9, pp. 1252–1254].

Proof of Proposition 3.1. Let �S ⊂ G(FS)
1 be a compact set. Given a bi-KS−S∞(nS)-

invariant function hS ∈ C∞�S
(G(FS)

1), we combine Theorem 3.4 and Lemma 3.5 to obtain∣∣∣J T
unip−{1}(hS ⊗ 1KS(n))

∣∣∣ 6 c�S ‖hS‖k
(

N(nSn)
me−εd(T )+N(n)−1

)
(1+‖T ‖)d0
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for all T ∈ a0 with d(T ) > d�S . This implies that∣∣∣J T
unip−{1}(hS ⊗ 1KS(n))

∣∣∣ 6 2c�S ‖hS‖k N(n)−1(1+‖T ‖)d0

for all T ∈ a0 with d(T ) > max(d�S ,
m+1
ε

log N(nSn)). Applying [7, Lemma 5.2] to the

polynomial J T
unip−{1}(hS ⊗ 1KS(n)) and the point T0 ∈ a0, we obtain the assertion.

We note that an alternative proof of Corollary 3.3 might be given by replacing U(F)
by G(F) in the arguments above and using [4, p. 267, Theorem 1]. We will give a

detailed account of this proof in a future paper, which will treat a somewhat more general

situation.

3.4. A refinement

We conclude this section with a refinement of Proposition 3.1 that is close to optimal

in its dependence on N(n). We will use this refinement to give a certain quantitative

refinement of the limit multiplicity property in Theorem 7.10. We may assume that G is

isotropic, for otherwise Junip−{1}(h) = 0.

Define

dmin = min
α̃
〈ρ, α̃∨〉, (7)

where ρ is as usual half the sum of the positive roots of G with respect to P0 (counting

multiplicities) and α̃ ranges over the highest roots of the irreducible components of the

root system 8(S0,G). We note that the minimal dimension of a non-trivial geometric

unipotent orbit of G containing an element of G(F) is 2dmin. For split groups, this

follows from [24, Lemma 4.3.5] and [76]. In general, note that a non-zero element of

the α̃-eigenspace in g forms together with the co-root α̃∨ and a suitable element of

the eigenspace of −α̃ an sl(2)-triplet. We may then apply the dimension formula [24,

Lemma 4.1.3] to compute the dimension of the associated nilpotent orbit as 2〈ρ, α̃∨〉.
The minimality of this orbit follows from the argument of [24, Theorem 4.3.3].

Proposition 3.8. There exists an integer k > 0 such that for any compact subset �S ⊂
G(FS)

1 and any integral ideals nS and n of oF , where nS is a product of prime ideals of

places in S and n is prime to S, we have

∣∣Junip−{1}(hS ⊗ 1KS(n))
∣∣��S

(1+ log N(nSn))
d0

N(n)dmin
‖hS‖k

for any bi-KS−S∞(nS)-invariant function hS ∈ C∞�S
(G(FS)

1).

We remark that, by Arthur’s fine expansion for the unipotent contribution [9], the

exponent dmin in the estimate of Proposition 3.8 is optimal. For instance, consider the

case where n = pe for a prime ideal p at a place v of F not contained in S. Then [9]

expresses Junip−{1}(hS ⊗ 1KS(n)) in terms of certain weighted orbital integrals (including

the invariant orbital integral) of hS ⊗ 1Kv(pe
v)

over the non-trivial unipotent orbits in

G(FS∪{v}) containing elements of G(F). Now it is easy to see that the invariant orbital

integral of 1Kv(p2e
v )

over a unipotent orbit o in G(Fv) is equal to a constant multiple
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of q−de
v for e large, where d is the dimension of the geometric orbit associated to o.

Indeed, embed an element of the nilpotent orbit log o ⊂ g⊗ Fv into an sl(2)-triplet, and

let gi ⊂ g⊗ Fv, i ∈ Z, be the associated eigenspaces. Then the explicit formula for the

invariant orbital integral jlogo of the nilpotent orbit log o [63, Theorem 1] implies the

homogeneity relation jlogo( f (λ2·)) = |λ|−r jlogo( f ) for all f ∈ C∞c (g⊗ Fv) and λ ∈ F×v ,

where r = dim g1+ 2
∑

i>2 dim gi = d (using [24, Lemma 4.1.3] for the last equality). This

immediately implies the assertion.

A glance at the proof of Proposition 3.1 given above shows that Proposition 3.8 will

follow from the following improvement of Lemma 3.7.

Lemma 3.9. Let P = M nUP be a standard parabolic subgroup of G, let uP be the Lie

algebra of UP , let 3 ⊂ uP (F) be an oF -lattice, and let D ⊂ uP (F∞) be a compact set.

Then, for all a ∈ AP (T1) and non-zero integral ideals n, we have

|Ad(a)D ∩ (n3−{0})| �D,3,T1

δP (a)
N(n)dmin

.

For the proof of this lemma we first need a generalization of Lemma 3.6 to vector

spaces.

Lemma 3.10. Let V be a finite-dimensional F-vector space, let 3 be an oF -lattice in V ,

and let D ⊂ V ⊗ F∞ be a compact set. Then, for all a > 0 and non-zero integral ideals

n, we have

|aD ∩ (n3−{0})| �D,3

(
a[F :Q]

N(n)

)dimF V

.

Proof. Choose an F-basis of V , and use Lemma 3.6 for the coordinates, taking into

account that aD ∩ (n3−{0}) 6= ∅ implies that a[F :Q] � N(n).

The core of the argument is contained in the following lemma on root systems.

Lemma 3.11. Let 8 be a (possibly non-reduced) root system, and let 8+ be a set of

positive roots for 8. Furthermore, let mα > 0 for α ∈ 8 be given, and assume that mα is

invariant under the action of the Weyl group W8 on 8. Set ρ = 1
2
∑
α∈8+ mαα. Then,

for all β ∈ 8+ and all subsets S ⊂ 8+, we have∑
α/∈S

mαα+
∑
α∈S

mαβ ∈ dminβ +
∑
α∈8+

R>0α,

where dmin = minα̃〈ρ, α̃∨〉, α̃ ranging over the highest roots of the irreducible components

of 8.

Proof. It is clearly enough to consider the case where 8 is irreducible. Let C =∑
α∈8+ R>0α be the closed cone spanned by the positive roots. Let α̃ be the highest

root of 8+. Note that 〈α, α̃∨〉 for α ∈ 8+ takes the values 0, 1, and 2, and the last only

for α = α̃. Let R be the set of all α ∈ 8+ with 〈α, α̃∨〉 = 1.
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Inserting the definition of ρ and multiplying the relation by two, we have to show that

∑
α/∈S

2mαα+
∑
α∈S

2mαβ ∈
(

2mα̃ +
∑
α∈R

mα

)
β +C.

It is evidently sufficient to show the modified statement where on the left-hand side we

restrict the sums to roots α ∈ R ∪ {α̃}. The contribution from α = α̃ is either 2mα̃α̃ or

2mα̃β, and therefore lies in 2mα̃β +C in both cases. It therefore remains to show that∑
α∈R−S

2mαα+
∑
α∈R∩S

2mαβ ∈
∑
α∈R

mαβ +C.

Note that α 7→ −wα̃(α) = α̃−α defines an involution of R. We may therefore rewrite the

last statement as∑
α∈R−S

mαα+
∑
α∈R∩S

mαβ +
∑

α∈R:α̃−α/∈S

mα(α̃−α)+
∑

α∈R:α̃−α∈S

mαβ ∈
∑
α∈R

mαβ +C.

The only case where α ∈ R does not contribute a summand mαβ to the left-hand side

is when α /∈ S and α̃−α /∈ S, in which case the total contribution is mαα+mα(α̃−α) =
mαα̃ ∈ mαβ +C . This finishes the proof of the lemma.

Proof of Lemma 3.9. First, note that we may assume that 〈α, T1〉 6 0 for all α ∈ 10. By

extending the lattice 3 to a lattice in uP0(F), while keeping D and a fixed, we may

reduce to the case where P is the minimal parabolic subgroup P0. Let 8 = 8(S0,G),
and let 8+ be the set of positive roots corresponding to P0. For α ∈ 8, let uα be the

α-eigenspace in g, and let mα = dimF uα. For X ∈ uP0 , let Xα be its projection to uα, and

write S(X) = {α ∈ 8+ : Xα 6= 0}. Evidently, it is enough to show that for each non-empty

subset S ⊂ 8+ we can bound

N(n)dmin

δP0(a)
|X ∈ Ad(a)D ∩ n3 : S(X) = S| (8)

as a ranges over AP0(T1) and n over the non-zero ideals of oF . For this, we may apply

Lemma 3.10 to obtain for (8) the bound

� N(n)dmin

δP0(a)

∏
α∈S

(
α(a)[F :Q]

N(n)

)mα

=
(∏
α/∈S

α(a)−[F :Q]mα

)
N(n)dmin−

∑
α∈S mα .

This is clearly bounded when
∑
α∈S mα > dmin, and we may therefore assume that∑

α∈S mα 6 dmin. Note that the existence of a vector X ∈ Ad(a)D ∩ n3 with S(X) = S
implies that β(a)[F :Q] � N(n) for arbitrary β ∈ S. Therefore, (8) is

�
(∏
α/∈S

α(a)−[F :Q]mα

)
β(a)[F :Q](dmin−

∑
α∈S mα).

Applying Lemma 3.11, we can write this as a product
∏
α∈8+ α(a)−λα with λα > 0, and

it is therefore bounded for a ∈ AP0(T1).
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4. Review of the spectral side of the trace formula

We turn to the spectral side of Arthur’s trace formula and recall the results of [34], which

are based on [7, 8].

4.1. Notation

Let θ be the Cartan involution of G(F∞) defining K∞. It induces a Cartan decomposition

g = Lie G(F∞) = p⊕ k with k = Lie K∞. We fix an invariant bilinear form B on g which is

positive definite on p and negative definite on k. This choice defines a Casimir operator �

on G(F∞), and we denote the Casimir eigenvalue of any π ∈ 5(G(F∞)) by λπ . Similarly,

we obtain a Casimir operator �K∞ on K∞, and write λτ for the Casimir eigenvalue of a

representation τ ∈ 5(K∞) (cf. [14, § 2.3]). The form B induces a Euclidean scalar product

(X, Y ) = −B(X, θ(Y )) on g and all its subspaces.

We write L for the (finite) set of Levi subgroups containing M0, i.e., the set of

centralizers of subtori of S0. Let W0 = NG(F)(S0)/M0 = NG(F)(M0)/M0 be the Weyl group

of (G,S0), where NG(F)(H) is the normalizer of H in G(F). For any s ∈ W0, we choose a

representative ws ∈ NG(F)(S0) = NG(F)(M0). Note that W0 acts on L by s M = ws Mw−1
s .

Let now M ∈ L. Let W (M) = NG(F)(M)/M , which can be identified with a subgroup

of W0. Denote by a∗M the R-vector space spanned by the lattice X∗(M) of F-rational

characters of M , and let a∗M,C = a∗M ⊗R C be its complexification. We write aM for the

dual space of a∗M , which is spanned by the co-characters of SM . It can also be identified

with the Lie algebra of the torus SM . Let HM : M(A)→ aM be the homomorphism given

by

e〈χ,HM (m)〉 = |χ(m)|A× =
∏
v

|χ(mv)|v

for any χ ∈ X∗(M), and denote by M(A)1 ⊂ M(A) the kernel of HM . Let L(M) be the

set of Levi subgroups containing M , and let P(M) be the set of parabolic subgroups of

G with Levi part M . We also write F(M) = FG(M) =∐L∈L(M) P(L) for the (finite) set

of parabolic subgroups of G containing M . Note that W (M) acts on P(M) and F(M) by

s P = ws Pw−1
s . Denote by ΣM the set of reduced roots of SM on the Lie algebra of G. For

any α ∈ ΣM , we denote by α∨ ∈ aM the corresponding co-root. Let L2
disc(AM M(F)\M(A))

be the discrete part of L2(AM M(F)\M(A)), i.e., the closure of the sum of all irreducible

subrepresentations of the regular representation of M(A). We denote by 5disc(M(A)) the

countable set of equivalence classes of irreducible unitary representations of M(A) which

occur in the decomposition of L2
disc(AM M(F)\M(A)) into irreducibles.

For any L ∈ L(M), we identify a∗L with a subspace of a∗M . We denote by aL
M the

annihilator of a∗L in aM . We set

L1(M) = {L ∈ L(M) : dim aL
M = 1}

(i.e., the set of Levi subgroups containing M as a maximal Levi subgroup) and

F1(M) =
⋃

L∈L1(M)

P(L).

