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Turbulent rotating convection is usually studied in a cylindrical geometry, as this
is its most convenient experimental realization. In our previous work (Kunnen
et al., J. Fluid Mech., vol. 688, 2011, pp. 422–442) we studied turbulent rotating
convection in a cylinder with the emphasis on the boundary layers. A secondary
circulation with a convoluted spatial structure has been observed in mean velocity
plots. Here we present a linear boundary-layer analysis of this flow, which leads
to a model of the circulation. The model consists of two independent parts: an
internal recirculation within the sidewall boundary layer, and a bulk-driven domain-
filling circulation. Both contributions exhibit the typical structure of the Stewartson
boundary layer near the sidewall: a sandwich structure of two boundary layers of
typical thicknesses E1/4 and E1/3, where E is the Ekman number. Although the
structure of the bulk-driven circulation may change considerably depending on the
Ekman number, the boundary-layer recirculation is present at all Ekman numbers in
the range 0.72× 10−5 6 E 6 5.76× 10−5 considered here.

Key words: Bénard convection, boundary layer structure, rotating flows

1. Introduction
In many geophysical and astrophysical flows, the interplay of buoyancy and the

Coriolis force due to rotation of the celestial body is of eminent importance. Examples
include deep oceanic convection (Marshall & Schott 1999) and the convective outer
layer of the Sun (Miesch 2000). There are also specific technological applications
where such conditions occur, for example, in chemical vapour deposition onto a
rotating target (van Santen, Kleijn & van den Akker 2000).

This fundamental interaction of buoyancy and rotation is most conveniently
studied in the simplified setting of rotating Rayleigh–Bénard (RRB) convection
(Chandrasekhar 1961): a layer of fluid enclosed by parallel horizontal plates is
heated from below, cooled from above and rotated about a vertical axis, aligned
with the gravitational acceleration. Experimental investigations of the RRB system
obviously have to introduce some lateral confinement. The preferred geometry for
most experiments (Rossby 1969; Zhong, Ecke & Steinberg 1991, 1993; Ecke & Liu
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1998; Vorobieff & Ecke 1998a,b; Hart & Ohlsen 1999; Hart, Kittelman & Ohlsen
2002; Vorobieff & Ecke 2002; Kunnen, Clercx & Geurts 2008a,b; Zhong et al. 2009;
Kunnen, Geurts & Clercx 2010a,b; Niemela, Babuin & Sreenivasan 2010; Weiss et al.
2010; Zhong & Ahlers 2010; Kunnen et al. 2011; Stevens et al. 2011; Weiss &
Ahlers 2011a,b) is an upright cylinder. For comparison with those experiments, many
direct numerical simulations in this geometry have been carried out (Kunnen et al.
2008a; Zhong et al. 2009; Kunnen et al. 2010a,b; Stevens, Clercx & Lohse 2010;
Weiss et al. 2010; Kunnen et al. 2011; Stevens et al. 2011; Stevens, Clercx & Lohse
2012). The flow inside such a container can be described with four non-dimensional
parameters. The Rayleigh number Ra and the Prandtl number σ are defined as in
classical Rayleigh–Bénard convection problems,

Ra= gα1TH3

νκ
, σ = ν

κ
, (1.1)

where g represents the gravitational acceleration, H is the height of the fluid layer
and 1T is the imposed temperature difference between the bottom and top plates.
The thermal expansion coefficient α, kinematic viscosity ν and thermal diffusivity κ

are properties of the fluid. Furthermore, a dimensionless parameter must quantify the
effects of rotation. In view of the boundary-layer analysis that follows, we introduce
the Ekman number,

E = ν

ΩH2
, (1.2)

with Ω the angular velocity. A final parameter is the diameter-to-height aspect ratio of
the cylinder, Γ = D/H (D is the diameter).

Our recent investigation (Kunnen et al. 2011) using direct numerical simulation
(DNS) of this flow problem has revealed a remarkable boundary-layer structure in the
averaged velocity and temperature fields. The azimuthally and temporally averaged
velocity and temperature fields as presented in Kunnen et al. (2011) have been
reproduced here; figure 1 depicts the entire extent of the cylinder. In these plots
the left-hand side coincides with the cylinder axis and the right-hand side with the
sidewall. Figure 2 shows an enlarged view of the corner region. Indeed, complex
boundary-layer structures are observed near the bottom and top plates as well as
adjacent to the sidewall. They are the so-called Ekman and Stewartson boundary layers
(Greenspan 1968).

In this paper we describe these boundary layers with linear boundary-layer theory.
We derive a linear flow field consisting of two independent contributions in § 2. The
theoretical results are compared with the DNS solutions in § 3. In § 4 we conclude
with some suggestions for further research.

2. Linear boundary-layer analysis
Consider an upright cylinder of height H and radius RH (R is the dimensionless

radius) rotating at an angular velocity Ω about its vertical axis. It is filled
with a Newtonian liquid that is set in motion by thermal effects. We adopt the
Boussinesq approximation: the fluid properties ν, κ and α are constant, independent
of temperature, and density variations are negligible except in the buoyancy term. The
governing equations in a corotating frame of reference are (Chandrasekhar 1961)

∂u
∂t
+ Ro(u ·∇)u+ 2ẑ× u=−∇p+ E∇2u+ RoT ẑ, (2.1a)
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FIGURE 1. Temporal and azimuthal averages of velocity and temperature from a direct
numerical simulation of turbulent rotating convection at Ra = 1 × 109, σ = 6.4, E =
5.76 × 10−5 and Γ = 1. Included are (a) radial (u), (b) azimuthal (v) and (c) vertical (w)
velocity components and (d) temperature (T). The left-hand side of each panel (r = 0)
coincides with the cylinder axis; the right-hand side (r = R = 0.5) corresponds with the
sidewall. Reproduced from Kunnen et al. (2011).
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FIGURE 2. Close-up of the lower right-hand corner region of figure 1. The right-hand side
of each panel (r = R = 0.5) corresponds with the sidewall. The dashed lines represent the
boundary layer thicknesses δE = E1/2 near the bottom and top plates, δS,1/3 = E1/3 closest to
the sidewall, and δS,1/4 = E1/4. Included are (a) radial (u), (b) azimuthal (v) and (c) vertical
(w) velocity components and (d) temperature (T).

