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In this paper we have studied the effect of the density and temperature of negative
ions on the nonlinear dust-acoustic wave propagation in a Lorentzian dusty plasma.
We have considered both adiabatic and non-adiabatic dust charge variation. The
presence of both low and high populations of negative ions are considered. Separate
models have been developed because the two populations give rise to opposite
polarity of grain charges. In both models electrons are assumed to follow a kappa
velocity distribution while the positive and negative ions satisfy a Maxwellian velocity
distribution. Adiabatic dust charge variation shows the propagation of a dust-acoustic
soliton in cases of both a high and low population of negative ions whose amplitude
depends on the negative ion temperature and negative ion density. On the other hand,
non-adiabatic dust charge variation generates a stable oscillatory dust-acoustic shock
when the negative ion population is low. An unstable potential has been predicted
from this analysis when the negative ion population is high and the dust charge
variation is non-adiabatic.
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1. Introduction
Most space and astrophysical plasmas are ionized gases carrying electrons, ions,

neutral molecules and electrically charged extremely heavy dust grains. It is well
established that the presence of dust grains can considerably change the collective
properties of a plasma. Dust particles usually attach to plasma free electrons which
induces a new plasma equilibrium. Consequently, such dusty plasmas show new
physical phenomena by modifying plasma dielectric properties. It has been confirmed
both theoretically and experimentally that a unmagnetized dusty plasma supports the
dust-acoustic (DA) mode (Rao, Shukla & Yu 1990; Barkan, Merlino & D’Angelo
1995) when the restoring force comes from the pressure of the inertialess electrons and
ions, while the inertia is provided by the dust mass. Linear and nonlinear theories of
dust-acoustic wave propagation with variable dust charge have received considerable
attention in last few years (Singh & Rao 1998; Xie & Yu 2000; Gupta et al. 2001;
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Shukla & Mamun 2002; Amour & Tribeche 2010, 2014; Asgari, Muniandy & Wong
2011; Pajouh & Afshari 2015). The nonlinearity and dispersion are two important
characteristics of a plasma; the nonlinearity leads to wave steepening, whereas the
dispersion attempts to broaden the wave. When the nonlinearity and the dispersion
are in balance, such a wave can result in a soliton. Amplitude and width of the
soliton are influenced by different plasma parameters. If dissipative effects are present
along with nonlinearity and dispersion, shock waves propagate which are oscillatory
if dispersion dominates and monotonic if dissipation dominates.

Charge variation on the dust grains may be of adiabatic or non-adiabatic type. For
adiabatic dust charge variation the dust charging frequency is very high compared
to the dust plasma frequency, which reduces the ratio of the dust plasma frequency
to dust charging frequency to a zero value. On the other hand, for non-adiabatic
dust charge variation the dust charging frequency is not so high and the hence ratio
of the dust plasma frequency to dust charging frequency remains small but finite.
Nonlinear propagation of dust-acoustic waves in the presence of an adiabatic dust
charge variation generates a dust-acoustic soliton (Xie, He & Huang 1998; Xie &
He 1999; Ghosh, Sarkar & Khan 2001; Shan, Lü & Zhao 2001; Tribeche, Houili &
Zerguini 2002; EL-Labany & EL-Taibany 2004; Shan 2004; Gogoi & Deka 2017)
whereas for non-adiabatic dust charge variation it generates a dust-acoustic shock
(Pego, Smereka & Weinstein 1993; Ghosh et al. 2002; Ghosh, Sarkar & Khan 2003).