Note that the restriction of the scalar product (·, ·) on g defined above endows a0 = aM0 ⊂
g with the structure of a Euclidean space. In particular, this fixes Haar measures on the
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spaces aL
M and their duals (aL

M )
∗. We follow Arthur in the corresponding normalization

of Haar measures on the groups M(A) [3, § 1].

4.2. Intertwining operators

Now let P ∈ P(M). We write aP = aM . Let UP be the unipotent radical of P. Denote

by ΣP ⊂ a∗P the set of reduced roots of SM on the Lie algebra uP of UP . Let 1P be the

subset of simple roots of P, which is a basis for (aG
P )
∗. Write a∗P,+ for the closure of the

Weyl chamber of P, i.e.,

a∗P,+ = {λ ∈ a∗M : 〈λ, α∨〉 > 0 for all α ∈ ΣP } = {λ ∈ a∗M : 〈λ, α∨〉 > 0 for all α ∈ 1P }.
Denote by δP the modulus function of P(A). Let Ā2(P) be the Hilbert space completion

of

{φ ∈ C∞(M(F)UP (A)\G(A)) : δ−
1
2

P φ(·x) ∈ L2
disc(AM M(F)\M(A)) ∀x ∈ G(A)}

with respect to the inner product

(φ1, φ2) =
∫

AM M(F)UP (A)\G(A)
φ1(g)φ2(g) dg.

Let α ∈ ΣM . We say that two parabolic subgroups P, Q ∈ P(M) are adjacent along α,

and write P|αQ, if ΣP ∩−ΣQ = {α}. Alternatively, P and Q are adjacent if the group

〈P, Q〉 generated by P and Q belongs to F1(M). Any R ∈ F1(M) is of the form 〈P, Q〉,
where P, Q are the elements of P(M) contained in R; we have P|αQ with α∨ ∈ Σ∨P ∩ aR

M .

Interchanging P and Q switches α to −α.

For any P ∈ P(M), let HP : G(A)→ aP be the extension of HM to a left

UP (A)-invariant and right K-invariant map. Denote by A2(P) the dense subspace of

Ā2(P) consisting of its K-finite and z-finite vectors, where z is the center of the universal

enveloping algebra of g⊗C. That is, A2(P) is the space of automorphic forms φ

on UP (A)M(F)\G(A) such that δ
− 1

2
P φ(·k) is a square-integrable automorphic form on

AM M(F)\M(A) for all k ∈ K. Let ρ(P, λ), λ ∈ a∗M,C, be the induced representation of

G(A) on Ā2(P) given by

(ρ(P, λ, y)φ)(x) = φ(xy)e〈λ,HP (xy)−HP (x)〉.

It is isomorphic to IndG(A)
P(A)

(
L2

disc(AM M(F)\M(A))⊗ e〈λ,HM (·)〉).
For P, Q ∈ P(M), let

MQ|P (λ) : A2(P)→ A2(Q), λ ∈ a∗M,C,

be the standard intertwining operator [8, § 1], which is the meromorphic continuation in

λ of the integral

[MQ|P (λ)φ](x) =
∫

UQ(A)∩UP (A)\UQ(A)
φ(nx)e〈λ,HP (nx)−HQ(x)〉 dn, φ ∈ A2(P), x ∈ G(A).

These operators satisfy the following properties.
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(1) MP|P (λ) ≡ Id for all P ∈ P(M) and λ ∈ a∗M,C.

(2) For any P, Q, R ∈ P(M), we have MR|P (λ) = MR|Q(λ) ◦MQ|P (λ) for all λ ∈ a∗M,C.

In particular, MQ|P (λ)−1 = MP|Q(λ).
(3) MQ|P (λ)∗ = MP|Q(−λ) for any P, Q ∈ P(M) and λ ∈ a∗M,C. In particular, MQ|P (λ)

is unitary for λ ∈ ia∗M .

(4) If P|αQ, then MQ|P (λ) depends only on 〈λ, α∨〉.
Let π ∈ 5disc(M(A)), and let A2

π (P) be the space of all φ ∈ A2(P) for which the

functions δ
− 1

2
P φ(·g), g ∈ G(A), belong to the π -isotypic subspace of L2(AM M(F)\M(A)).

For any P ∈ P(M), we have a canonical isomorphism of G(A f )× (gC, K∞)-modules

jP : Hom(π, L2(AM M(F)\M(A)))⊗ IndG(A)
P(A)(π)→ A2

π (P).

If we fix a unitary structure on π and endow Hom(π, L2(AM M(F)\M(A))) with the inner

product (A, B) = B∗A (which is a scalar operator on the space of π), the isomorphism

jP becomes an isometry.

Suppose that P|αQ. The operator MQ|P (π, s) := MQ|P (s$)|A2
π (P)

, where $ ∈ a∗M is

such that 〈$,α∨〉 = 1, admits a normalization by a global factor nα(π, s) which is a

meromorphic function in s. We may write

MQ|P (π, s) ◦ jP = nα(π, s) · jQ ◦ (Id⊗RQ|P (π, s)), (9)

where RQ|P (π, s) = ⊗vRQ|P (πv, s) is the product of the locally defined normalized

intertwining operators and π = ⊗vπv ([8, § 6]; cf. [57, (2.17)]).

4.3. The spectral side

We now turn to the spectral expansion of Arthur’s distribution J on C∞c (G(A)1). Let

L ⊃ M be Levi subgroups in L, P ∈ P(M), and let m = dim aG
L be the co-rank of L in G.

Denote by BP,L the set of m-tuples β = (β∨1 , . . . , β∨m) of elements ofΣ∨P whose projections

to aL form a basis for aG
L . For any β = (β∨1 , . . . , β∨m) ∈ BP,L , let vol(β) be the co-volume

in aG
L of the lattice spanned by the projection of β to aL , and let

4L(β) = {(Q1, . . . , Qm) ∈ F1(M)m : β∨i ∈ a
Qi
M , i = 1, . . . ,m}

= {(〈P1, P ′1〉, . . . , 〈Pm, P ′m〉) : Pi |βi P ′i , i = 1, . . . ,m}.
For any smooth function f on a∗M and µ ∈ a∗M , denote by Dµ f the directional derivative

of f along µ ∈ a∗M . For a pair P1|αP2 of adjacent parabolic subgroups in P(M), write

δP1|P2(λ) = MP2|P1(λ)D$ MP1|P2(λ) : A2(P2)→ A2(P2),

where $ ∈ a∗M is such that 〈$,α∨〉 = 1.5 Equivalently,

δP1|P2(λ) = 8(〈λ, α∨〉)−18′(〈λ, α∨〉),
where 8 is the meromorphic function on C such that MP1|P2(λ) = 8(〈λ, α∨〉).
5Note that this definition differs slightly from the definition of δP1|P2 in [34].
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For any m-tuple X = (〈P1, P ′1〉, . . . , 〈Pm, P ′m〉) ∈ 4L(β) with Pi |βi P ′i , denote by

1X (P, λ) the expression

vol(β)

m! MP ′1|P (λ)
−1δP1|P ′1(λ)MP ′1|P ′2(λ) · · · δPm−1|P ′m−1

(λ)MP ′m−1|P ′m (λ)δPm |P ′m (λ)MP ′m |P (λ).

In [34, pp. 179–180], we defined a (purely combinatorial) map XL : BP,L → F1(M)m with

the property that XL(β) ∈ 4L(β) for all β ∈ BP,L .6

For any s ∈ W (M), let Ls be the smallest Levi subgroup in L(M) containing ws . We

recall that aLs = {H ∈ aM | s H = H}. Set

ιs =
∣∣∣det(s− 1)

aLs
M

∣∣∣−1
,

a constant which we will not worry much about. For P ∈ P(M) and s ∈ W (M), let s :
A2(P)→ A2(s P) be left translation by w−1

s and M(P, s) = MP|s P (0)s : A2(P)→ A2(P)
as in [8, p. 1309]. M(P, s) is a unitary operator which intertwines ρ(P, λ) with itself for

λ ∈ ia∗Ls
. Finally, we can state the refined spectral expansion.

Theorem 4.1 ([34]). The spectral side of Arthur’s trace formula is given by

J (h) =
∑
[M]

Jspec,M (h), h ∈ C∞c (G(A)1),

M ranging over the conjugacy classes of Levi subgroups of G (represented by members of

L), where

Jspec,M (h) = 1
|W (M)|

∑
s∈W (M)

ιs
∑

β∈BP,Ls

∫
i(aG

Ls )
∗

tr(1XLs (β)
(P, λ)M(P, s)ρ(P, λ, h)) dλ,

with P ∈ P(M) arbitrary. The operators are of trace class and the integrals are absolutely

convergent.

Note that here the term corresponding to M = G is simply Jspec,G(h) = tr Rdisc(h).

5. Bounds on intertwining operators

We now introduce the key global and local properties required for the proof of the spectral

limit property, and verify them for the groups GL(n) and SL(n). These properties will be

used in § 7 to provide estimates for the contribution of the continuous spectrum to the

spectral side of the trace formula. In view of planned future applications, our estimates

are somewhat more precise in their dependence on the relevant parameters than is strictly

necessary for the purposes of this paper.

5.1. The level of a compact open subgroup

We begin by introducing the notion of level for open subgroups K of Kfin (or, more

generally, open compact subgroups K ⊂ G(Afin)), as well as some generalizations. Recall

6The map XL depends in fact on the additional choice of a vector µ ∈ (a∗M )m which lies outside a
prescribed finite set of hyperplanes. For our purposes, the precise definition of XL is immaterial.
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the definition of the principal congruence subgroups K(n) from § 3.1. Let nK be the

largest ideal n of oF such that K(n) ⊂ K , and define the level of K as levelG(K ) =
level(K ) = N(nK ). Analogously, we define level(Kv) for open subgroups Kv ⊂ Kv. For a

smooth representation π of G(A), let nπ be the largest ideal n such that πK(n) 6= 0. Let

levelG(π) = level(π) = N(n). Thus

levelG(π) = level(π) = min{level(K ) : πK 6= 0},
where K ranges over the open subgroups of Kfin.

For any Levi subgroup M ∈ L and an open subgroup K ⊂ KM,fin = Kfin ∩M(Afin), we

define levelM (K ) analogously using the principal congruence subgroups K(n)∩M(Afin) =
KM (n) of KM,fin. Equivalently, levelM (K ) is the level of K ∩M(Afin) with respect to the

restriction to M of the faithful G-representation ρ fixed in § 3.1.

More generally, suppose that M ∈ L and that H is a closed factorizable subgroup of

G(Afin). For any open compact subgroup K ⊂ M(Afin), let nK ;H be the largest ideal n of

oF such that K(n)∩M(Afin)∩H ⊂ K , and define the relative level of K with respect to

H as levelM (K ;H) = N(nK ;H ). Clearly, levelM (K ;H1) 6 levelM (K ;H2) if H1 ⊂ H2 and

levelM (K ;G(Afin)) = levelM (K ). In particular, levelM (K ;H) 6 levelM (K ) for all H.

As before, for an irreducible admissible representation π of M(A), we write

levelM (π;H) = min{level(K ;H) : πK 6= 0},
where K ranges over the compact subgroups of KM,fin. Equivalently, levelM (π;H) = N(n),
where n is the largest ideal such that πK(n)∩M(Afin)∩H 6= 0. Because H is assumed to be

factorizable, it is clear how to define levelM (Kv;H) and levelM (πv;H), where v is a finite

place of F , Kv an open subgroup of KM,v, and πv a smooth representation of M(Fv).
When H is an algebraic subgroup of G defined over F , we write simply levelM (K ; H)

for levelM (K ; H(Afin)). However, more general closed subgroups H ⊂ G(Afin) also appear

naturally. For any reductive group H , let H sc be the simply connected cover of the derived

group Hder of H and psc : H sc → H the natural homomorphism. We write H(Fv)+ ⊂
Hder(Fv) for the image of H sc(Fv) under psc, and similarly for H(A)+ ⊂ Hder(A). Note

that H(A)+ contains the derived group of H(A) as an open subgroup, and that it is

equal to it if all the F-simple factors of H sc are F-isotropic, in which case it is also

the closed subgroup of H(A) generated by its unipotent elements (cf. [61, Theorem 7.1,

Proposition 7.6, Theorem 7.6] for the equality and [61, Proposition 3.5, Proposition 3.17]

for the openness statement). Also note that, for any normal reductive subgroup H of G,

the group H(A)+ is a normal subgroup of G(A), since G acts on H sc by conjugation.