∇ ·u= 0, (2.1b)
∂T

∂t
+ Ro(u ·∇)T = E

σ
∇2T, (2.1c)

which represent the evolution in time t (scaled with 1/Ω) of a dimensionless velocity
u = (u, v,w) with its radial, azimuthal and vertical components, respectively (scaled
by velocity scale U = √gα1TH) and dimensionless temperature T (scaled with 1T).
Vector ẑ is the vertical unit vector pointing upwards, parallel to the rotation vector. The
length scale is H and the pressure is scaled with ρUHΩ (ρ is the fluid density). Here
the Rossby number Ro= U/(ΩH) is introduced. The Ekman number E = ν/(ΩH2) is
a small parameter. The main assumptions of this analysis are: (i) viscous effects can
be neglected except for in the regions close to the walls, where viscosity is essential
to fulfil the no-slip conditions; (ii) there is a mean circulation pattern independent of
time and azimuthal orientation; and (iii) it is a crucial assumption that the Rossby
number Ro = U/(ΩH) is negligibly small, as otherwise the analytical approach is
all but impossible given the nonlinearity of the Navier–Stokes equations (2.1a) and
the heat equation (2.1c). This latter assumption leads to the linearized problem, a
prerequisite that is all but required in order to obtain an analytical solution. A notable
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FIGURE 3. Sketch of the regions of the flow domain (bold numbers) with the bounding
boundary-layer thicknesses δE, δS,1/4 and δS,1/3 (dashed lines; not to scale) and boundary-layer
coordinates ζ , ξ and η to be introduced later. Only the lower half of the domain is included;
the top half follows from symmetry.

side effect is that the buoyancy force RoT ẑ, while being responsible for the fluid
motion in the first place, actually drops out of the equation. Thermal effects determine
the strength of the circulation, which is an undetermined free parameter in the model.
It is assumed that the flow, although induced by buoyancy, has a phenomenology that
is independent of the magnitude of the thermal forcing and is exclusively determined
by the Ekman number E and the dimensionless radius R. This simplification will be
validated by comparing the theoretical model with DNS results.

To describe the mean circulation pattern, we can thus consider the linearized, time
and azimuthally averaged equations for this flow problem:

2ẑ× u=−∇p+ E∇2u, (2.2a)
∇ ·u= 0, (2.2b)

where the viscous term E∇2u only plays a role in the boundary-layer regions. The
dimensionless coordinates are 0 6 r 6 R for the radial direction and −1/2 6 z 6 1/2
for the vertical direction. By azimuthal averaging, the problem is independent of the
azimuthal angle θ .

We can now distinguish the bulk region (away from the walls of the container) from
the boundary-layer regions near the bottom and top plates, as well as near the sidewall.
Only close to the walls does the viscous term contribute significantly to the equation
of motion (2.2a) – outside the boundary layers, the flow is inviscid and in geostrophic
balance. The solution of the flow problem is essentially an expansion with powers
of the Ekman number E, which is a small parameter. Figure 3 presents a schematic
view of the various regions of the flow domain considered here. The boundary layers
on the horizontal plates are Ekman layers with characteristic thickness δE = E1/2. The
Stewartson layer at the sidewall has a sandwich structure consisting of two nested
layers, the inner of thickness δS,1/3 = E1/3 and the outer of thickness δS,1/4 = E1/4. The
following flow regions can be distinguished: 1, geostrophic bulk; 2, Ekman layer; 3,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

28
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.285


514 R. P. J. Kunnen, H. J. H. Clercx and G. J. F. van Heijst

Stewartson E1/4 layer; 4, Ekman extension of the Stewartson E1/4 layer; 5, Stewartson
E1/3 layer; 6, Ekman extension of the Stewartson E1/3 layer; and 7, corner region of
size E1/2 × E1/2 where the Ekman-layer dynamics is no longer dominant. In the next
paragraphs these regions will be explained further.

The solution procedure presented in the following sections provides individual
contributions to the total velocity field u = (u, v,w). Each individual contribution
to the total field need not fulfil the boundary conditions. Instead, each boundary-
layer contribution corrects another field at a boundary so that the sum of velocities
fulfils the boundary condition and/or carries a flux to preserve incompressibility. All
of the boundary-layer correction contributions rapidly drop off to zero outside of
their designated boundary layers. This method has been applied before by Barcilon
& Pedlosky (1967a,b). Another way of presenting the results would be a matching
approach, where velocities are matched on the edges of boundary layers (e.g. at
z = −1/2 + δE, where δE is the thickness of the Ekman boundary layer). We have
chosen to apply the correction method for three reasons. (i) It better reveals the
origin of the new boundary-layer circulation, in the derivation of which we explicitly
make use of the freedom of having non-zero velocities on the sidewall, later to be
compensated by a correction velocity field. (ii) The numerical evaluation is more
convenient. The total velocity field is just a sum of all the individual contributions;
there is no need to divide the domain into parts where some contributions are present
or absent. (iii) The default treatment of the E1/3 layer is to serve as a correction field
for the velocity field in the E1/4 layer, which cannot satisfy the boundary conditions by
itself (e.g. Greenspan & Howard 1963; van Heijst 1986). The correction approach can
be consistently applied throughout the analysis, whereas the matching approach is not
possible there.

2.1. Bulk-driven circulation
An interesting feature in the visualization in figure 1 is the mean azimuthal velocity,
which has a negative value in most of the domain. The assumption that the mean
azimuthal velocity is linearly dependent on the radial coordinate r leads to a problem
related to impulsive linear spin-up (Greenspan & Howard 1963; Benton & Clark 1974;
Duck & Foster 2001). The findings are summarized in appendix A. This spin-up
circulation is not enough for the complete description of the mean flow pattern. There
is an independent boundary-layer recirculation that also contributes.

2.2. Boundary-layer recirculation
Figure 2 reveals a remarkable updraft emanating from the lower corner region.
By symmetry, there is also a downdraft from the top corner; see figure 1. For
the remainder of this paragraph, we shall mostly consider the bottom half of the
domain; the top half follows from the symmetry. Note that the spin-up circulation
of appendix A does not account for the updraft. The mean temperature field
reveals that the updraft consists of hot fluid; it is therefore likely to be driven by
buoyancy. Again, just as in the derivation of the linearized equations of motion, the
assumption is made that buoyancy accounts for the strength of the circulation but
not its shape; the buoyancy force is not included in these equations that determine
the phenomenology of the circulation. To describe the updraft, we resort to the
boundary-layer approximation of (2.2) with the assumption that radial derivatives are
much larger than vertical derivatives. We also neglect curvature terms (valid when the
boundary-layer thickness δ� R) and arrive at the following set of equations for radial
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velocity u, azimuthal velocity v, vertical velocity w and pressure p:

−2v =−∂rp+ E∂2
r u, (2.3a)

2u= E∂2
r v, (2.3b)

0=−∂zp+ E∂2
r w, (2.3c)

∂ru+ ∂zw= 0, (2.3d)

where we have introduced the notation ∂r = ∂/∂r, ∂n
r = ∂n/∂rn for convenience.