Coexistence of negative and positive ions with dust particles is common in the
Earth’s ionosphere (Massey 1976), cometary comae (Chaizy et al. 1991) and the
upper region of Titan (Coates et al. 2007). Negative ions in plasma are formed by
different mechanisms like electron attachment, dissociative attachment, charge transfer
and clustering reactions. They are frequently observed in afterglow when the source of
ionization is removed (Swider 1988). Thus the lower part of the ionosphere is a rich
source of negative ions where solar radiation does not reach at night. Initially, such
a plasma contains a low population of negative ions formed by the attachment of a
small fraction of the electrons to neutral atoms. Background free electron population
in this case remains high. Since electron mass is very small compared to both positive
and negative ion masses, the negative electron flux to the dust grains remains very
high compared to the positive ion flux. Thus the equilibrium dust charge in this case
is negative. As the rate of attachment of electrons to the neutral atoms increases,
the population of negative ions also increases, which reduces the background free
electron population. When a dusty plasma contains a high population of negative
ions with a very low population of electrons, due to the heavy negative ion mass,
the net negative flux to the dust grains become less than the positive ion flux and
hence the dust grains are positively charged. Positively charged dust grains in this
case are generated without any emission process. So in absence of any emission
process, whether a dusty plasma will be negatively or positively charged depends on
the concentration of negative ions. This mechanism of positive grain charging due to
electron attachment to perfluoromethylcyclohexane (C7F14) and sulphur hexafluoride
(SF6) was proposed by Merlino and Kim in their experiments (Kim & Merlino 2007;
Merlino & Kim 2008). Previously the chemistry and dynamics of SF6 injection into
the F region was critically examined by Bernhardt (1984). In such plasmas electrons
can completely escape after a finite time and an ion–ion plasma is produced (Geortz
1989; Rapp et al. 2005).

Particle velocity distribution functions in space plasmas often show non-Maxwellian
suprathermal tails decreasing as a power law of the velocity. Such plasmas are often
called Lorentzian plasmas, where the distributions are well fitted by the so-called
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kappa distribution. The presence of such distributions in different space plasmas
suggests a universal mechanism for the creation of such suprathermal tails. Different
theories were proposed in the review paper of Pierrard & Lazar (2010). The presence
of the suprathermal particles plays an important role in the wave–particle interactions.
Such suprathermal particles were observed in the night time ionosphere where the
possibility of the existence of negative ions is also confirmed (Prangé & Crifo 1977).
Since the lower part of the ionosphere is also full of dust grains, our study of
nonlinear dust-acoustic wave propagation in a Lorentzian dusty plasma with negative
ions has an important impact on ionospheric research.

In negative ion contaminated dusty plasmas, characteristics of arbitrary amplitude
dust-acoustic solitary waves have been investigated using the Sagdeev potential
approach (Wang et al. 2005). Propagation characteristics of small-amplitude dust-
acoustic solitary waves and shock waves in an unmagnetized dusty plasma with
a pair of trapped positive and negative ions were investigated considering both
positively and negatively charged dust grains (Adhikary et al. 2017). The effects of
non-steady dust charge variations and a weak magnetic field on small but finite
amplitude nonlinear dust-acoustic waves in an electronegative dusty plasma consisting
of electrons, positive ions, negative ions and dust grains were investigated and it was
shown that the dynamics of the nonlinear waves is governed by the Korteweg–de
Vries–Burger equation which possesses a dispersive shock wave (Ghosh, Ehsan &
Murtaza 2008). However, none of these studies involved the presence of suprathermal
charge particles. A theory for the formation of a weakly electronegative double
layer was developed with four groups of charged particles: thermal positive ions,
monoenergetic accelerated positive ions flowing downstream, accelerated negative ions
flowing upstream and non-Maxwellian electrons (Chabert, Lichtenberg & Lieberman
2007), but no dust grains were present.