Finally, note that the indices [Hder(Fv) : H(Fv)+] are bounded in terms of H only, as

v ranges over the places of F . For simplicity, we will often write by abuse of notation

levelM (K ; H+) instead of levelM (K ; H(Afin)
+).

Although in this paper our main examples are reductive groups H whose derived group

is simply connected, which implies that H sc = Hder and H(A)+ = Hder(A), in the general

case it is advantageous to work with H(A)+ instead of Hder(A).

Lemma 5.1. Let G be a reductive group defined over a non-Archimedean local field F,

and let M be a Levi subgroup of G defined over F. Then, for any smooth representation
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π of M(F), we have

levelM (π;G(F)+) = min
χ

levelM (π ⊗χ),

where χ ranges over the characters of G(F)/G(F)+ (viewed as characters of M(F) by

restriction).

Proof. It is clear that levelM (π ⊗χ;G+) = levelM (π;G+) for any character χ of

G(F) trivial on G(F)+, and that levelM (π;G+) 6 levelM (π). Thus levelM (π;G+) 6
min levelM (π ⊗χ).

In the other direction, suppose that K ⊂ KM,v is an open subgroup such that V :=
πK∩G+ 6= 0. Then the compact abelian group A := K/K ∩G(F)+ acts on V . Let χ be a

character of A such that V A,χ−1 6= 0. We can extend χ to a character of G(F)/G(F)+.

Then (π ⊗χ)K 6= 0.

We also have the following Archimedean analog of levelM (π; H+). To define it, recall

first Vogan’s definition of a norm ‖·‖ on5(K∞) (cf. [19, § 2.2]), where K∞ is a compact Lie

group satisfying the conditions of [71, 0.1.2]. Namely, let K 0∞ be the connected component

of the identity of K∞. Then ‖µ‖ = ∥∥χµ+ 2ρ
∥∥2

, where χµ denotes the highest weight of an

arbitrary irreducible constituent of µ|K 0∞ with respect to a maximal torus of K 0∞ (and the

choice of a system of positive roots), and as usual ρ is half of the sum of all positive roots

with multiplicities. A lowest K∞-type of a representation is then a K∞-type minimizing
‖·‖.

Let H ⊂ G be a reductive algebraic subgroup normalized by M . For an irreducible

representation π of M(F∞), we will write

3M (π; H) = 1+ (λH
π )

2+‖τ‖2 ,

where λH
π is the eigenvalue of the Casimir operator of M(F∞)∩ H(F∞) (which is an

element of the center of the universal enveloping algebra of g) and τ is a lowest K∞ ∩
M(F∞)∩ H(F∞)-type of π .

For M ⊂ H , we simply write 3M (π) for 3M (π; H). In [57], the parameter 3π =
minτ

√
λ2
π + λ2

τ was used, where τ ranges over the lowest K∞-types of the induced

representation IndG(F∞)
P(F∞)(π) and λτ denotes the Casimir eigenvalue of τ . By [56, (5.15)],

we have the estimate

1 6 3M (π; H) 6 3M (π)�G 1+32
π (10)

for any H . Using the explicit description of lowest K∞-types of irreducible and

parabolically induced representations ([70, Theorem 7.16], [71, 6.5.9]), one can also show

that

32
π �G 3M (π). (11)

We will not give any details here, since we will only use this estimate in a side remark

(the first part of Remark 5.3 below).
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5.2. Bounds for global normalizing factors

For M ∈ L, α ∈ ΣM , and π ∈ 5disc(M(A)), let nα(π, s) be the global normalizing factor

defined by (9).

Let Uα be the unipotent subgroup of G corresponding to α (so that the eigenvalues

of SM on the Lie algebra of Uα are positive integer multiples of α). Let Mα ∈ L1(M)
be the group generated by M and U±α. Let M̂α be the group generated by U±α. It is

a connected normal subgroup of Mα defined over F [17, Proposition 4.11]. Moreover,

since M has co-rank one in Mα, precisely one simple root β of Mα restricts to α, which

implies that the root system of M̂α is the irreducible component of the root system of

Mα containing β. The group M̂α is therefore F-simple. It is also clearly F-isotropic, and

therefore M̂α(A)+ is the closed subgroup of G(A) generated by U±α(A) [18, Proposition

6.2]. It is also the derived group of M̂α(A).
For any subset F ⊂ 5(KM,∞), we denote by 5disc(M(A))F the set of all π =

π∞⊗πfin ∈ 5disc(M(A)) for which π∞ contains a KM,∞-type in F . If in addition an

open subgroup KM ⊂ KM,fin is given, we define 5disc(M(A))F ,KM as the set of all

π ∈ 5disc(M(A))F with πKM
fin 6= 0.

Definition 5.2. We say that the group G satisfies property (TWN) (tempered winding

numbers) if, for any M ∈ L, M 6= G, and any finite subset F ⊂ 5(KM,∞), there exists

k > 1 such that for any α ∈ ΣM and any ε > 0 we have∫
iR

∣∣∣∣n′α(π, s)
nα(π, s)

∣∣∣∣ (1+ |s|)−k ds �F ,ε 3M (π∞; M̂α)
k levelM (π; M̂+α )ε

for any π ∈ 5disc(M(A))F . (We recall that |nα(π, s)| = 1 for s ∈ iR.)

Note that nα(π, s) is not changed if we replace G by Mα or any other Levi subgroup

containing it. Therefore, property (TWN) is hereditary for Levi subgroups.

Remark 5.3. (1) If we fix an open compact subgroup KM , then the corresponding

bound ∫
iR

∣∣∣∣n′α(π, s)
nα(π, s)

∣∣∣∣ (1+ |s|)−k ds �KM 3M (π∞; M̂α)
k

for any π ∈ 5disc(M(A))F ,KM and a suitable k > 1 depending only on G can be

deduced (by invoking (11)) from [57, Theorem 5.3], applied to the groups M ∩ M̂α ⊂
M̂α. So, the point of (TWN) lies in the dependence of the bound on the level of π .

(2) In fact, we expect that∫ T+1

T

∣∣∣∣n′α(π, it)
nα(π, it)

∣∣∣∣ dt � log(|T | +3M (π∞; M̂α)+ levelM (π; M̂+α )) (12)

for all T ∈ R and π ∈ 5disc(M(A)).
This would give the following strengthening of (TWN):∫

iR

∣∣∣∣n′α(π, s)
nα(π, s)

∣∣∣∣ (1+ |s|)−k ds �k log(3M (π∞; M̂α)+ levelM (π; M̂+α ))

for any π ∈ 5disc(M(A)) and k > 1.
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Lemma 5.4. Suppose that G̃ is a connected reductive group over F which satisfies (TWN).

Let G be a connected subgroup of G̃ containing G̃der. Then G also satisfies (TWN). The

analogous statement holds for the bound (12).

Proof. The map M̃ 7→ M̃ ∩G defines a one-to-one correspondence between the Levi

subgroups of G̃ and those of G, and we have M̃ ∩G ⊃ M̃ ∩ G̃der ⊃ M̃der. Suppose

that M = M̃ ∩G, and let π̃ ∈ 5disc(M̃(A)) be realized automorphically on a subspace

Vπ̃ ⊂ L2(AM̃ M̃(F)\M̃(A)). Then the space V M
π̃
= {ϕ∣∣M(A) : ϕ ∈ Vπ̃ } is non-trivial, and, if

π is an irreducible constituent of the M(A)-representation V M
π̃

, then, for every place v, πv
is a constituent of the restriction of π̃v to M(Fv). By [11, § 3] for the Archimedean and [21,

Theorem 3.3.4] for the non-Archimedean case, we have nα(πv, s) = nα(π̃v, s) for all v.

Hence nα(π, s) = nα(π̃, s). Moreover, M̂α = ˆ̃Mα and M̂α ∩M = ˆ̃Mα ∩ M̃ , which implies

that levelM̃ (π̃; ˆ̃M+α ) 6 levelM (π; M̂+α ) and 3M̃ (π̃∞; ˆ̃Mα) 6 3M (π∞; M̂α). Therefore the

lemma follows from the fact that every π ∈ 5disc(M(A)) is equivalent to a constituent

of V M
π̃

for some π̃ ∈ 5disc(M̃(A)) with respect to some automorphic realization Vπ̃ ([38,

Theorem 4.13 and Remark 4.23] applied to M ⊂ M̃).

Proposition 5.5. The estimate (12) holds for G = GL(n) or SL(n) with an implied

constant depending only on n and F. In particular, the groups GL(n) and SL(n) satisfy

property (TWN).

We first need the following two lemmas, which are a direct consequence of the results

of Bushnell and Henniart [15] and Jacquet, Piatetski-Shapiro, and Shalika (cf. [42, 52]).7

Lemma 5.6. Let F be a local non-Archimedean field with residue field Fq , let π be

an irreducible smooth representation of GL(n, F), and let f (π) be the exponent of the

conductor of π as defined in [44]. Then

f (π) 6 logq level(π).

Proof. If π is generic, this immediately follows from the characterization of f (π)
in [44, Théorème 5.1]. In general, write π as the Langlands quotient of the parabolic

induction of σ1 |det|t1 ⊗ · · ·⊗ σr |det|tr to GL(n, F), where n = n1+ · · ·+ nr , t1, . . . , tr ∈ R,

and each σi is an irreducible tempered representation of GL(ni , F). We then have

f (π) = f (σ1)+ · · ·+ f (σr ) [41, Theorem 3.4]. Let π0 be the parabolic induction of

σ1⊗ · · ·⊗ σr to GL(n, F). Then π0 is irreducible and generic, and we have f (π) = f (π0) 6
logq level(π0) 6 logq level(π).

Lemma 5.7. Let F be a local non-Archimedean field with residue field Fq . Consider

G = GL(n), Gder = SL(n), a maximal Levi subgroup M = GL(n1)×GL(n2) of G, and an

irreducible smooth representation π = π1⊗π2 of M(F). Let f (π1× π̃2) be the exponent

of the conductor of π1× π̃2 (cf. [15]). Then

f (π1× π̃2) 6 n logq levelM (π;Gder).

7We define levels for GL(n) and its subgroups in terms of the identity representation ρ of GL(n) and the
standard lattice on

F .
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Proof. Since f (π1× π̃2) is not affected by twisting both π1 and π2 by the same character,

by Lemma 5.1, it suffices to prove that

f (π1× π̃2) 6 n logq levelM (π).

The results of [15] give

f (π1× π̃2) 6 n1 f (π2)+ n2 f (π1),

where f (πi ) is the exponent of the conductor of πi . By Lemma 5.6, we have f (πi ) 6
logq levelGL(ni ) πi = logq levelM (π;GL(ni )) 6 logq levelM (π). The lemma follows.

Proof of Proposition 5.5. By Lemma 5.4, it suffices to consider the case of G = GL(n).
The global normalizing factors nα can be expressed in terms of Rankin–Selberg

L-functions whose properties are summarized and analyzed in [58, § 4 and § 5]. More

precisely, write M '∏r
i=1 GL(ni ), where the root α is trivial on

∏
i>3 GL(ni ), and let

π ' ⊗πi with representations πi ∈ 5disc(GL(ni ,A)). Note that then M̂α = SL(n1+ n2).

Let L(s, π1× π̃2) be the completed Rankin–Selberg L-function associated to π1 and π2.

It satisfies the functional equation

L(s, π1× π̃2) = ε
(

1
2
, π1× π̃2

)
N (π1× π̃2)

1
2−s L(1− s, π̃1×π2),

where
∣∣∣ε( 1

2 , π1× π̃2)

∣∣∣ = 1 and

N (π1× π̃2) = dn1n2
F

∏
v

q fv(π1,v×π̃2,v)
v

is the conductor. Here, the local exponents fv(π1,v × π̃2,v) are as in Lemma 5.7 above,

and dF is the absolute value of the discriminant of F . We can then write

nα(π, s) = L(s, π1× π̃2)

ε( 1
2 , π1× π̃2)N (π1× π̃2)

1
2−s L(s+ 1, π1× π̃2)

.

The proof of Propositions 4.5 and 5.1 in [58] gives∫ T+1

T

∣∣∣∣n′α(π, it)
nα(π, it)

∣∣∣∣ dt � log(|T | + ν(π1× π̃2))

with
ν(π1× π̃2) = N (π1× π̃2)(2+ c(π1× π̃2))

and the quantity c(π1× π̃2) > 0 of [58, (4.21)], which depends only on the Archimedean

factors of π1 and π2. Moreover, c(π1× π̃2) is by definition invariant under twisting

by characters of GL(n1+ n2, F∞) (viewed as characters of GL(n1, F∞)×GL(n2, F∞)
by restriction). Combining [58, Lemma 4.2] and [58, Lemma 5.4]8 shows that log(2+
c(π1× π̃2))� minχ log3M (π∞⊗χ;GL(n1+ n2)), where χ ranges over the characters of

GL(n1+ n2, F∞).