From similar problems of sidewall boundary layers (Stewartson 1957; Greenspan &
Howard 1963; van Heijst 1983, 1986), we expect a nested two-layer structure with
characteristic thicknesses δS,1/3 = E1/3 and δS,1/4 = E1/4 (regions 3 and 5 in figure 3,
respectively). This structure is generally referred to as the Stewartson layer. In the
following, we apply a similar analysis as in van Heijst (1983, 1986), who also
considered Stewartson layers. We use a similar notation here; some more details of
the procedure (albeit applied to different flow problems) can be found there.

For the thicker of the two layers, the Stewartson E1/4 layer (region 3 in
figure 3), the boundary-layer coordinate ξ = (r − R)E−1/4 is introduced, which is
negative inside the fluid. An order-of-magnitude analysis reveals that, when the
azimuthal velocity component v is of order E0, the radial component u must be
of order E1/2 as per (2.3b). By (2.3d) the vertical component w must be of order
E1/4. These equations have leading-order solutions of the form u ∼ E1/2 exp(

√
2ξ),

v ∼ E0 exp(
√

2ξ), w∼ E1/4z exp(
√

2ξ). From these functional forms, it can be inferred
that this boundary layer cannot account for the updraft near the sidewall, given that the
updraft is highly localized and is not accurately represented by a radial dependence of
the form exp(

√
2ξ).

The updraft must thus be represented by the Stewartson E1/3 layer (region 5 in
figure 3). The analysis of this layer also starts at the boundary-layer equations (2.3).
As the thickness of this boundary layer is δS,1/3 = E1/3 (Proudman 1956; Stewartson
1957; Moore & Saffman 1969; van Heijst 1983, 1986), we define the boundary-layer
coordinate as η = (r − R)E−1/3. For the velocity and pressure, we now introduce a
general expansion that will be useful later. Because of powers of E with exponents
1/4, 1/3 and 1/2 occurring in this problem, an expansion in terms of E1/12 is natural
(Greenspan 1968):

(u, v,w, p)=
∞∑

k=0

(E4/12ũ(k), ṽ(k), w̃(k),E4/12p̃(k))E
k/12. (2.4)

After insertion of the expansion (2.4) into (2.3) we gather terms of equal powers of E.
This leads to

−2ṽ(k) =−∂ηp̃(k), (2.5a)

2ũ(k) = ∂2
η ṽ(k), (2.5b)

0=−∂zp̃(k) + ∂2
η w̃(k), (2.5c)

∂ηũ(k) + ∂zw̃(k) = 0, (2.5d)

which is valid for k = 0, 1, 2, 3.
Close to the bottom and top plates the situation is different. Ekman layers are

expected there (Greenspan 1968). Given that δE = E1/2 � δS,1/3 = E1/3, the Laplacian
operator ∇2 must be dominated by the vertical derivatives close to the plates (region 6
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in figure 3). The well-known Ekman solutions for the velocity field are expected there.
In particular, the Ekman suction condition holds (Greenspan 1968). In this case w̃(k+2)

and ṽ(k) are coupled (van Heijst 1983):

w̃(k+2)(z=± 1
2)=∓ 1

2∂ηṽ(k)(z=± 1
2). (2.6)

The Ekman suction condition (2.6) is valid in the E1/3 layer up to a radial distance
of O(E1/2) from the sidewall. It is clear that, if we do not wish to consider negative
powers of E, the Ekman condition couples the vertical velocity w̃(2) at z=±1/2 to an
azimuthal velocity ṽ(0). Though generally absent, the k = 0 field can be of importance
in Stewartson layers, as in the case discussed by van Heijst (1983). The secondary
circulation within the boundary layers that is introduced in what follows is a new,
independent set of solutions that has not yet been reported in the literature.

The localized updraft emanating from the position where the bottom plate and the
sidewall meet is a known flow structure also occurring when the plate and sidewall
exhibit different rotation rates (Moore & Saffman 1969; van Heijst 1986). The updraft
originates from the corner region (region 7 of figure 3), a region of typical dimensions
E1/2 × E1/2, where the Ekman dynamics finally ceases to dominate. The flow from the
corner region into the E1/3 layer has a radial extent of typical size E1/2, which is much
smaller than the thickness δS,1/3 = E1/3 of the E1/3 layer. The upward vertical flow
from the corner region can thus be mathematically treated as a singular influx into the
E1/3 layer at η = 0 (Moore & Saffman 1969). Following Moore & Saffman (1969),
we write in accordance with the Ekman condition (2.6) that w̃(2)(z = ±1/2) ∼ δ(η)
and ṽ(0)(z = ±1/2) ∼ H(η), with δ(η) the Dirac delta function peaking at η = 0 and
H(η) the Heaviside step function, which takes the values zero for η < 0 and one for
η > 0. Furthermore, δ(η) = ∂ηH(η), so ṽ(0) must thus ‘step’ from zero on the bottom
and top plates to a finite value on the sidewall. We derive a k = 0 field for which
on the sidewall ṽ(0)(η = 0) = C. Here C is a free parameter, which is essentially the
amplitude of the boundary-layer recirculation; we will use it to match the theory to the
DNS results. Obviously the boundary conditions for v as a whole are not satisfied; an
additional contribution is still necessary. There are two candidates of the right order
in E that could correct ṽ(0) on the sidewall. The first, the bulk azimuthal velocity,
cannot provide the correction. As summarized in appendix A, the bulk flow is coupled
to a closed circulation; any extra azimuthal velocity would lead exclusively to an
increased flux of the closed circulation. The second is the azimuthal component of the
Stewartson E1/4 layer (region 3 in figure 3). Owing to the quasi-geostrophic nature of
the E1/4 layer (the azimuthal velocity V being independent of z), we can conclude that
ṽ(0) on the sidewall must be independent of z as well for it to be corrected on the
sidewall.

The general solution of (2.5) is obtained with standard methods, taking into account
the vertical symmetries, and can be written as

ũ(k) =−1
2

∞∑
n=1

γ 2
n cos(2πnz)[aneγnη − ω2bne−ωγnη − ωcne−ω

2γnη], (2.7a)

ṽ(k) =−
∞∑

n=1

cos(2πnz)[aneγnη − bne−ωγnη − cne−ω
2γnη], (2.7b)

w̃(k) =
∞∑

n=1

sin(2πnz)[aneγnη + bne−ωγnη + cne−ω
2γnη], (2.7c)
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with the convenient notation γn = (4πn)1/3 and ω = −1/2 + i
√

3/2. The coefficients
an, bn and cn are to be determined using the boundary conditions. We require the
solutions for k = 0. The boundary conditions are: ũ(0) = ṽ(0) = w̃(0) = 0 as η→−∞,
and ũ(0) = w̃(0) = 0, ṽ(0) = C for η = 0. We rewrite this latter boundary condition as a
Fourier series using

∞∑
n=1

(−1)n cos(2πnz)=−1
2

(2.8)

(see e.g. Lighthill 1968). Application of these boundary conditions leads to

an + bn + cn = 0,
an − bn − cn = 2C(−1)n,
an − ω2bn − ωcn = 0,

 (2.9)

resulting in

an = C(−1)n,

bn =− 1
2 C(−1)n(1− 1

3 i
√

3),

cn =− 1
2 C(−1)n(1+ 1

3 i
√

3).