Mace & Hellberg (1995) introduced a new plasma dispersion function employing
the kappa distribution, with real values of the spectral kappa index, in place of
the Maxwellian, which was of significant importance in kinetic theoretical study of
waves in space plasmas. Later, they proposed another formulation with a simplified
derivation of the dispersion function for a plasma with a kappa velocity distribution
(Mace & Hellberg 2009). Baluku & Helberg (2008) reported an investigation of
both small and large amplitude dust-acoustic solitary waves in complex plasmas with
cold negative dust grains and kappa-distributed ions and/or electrons. Dust-acoustic
shock waves were investigated in a dusty plasma having a high-energy-tail electron
distribution with the effects of ion streaming and dust charge variation (Shahmansouri
& Tribeche 2013). Recently, we have reported a study on nonlinear dust-acoustic
wave propagation in a Lorentzian dusty plasma including the effects of adiabatic
and non-adiabatic grain charge fluctuation (Denra, Paul & Sarkar 2016) where the
presence of negative ions was not considered. In this paper we shall consider the
presence of negative ions and investigate their effect on the nonlinear dust-acoustic
wave propagation in the case of both adiabatic and non-adiabatic dust charge variation
when electrons are suprathermal and positive and the negative ions are Maxwellian.
Orbital motion limited (OML) theory based current expressions have been used
(Chow, Mendis & Rosenberg 1993). Our investigation shows that in both cases of
low and high negative ion populations, soliton behaviour depends on the negative
ion density and negative ion temperature. Low negative ion population generates
a rarefied dust-acoustic soliton whereas a high negative ion population generates a
compressive dust-acoustic soliton. In both cases the amplitude of the soliton decreases
with increasing negative ion concentration and decreasing negative ion temperature.
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For non-adiabatic dust charge variation, a low population of negative ions generates
a stable oscillatory dust-acoustic shock at weak non-adiabaticity where oscillation
decays to a constant non-zero value. The oscillation is less at high negative ion
concentration and low negative ion temperature. For high negative ion population,
the solution of the KdV–Burger equation starts to grow from zero and the growth
is faster for higher concentrations and lower temperatures of the negative ions. This
indicates an oscillatory instability when the negative ion population is high and dust
charge variation is non-adiabatic. Our numerical estimation also shows that for a
high negative ion population, the coefficient of viscosity becomes negative, which
destabilizes the solution as confirmed from our phase space analysis. In appendix C
of this paper the phase space analysis of the KdV–Burger equation shows that the
negative viscosity makes the non-zero equilibrium point an unstable spiral. This is the
reason for the generation of an unstable oscillation when the negative ion population
is high and the equilibrium dust charge is positive. This instability may be saturated
if higher-order nonlinearities are taken into account.

Oscillatory instability of travelling waves for a generalized KdV–Burger equation
was studied by Pego et al. (1993) for different strengths of nonlinearity and dissipation.
The onset of such an oscillatory instability has been detected in our model when the
negative ion population is very high and the dust charge variation is non-adiabatic.
The stability analysis has been provided in appendix C.

2. Mathematical formulation
In this section we shall formulate two models with a (i) low and (ii) high negative

ion population. In the first case a small fraction of background electrons is attached
to the neutrals forming the negative ions. Thus background electron density remains
high. Hence the electron flux to the dust grains remains higher than the positive ion
flux and consequently the dust grains are negatively charged. In the second case, a
high population of negative ions are created due to the attachment of a large number
of background electrons to the neutrals. This reduces the background electron density.
As a result, the net negative flux to the dust grains reduces as the negative ion mass
is very high compared to the positive ion mass. In this case dust grains are positively
charged. Due to these two different polarities of dust charge the physical properties
of such a negative ion rich dusty plasma change with the change of negative ion
concentration since in these two cases the quasineutrality condition and current
expressions are different. We have formulated two separate models in the following
two subsections.

2.1. Plasma with low population of negative ions
The plasma in this model consists of electrons, positive ions, negative ions and
negatively charged dust grains where the electron density is high compared to
the negative ion density. In the development of the mathematical theory, we have
considered that negative and positive ions are Maxwellian and the electrons are
suprathermal. Dust grains are considered to be negatively charged as the electron
population is high and the negative ion population is low. Charge neutrality at
equilibrium in this case reads as

np0 = ne0 + nn0 + zd0nd0, (2.1)

where ne0, nn0, np0 and nd0 are respectively the electron, negative ion, positive ion
and dust number densities in equilibrium, and zd0 is the unperturbed number of
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charges residing on the dust grain measured in the unit of the electron charge. For
one-dimensional low-frequency dust-acoustic wave motion number density nd, average
velocity ud, charge qd and mass md of the dust grains satisfy the basic equations:

∂nd

∂t
+
∂

∂x
(ndud)= 0 (2.2)

∂ud

∂t
+ ud

∂ud

∂x
=−

qd

md

∂ϕ

∂x
(2.3)

and the background plasma potential φ satisfies the Poisson equation

∂2φ

∂x2
=−4π(enp − ene − enn + qdnd). (2.4)