8Note that in [58, Lemma 4.2] it is not necessary to assume that the πi are generic; it suffices that they
are unitary. Also, [58, Lemma 5.4] deals explicitly only with the real places v of F , but complex places
can be dealt with in the same way.

https://doi.org/10.1017/S1474748014000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000103


Limit multiplicities 615

Since the central character ω(π∞⊗χ) of the representation π∞⊗χ is simply

ω(π∞)χn1+n2 , by an appropriate choice of χ we can achieve that ω(π∞⊗χ) belongs

to a finite set of characters that depends only on n1+ n2 and F∞. We can then

clearly bound the contribution of Lie(Z(GL(n1+ n2, F∞))) to the Casimir eigenvalue

of π∞⊗χ in terms of n1+ n2 and [F : Q], and similarly for the central contribution

to ‖τ‖, where τ is a lowest K∞-type of π∞⊗χ . Altogether, we obtain the estimate

log(2+ c(π1× π̃2))� log3M (π∞; M̂α). On the other hand, by Lemma 5.7, we have

log N (π1× π̃2)� 1+ log levelM (π; M̂α). The proposition follows.

Remark 5.8. For a general group G, the normalizing factors are given, at least up

to local factors, by quotients of automorphic L-functions associated to the irreducible

constituents of the adjoint representation of the L-group L M of M on the Lie algebra of

the unipotent radical of the corresponding parabolic subgroup of L G [48]. To argue as

above, we would need to know that these L-functions have finitely many poles and satisfy

a functional equation with the associated conductor bounded polynomially in level(π)
for any π ∈ 5disc(M(A)). Unfortunately, the finiteness of the number of poles and the

expected functional equation are not known in general (although they are known in some

important cases, e.g. [37]). It is possible that for classical groups these properties are

within reach using the work of Arthur [12] and Mœglin [53], and the same may apply to

the exceptional group G2 [45]. However, this may require further work, and we will not

pursue this matter any further.

5.3. Degrees of normalized local intertwining operators

Let M ∈ L and P, Q ∈ P(M) adjacent along α ∈ ΣM . Recall that, in the p-adic case,

for any irreducible representation πv of M(Fv) and any open subgroup Kv of G(Fv) the

restriction RQ|P (πv, s)Kv of the operator RQ|P (πv, s) to the finite-dimensional space of

Kv-fixed vectors in I G
P (πv) is a rational function in q−s . More precisely, there exists

a polynomial f , depending only on πv, and whose degree is bounded in terms of G
only, such that f (q−s)RQ|P (πv, s)Kv is polynomial in q−s . We have UQ ∩U P̄ = Uα,

where {α} = ΣQ ∩ΣP̄ . Note that the operator RQ|P is obtained by induction from the

intertwining operator RMα

Q∩Mα |P∩Mα
between representations of the group Mα(Fv). Let Pα

be the maximal parabolic subgroup of Mα with unipotent radical Uα (and Levi subgroup

M), and let P̄α be the corresponding opposite parabolic subgroup.

Definition 5.9. We say that G satisfies property (BD) (bounded degree) if there exists a

constant c (depending only on G and ρ), such that for any

• Levi subgroup M ∈ L, M 6= G,

• α ∈ ΣM ,

• finite place v of F ,

• open subgroup Kv ⊂ KMα,v,

• smooth irreducible representation πv of M(Fv), the degrees of the numerators of the
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linear operators RMα

P̄α |Pα (πv, s)Kv are bounded by c logqv levelMα (Kv; M̂+α ), if Kv is hyperspecial,

c(1+ logqv levelMα (Kv; M̂+α )), otherwise.

Remark 5.10. (1) Property (BD) is by definition hereditary for Levi subgroups.

(2) Property (BD) is discussed in more detail in [35]. Conjectures 1 and 2 of [35] for all

Levi subgroups of G amount to the slightly weaker statement obtained by replacing

levelMα (Kv; M̂+α ) by levelMα (Kv;Mder
α ), but the above formulation is more natural

(and we intend to use it in a future paper). Note that Conjectures 1 and 2 of [35] for

the F-simple factors of the groups Lsc, L ∈ L, imply property (BD) in its current

formulation.

(3) Note also that by [50, Lemma 1.6] (cf. also [35, Proposition 3] and the remark

following it) we may replace levelMα (Kv; M̂+α ) by the inverse of the volume of

(psc
M̂α
)−1(Kv) in M̂sc

α (Fv).

Let now G M be the subgroup of G generated by the unipotent subgroups Uα, α ∈ ΣM .

In other words, if P and P̄ are (arbitrary) opposite parabolic subgroups in P(M), then

G M is the subgroup of G generated by U and Ū . By [17, Proposition 4.11], G M is

a connected semisimple normal subgroup of G defined over F . Clearly, all non-central

normal subgroups of G M are F-isotropic, and therefore G M (A)+ is the closed subgroup

of G(A) generated by the groups Uα(A), α ∈ ΣM . It is also the derived group of G M (A).
Property (BD) has the following consequence for the operators RQ|P (πv, s), which is a

slight strengthening of [35, Proposition 6].9

Lemma 5.11. Let G satisfy property (BD). Then, for any

• Levi subgroup M ∈ L, M 6= G,

• any adjacent parabolic subgroups P, Q ∈ P(M),
• finite place v of F,

• open subgroup Kv ⊂ Kv,

• smooth irreducible representation πv of M(Fv),

the degrees of the numerators of the linear operators RQ|P (πv, s)Kv are bounded by c logqv level(Kv;G+M ), if Kv is hyperspecial,

c(1+ logqv level(Kv;G+M )), otherwise.

9We take the opportunity to correct an inaccuracy in the proof (not the statement) of [35, Proposition 5].
Using the notation of [35] freely, in the last sentence of the proof it is stated that the matrix coefficients
of MQi+1|Qi (σ, 〈λ, α∨i 〉)K are given by those of MQ′|Q′ (σ, 〈λ, α∨i 〉)K∩MR . Correctly, they are given by the

matrix coefficients of MQ′|Q′ (σ, 〈λ, α∨i 〉)γ Kγ−1∩MR , where γ ranges over K0. However, we are free to

consider instead of K the largest principal congruence subgroup K ′n of K ′0 contained in K , which is a

normal subgroup of K0. The same correction applies to the proof of [35, Lemma 20].
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Proof. The matrix coefficients of RQ|P (πv, s)Kv are linear combinations of the matrix

coefficients of RMα

Q∩Mα |P∩Mα
(πv, s)γ Kvγ−1∩Mα(Fv), γ ∈ Kv. Property (BD) implies that the

degrees of the latter coefficients are bounded by c logqv level(γ Kvγ−1 ∩Mα(Fv); M̂+α ) in

the hyperspecial case, and by c(1+ logqv level(γ Kvγ−1 ∩Mα(Fv); M̂+α )) otherwise. Since

G M (Afin)
+ is normal in G(Afin) and G M (Afin)

+ ⊃ M̂α(Afin)
+, we obtain the required

estimate.

The proof of Lemma 5.11 yields in addition the following estimate.

Lemma 5.12. Let α ∈ ΣM . Then levelM (π; M̂+α ) 6 levelG(I G
P (π);G+M ). In other words, if

K is an open subgroup of Kfin such that I G
P (π)

K 6= 0, then levelM (π; M̂+α ) 6 level(K ;G+M ).
Proof. Suppose that I G

P (π)
K 6= 0. Since the finite part of I G

P (π) is I Kfin
P(Afin)∩Kfin

π
∣∣
KM,fin

as a Kfin-module, π must have a non-zero vector fixed under projM (γ Kγ−1 ∩ P(Afin))

for some γ ∈ Kfin, where projM : P → M denotes the canonical projection. Suppose that

K ⊃ K(n)∩G M (Afin)
+. Since G M (Afin)

+ is normal in G(A) and G M (Afin)
+ ⊃ M̂α(Afin)

+,

we get

projM (γ Kγ−1 ∩ P(Afin)) ⊃ projM (K(n)∩G M (Afin)
+ ∩ P(Afin)) ⊃ KM (n)∩ M̂α(Afin)

+.

The lemma follows.

Remark 5.13. Note that for Kv hyperspecial and I G(Fv)
P(Fv) (πv)

Kv∩G M (Fv)+ 6= 0 the operator

RQ|P (πv, s)Kv∩G M (Fv)+ is independent of s. This implies that the assertion of Lemma 5.11

is satisfied unconditionally if Kv is hyperspecial and level(Kv;G+M ) = 1. (In particular,

the special case of property (BD) where Kv is hyperspecial and levelMα (Kv; M̂+α ) = 1 is

always true.) To see this, note that via psc|Gsc
M

we can pull back Kv to a hyperspecial

maximal compact subgroup of Gsc
M (Fv), M to a proper Levi subgroup M̃ of Gsc

M , P
and Q to adjacent parabolic subgroups P̃ and Q̃ with Levi subgroup M̃ , and π to a

smooth representation π̃ of M̃(Fv), which is a finite direct sum of smooth irreducible

representations. Then we can reduce to the property that RQ̃|P̃ acts as a constant on the

one-dimensional space of unramified vectors in the induction to Gsc
M (Fv) of any unramified

irreducible summand of π̃ .

We have the following analog of Lemma 5.4.

Lemma 5.14. Suppose that G̃ satisfies property (BD) and that G is a subgroup of G̃
containing G̃der. Then G also satisfies (BD).

Proof. Let M̃ ∈ LG̃ , and let P̃, Q̃ ∈ P G̃(M̃) be adjacent along α. Then M = M̃ ∩G ∈ LG

and the groups P = P̃ ∩G ∈ PG(M) and Q = Q̃ ∩G ∈ PG(M) are adjacent along α. If π̃v
is an irreducible representation of M̃(Fv), then we can identify the restriction of I G̃

P̃
(π̃v)

to G(Fv) with I G
P (π̃v

∣∣
M(Fv)

). Moreover, if πv is a constituent of π̃v
∣∣
M(Fv)

, then RQ|P (πv, s)
is the restriction of RQ̃|P̃ (π̃v, s). The lemma follows immediately.
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Finally, the main result of [35] can be phrased as follows.

Theorem 5.15. The groups GL(n) and SL(n) satisfy (BD).

Proof. The GL(n) case follows directly from [35, Theorem 1], taking into account that

Levi subgroups of GL(n) are products of groups GL(ni ). For SL(n), we may use Lemma

5.14.

5.4. Logarithmic derivatives of normalized local intertwining operators

The relevance of property (BD) to the trace formula lies in the following consequence,

which we will prove in the remainder of this section.

Proposition 5.16. Suppose that G satisfies (BD). Let M ∈ L, and let P, Q ∈ P(M) be

adjacent parabolic subgroups. Then, for all open compact subgroups K of G(Afin) and all

τ ∈ 5(K∞ ∩G M ), we have∫
iR

∥∥∥∥∥RQ|P (π, s)−1 R′Q|P (π, s)
∣∣∣∣
I G

P (π)
τ,K

∥∥∥∥∥ (1+ |s|2)−1 ds � 1+ log(‖τ‖+ level(K ;G+M )).

We remark that the dependence of the bound on τ is not essential for the limit

multiplicity problem, but it is relevant for other asymptotic questions.

The key ingredient for the proof of Proposition 5.16 is the following generalization of

the classical Bernstein inequality due to Borwein and Erdélyi.

Proposition 5.17 [13]. Let S1 be the unit circle in C, and let z1, . . . , zm /∈ S1. Suppose that

f (z) is a rational function on C such that supz∈S1 | f (z)| 6 1 and (z− z1) . . . (z− zm) f (z)
is a polynomial of degree n. Then

∣∣ f ′(z)
∣∣ 6 max

max(n−m, 0)+
∑

j :|z j |>1

∣∣z j
∣∣2− 1∣∣z j − z

∣∣2 , ∑
j :|z j |<1

1− ∣∣z j
∣∣2∣∣z j − z
∣∣2
 , z ∈ S1.

Note that in [13, Theorem 1] this inequality is stated explicitly only for n 6 m. However,

as explained on [13, p. 418], the case n > m follows from the previous case by passing to

f (z)(|w1| − 1) . . . (|wn−m | − 1)
(z−w1) . . . (z−wn−m)

,

where w1, . . . , wn−m ∈ C are auxiliary parameters with |wi | > 1, and then letting wi →
∞.