 (2.10)

We thus arrive at the following solutions for the k = 0 field of the Stewartson E1/3

layer (region 5 in figure 3):

ũ(0) =−C

2

∞∑
n=1

(−1)nγ 2
n cos(2πnz)

×
[

eγnη − eγnη/2

{
cos
(

1
2

√
3γnη

)
+ 1√

3
sin
(

1
2

√
3γnη

)}]
, (2.11a)

ṽ(0) =−C
∞∑

n=1

(−1)n cos(2πnz)

×
[

eγnη + eγnη/2

{
cos
(

1
2

√
3γnη

)
− 1√

3
sin
(

1
2

√
3γnη

)}]
, (2.11b)

w̃(0) = C
∞∑

n=1

(−1)n sin(2πnz)

×
[

eγnη − eγnη/2

{
cos
(

1
2

√
3γnη

)
− 1√

3
sin
(

1
2

√
3γnη

)}]
. (2.11c)

Although this field has an O(E0) contribution to the vertical velocity, the net vertical
flux integrated over the boundary layer remains zero; it is an internal recirculation.
In magnitude the flux is O(E1/3), which is the leading-order contribution for this
flow problem. The k = 0 field is the dominant contribution to the velocity field near
the sidewall. The numerical evaluation of series like these is not straightforward; in
appendix B we discuss this matter in more detail.

The k = 0 field is coupled to the bottom and top plates by Ekman layers
that satisfy the Ekman condition (2.6). Since the Heaviside function H(η) behaves
as H(η = 0) = 1/2, we can write ṽ(0)(z = ±1/2) = ∓2CH(η). This implies that
w̃(2)(z = ±1/2) = ∓Cδ(η); see (2.6). The flux carried by this vertical velocity is,
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at z=−1/2,

Q

(
z=−1

2

)
=
∫
δS,1/3

w dr =
∫ 0

−∞
w̃(2)E

1/6E1/3 dη = CE1/2

∫ 0

−∞
δ(η) dη = 1

2
CE1/2.

(2.12)

By symmetry, at z = 0 the flux must be reduced to zero. For the vertical dependence
we take

Q(z)=−CzE1/2. (2.13)

One additional point to mention here is that equations (2.7) do not allow all three
velocity components to be zero on the sidewall, as this would immediately lead
to the coefficients an, bn and cn being identically zero. Here, ũ(2) can be non-zero
on the sidewall, which will be compensated by the Stewartson E1/4 layer that also
compensates ṽ(0) there. It is due to the required compensation by the E1/4 layer that
the linear z dependence of the flux is chosen; it corresponds to a radial velocity
component that is independent of z, as is required of the radial velocity component in
the E1/4 layer.

Making ṽ(2) and w̃(2) zero at η = 0 gives an = 0 and bn = −cn. These latter
unknowns are fixed by the flux condition (2.13). From

w̃(2) =
∞∑

n=1

sin(2πnz)[bne−ωγnη − bne−ω
2γnη], (2.14)

the vertical flux is found to be

Q(z)=
∫
δS,1/3

w dr =
∫ 0

−∞
w̃(2)E

1/6E1/3 dη

= E1/2
∞∑

n=1

bn sin(2πnz)
∫ 0

−∞
[e−ωγnη − e−ω

2γnη] dη

= E1/2
∞∑

n=1

bn sin(2πnz)
i
√

3
γn
, (2.15)

which must be equal to (2.13), for which we can write (see Lighthill 1968)

Q(z)=−CzE1/2 = CE1/2
∞∑

n=1

(−1)n

nπ
sin(2πnz). (2.16)

Hence,

bn = C
γn

i
√

3

(−1)n

nπ
, (2.17)

and the solutions for the k = 2 field of the Stewartson E1/3 layer (region 5 in figure 3)
are

ũ(2) = 2C√
3

∞∑
n=1

(−1)n cos(2πnz)eγnη/2

[
sin
(

1
2

√
3γnη

)
−√3 cos

(
1
2

√
3γnη

)]
, (2.18a)

ṽ(2) =− 8C√
3

∞∑
n=1

(−1)n

γ 2
n

cos(2πnz)eγnη/2 sin
(

1
2

√
3γnη

)
, (2.18b)
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w̃(2) =− 8C√
3

∞∑
n=1

(−1)n

γ 2
n

sin(2πnz)eγnη/2 sin
(

1
2

√
3γnη

)
. (2.18c)

What remains now is to compensate ṽ(0)(η = 0)= C and

ũ(2)(η = 0)=−2CE1/2
∞∑

n=1

(−1)n cos(2πnz)= CE1/2. (2.19)

This is accomplished by a Stewartson E1/4 layer (region 3 in figure 3) similar
to that of the spin-up circulation of appendix A, but with different multiplicative
constants:

U =−C exp(
√

2ξ)E1/2, (2.20a)

V =−C exp(
√

2ξ), (2.20b)

W =√2Cz exp(
√

2ξ)E1/4. (2.20c)

In terms of boundary conditions on the sidewall, it is now satisfied that
U(ξ = 0) + ũ(2)(η = 0)E1/2 = 0 and V(ξ = 0) + ṽ(0)(η = 0) = 0. The corresponding
Ekman-layer contributions (region 6 in figure 3) are

UE = C exp(
√

2ξ) sin ζ e−ζ , (2.21a)

VE = C exp(
√

2ξ) cos ζ e−ζ , (2.21b)