Here qd =−ezd, where zd is the variable charge number of dust grains. The number
densities ne, nn and np of inertialess kappa-distributed electrons and Maxwellian
negative and positive ions are

ne = ne0

(
1−

2eφ
mekeθ 2

e

)−(ke−1/2)

, nn = nn0 exp
(

eφ
Tn

)
, np = np0 exp

(
−

eφ
Tp

)
,

(2.5a−c)

where θe =
√
(ke − 3/2)/ke(2Te/me) is the electron thermal velocity. Te, Tn, Tp are

temperatures and me, mn, mp are the masses of electrons, negative and positive ions
respectively.

The variable dust charge satisfies the grain charging equation,

∂qd

∂t
+ ud

∂qd

∂x
= I−e + I−n + I−p , (2.6)

where

I−e =−πr2
0ene

(
8Te

πme

)1/2 (
ke −

3
2

)1/2
Γ (ke − 1)
Γ
(
ke −

1
2

) (1−
eqd

r0
(
ke −

3
2

)
Te

)−(ke−1)

(2.7)

I−n =−πr2
0enn

(
8Tn

πmn

)1/2

exp
(

eqd

r0Tn

)
(2.8)

I−p =πr2
0enp

(
8Tp

πmp

)1/2 (
1−

eqd

r0Tp

)
(2.9)

are the electron, negative ion and positive ion currents flowing to the dust surface
(Chow et al. 1993) and r0 is the grain radius. The negative sign indicates that
equilibrium dust charge is negative.

Non-dimensionalization and reductive perturbation
All the physical quantities are now non-dimensionalized as follows. Electron, negative
ion, positive ion and dust number densities ne, nn, np and nd are normalized by
the corresponding unperturbed densities neo, nn0, npo and ndo. The dust charge
qd is normalized by ezd0. The space coordinates x, time t, electrostatic potential
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energy eϕ, dust velocity ud respectively are normalized by the Debye length
λDd = (Teff−/4πzd0nd0e2)1/2, the inverse of the dust plasma frequency ω−1

pd =

(md/4πnd0z2
d0e2)1/2, the electron temperature Te (in eV), the dust-acoustic speed

cd = (zd0Teff−/md)
1/2, where Teff− = Teαd−. The expression for αd− is provided in

appendix A.
Therefore, the dust component satisfies the following set of dimensionless basic

equations,

∂Nd

∂T
+
∂

∂x
(NdVd)= 0 (2.10)

∂Vd

∂T
+ Vd

∂Vd

∂X
=−

Q
αd−

∂Φ

∂X
(2.11)

∂2Φ

∂X2
=−

αd−

(δp − δn − 1)
{(δp − δn − 1)QNd −Ne − δnNn + δpNp} (2.12)(

ωpd

νd−

)(
∂Q
∂T
+ Vd

∂Q
∂X

)
=

1
νd−ezd0

(I−e + I−n + I−p ), (2.13)

with the dimensionless electron, positive and negative ion number densities,

Ne =
ne

ne0
=

{
1−

Φ(
κe −

3
2

)}−(κe−1/2)

(2.14)

Nn =
nn

nn0
= exp

(
Φ

σn

)
(2.15)

Np =
np

np0
= exp

(
−
Φ

σp

)
. (2.16)

The current expressions (2.7)–(2.9) are then reduced to the form,

I−e =−πr2
0ene0

√
8Te

πme

(
κe −

3
2

)1/2
Γ (κe − 1)

Γ
(
κe −

1
2

) Ne

{
1−

ZQ(
κe −

3
2

)}−(κe−1)

(2.17)

I−n =−πr2
0enn0

(
8Tn

πmn

)1/2

Nn exp
(

ZQ
σn

)
(2.18)

I−p =πr2
0enp0

√
8Tp

πmp
Np

{
1−

ZQ
σp

}
, (2.19)

where Z = e2zd0/r0Te, Q = qd/ezd0, X = x/λd, T = t/ω−1
pd , Vd = ud/cd, Φ = eϕ/Te,

Nd = nd/nd0. The equilibrium positive ion–electron and negative ion–electron density
and temperature ratios are δp = np0/ne0, δn = nn0/ne0 and σp = Tp/Te, σn = Tn/Te
respectively. The expression for the grain charging frequency νd−=−(∂I−tot/∂qd)eq has
been calculated and mentioned in appendix A.