We will need a vector-valued version of Proposition 5.17 which is a direct consequence.

For the next two lemmas, let V be a normed space over C.

Corollary 5.18. Let z1, . . . , zm ∈ C \S1. Suppose that A : C \ {z1, . . . , zm} → V is such

that (z− z1) . . . (z− zm)A(z) is a polynomial in z ∈ C of degree n with coefficients in V .

Assume that ‖A(z)‖ 6 1 for all z ∈ S1. Then

∥∥A′(z)
∥∥ 6 max

max(n−m, 0)+
∑

j :|z j |>1

∣∣z j
∣∣2− 1∣∣z j − z

∣∣2 , ∑
j :|z j |<1

1− ∣∣z j
∣∣2∣∣z j − z
∣∣2
 , z ∈ S1.
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Consequently, ∫
S1

∥∥A′(z)
∥∥ |dz| 6 2π max(m, n). (13)

This follows from Proposition 5.17 by applying it to f (z) = (A′(z), w) for any linear

form w on V with ‖w‖ 6 1.

We remark that, when V = C, i.e., when A(z) is scalar valued, the bound (13), at least

with 2π replaced by 8, can be easily proved directly without appealing to Proposition

5.17 (see [34, Lemma 1]). However, we do not know a direct proof of (13) (even with 2π
replaced by an arbitrary constant) in the general case.

Analogously, we have the following.

Lemma 5.19. Let z j = u j + iv j ∈ C, j = 1, . . . ,m, and let b(z) = (z− z1) . . . (z− zm).

Suppose that A : C \ {z1, . . . , zm} → V is such that ‖A(z)‖ 6 1 for all z ∈ iR and b(z)A(z)
is a polynomial in z ∈ C (necessarily of degree 6 m) with coefficients in V . Then∫

iR

∥∥A′(z)
∥∥ |dz|

1+ |z|2 6 2π
m∑

j=1

∣∣u j
∣∣+ 1

(
∣∣u j
∣∣+ 1)2+ v2

j
6 2πm.

Proof. For any w ∈ C, let φw(z) = z+w̄
z−w , and set

φ≷(z) =
∏

j :Re z j≷0

φz j (z).

Applying [13, Theorem 4],10 we conclude as before that∥∥A′(z)
∥∥ 6 max(

∣∣φ′>(z)∣∣ , ∣∣φ′<(z)∣∣) 6 ∣∣φ′>(z)∣∣+ ∣∣φ′<(z)∣∣ , z ∈ iR.

It remains to observe that for any w = u+ iv ∈ C \ iR we have∫
iR

∣∣φ′w(z)∣∣ |dz|
1+ |z|2 = 2π

|u| + 1
(|u| + 1)2+ v2 .

Indeed, we have
∣∣φ′w(z)∣∣ = 2|u|

|z−w|2 =
2|u|

u2+(t−v)2 for z = it , t ∈ R, so∫
iR

∣∣φ′w(z)∣∣ |dz|
1+ |z|2 =

∫
R

2 |u|
(u2+ (t − v)2)(1+ t2)

dt.

By the residue theorem, this is equal to

2π
( |u|

u2+ (i− v)2 +
1

1+ (v+ i |u|)2
)
= 2π
v+ i(|u| − 1)

( |u|
v− i(|u| + 1)

+ 1
v+ i(|u| + 1)

)
= 2π(|u| + 1)
v2+ (|u| + 1)2

,

as claimed.

10This result is misstated on [34, p. 190].
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Proof of Proposition 5.16. Replacing K by its largest factorizable subgroup does not

change level(K ;G+M ). We may therefore assume that K is factorizable. Write K =∏ Kv,
and set K v =∏w 6=v Kw. Also set Nv = levelv(Kv;G+M ), so that

∏
Nv = level(K ;G+M ).

Let S′ (respectively, S′′) be the finite set of finite places such that Kv is not hyperspecial

(respectively, Nv 6= 1). Of course S′ depends only on Kfin. Note that, by Remark 5.13,

Rv(πv, s)Kv is independent of s if v is finite and v /∈ S′ ∪ S′′. We have

R(π, s)−1 R′(π, s)|I (π)τ,K = R∞(π∞, s)−1 R′∞(π∞, s)|I (π∞)τ ⊗ IdI (π∞)K

+
∑

v∈S′∪S′′
Rv(πv, s)−1 R′v(πv, s)

∣∣∣∣
I (πv)Kv

⊗ IdI (πv)τ,Kv .

Recall that the operators Rv(πv, s) are unitary for Re s = 0.

Consider first the case where v ∈ S′ ∪ S′′. Write Rv(πv, s)
∣∣
I (πv)Kv

= Av(q−s
v ). Then

∫
iR

∥∥∥∥∥Rv(πv, s)−1 R′v(πv, s)
∣∣∣∣
I (πv)Kv

∥∥∥∥∥ ds

1+ |s|2 =
∫

iR

∥∥∥∥∥R′v(πv, s)
∣∣∣∣
I (πv)Kv

∥∥∥∥∥ ds

1+ |s|2

6 2
∞∑

n=0

(
1+ 4π2n2

(log qv)2

)−1 ∫ 2π i
log qv

0

∥∥∥∥∥R′v(πv, s)
∣∣∣∣
I (πv)Kv

∥∥∥∥∥ ds

6 2
(

1+ 1
4

log qv

)∫ 2π i
log qv

0

∥∥∥R′v(πv, s)
∣∣
I (πv)Kv

∥∥∥ ds =
(

2+ 1
2

log qv

)∫
S1

∥∥A′v(z)
∥∥ |dz| .

(14)

By Lemma 5.11, property (BD) for G implies that Av satisfies the conditions of Corollary

5.18 (with respect to the operator norm) with m bounded in terms of G only and

n �
 1+ logqv Nv, if v ∈ S′,

logqv Nv, otherwise.

By Corollary 5.18, (14) is therefore � (log qv)(logqv Nv) = log Nv, if v /∈ S′ and � 1+
log Nv, otherwise.

Regarding the Archimedean contribution, it follows from [54, Proposition A.2] that

the operator R∞(π∞, s)
∣∣
I (π∞)τ satisfies the conditions of Lemma 5.19 with b(s) =∏r

j=1
∏m

k=1(s− ρ j + ck), where

• c > 0 depends only on M ,

• r is bounded in terms of G only,

• m � 1+‖τ‖.
(In addition, the real parts Re ρ j are bounded from above in terms of G only, but we will

not need to use this fact.) Note that although [54, Proposition A.2] gives the bound m �
1+‖τ̃‖ on the τ̃ -isotypic subspace, where τ̃ ∈ 5(K∞), on [54, p. 88] it is explicitly stated

that we may in fact consider the isotypic subspace for a representation of K∞ ∩Gder(F∞),
and it is clear from the definition of R∞(π∞, s) that we may even replace Gder by G M .
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Write ρ j = u j + iv j . By Lemma 5.19, we infer that∫
iR

∥∥∥∥∥R∞(π∞, s)−1 R′∞(π∞, s)
∣∣∣∣
I (π∞)τ

∥∥∥∥∥ (1+ |s|2)−1 ds

=
∫

iR

∥∥∥∥∥R′∞(π∞, s)
∣∣∣∣
I (π∞)τ

∥∥∥∥∥ (1+ |s|2)−1 ds

�
r∑

j=1

m∑
k=1

∣∣u j − ck
∣∣+ 1

(
∣∣u j − ck

∣∣+ 1)2+ v2
j
� 1+ log(1+‖τ‖).

Altogether,∫
iR

∥∥∥∥∥R(π, s)−1 R′(π, s)
∣∣∣∣
I (π)τ,K

∥∥∥∥∥ (1+ |s|)−2 ds � 1+ log(1+‖τ‖)+
∑

v finite

log Nv

= 1+ log(1+‖τ‖)+ log level(K ;G+M ),
as required.

6. Polynomially bounded collections of measures

As a preparation for our proof of the spectral limit property in § 7, we prove in this section

a result on real reductive Lie groups (Proposition 6.1 below) which extends an argument

of Delorme in [26]. Let temporarily G∞ be the group of real points of a connected

reductive group defined over R, or, slightly more generally, the quotient of such a group

by a connected subgroup of its center (like the group G(F∞)1 to which we will apply our

results in § 7). Let K∞ be a maximal compact subgroup of G∞, and let θ be the associated

Cartan involution. We will consider Levi subgroups M and parabolic subgroups P defined

over R. All Levi subgroups are implicitly assumed to be θ -stable. We factorize any Levi

subgroup M as a direct product M = AM ×M1, where AM is the largest central subgroup

of M isomorphic to a power of R>0, and let aM = Lie AM . We identify representations of

M1 with representations of M on which AM acts trivially. Fix a minimal θ -stable Levi

subgroup M0. As in § 4.1, we fix an invariant bilinear form B on Lie G∞, which induces

Euclidean norms on all its subspaces and therefore Hermitian norms on the spaces a∗M,C.

For each r > 0 and each finite set F ⊂ 5(K∞), we define H(G∞)r,F as the space of all

smooth functions f on G∞ with support contained in the compact set K∞ exp({x ∈ a0 :
‖x‖ 6 r})K∞ whose translates f (k1 · k2), k1, k2 ∈ K∞, span a finite-dimensional space

that decomposes under the action of K∞× K∞ as a sum of representations τ1⊗ τ2 with

τ1, τ2 ∈ F . We let H(G∞)r be the union of the spaces H(G∞)r,F over all finite sets

F ⊂ 5(K∞). The union of the spaces H(G∞)r for all r > 0 is then the space H(G∞)
introduced in § 1.

As before, for f ∈ C∞(G∞) and k > 0, let

‖ f ‖k =
∑

X∈Bk

‖X ? f ‖L1(G∞) .

These norms endow H(G∞)r,F with the structure of a Fréchet space.
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Let Irr(G∞) be the set of all irreducible admissible representations of G∞ up to

infinitesimal equivalence. The unitary dual 5(G∞) can be viewed as a subset of Irr(G∞)
in a natural way. For π ∈ Irr(G∞), denote its infinitesimal character by χπ and its Casimir

eigenvalue (which depends only on χπ ) by λπ . For any µ ∈ 5(K∞), let Irr(G∞)µ be the

set of irreducible representations containing µ as a K∞-type. More generally, for any

subset F of 5(K∞), we write Irr(G∞)F = ∪τ∈F Irr(G∞)τ .
We write D for the set of all conjugacy classes of pairs (M, δ) consisting of a Levi

subgroup M of G∞ and a discrete series representation δ of M1. For any δ ∈ D, let

Irr(G∞)δ be the set of all irreducible representations which arise by the Langlands

quotient construction from the (tempered) irreducible constituents of I L
M (δ) for Levi

subgroups L ⊃ M . Here, I L
M denotes (unitary) induction from an arbitrary parabolic

subgroup of L with Levi subgroup M to L. We then have a disjoint decomposition

Irr(G∞) =
∐
δ∈D

Irr(G∞)δ,

and consequently

5(G∞) =
∐
δ∈D

5(G∞)δ.

Recall the definition of the norm ‖·‖ on5(K∞) given in § 5.1. We call a finite subset F ⊂
5(K∞) saturated if, for each µ ∈ F , all µ′ ∈ 5(K∞) with

∥∥µ′∥∥ 6 ‖µ‖ are also contained

in F .

For π ∈ Irr(G∞), we write δ(π) for the unique element δ ∈ D with π ∈ Irr(G∞)δ. We

introduce a partial order on D as in [19, § 2.3], using the lowest K∞-types of I G
M (δ): δ ≺ δ′

if and only if ‖µ‖ < ∥∥µ′∥∥ for lowest K∞-types µ and µ′ of I G
M (δ) and I G

M ′(δ
′), respectively.

When F ⊂ 5(K∞) is finite and saturated, Vogan’s theory of lowest K∞-types implies

that

Irr(G∞)F = ∪δ∈DF Irr(G∞)δ (15)

for a finite subset DF ⊂ D (cf. [20, Proposition D.1]).

For δ ∈ D, we let F(δ) be the finite saturated set of all µ′ ∈ 5(K∞) with
∥∥µ′∥∥ 6 ‖µ‖

for a lowest K∞-type µ of I G
M (δ).

Proposition 6.1. Let M be a set of Borel measures on 5(G∞). Then the following

conditions on M are equivalent.

(1) For all δ ∈ D, there exists Nδ > 0 such that

ν({π ∈ 5(G∞)δ : |λπ | 6 R})�δ (1+ R)Nδ

for all ν ∈M and R > 0.