WE = 1
2

√
2C exp(

√
2ξ)(sin ζ + cos ζ )e−ζE1/4, (2.21c)

which account for matching to the bottom plate: U+UE(ζ = 0)= 0, V+VE(ζ = 0)= 0
to leading order E0, and W(z = −1/2) + WE(ζ = 0) = 0. This boundary layer has an
uncompensated vertical velocity W(ξ = 0) of order E1/4, which necessitates a k = 3
contribution in the E1/3 layer, denoted here with (ũ(3), ṽ(3), w̃(3)). The vertical velocity
w̃(3) must be zero on the plates at z=±1/2: the Ekman suction condition (2.6) should
be met and a non-zero w̃(3)(z = ±1/2) would imply a non-zero k = 1 field. The
resulting equations can be solved with standard methods and the solution for w̃(3) is
expressed as a cosine series to guarantee that w̃(3)(z = ±1/2) = 0. Also, ũ(3) and ṽ(3)
are zero on the horizontal plates and on the sidewall. In terms of the boundary-layer
coordinate η = (r − R)E−1/3, the k = 3 solutions of the Stewartson E1/3 layer (region 5
in figure 3) are

ũ(3) =−
√

2C
∞∑

n=1

(−1)n

γn
cos(2πnz)

×
[

eγnη − eγnη/2

{
cos
(

1
2

√
3γnη

)
−√3 sin

(
1
2

√
3γnη

)}]
, (2.22a)

ṽ(3) =−
√

2C
∞∑

n=1

(−1)n

2πn
cos(2πnz)

×
[

eγnη − eγnη/2

{
cos
(

1
2

√
3γnη

)
+√3 sin

(
1
2

√
3γnη

)}]
, (2.22b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

28
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.285


520 R. P. J. Kunnen, H. J. H. Clercx and G. J. F. van Heijst

0

r
r0 R

0 0.1 0.2 0.3 0.4 0.5

z w

–0.5

0(a) (b)

W

FIGURE 4. (a) Schematic view of the boundary-layer circulation driven by buoyancy near the
sidewall. The thick solid arrows indicate the O(E1/3) internal recirculation due to w̃(0). The
thin solid arrows represent O(E1/2) fluxes. The dash-dotted arrows indicate the O(E7/12)
recirculation. (b) Contributions to the vertical velocity of the boundary-layer circulation
evaluated at height z=−0.25.

w̃(3) =
√

2C
∞∑

n=1

(−1)n

2πn
sin(2πnz)

×
[

eγnη + eγnη/2

{
cos
(

1
2

√
3γnη

)
+√3 sin

(
1
2

√
3γnη

)}]
. (2.22c)

Note that, with the Fourier series expansion (e.g. Lighthill 1968)

∞∑
n=1

(−1)n

πn
sin(2πnz)= z, (2.23)

we can conclude that, on the sidewall, W(ξ = 0) + w̃(3)(η = 0)E1/4 = 0. Also, ũ(3)
and ṽ(3) are zero on the bottom and top plates as well as on the sidewall. Flux
calculations of the k = 3 velocities reveal that the net radial and vertical fluxes
are zero. Apparently, this velocity field provides no net transport, just an internal
recirculation with an O(E7/12) flux.

The boundary-layer circulation is sketched in figure 4(a). The largest contribution is
the k = 0 velocity field in the E1/3 layer, carrying an internal recirculation of O(E1/3)

(thick solid arrows). The thin solid arrows indicate the O(E1/2) circulation carried by
the k = 2 field in the E1/3 layer and (U,V,W) in the E1/4 layer, while the dash-dotted
arrows represent the O(E7/12) internal recirculation of the k = 3 field in the E1/3 layer.
The relative contributions to the vertical velocity w at z = −0.25 as a function of r
are shown in figure 4(b). The O(E1/3) internal recirculation is carried by w̃(0) (thick
dashed line). The upward O(E1/2) flux is due to W (thin dashed line) in the E1/4 layer;
the corresponding downward flux is due to w̃(2) in the E1/3 layer (thin solid line). The
boundary condition on the sidewall is met due to the additional w̃(3) contribution (thin
dash-dotted line), carrying the O(E7/12) recirculation. The sum W + w̃(2)E1/6 + w̃(3)E1/4

(thick solid line) satisfies the no-slip boundary condition on the sidewall and carries
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no net vertical flux. In both panels, a negative C is assumed, which is found from the
comparison with the DNS results in § 3.

To complete the description of this circulation, one should consider the flow inside
region 7 of figure 3, the corner region close to r = R, z = ±1/2. It has typical
vertical and radial dimensions E1/2 × E1/2. In this region the leading-order equations
have a different structure from those of the Ekman layers. The equations lead to
a sixth-order partial differential equation in both radial and vertical boundary-layer
coordinates, for which no simple solutions are available (Greenspan & Howard 1963).
The solutions can be described implicitly by a flux argument: the radially outward
flux from the Ekman extension of the E1/4 layer associated with UE, see (2.21a), is
diverted upwards as a singular eruption into the E1/3 layer, in the form of a δ(η)

behaviour in w̃(2)(z = −1/2), see (2.18c). An explicit treatment of the velocity field in
the corner region, even numerically, is not possible: although velocity profiles for the
inflow through the Ekman layers are readily available to serve as boundary conditions,
the corresponding outflow profiles as a function of the radial coordinate are unknown.
However, given that the contributions of the corner region drop off rapidly as the
distance to the walls becomes larger, our current analytical description is complete for
most of the flow domain.

Thus we have arrived at a set of equations that, up to order E1/4, gives a closed
description of two independent circulations, one driven by anticyclonic vorticity in
the bulk, the other by buoyancy adjacent to the sidewall. The velocity fields are
summarized in table 1.

3. Comparison and discussion
The theoretical model needs to be validated with the DNS results. In § 3.1 we

consider in detail the case E = 5.76 × 10−5, which is taken as an example from our
earlier DNS and is shown in figures 1 and 2. We treat the dependence on the Ekman
number in § 3.2.

3.1. Comparison at E = 5.76× 10−5

The linear boundary-layer analysis has provided two independent contributions, the
sum of which is to be compared with the DNS results. We have applied the following
procedure.

Given that the numerical evaluation of the series expansions is cumbersome,
especially near the endplates, the fit is conducted in the radial rather than the vertical
direction. For independent fitting of the amplitudes C and C′ of the boundary-layer and
bulk circulations, respectively, it is best to revert to the vertical velocity component
w: the boundary-layer circulation has a strong contribution of order E0, while the bulk
circulation contributes to order E1/4 at most. Contributions to both u and v are to the
same order in E for the two circulations. Furthermore, we restrict ourselves to the
height z = −0.25 for the fit: it is the middle ground between z = 0 where w = 0 by
symmetry and z = −0.5 where the description is incomplete as the contribution of the
corner region is absent.