The value of Z is not arbitrary and it should be chosen in a way to maintain
the quasineutrality condition (2.1). Since dust grains are negatively charged the
quasineutrality condition (2.1) implies δi > 1.. For this purpose δi should be expressed
as a function of Z which can be done from the equilibrium current balance equation,

I−e + I−n + I−p = 0. (2.20)
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Substituting the expressions of I−e , I−n and I−p from (2.17)–(2.19), at equilibrium Φ= 0,
Q=−1, we obtain,

δp =

√
µp

σp

1
Ω

1+C
exp

(
−

Z
σn

)
{

1+
Z(

κe −
3
2

)}−(κe−1)




{

1+
Z(

κe −
3
2

)}−(κe−1)

{
1+

Z
σp

}
 , (2.21)

which is a function of Z.
Expressions for Ωand C are long and hence provided in appendix A.
Now, for the study of small-amplitude structures in the presence of self-consistent

dust charge variation, we employ the reductive perturbation technique and the
stretched coordinates ξ = ε1/2(X − λT), and τ = ε3/2T , where ε is a small parameter
and λ is unknown normalized phase velocity of the linear dust-acoustic waves. The
variables Nd, Vd, Φ and Q are then expanded as

Nd = 1+ εNd1 + ε
2Nd2 + ε

3Nd3 + · · · · · ·

Vd = εVd1 + ε
2Vd2 + ε

3Vd3 + · · · · · ·

Φ = εΦ1 + ε
2Φ2 + ε

3Φ3 + · · · · · ·

Q=−1+ εQ1 + ε
2Q2 + ε

3Q3 + · · · · · · .

 (2.22)

Substituting these expansions into (2.10)–(2.19) and comparing coefficients of ε we
have

λNd1 = Vd1, Vd1 =−
Φ1

αd−λ
, Nd1 =−

Φ1

αd−λ2
, Q1 =

1
αd−

(
1−

1
λ2

)
Φ1, (2.23a−d)

where λ=
√

1/1+ αd−βd−.
To the next higher order in ε i.e. ε2 we have the following set of equations

∂Nd1

∂τ
− λ

∂Nd2

∂ξ
+
∂Vd2

∂ξ
+
∂(Nd1Vd1)

∂ξ
= 0 (2.24)

∂Vd1

∂τ
− λ

∂Vd2

∂ξ
+ Vd1

∂Vd1

∂ξ
=

1
αd−

(
∂Φ2

∂ξ
−Q1

∂Φ1

∂ξ

)
(2.25)

∂2Φ1

∂ξ 2
= αd−Nd2 − αd−Q2 +Φ2 + E−Φ2

1 . (2.26)

The expressions for βd and E− are also provided in appendix A.
The above set of equations is common to both adiabatic and non-adiabatic dust

charge variation. But the reductive perturbation in the grain charging equation (2.13)
will be different in these two different cases. We shall now consider (2.13) separately
for adiabatic and non-adiabatic dust charge variation.

2.1.1. Adiabatic dust charge variation
For the adiabatic dust charge variation the charging time is very small and hence the

dust charging frequency is very high compared to the dust plasma frequency, which
implies ωpd/υd ≈ 0, so the grain charging equation (2.13) gives,

I−e + I−n + I−p = 0. (2.27)
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Substituting the expressions for I−e , I−n and I−p from (2.17)–(2.19) and using the
perturbation (2.22), then equating from its both sides the terms containing ε and
ε2, we get the first- and second-order dust charge perturbations Q1 and Q2 in the
following form,

Q1 =−βd−Φ1, Q2 =−βd−Φ2 + rd−Φ
2
1 . (2.28a,b)