(2) There exists r > 0 such that supν∈M
∣∣∣ν( f̂ )

∣∣∣ is a continuous seminorm on H(G∞)r,F
for any finite set F ⊂ 5(K∞).

(3) supν∈M
∣∣∣ν( f̂ )

∣∣∣ is a continuous seminorm on H(G∞)r,F for any r > 0 and any finite

set F ⊂ 5(K∞).
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(4) For each finite set F ⊂ 5(K∞), there exists an integer k = k(F) such that

supν∈M ν(gk,F ) <∞, where gk,F is the non-negative function on 5(G∞) defined

by

gk,F (π) =
 (1+ |λπ |)−k, if π ∈ 5(G∞)F ,

0, otherwise.

Definition 6.2. We call a collection M of measures satisfying the equivalent conditions of

Proposition 6.1 polynomially bounded.

We begin the proof of Proposition 6.1. Let M be a collection of Borel measures on

5(G∞). Evidently the third condition of the proposition implies the second one. Note

that, if zG∞ is the Casimir element in the center of U(Lie G∞⊗C), then ẑG∞ f (π) =
λπ f̂ (π). Since also

∣∣∣ f̂ (π)
∣∣∣ 6 ‖ f ‖L1(G∞), it follows that for any k > 0 we have

f̂ (π)�k ‖ f ‖2k gk,F (π)

for all f ∈ H(G∞)F and π ∈ 5(G∞). We infer that the fourth condition of the

proposition implies the third one.

For k > 0 and δ ∈ D, let gk,δ = (1+ |λπ |)−k for π ∈ 5(G∞)δ, and extend this function

by zero to all of 5(G∞).
For a given δ ∈ D, consider the following two statements.

There exists Nδ > 0 such that

ν({π ∈ 5(G∞)δ : |λπ | 6 R})�δ (1+ R)Nδ for all ν ∈M and R > 0. (16a)

There exists an integer k = kδ > 0 such that sup
ν∈M

ν(gk,δ) <∞. (16b)

It is easy to see that these statements are equivalent: if (16a) is satisfied, then we can

bound

ν(gk,δ) 6
∑
m>0

ν({π ∈ 5(G∞)δ : m 6 |λπ | 6 m+ 1})(m+ 1)−k �δ

∑
m>0

(m+ 2)Nδ

(m+ 1)k
,

which is bounded independently of ν ∈M for k > Nδ + 2. On the other hand, we clearly

have

(1+ R)−kν({π ∈ 5(G∞)δ : |λπ | 6 R}) 6 ν(gk,δ),

which gives the other implication.

Observe now that the first condition of the proposition is just (16a) for all δ. Moreover,

by (15), the fourth condition is equivalent to (16b) for all δ. Therefore, the first and fourth

conditions of the proposition are equivalent.

It remains to show that the second condition implies the first (or the fourth) one. This

step is somewhat more difficult, and it requires some preliminary results, namely the

classification of tempered and admissible representations of G∞ and the Paley–Wiener

theorem. We first recall Vogan’s classification of irreducible admissible representations.
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For (M, δ) as above, and λ ∈ a∗M,C, consider the induced representation πδ,λ (with respect

to any parabolic subgroup containing M as a Levi subgroup). Its semisimplification

depends only on the K∞-conjugacy class of the triple (M, δ, λ). Vogan defines the R-group

Rδ of δ, a finite group of exponent two, as well as its subgroup Rδ,λ. The dual group R̂δ
acts simply transitively on the set A(δ) of lowest K∞-types of πδ,λ. We then have a

decomposition of the representation πδ,λ as a direct sum of
∣∣Rδ,λ∣∣ many representations

πδ,λ(µ), where µ is an orbit of R⊥δ,λ in A(δ) [71, 6.5.10, 6.5.11]:

πδ,λ =
⊕

µ∈A(δ)/R⊥δ,λ

πδ,λ(µ).

We call the πδ,λ(µ) basic representations. Each basic representation πδ,λ(µ) has a unique

irreducible subquotient π̄δ,λ(µ) containing a K∞-type in the orbit µ. Alternatively,

this subquotient can also be constructed as a Langlands quotient [71, 6.6.14, 6.6.15].

This construction sets up a bijection π̄δ,λ(µ) = π 7→ σπ = πδ,λ(µ) between infinitesimal

equivalence classes of irreducible admissible representations π and basic representations

σπ , where the latter are interpreted as elements of the Grothendieck group of admissible

representations [71, 6.5.13]. By definition, the parameterization is compatible with the

disjoint decomposition of Irr(G∞) according to the elements of D.

The distributions tr σπ for π ∈ Irr(G∞) form a basis of the Grothendieck group of

admissible representations. More precisely, we have the following relations expressing the

characters of irreducible representations π ∈ Irr(G∞) in terms of the characters of basic

representations:

trπ(φ) = tr σπ (φ)+
∑

π ′:δ(π)≺δ(π ′), χπ=χπ ′
n(π, π ′) tr σπ ′(φ), (17)

with certain integers n(π, π ′) [71, 6.6.7]. Note that here the sum on the right-hand side is

finite. For our purposes, all we need to know about the integers n(π, π ′) is the following

uniform boundedness property [26, Proposition 2.2].

Lemma 6.3 (Vogan). We have ∑
π ′:δ(π)≺δ(π ′), χπ=χπ ′

∣∣n(π, π ′)∣∣� 1

for all π ∈ Irr(G∞).

For the Paley–Wiener theorem, we need to group the basic representations into series

of induced representations, which gives a slightly different parameterization. We use the

concept of a non-degenerate limit of discrete series introduced in [46, 47]. Let δ ∈ D with

representative (M, δ). Whenever L is a Levi subgroup containing M and the irreducible

constituents δ′ of I L
M (δ) are non-degenerate limits of discrete series of the group L1,

we call the resulting pairs (L , δ′) affiliated with the class δ [20, Définition 2]. These

representations are precisely those irreducible constituents of the representations I L
M (δ)

for L ⊃ M , which are not themselves irreducibly induced from any smaller Levi subgroup.

For fixed (M, δ), the Levi subgroups L ⊃ M appearing in this construction are precisely
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those for which a∗L is the fixed space of a∗M under one of the subgroups Rδ,λ ⊂ Rδ (where

we regard Rδ as a subgroup of W (AM )δ ⊂ W (AM ) = NK (AM )/CK (AM ) as in [20, § 2.1]).

We can then rewrite any representation πδ,λ(µ) in the form πδ′,λ, where L ⊃ M is

a Levi subgroup with λ ∈ a∗L ,C ⊂ a∗M,C and (L , δ′) is affiliated with D, such that the

intermediate induction to the largest Levi subgroup LRe λ with Re λ ∈ a∗LRe λ
is irreducible

(and tempered). (To see this, combine [71, 6.6.14, 6.6.15] with [20, (2.1), (2.2)].) Note

that the tempered dual of G∞ can be parameterized as either the set of all basic

representations πδ,λ(µ) with Re λ = 0 (which are always irreducible), or as the set of

all irreducible induced representations πδ′,λ, Re λ = 0, where δ′ is a non-degenerate limit

of discrete series.

Recall the definition of the Paley–Wiener space PW(a)r , r > 0, of a Euclidean vector

space a. It is the space of all entire functions F on the complexified dual a∗C such that

the Paley–Wiener norms

‖F‖r,n = sup
λ∈a∗C

(1+‖λ‖)ne−r‖Re λ‖ |F(λ)| , n > 0,

are finite. The Paley–Wiener norms endow PW(a)r with the structure of a Fréchet space,

and the Fourier transform is a topological isomorphism between PW(a)r and the Fréchet

space of smooth functions on a supported on the ball of radius r around 0.

Now let δ ∈ D. Consider the finite set D′(δ) of all pairs (M, δ), where M is a standard

Levi subgroup of G∞, δ ∈ 5(M1) a non-degenerate limit of discrete series, and (M, δ)
is affiliated with δ. The Paley–Wiener space PWr,δ is then defined as the space of all

elements F = (F(M,δ)) ∈
∏
(M,δ)∈D′(δ) PW(aM )r fulfilling the following conditions.

(1) Whenever the triples (M, δ, λ) and (M ′, δ′, λ′) are conjugate by an element of K∞,

we have F(M ′,δ′)(λ′) = F(M,δ)(λ).

(2) Whenever for M ⊂ M ′ we have a decomposition

I M ′
M (δM ) =

m⊕
i=1

δ
(i)
M ′

with (M, δM ), (M ′, δ(i)M ′) ∈ D′(δ), the corresponding identity

F(M,δM )(λ) =
m∑

i=1

F
(M ′,δ(i)M ′ )

(λ), λ ∈ a∗M ′,C ⊂ a∗M,C,

holds.

For any finite saturated set F ⊂ 5(K∞), the space PWr,F is defined as
∏
δ∈DF

PWr,δ.

These Paley–Wiener spaces have in a natural way the structure of Fréchet spaces, and we

define for each n > 0 the Paley–Wiener norm ‖F‖r,n of F ∈ PWr,F to be the maximum

of the norms
∥∥F(M,δ)

∥∥
r,n , where (M, δ) ∈ D′(δ), δ ∈ DF . (Cf. [20, Appendice C] for a

concrete combinatorial description of these spaces.)

We can now state the Paley–Wiener theorem of Clozel and Delorme [20, Théorème 1,

Théorème 1].
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Theorem 6.4 (Clozel–Delorme). For any finite saturated set F ⊂ 5(K∞) and any r > 0,

the natural continuous map of Fréchet spaces Tr,F : H(G∞)r,F → PWr,F given by f 7→
(trπδ,λ( f )) is surjective.

Remark 6.5. By the open mapping theorem, a continuous surjection of Fréchet spaces

is automatically open. For the surjections Tr,F of Theorem 6.4 this means concretely

that for every integer k > 0 there exists an integer n (depending on k, r , and F) with the

following property: for any F ∈ PWr,F there exists φ ∈ H(G∞)r,F such that Tr,F (φ) = F
and ‖φ‖k �r,F ,k ‖F‖r,n .

We now turn to the proof of Proposition 6.1, which is an extension of an argument

of Delorme (cf. the proof of [26, Proposition 3.3]). As in [26], the proof is based on

the existence of certain test functions on G∞; however, in comparison to Delorme’s

argument, we also need to bound the seminorms of these functions. We therefore recall

the construction in some detail. The first elementary lemma [31, Lemma 6.3] asserts the

existence of functions with certain properties of the Fourier transform.

Lemma 6.6 (Duistermaat–Kolk–Varadarajan). Let a be a Euclidean vector space, let W
be a finite group acting on a, and let r > 0. Then, for any t > 1, there exists a function

ĥ(t, ·) ∈ PW(a)Wr with the following properties.

(1) ĥ(t, λ) ∈ R>0 for all λ ∈ a∗C for which there exists an element w ∈ W with w(λ) =
−λ̄.

(2)
∣∣∣ĥ(t, λ)∣∣∣ > 1 for all λ ∈ a∗C with ‖λ‖ 6 t.

(3) For all m > 0, we have
∥∥∥ĥ(t, ·)

∥∥∥
r,m
�r,m tm . In particular, for all a > 0 and m > 0,

we have

ĥ(t, λ)�r,m,a
tm

(1+‖Im λ‖)m
for all λ ∈ a∗C with ‖Re λ‖ 6 a.

The following lemma is a strengthening of [26, Proposition 3.2] (we have added the

third assertion).

Lemma 6.7. Let r > 0, let δ ∈ D with representative (M, δ), and let k > 0 be an integer.

Then there exist an integer rk,δ > 0 (depending on k and δ) and for each t > 1 a function

φ
t,k
δ ∈ H(G∞)r,F(δ) with the following properties.

(1) tr σπ (φ
t,k
δ ) = 0 for all π ∈ Irr(G∞) with δ(π) 6= δ.

(2) tr σ(φt,k
δ ) = [Rδ : Rδ,λ]ĥ(t, λ) for all basic representations σ = πδ,λ(µ), λ ∈ a∗M,C,

µ ∈ A(δ).

(3)
∥∥∥φt,k

δ

∥∥∥
k
�k,δ trk,δ .