In the first step, the sum wBL = w̃(0) + w̃(2)E1/6 +W + w̃(3)E1/4 of the vertical-velocity
contributions that make up the boundary-layer recirculation is determined. The graph
of wBL is fitted to the profile found in DNS over the range R − δS,1/4 6 r 6 R,
the sidewall boundary layer, using a least-squares approach. The result of this fit
is C = −0.032. The value of C is rather small; note that velocity is scaled with
U =√gα1TH, which is the maximal velocity that could occur in this flow. The mean
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Symbol Equation Where? Corrected by Order in E
side b/t velocity flux

ũ(0) (2.11a) 5 (δS,1/3) 0 0 E1/3 }
E1/3ṽ(0) (2.11b) 5 (δS,1/3) V 0 E0

w̃(0) (2.11c) 5 (δS,1/3) 0 0 E0

ũ(2) (2.18a) 5 (δS,1/3) U 0 E1/2 }
E1/2ṽ(2) (2.18b) 5 (δS,1/3) 0 0 E1/6

w̃(2) (2.18c) 5 (δS,1/3) 0, corner 0 E1/6

U (2.20a) 3 (δS,1/4) ũ(2) — E1/2 }
E1/2V (2.20b) 3 (δS,1/4) ṽ(0) VE E0

W (2.20c) 3 (δS,1/4) w̃(3) WE E1/4

UE (2.21a) 4 (δE ∩ δS,1/4) corner 0 E0 }
E1/2VE (2.21b) 4 (δE ∩ δS,1/4) corner V E0

WE (2.21c) 4 (δE ∩ δS,1/4) — W E1/4

ũ(3) (2.22a) 5 (δS,1/3) 0 0 E7/12 }
E7/12ṽ(3) (2.22b) 5 (δS,1/3) 0 0 E1/4

w̃(3) (2.22c) 5 (δS,1/3) W 0 E1/4

ub (A 3b) 1 (bulk) Ū — E1/2 }
E1/2vb (A 1) 1 (bulk) V̄ vE E0

wb (A 3a) 1 (bulk) — wE E1/2

uE (A 2a) 2 (δE) ŪE 0 E0 }
E1/2vE (A 2b) 2 (δE) V̄E vb E0

wE (A 2c) 2 (δE) — wb E1/2

Ū (A 4a) 3 (δS,1/4) ub — E1/2 }
E1/2V̄ (A 4b) 3 (δS,1/4) vb V̄E E0

W̄ (A 4c) 3 (δS,1/4) ¯̃w(3) W̄E E1/4

ŪE (A 5a) 4 (δE ∩ δS,1/4) uE 0 E0 }
E1/2V̄E (A 5b) 4 (δE ∩ δS,1/4) vE V̄ E0

W̄E (A 5c) 4 (δE ∩ δS,1/4) — W̄ E1/4

¯̃u(3) −C′R
C
× (2.22a) 5 (δS,1/3) 0 0 E7/12  E7/12¯̃v(3) −C′R

C
× (2.22b) 5 (δS,1/3) 0 0 E1/4

¯̃w(3) −C′R
C
× (2.22c) 5 (δS,1/3) W̄ 0 E1/4

TABLE 1. Summary of the velocity fields. The symbols used in this work are mentioned
along with the equation number of the final result for each contribution. The location of
its primary contribution (bulk or a specific boundary layer) is also noted for each velocity.
We also include the fields that, when necessary, correct this velocity to zero on the sidewall
(‘side’) or on the bottom and top (‘b/t’); a 0 indicates that this contribution is zero on
that boundary. The entry ‘corner’ designates the correction due to the corner regions at the
sidewall. Finally, the orders of magnitude in E are given for the velocity components as
well as the associated fluxes.
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FIGURE 5. (Colour online) Comparison between DNS and theory of velocity profiles at level
z = −0.25 in radial direction: (a) radial velocity u; (b) azimuthal velocity v; (c) vertical
velocity w. In each panel, the solid black line indicates the mean velocity component
from DNS. The dashed line (red online) is the full theoretical model fitted to the DNS
results. The dash-dotted line (blue online) depicts the interim result of the boundary-
layer circulation fitted to the w component of the DNS result. The vertical dashed lines
represent the theoretical boundary layer thicknesses δS,1/3 = E1/3 (closest to the sidewall) and
δS,1/4 = E1/4.

circulation discussed here is small in amplitude compared with the turbulent velocity
fluctuations. In figure 5 we compare the radial profiles of u, v and w at z = −0.25
from DNS (black solid lines) with the boundary-layer recirculation at this amplitude
C (dash-dotted lines; blue online). For the vertical velocity w, a satisfactory agreement
is reached; however, especially for the azimuthal velocity v, there is a clear additional
contribution due to the bulk circulation.

As a second step, the amplitude C′ of the bulk circulation, which is introduced in
appendix A, is to be quantified. Given that the azimuthal velocity v is of lowest order
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in E, it is best suited for the actual fitting. We fit the sum vbulk = vb + V̄ + ¯̃v(3)E1/4,
defined in appendix A, to the remainder of the corresponding DNS profile after
subtraction of the contribution of the boundary-layer recirculation, again using a
least-squares procedure, but this time covering the full radial extent 0 6 r 6 R. The
resulting amplitude is C′ = −0.055. The final results from this procedure (sum of
boundary-layer and bulk circulations) are included in figure 5 with dashed lines (red
online).

It is found that the theory captures all of the features of the profiles from the DNS.
However, the exact relative amplitudes and locations of the maxima and minima can
be slightly off. This is, of course, not surprising given the stringent assumptions and
simplifications of the model. The excellent agreement of the azimuthal and vertical
velocities, in particular, even at this large Rossby number Ro = 0.72, is practically a
validation of these assumptions, which appear to have validity even for non-vanishing
Ro. It is to be expected that nonlinear effects and, to a lesser degree, curvature effects,
present in the DNS but not in the theoretical model, must have some effects on the
DNS profiles, so that they cannot be fully covered by the model. The radial velocity
does not reveal as good a match. In an absolute sense, the radial velocity component
reaches much smaller values than the other components, making it more susceptible
to effects of turbulent fluctuations that may complicate the convergence of the mean.
Nevertheless, we want to emphasize the success of a time-independent, linearized,
axisymmetric model to represent mean velocity profiles of a vigorously turbulent flow.

As an additional comparison, the full velocity fields obtained from the linear
analysis are presented in figure 6. These show the bottom half of the domain for
comparison with figures 1 and 2. Most of the structures found in the DNS results are
also represented in the theoretical result. However, one major deviation is noticeable
in the azimuthal velocity component v. In the model, the largest positive velocity
is found in the corner region; whereas, in the DNS, the maximum is found at
midheight z = 0, near the sidewall. This is primarily an artifact of the delta-function
approximation used in the E1/3 layer. By explicitly prescribing such discontinuous
stepwise changes in the flow field – which actually cover a small but finite distance
in reality – unphysically large velocity gradients occur near the corner region, which
in turn produce unphysical flow structures. The mathematical simplification of the
delta function, while mathematically sound and essential to arrive at the solution,
unavoidably leads to these artifacts. Additionally, the flow in the corner region of
dimensions E1/2 × E1/2 is missing from these visualizations. The velocity contributions
in this corner region, which rapidly drop off outside, should compensate some non-
zero velocity contributions on the walls (see table 1). However, given that analytical
solutions are not readily found and their range of influence is very limited, we do
not consider these contributions here. Nevertheless, in spite of these shortcomings,
the solutions found here describe the mean flow quite accurately for most of the
domain.