The expressions of βd− and rd− are provided in appendix A.
Eliminating all second-order terms from (2.24)–(2.26) and (2.28) we get the KdV

equation,
∂Φ1

∂τ
+ a−Φ1

∂Φ1

∂ξ
+ b−

∂3Φ1

∂ξ 3
= 0, (2.29)

where b− = 1/2(1+ αd−βd−)
3/2, a− = αd−b−[2rd− − (3/α2

d−λ
4) + (βd−/αd−λ

2) −

(2E−/αd−)].
The stationary solution of (2.29) can be written as,

ϕ1 = ϕ
−

1msech2
[(ξ −Mτ)/W−], (2.30)

which represents

soliton of amplitude ϕ−1m =
3M
a−

and width W− = 2

√
b−
M
. (2.31a,b)

Here M is the Mach number which is the ratio of the wave velocity to the velocity
of sound.

2.1.2. Non-adiabatic dust charge variation
The non-adiabatic dust charge variation is a slow grain charging process. In this

case the grain charging frequency νd− is not enough high and hence ωpd/νd− 6= 0.
Considering ωpd/νd− = ν

√
ε a small but finite number where ν is of order 1, from

the grain charging equation (2.13) using the perturbations (2.22) we get,

Q1 =−βd−Φ1 and Q2 =−βd−Φ2 + rd−Φ
2
1 −µ1−

∂Φ1

∂ξ
. (2.32a,b)

The additional term −µ1−∂Φ1/∂ξ has appeared in Q2 due to the effect of the non-
adiabaticity of the dust charge variation. So eliminating all second-order terms from
(2.24)–(2.26) and (2.32) we get the KdV–Burger equation,

∂Φ1

∂τ
+ a−Φ1

∂Φ1

∂ξ
+ b−

∂3Φ1

∂ξ 3
=µ−

∂2Φ1

∂ξ 2
, (2.33)

where µ− = µ1−λ
3αd−/2 is the Burger coefficient that represents the dissipative

viscous effect induced by the non-adiabaticity of the dust charge variation. Its
complete expression has been provided in appendix A.

Solutions of the above KdV equation and the KdV–Burger equation are studied
numerically in § 3 by varying the negative ion to electron density and temperature
ratios δn and σn.
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2.2. Plasma with high population of negative ion
A high population of negative ions is generated due to attachment of a large number
of background electrons to the neutral atoms and hence the free electron density in
this case is very low. So the dusty plasma here consists of positively charged dust
grains because, for high negative ion mass and low electron concentration, the net
negative flux to the dust grains is low compared to the positive ion flux. Thus charge
neutrality at the equilibrium condition in this model reads as,

np0 + zd0nd0 = nn0 + ne0. (2.34)

For one-dimensional low-frequency dust-acoustic wave motions, cold dust grains in
this case satisfy the following fluid equations:

∂nd

∂t
+
∂

∂x
(ndud)= 0 (2.35)

∂ud

∂t
+ ud

∂ud

∂x
=−

qd

md

∂ϕ

∂x
(2.36)

and the Poisson equation

∂2φ

∂x2
=−4π(enp − ene − enn + qdnd). (2.37)

Here the dust charge variable qd = ezd, which was qd =−ezd in the previous model.
Number densities of inertia less negative ions, electrons and positive ions are same as
in the previous model.

The variable dust charge here satisfies the grain charging equation,

∂qd

∂t
+ ud

∂qd

∂x
= I+e + I+n + I+p , (2.38)

where I+e , I+n , I+i are currents flowing to the dust grains when the equilibrium dust
charge is positive. These current expressions are (Chow et al. 1993)

I+e =−πr2
0ene

(
8Te

πme

)1/2 (
ke −

3
2

)1/2
Γ (ke − 1)
Γ
(
ke −

1
2

) (1+
eqd(ke − 1)

r0
(
ke −

3
2

)
Te

)
(2.39)

I+n =−πr2
0enn

(
8Tn

πmn

)1/2 (
1+

eqd

r0Tn

)
(2.40)

I+p =πr2
0enp

(
8Tp

πmp

)1/2

exp
(
−

eqd

r0Tp

)
. (2.41)

It is clear that these current expressions are different from the current expressions of
the previous model where the equilibrium dust charge was negative.