Proof. We apply the Paley–Wiener theorem to the following element F t = F t
(M ′,δ′)

of PWr,F , where F = F(δ). Apply Lemma 6.6 to the vector space aM and the
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group W (AM ) = NK (AM )/CK (AM ) to obtain functions ĥ(t, ·) ∈ PW(aM )
W (AM )
r . Set

F t
(M ′,δ′)(λ) = 0 whenever (M ′, δ′) is not affiliated with δ. On the other hand, if (M ′, δ′) is

affiliated with δ, then we have a decomposition I M ′
M (δ) = ⊕S

i=1δ
′
i , where δ′1 = δ′ and S is

a divisor of |Rδ|. We then set F t
(M ′,δ′)(λ) = |Rδ |S ĥ(t, λ). By the W (AM )-invariance of ĥ(t, ·)

and the transitivity of induction, this defines an element F t of PWr,F . (Note that the

commutativity of the group Rδ implies that, if we have a decomposition I M ′′
M (δ) = ⊕S′′

i=1δ
′′
i

with (M ′′, δ′′i ) affiliated with δ and M ′′ ⊃ M ′, then S′′ is a multiple of S, and each I M ′′
M ′ (δ

′
i )

splits into S′′/S many irreducible constituents δ′′j , cf. [20, pp. 204–205].) Moreover, by

the third assertion of Lemma 6.6, the Paley–Wiener norms of F t satisfy
∥∥F t

∥∥
r,n �r,δ,n tn

for every n > 0. The Paley–Wiener theorem (Theorem 6.4) and Remark 6.5 provide

for every k > 0 an integer rk,δ > 0 and a preimage φt,k
δ ∈ H(G∞)r,F of F t under Tr,F

with
∥∥∥φt,k

δ

∥∥∥
k
�r,δ,k

∥∥F t
∥∥

r,rk,δ
�r,δ,k trk,δ . Therefore, φt,k

δ satisfies the third property of the

lemma. The first property is clear by construction. Finally, write σ = πδ,λ(µ) ' πδ′,λ,
where δ′ is a non-degenerate limit of discrete series of (M ′)1, M ′ ⊃ M is a Levi subgroup

with λ ∈ a∗M ′,C ⊂ a∗M,C, and (M ′, δ′) is affiliated with D. The number S of irreducible

constituents of I M ′
M (δ) is then equal to |Rδ,λ|. Therefore tr σ(φt,k

δ ) = F t
(M ′,δ′)(λ) = [Rδ :

Rδ,λ]ĥ(t, λ), which establishes the second property and finishes the proof.

Corollary 6.8. The test functions φ
t,k
δ ∈ H(G∞)r,F(δ) above satisfy the following

additional properties.

(1) tr σπ (φ
t,k
δ ) > 1 for all π ∈ 5(G∞)δ with |λπ | 6 t2− cδ, where cδ > 0 is a constant

depending only on δ.

(2) For all m > 0, we have

0 6 tr σπ (φ
t,k
δ )�δ,m

t2m

(1+ |λπ |)m
for all π ∈ 5(G∞)δ.

Proof. Let π̄δ,λ(µ) ' π ∈ 5(G∞), and let σπ = πδ,λ(µ). Since π is unitary, we need

to have w(λ) = −λ̄ for an element w ∈ W (AM )δ [26, (2.1)]. By Lemma 6.7, the trace

tr σπ (φ
t,k
δ ) is an integer multiple of ĥ(t, λ). By the first property of Lemma 6.6, it is

therefore non-negative real.

Furthermore, the Casimir eigenvalue of π can be computed as λπ = −‖Im λ‖2+
‖Re λ‖2+‖χδ‖2− cM for a constant cM (cf. [14, § 3.2, (2)]). Again by unitarity, we have
‖Re λ‖ 6 ‖ρP‖, where ρP is half the sum of the positive roots of a parabolic P with Levi

subgroup M [26, (2.2)]. Therefore, we obtain |λπ | > ‖λ‖2− cδ for a constant cδ, which we

may take to be non-negative.

To show the first assertion, |λπ | 6 t2− cδ implies that ‖λ‖ 6 t , and by the second

property of Lemma 6.6 we obtain ĥ(t, λ) > 1. For the second assertion, we use the last

property of Lemma 6.6 (with 2m instead of m) and the boundedness of ‖Re λ‖ together

with the obvious fact that [Rδ : Rδ,λ] is bounded by |Rδ|.
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End of proof of Proposition 6.1. It remains to prove the equivalent statements (16a) or

(16b) for any δ assuming the second condition of the proposition. We will prove them

by induction on δ, i.e., for a given δ, we assume that (16b) is satisfied for all δ′ ≺ δ
and are going to prove (16a) for δ. For this, consider the test functions φt,k

δ constructed

in Lemma 6.7 for t = (1+ cδ + R)1/2 > 1, where R > 0 is a parameter. By assumption,

for a suitable r > 0, for each finite set F the supremum supν∈M
∣∣∣ν( f̂ )

∣∣∣ is a continuous

seminorm on H(G∞)r,F . This means that for a suitable value of k (depending on F)

we have ν( f̂ )�F ‖ f ‖k for all ν ∈M and f ∈ H(G∞)r,F . Taking f = φ̂t,k
δ and using the

third assertion of Lemma 6.7, we obtain that there exists an integer mδ > 0 such that

ν(φ̂
t,k
δ )�δ (1+ R)mδ , ν ∈M. (18)

Write

ν(φ̂
t,k
δ ) =

∫
trπ(φt,k

δ )dν(π).

Inserting (17) into this equation, we obtain

ν(φ̂
t,k
δ ) =

∫
(tr σπ )(φ

t,k
δ )dν(π)+

∫  ∑
π ′:δ(π)≺δ(π ′), χπ=χπ ′

n(π, π ′) tr σπ ′(φ
t,k
δ )

 dν(π).

By the first assertion of Corollary 6.8, the first integral provides an upper bound for the

measure of the set {π ∈ 5(G∞)δ : |λπ | 6 R}:
ν({π ∈ 5(G∞)δ : |λπ | 6 R}) 6

∫
(tr σπ )(φ

t,k
δ )dν(π).

Regarding the second integral, only the π ′ with δ(π ′) = δ can contribute, and we can

estimate their contribution using the second assertion of Corollary 6.8:

0 6 tr σπ ′(φ
t,k
δ )�δ,m

t2m

(1+ |λπ ′ |)m =
(1+ cδ + R)m

(1+ |λπ |)m ,

since π and π ′ have the same infinitesimal character. Combining this inequality with (18)

and using Lemma 6.3, we obtain

ν({π ∈ 5(G∞)δ : |λπ | 6 R}) 6 ν(φ̂
t,k
δ )−

∫  ∑
π ′:δ(π)≺δ(π ′), χπ=χπ ′

n(π, π ′) tr σπ ′(φ
t,k
δ )

 dν(π)

�δ,m (1+ R)mδ + (1+ R)m
∑
δ′≺δ

ν(gm,δ′)

for all ν ∈M. For suitable m, the sum
∑
δ′≺δ ν(gm,δ′) is bounded independently of ν by

the induction hypothesis. We conclude that (16a) holds for δ, which finishes the induction

and thereby the proof of the proposition.

We remark that the proof simplifies for the groups GL(n), since in this case the tempered

basic representations πδ,λ, Re λ = 0, are always irreducible, the R-groups are trivial, and

the sets D′(δ) are therefore singletons. The Paley–Wiener space PWr,δ is then just the

space of Wδ-invariant functions in PW(aM )r , where (M, δ) is a representative of δ and

Wδ denotes the stabilizer of δ inside the Weyl group W (AM ).
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7. The spectral limit property

We now come back to the situation of §§ 1–5. Before treating the spectral limit property

(2), we consider first the question whether the collection of measures {µG,S∞
K }K∈K on

G(F∞)1 associated to a set K of open subgroups K of Kfin is polynomially bounded. We

conjecture that this is true for the set of all open subgroups of Kfin (or even for the set

of all open compact subgroups of G(Afin)). Note that each finite set K is known to have

this property [55]. So, as in the case of property (TWN) above, the issue is to control

the dependence on K .

Remark 7.1. Deitmar and Hoffmann [28] have shown unconditionally that for any G the

collection of measures {µG,S∞
K(n),cusp}, where µG,S∞

K(n),cusp is the analog of µG,S∞
K(n) for the cuspidal

spectrum, is polynomially bounded. (In fact, they obtain a more precise statement.)

However, for our argument we need to know the corresponding statement for the full

discrete spectrum.

Our results in this direction are Lemmas 7.6 and 7.7 below, which we will use for a

conditional proof of the spectral limit property for principal congruence subgroups in

Corollary 7.8, thereby finishing our argument. Recall the spectral expansion of Theorem

4.1, which expresses Arthur’s distribution J (h) as a sum of contributions Jspec,M (h)
associated to the conjugacy classes of Levi subgroups M of G. Also recall properties

(TWN) and (BD) from § 5. They are hereditary for Levi subgroups.

Fix M ∈ L, M 6= G. The technical heart of our argument is contained in the following

lemma and its corollary. We freely use the notation introduced in § 4. We denote by
‖·‖1,H the trace norm of an operator on a Hilbert space H. Extending the notation of

§ 6, for a finite set F ⊂ 5(K∞) and an open subgroup KS of KS−S∞ let H(G(FS)
1)F ,KS

be the space of all bi-KS-invariant functions f ∈ H(G(FS)
1) whose translates f (k1 · k2),

k1, k2 ∈ K∞, span a space that decomposes under the action of K∞×K∞ as a sum of

representations τ1⊗ τ2 with τ1, τ2 ∈ F . Recall the norms ‖·‖k on C∞c (G(FS)
1) introduced

in § 3.2.

Lemma 7.2. Suppose that G satisfies properties (TWN) and (BD). Let M ∈ L, and let

P ∈ P(M). Furthermore, let S ⊃ S∞ be a finite set of places of F. Then, for any finite

set F ⊂ 5(K∞) and any sufficiently large N > 0, there exists an integer k > 0 such that,

for any

• open subgroup KS of KS−S∞ ,

• open compact subgroup K of G(AS),

• ε > 0,

• s ∈ NG(M)/M,

• β ∈ BP,Ls ,

• X ∈ 4Ls (β),

we have
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i(aG

Ls )
∗
‖1X (P, λ)M(P, s)ρ(P, λ, h⊗ 1K )‖1,Ā2(P) dλ�F ,N ,ε

vol(K ) level(KS K ;G+M )ε ‖h‖k
∑
τ∈F ,

π∈5disc(M(A))

3M (π∞)−N dimA2
π (P)

KS K ,τ (19)

for all h ∈ H(G(FS)
1)F ,KS . Consequently,

Jspec,M (h⊗ 1K )

�F ,N ,ε vol(K ) level(KS K ;G+M )ε ‖h‖k
∑
τ∈F ,

π∈5disc(M(A))

3M (π∞)−N dimA2
π (P)

KS K ,τ . (20)

Note here that for all N > N0, where N0 depends only on G, the right-hand sides of

(19) and (20) are finite [55].

Proof. We argue as in [34, § 5] (cf. also [57]). First, note that we may omit M(P, s) on the

left-hand side of (19), since it is a unitary operator which commutes with ρ(P, λ, h⊗ 1K ),

and hence does not affect the trace norm. Let 1 be the operator Id−�+ 2�K∞ , where �

(respectively, �K∞) is the Casimir operator of G(F∞) (respectively, K∞). For any k > 0,

we bound the left-hand side of (19) by∫
i(aG

Ls )
∗

∥∥∥1X (P, λ)ρ(P, λ,1)−2k
∥∥∥

1,Ā2(P)KS K ,F

∥∥∥ρ(P, λ,12k ? h⊗ 1K )

∥∥∥ dλ

6 vol(K )
∥∥∥12k ? h

∥∥∥
L1(G(FS)1)

∫
i(aG

Ls )
∗

∥∥∥1X (P, λ)ρ(P, λ,1)−2k
∥∥∥

1,Ā2(P)KS K ,F
dλ.

Consider the integral on the right-hand side.11 For any π ∈ 5disc(M(A)) and τ ∈ 5(K∞),
the operator ρ(P, λ,1) acts by the scalar µ(π, λ, τ ) = 1+‖λ‖2− λπ + 2λτ − eP on

A2
π (P)

τ , where λπ and λτ are the Casimir eigenvalues of π and τ , respectively, and

eP is a constant depending only on P (cf. [14, § 3.2, (2)]). Since it is easy to see that

eP 6 0, using (10), we get

µ(π, λ, τ )2 >
1
4
(1+‖λ‖2+ λ2

π + λ2
τ )�G ‖λ‖2+3M (π∞).

Therefore,∫
i(aG

Ls )
∗

∥∥∥1X (P, λ)ρ(P, λ,1)−2k
∥∥∥

1,Ā2(P)KS K ,F
dλ 6

∑
τ∈F

∑
π∈5disc(M(A))

∫
i(aG

Ls )
∗
‖1X (P, λ)‖1,A2

π (P)
KS K ,τ µ(π, λ, τ )

−2k dλ.