3.2. Dependence on the Ekman number
The bulk flow pattern changes when lower Ekman numbers E = (0.72, 1.44, 2.88) ×
10−5 are considered. The bulk circulation as introduced previously is suppressed. Since
we are interested in the sidewall boundary layers, we focus on the velocity field near
the sidewall, which shows the same boundary-layer signature for all considered Ekman
numbers. In figure 7 we compare the mean vertical velocity w near the sidewall at
height z = −0.4 from DNS with our theoretical model result for the boundary-layer
recirculation. Owing to the mismatch of the peak positions, especially at the lowest E
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FIGURE 6. The sum total of the velocity fields obtained from linear boundary-layer analysis
with E = 5.76 × 10−5 with amplitudes as fitted to the DNS results of figures 1 and 2: shown
are (a) u, (b) v and (c) w. The dashed lines represent the characteristic boundary-layer
thicknesses δE = E1/2 (close to the bottom), δS,1/3 = E1/3 (vertical line closest to the right-hand
side), and δS,1/4 = E1/4 (leftmost vertical line).

values, a direct least-squares procedure is not suitable. Instead, we choose C such that
the peak value of w closest to the sidewall is the same for both DNS and theory. In
figure 7(e) the absolute value of the strength |C| of the boundary-layer recirculation (C
is negative in all cases) is plotted as a function of E. The shape of the boundary layer
is nicely captured by the theory. There are different conditions in the bulk. In some
cases the bulk region shows hardly any mean velocity (e.g. at E = 2.88× 10−5), while
in others there are well-defined up- and down-going parts (the two lowest Ekman
numbers considered here). We speculate that, at the lower Ekman numbers, a steadier,
more organized array of columnar vortices is found, which leave a distinct mark on
the mean vertical velocity. We expect that only after very long averaging (too long
for DNS) will the bulk have attained a mean velocity close to zero. When the mean
velocity in the bulk is approximately zero, like for example at E = 2.88 × 10−5, the
boundary-layer theory matches the DNS result to great detail. The amplitude C of the
mean circulation varies quite a bit between the cases considered here with different
values of E. This appears to be a reflection of the reduction of vertical velocity
fluctuations in the bulk due to rotation. The four points seem to suggest a power-law
behaviour: an appropriate slope would be C ∼ E1.8. Note that the theory presented in
this paper cannot predict the amplitude C; we cannot explain this scaling from the
current analysis.
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FIGURE 7. (Colour online) (a–d) Profiles of vertical velocity near the sidewall at height z =
−0.4, from DNS (solid black lines) and theory (dashed lines, red online): (a) E = 0.72×10−5;
(b) E = 1.44 × 10−5; (c) E = 2.88 × 10−5; (d) E = 5.76 × 10−5. The theoretical boundary-
layer thicknesses are also included (vertical black dashed lines): δS,1/3 = E1/3 (closest to the
sidewall) and δS,1/4 = E1/4. Note the differences in the scaling of the vertical axes. (e) Strength
|C| of the theoretical boundary-layer circulation as fitted to the DNS results as a function of E.
A representative power-law fit is also included.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

28
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.285


Sidewall boundary layers in confined rotating convection 527

4. Conclusion
We have presented a theoretical linear boundary-layer analysis of rotating thermal

convection in a cylindrical container. The sidewall boundary layer can be treated as
a superposition of two independent parts: a bulk-driven circulation covering the entire
cell, and a sidewall boundary-layer recirculation. Both parts have the structure typical
of the Stewartson boundary layer, consisting of two sandwiched layers of typical
thickness δS,1/4 and δS,1/3. The linear model has a surprisingly good agreement with
the temporally and azimuthally averaged velocity from DNS runs of turbulent rotating
convection in a cylinder. It is found that the bulk-driven part is not always the same,
which may be due to long-time dynamics of the array of columnar vortices in the bulk
that makes it impossible in practice to average them out with DNS. This is especially
true for the lowest Ekman numbers E . 2× 10−5 considered here. The boundary-layer
part, however, can be observed throughout the considered Ekman number range.

Possible extensions to the current results include the addition of curvature terms
in the sidewall boundary layers. As a result, the exponential functions containing
the boundary-layer coordinates ξ or η would be replaced with Bessel functions,
making the analysis considerably more difficult. Another consideration is to include
the coupling of the E1/3 layer with the Ekman layers on top and bottom, which
allows more wavelengths in the harmonic terms governing the vertical dependence.
The results will surely be more convoluted and may even not allow for analytical
descriptions.

The linear description of boundary layers has been very successful in non-rotating
turbulent convection, with the theory of Grossmann and Lohse (Ahlers, Grossmann &
Lohse 2009) as a most remarkable result, predicting the heat transfer (Nusselt number)
and large-scale flow strength (Reynolds number) as functions of the input parameters
Ra and σ . The current linear boundary-layer description may serve as a starting point
to extend the theory to the rotating frame. It is highly remarkable how linear theories
can still produce valuable results even in vigorously turbulent flow.
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Appendix A. The ‘spin-up’ circulation
In figure 1 a bulk-driven secondary circulation can be observed, which bears a

resemblance to the classical problem of spin-up. The spin-up process in a closed
cylinder is a topic that has received much attention (see e.g. Greenspan & Howard
1963; Benton & Clark 1974; Duck & Foster 2001, and references therein). We start by
observing that, in the bulk, close to the cylinder axis, the azimuthal bulk velocity vb is
a linear function of the radial coordinate,

vb =−C′r, (A 1)

with C′ a positive constant. This situation is analogous to instantaneous spin-up, only
now the problem is independent of time. In the bulk (region 1 in figure 3), the
dominant force equilibrium is thus the geostrophic balance of pressure gradient and
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Coriolis force, so that we can immediately conclude that the radial velocity ub and
vertical velocity wb in the bulk are zero to leading order E0.

It is obvious that this flow does not connect to the boundaries. The bulk flow
is connected to the bottom and top plates at z = ±1/2 by Ekman boundary layers
(region 2 in figure 3) of thickness δE = E1/2. Focusing on the bottom plate, in terms
of the scaled boundary-layer coordinate ζ = (z + 1/2)E−1/2, the standard Ekman-layer
solutions are

uE =−vb sin ζ e−ζ = C′r sin ζ e−ζ , (A 2a)

vE =−vb cos ζ e−ζ = C′r cos ζ e−ζ , (A 2b)

where uE and vE are corrections to the bulk field, so that the sums u = ub + uE and
v = vb + vE are zero to leading order E0 on the plates at z=±1/2. From continuity, it
follows immediately that

wE = C′(cos ζ + sin ζ )e−ζE1/2, (A 2c)

which, as a boundary-layer correction, must vanish for ζ →∞. To meet the boundary
conditions on the plates, the sum w = wb + wE must be zero there, meaning that there
is an O(E1/2) vertical velocity wb in the bulk. The boundary conditions for w are met
to order E1/2. Because of the vertical symmetry, the proposed contribution is

wb = 2C′zE1/2, (A 3a)

with a radial contribution ub that is found from incompressibility,

ub =−C′rE1/2. (A 3b)

There is a net radially outward flux due to uE in the Ekman layers and an equally large
radially inward flux through the bulk due to ub. This circulation must be closed with a
nested pair of Stewartson layers.

The Stewartson layer (region 3 in figure 3) must carry an O(E1/2) vertical flux to
close the circulation from the outward radial fluxes in the Ekman layers to the radial
inward flux through the bulk. From the equations in the boundary-layer approximation
for the sidewall with neglect of curvature terms, it can be concluded that a layer
of characteristic thickness E1/4 is required. It delivers a contribution Ū of O(E1/2)
to the radial velocity, V̄ of O(E0) to the azimuthal velocity, and W̄ of O(E1/4)
vertically (e.g. Greenspan & Howard 1963; van Heijst 1986). By application of the
boundary conditions ub(r = R)+ Ū(r = R)= 0 and vb(r = R)+ V̄(r = R)= 0, we arrive
at the following solutions, expressed as functions of the boundary-layer coordinate
ξ = (r − R)E−1/4:

Ū = C′R exp(
√

2ξ)E1/2, (A 4a)

V̄ = C′R exp(
√

2ξ), (A 4b)

W̄ =−√2C′Rz exp(
√

2ξ)E1/4. (A 4c)

Close to the bottom and top plates, the dynamics remains governed by the Ekman-
layer dynamics. The following Ekman-layer corrections occur in region 5 of figure 3:

ŪE =−C′R exp(
√

2ξ) sin ζ e−ζ , (A 5a)

V̄E =−C′R exp(
√

2ξ) cos ζ e−ζ , (A 5b)

W̄E =− 1
2

√
2C′R exp(

√
2ξ)(sin ζ + cos ζ )e−ζE1/4. (A 5c)
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These corrections take care of the bottom/top boundary conditions to leading order in
E, such that Ū + ŪE(ζ = 0) = 0, V̄ + V̄E(ζ = 0) = 0 and W̄(z = −1/2) + W̄E(ζ =
0) = 0. Also, on the sidewall, we find that uE(r = R) + ŪE(ξ = 0) = 0 and
vE(r = R) + V̄E(ξ = 0) = 0. All of the leading-order velocities correctly match with
the boundary conditions except for W̄ on the sidewall, which requires an additional
sidewall boundary layer, this time of thickness E1/3 (Greenspan & Howard 1963).

The Stewartson E1/3 layer (region 6 of figure 3) is typically described by a series
expansion of the form (2.4). For the current purpose of correcting W ∼ O(E1/4) on
the sidewall, it is clear that the k = 3 field from the series expansion is required. The
functional forms, which we shall not repeat here, are the set (2.21) multiplied by
−C′R/C.

The sum of the velocity fields in this appendix is a closed circulation, analogous to
the spin-up problem, that satisfies all boundary conditions to leading order.

Appendix B. Convergence and numerical evaluation of the series expansions
The series solutions obtained in this paper are non-trivial to evaluate numerically.

Their convergence can be very slow. That they do converge can be proved as follows.
The basic structure of the series is

f (η, z)∼
∞∑

n=1

(−1)nγ k
n sin(2πnz)eγnη, (B 1)

where γn = (2πn)1/3, the sine may be replaced by a cosine, and several values of k
may arise, viz. k =−2, −1, 0, 2. Note that η 6 0 by definition.

For k =−2, −1 or 0, it is true that

|(−1)nγ k
n sin(2πnz)eγnη|6 eγnη. (B 2)

This also covers factors 1/n as in (2.22b). Such series can be treated with the integral
test. Let

an = g(n)= exp((2πn)1/3η) (B 3)

with η < 0. The series
∑∞

n=1an converges when the integral
∫∞

1 g(n) dn is finite. We
find that ∫ ∞

1
g(n) dn=

∫ ∞
1

exp[(2πn)1/3η] dn

=−3 exp[(2π)1/3η]
2πη3

[2+ (2π)1/3η((2π)1/3η − 2)], (B 4)

which indeed is finite, so the series is convergent for η < 0.
The case k = 2 can be handled in a similar fashion. For η < 0, it is always true that

|(−1)nγ 2
n sin(2πnz)eγnη|6 γ 2

n eγnη, (B 5)

which is to be treated with the integral test. Let

an = g(n)= (2πn)2/3 exp((2πn)1/3η). (B 6)
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The integral∫ ∞
1

g(n) dn=
∫ ∞

1
(2πn)2/3 exp[(2πn)1/3η] dn

=−3 exp[(2π)1/3η]
πη5

[12− 12(2π)1/3η + 6(2π)2/3η2 − 4πη3 + π(2π)1/3η4]
(B 7)

is still finite, so the series converges. The factor 1/2 in the exponent, as found in
(2.18) for example, does not cause the series to diverge.

For all η < 0, the series representations of the velocity fields are convergent. For
η = 0, the series coefficients are either zero or the series are matched with the known
Fourier series (2.8) or (2.23). So all series representations are convergent for all η 6 0.
However, there are discontinuities in the ‘corner’ points η = 0 and z=±1/2, which, of
course, can never match physically realistic flows.

For the numerical evaluation of the series, it is not practicable to simply sum the
first N terms, given their slow convergence. Here Cesàro summation is applied. Let

Sk =
k∑

n=1

an (B 8)

be the kth partial sum of the series {sn} =
∑∞

n=1an. The series {sn} is Cesàro summable
with Cesàro sum A when the limit

lim
n→∞

1
n

n∑
k=1

Sk = A (B 9)

exists. The truncated Cesàro summation converges more rapidly than a truncated sum
of the original series.
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