Estimating ‖A‖1 6 dim V ‖A‖ for any linear operator A on a finite-dimensional Hilbert

space V , we bound the previous expression by∑
τ∈F

∑
π∈5disc(M(A))

dimA2
π (P)

KS K ,τ
∫

i(aG
Ls )
∗
‖1X (P, λ)‖A2

π (P)
KS K ,τ µ(π, λ, τ )

−2k dλ.

11In the corresponding formula [34, (5.1)] the restriction to the K0-fixed part was mistakenly omitted.
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Using the definition of 1X (P, λ), we can bound the above by a constant multiple of

∑
τ∈F ,

π∈5disc(M(A))

3M (π∞)−k/2 dimA2
π (P)

KS K ,τ
∫

i(aG
Ls )
∗
(1+‖λ‖)−k

m∏
i=1

∥∥∥δPi |P ′i (λ)
∣∣
A2
π (P

′
i )

KS K ,τ

∥∥∥ dλ.

(21)

We estimate the integral over i(aG
Ls
)∗. Let FM ⊂ 5(KM,∞) be the finite set of all

irreducible components of restrictions of elements of F to KM,∞. Then, by Frobenius

reciprocity, only those π ∈ 5disc(M(A)) with π∞ ∈ 5(M(F∞))FM can contribute to (21).

Let β = (β∨1 , . . . , β∨m), and introduce the new coordinates si = 〈λ, β∨i 〉, i = 1, . . . ,m, on

(aG
Ls ,C)

∗. By (9), we can write

δPi |P ′i (λ) =
n′βi
(π, si )

nβi (π, si )
Id+ jP ′i ◦ (Id⊗R(π, si )

−1 R′(π, si )) ◦ j−1
P ′i
.

Property (TWN) and Proposition 5.16 (which is based on property (BD)), together with

Lemma 5.12, yield the estimate∫
i(aG

Ls )
∗
(1+‖λ‖)−k

m∏
i=1

∥∥∥δPi |P ′i (λ)
∣∣
A2
π (P

′
i )

KS K ,τ

∥∥∥ dλ�ε,F 3M (π∞;G M )
N level(KS K ;G+M )ε

(22)

for any ε > 0 and sufficiently large N and k (depending possibly on τ ). Altogether, we

obtain (19), and, using Theorem 4.1, also (20).

Remark 7.3. Note that the improved estimate (12) yields the following improvement of

(22):

∫
i(aG

Ls )
∗
(1+‖λ‖)−m−ε

m∏
i=1

∥∥∥δPi |P ′i (λ)
∣∣
A2
π (P

′
i )

KS K ,τ

∥∥∥ dλ

�ε log(3M (π∞;G M )+‖τ‖+ level(KS K ;G+M ))m, (23)

where the implied constant does not depend on τ .

Applying Lemma 7.2 to the principal congruence subgroups KS(n), and assuming

polynomial boundedness of the collection {µM,S∞
KM (n)

}, we obtain the following result.

Corollary 7.4. Suppose that G satisfies properties (TWN) and (BD). Furthermore, let

M ∈ L, M 6= G, and assume that the set of measures {µM,S∞
KM (n)

} is polynomially bounded.

Let S ⊃ S∞ be a finite set of places of F. Then, for any finite set F ⊂ 5(K∞), there

exists an integer k > 1 such that, for any open subgroup KS ⊂ KS−S∞ and any ε > 0, we

have

Jspec,M (h⊗ 1KS(n))�KS ,F ,ε ‖h‖k N(n)(dim M−dim G)/2+ε (24)

for all h ∈ H(G(FS)
1)F ,KS and all integral ideals n of oF prime to S.
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Proof. Fix P = M nU ∈ P(M) and an ideal n0 such that KS ⊃ KS−S∞(n0). We have

dimA2
π (P)

K(n0n),τ = mπ dim IndG(A)
P(A)(π)

K(n0n),τ

= mπ dim IndG(F∞)
P(F∞)(π∞)

τ dim IndG(Afin)
P(Afin)

(πfin)
K(n0n),

where

mπ = dim Hom(π, L2
disc(AM M(F)\M(A))).

Note that here the factor dim IndG(F∞)
P(F∞)(π∞)

τ is bounded by (dim τ)2. On the other hand,

since K(n0n) is a normal subgroup of Kfin, we have

dim IndG(Afin)
P(Afin)

(πfin)
K(n0n) 6 [Kfin : (Kfin ∩ P(Afin))K(n0n)] dimπ

KM (n0n)
fin .

Using the factorization Kfin ∩ P(Afin) = (Kfin ∩M(Afin))(Kfin ∩U (Afin)), we can write

[Kfin : (Kfin ∩ P(Afin))K(n0n)] = vol(KM (n0n))vol(K(n0n))
−1

[K(n0n)∩ P(Afin) : (K(n0n)∩M(Afin))(K(n0n)∩U (Afin))]
[Kfin ∩U (Afin) : K(n0n)∩U (Afin)]−1.

The index [K(n0n)∩ P(Afin) : (K(n0n)∩M(Afin))(K(n0n)∩U (Afin))] is bounded indepen-

dently of n. Furthermore, identifying U with its Lie algebra u via the exponential map,

which is an isomorphism of affine varieties, one sees that

N(n0n)
− dim U � [Kfin ∩U (Afin) : K(n0n)∩U (Afin)]−1 � N(n0n)

− dim U .

(We will only need the upper bound.) Therefore

dim IndG(Afin)
P(Afin)

(πfin)
K(n0n) � N(n0n)

− dim U vol(K(n0n))
−1vol(KM (n0n)) dimπ

KM (n0n)
fin .

Incorporating the above into Lemma 7.2, we obtain that for sufficiently large N > 0
there exists k > 0 such that

Jspec,M (h⊗ 1KS(n))�n0,F ,ε,N ‖h‖k
N(n)− dim U+εvol(KM (n0n))

∑
π∈5disc(M(A))FM

(
1+ ∣∣λπ∞ ∣∣)−N mπ dimπ

KM (n0n)
fin .

By assumption, the set of measures {µM,S∞
KM (n0n)

} is polynomially bounded. Therefore the

fourth condition of Proposition 6.1 yields the existence of an integer N , depending only

on FM , such that

µ
M,S∞
KM (n0n)

(gN ,FM ) =
vol(KM (n0n))

vol(M(F)\M(A)1)
∑

π∈5disc(M(A))FM

(
1+ ∣∣λπ∞ ∣∣)−N mπ dimπ

KM (n0n)
fin

is bounded independently of n. This proves the assertion, since dim U = (dim G−
dim M)/2.

Remark 7.5. As before, (12) implies a slightly improved version of (24) in which the

expression N(n)(dim M−dim G)/2+ε is replaced by (1+ log N(n))m N(n)(dim M−dim G)/2.
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We are now in a position to prove that under the assumption that G satisfies (TWN)

and (BD) the collection of measures {µM,S∞
KM (n)

} on 5(M(F∞)1) is polynomially bounded

for any M ∈ L.12

Lemma 7.6. Let G be anisotropic modulo the center. Then the collection of measures

{µG,S∞
K }, where K ranges over the open subgroups of Kfin, is polynomially bounded.

Proof. In this case, the trace formula for a test function h ∈ C∞c (G(F∞)1) can be written

as

vol(G(F)\G(A)1)µG,S∞
K (ĥ) =

∫
G(F)\G(A)1

∑
γ∈G(F)

(h⊗ 1K )(g−1γ g)dg.

Since g can be integrated over a compact set C which is independent of h and K , for

all h supported in a fixed set �∞ ⊂ G(F∞)1 we can bound the absolute value of the

right-hand side by A�∞ sup |h|, where A�∞ is the constant

A�∞ = vol(G(F)\G(A)1) sup
g∈C

∑
γ∈G(F)

(1�∞Kfin)(g
−1γ g).

Therefore, sup
∣∣∣µG,S∞

K (ĥ)
∣∣∣ is a continuous seminorm on every space H(G(F∞)1)r,F , and

by Proposition 6.1 we obtain the assertion.

Lemma 7.7. Suppose that G satisfies (TWN) and (BD). Then, for each M ∈ L, the

collection of measures {µM,S∞
KM (n)

}, n ranging over the integral ideals of oF , is polynomially

bounded.

Proof. We use induction on the semisimple rank of M . The base of the induction is

Lemma 7.6. For the induction step, we can assume the assertion for all groups in L\{G},
and have the task to establish it for G itself. Fix r > 0, and apply the trace formula to

h⊗ 1K(n), where h ∈ H(G(F∞)1)r,F . By Theorem 4.1, we have

vol(G(F)\G(A)1)µG,S∞
K(n) (ĥ) = J (h⊗ 1K(n))−

∑
[M],M 6=G

Jspec,M (h⊗ 1K(n)).

Now, for each single choice of n the absolute value
∣∣J (h⊗ 1K(n))

∣∣ is a continuous seminorm

by the work of Arthur [3]. Moreover, as in the proof of Corollary 3.3, for all n outside

of a finite set depending only on r we have J (h⊗ 1K(n)) = Junip(h⊗ 1K(n)). Therefore it

follows from our analysis of Junip(h⊗ 1K(n)) in Proposition 3.1 that supn
∣∣J (h⊗ 1K(n))

∣∣ is a

continuous seminorm on H(G(F∞)1)r,F . By Corollary 7.4 (with S = S∞), we obtain that

the spectral terms supn
∣∣Jspec,M (h⊗ 1K(n))

∣∣ for M 6= G are also continuous seminorms

on H(G(F∞)1)r,F . By Proposition 6.1, we conclude that the collection {µG,S∞
K(n) } is

polynomially bounded.

As before, let S be a finite set of places of the field F containing S∞.

12Variants of Lemma 7.6 have been previously established in [26, Proposition 3.3] and [28].
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Corollary 7.8 (Spectral limit property). Suppose that G satisfies (TWN) and (BD). Then

we have the spectral limit property for the set of subgroups KS(n), where n ranges over

the integral ideals of oF prime to S.

Proof. From Lemma 7.7, we get that, for each M ∈ L, the collection of measures {µM,S∞
KM (n)

}
is polynomially bounded. Therefore we can apply Corollary 7.4 to conclude that for each

h ∈ H(G(FS)
1) we have

Jspec,M (h⊗ 1KS(n))→ 0

for all M 6= G. Hence (by Theorem 4.1),

J (h⊗ 1KS(n))− tr Rdisc(h⊗ 1KS(n))→ 0,

which is the spectral limit property (2).

Theorem 7.9. Suppose that G satisfies (TWN) and (BD). Then limit multiplicity holds

for the set of subgroups KS(n), where n ranges over the integral ideals of oF prime to S.

Proof. The geometric limit property (3) has been established in Corollary 3.3, and the

spectral limit property (2) in Corollary 7.8. By Theorem 1.2, we obtain the result.

This also finishes the proof of Theorem 1.3, since (TWN) (respectively, (BD)) has been

verified for the groups GL(n) and SL(n) in Proposition 5.5 (respectively, Theorem 5.15).

Repeating the argument above, and combining Corollary 7.4 with the improved

geometric estimate of Proposition 3.8, we obtain the following quantitative statement.

Recall the definition of dmin in (7).

Theorem 7.10. Suppose that G satisfies (TWN) and (BD). Then, for any r > 0 and any

finite set F ⊂ 5(K∞), there exists an integer k > 0 such that for any open subgroup

KS ⊂ KS−S∞ and ε > 0 we have∣∣∣µG,S
KS(n)

(ĥ)− h(1)
∣∣∣�r,KS ,F ,ε N(n)−dmin+ε ‖h‖k (25)

for all h ∈ H(G(FS)
1)r,F ,KS and all integral ideals n of oF prime to S.

Note here that dmin 6 (dim G− dim M)/2 for any proper M ∈ L, since dim G− dim M
is the dimension of the Richardson orbit associated to a parabolic subgroup P ∈ P(M).
If we also assume (12), then we can further improve the right-hand side of (25) to
(1+log N(n))d0

N(n)dmin
‖h‖k (see Remark 7.5).

Remark 7.11. A natural problem is to deduce from Theorem 7.10 an estimate for the

difference
∣∣∣µG,S

KS(n)
(A)−µpl(A)

∣∣∣ for suitable subsets A ⊂ 5(G). This would require a

quantitative version of the density principle (Theorem 2.1). We will not discuss this

aspect here.
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