Using the same normalization technique with effective temperature Teff+ = αd+Te
(the expression of αd+ is provided in appendix B) as in the previous model we get
the following set of normalized basic equations

∂Nd

∂T
+
∂

∂x
(NdVd)= 0 (2.42)
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∂Vd

∂T
+ Vd

∂Vd

∂X
=−

Q
αd+

∂Φ

∂X
(2.43)

∂2Φ

∂X2
=−

αd+

(1+ δn − δp)
{(1+ δn − δp)QNd − δnNn −Ne + δpNp} (2.44)(

ωpd

νd+

)(
∂Q
∂T
+ Vd

∂Q
∂X

)
=

1
νd+ezd0

(I+e + I+n + I+p ), (2.45)

with the normalized current expressions

I+e =−πr2
0e

√
8Te

πme

(
κe −

3
2

)1/2
Γ (κe − 1)

Γ
(
κe −

1
2

) ne0 Ne

{
1+

ZQ(κe − 1)(
κe −

3
2

) } (2.46)

I+n =−πr2
0e

√
8Tn

πmn
nn0 Nn

{
1+

ZQ
σn

}
(2.47)

I+p =πr2
0e

√
8Tp

πmp
np0 Np exp

(
−

ZQ
σp

)
. (2.48)

The normalized number densities are same as in § 2.1.
The expression for the grain charging frequency νd+ = −(∂I+tot/∂qd)eq has been

calculated and is given in appendix B.
The value of Z should be chosen here to satisfy the quasineutrality condition (2.34)

and hence the inequality δp < 1 where

δp =
1
Ω

√
µp

σp

[
1+C

{
1+

ZQ
σn

}/{
1+

Z(κe − 1)(
κe −

3
2

) }]

×

[{
1+

Z(κe − 1)(
κe −

3
2

) }/ exp
(
−

Z
σp

)]
. (2.49)

This has been calculated from the equilibrium current balance condition I+e + I+n + I+p =
0. Here, expressions of Ω and C are same as in § 2.1.

In the same way as the case of the previous model, employing the same reductive
perturbation technique except Q = 1 + εQ1 + ε

2Q2 + ε
3Q3 + · · · · · · we obtain the

following relations

λNd1 = Vd1, Vd1 =
Φ1

αd+λ
, Nd1 =

Φ1

αd+λ2
,

Nd1 =
Φ1

αd+λ2
, Q1 =

1
αd+

(
1−

1
λ2

)
Φ1,

 (2.50)

∂Nd1

∂τ
− λ

∂Nd2

∂ξ
+
∂Vd2

∂ξ
+
∂(Nd1Vd1)

∂ξ
= 0 (2.51)

∂Vd1

∂τ
− λ

∂Vd2

∂ξ
+ Vd1

∂Vd1

∂ξ
=−

1
αd+

(
∂Φ2

∂ξ
+Q1

∂Φ1

∂ξ

)
(2.52)

∂2Φ1

∂ξ 2
=−αd+Nd2 − αd+Q2 +Φ2 − E+Φ2

1 , (2.53)

with λ=
√

1/1+ αd+βd+. Here expansion of Q has been started from +1 instead of
−1 as in the previous model. Expressions for βd+, rd+, E+ are given in appendix B.
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2.2.1. Adiabatic dust charge variation
For the adiabatic dust charge variation due to a very high dust charging frequency

compared to the dust plasma frequency the grain charging equation (2.45) in this case
gives, I+e + I+n + I+p = 0. In the same way as in § 2.1 we get Q1 and Q2 in the form,

Q1 =−βd+Φ1, Q2 =−βd+Φ2 + rd+Φ
2
1 . (2.54a,b)

Eliminating all second-order terms from (2.51)–(2.53) and (2.54) we get the KdV
equation,

∂Φ1

∂τ
+ a+Φ1

∂Φ1

∂ξ
+ b+

∂3Φ1

∂ξ 3
= 0, (2.55)

where a+ = αd+b+[2rd+ + 3/α2
d+λ

4
− βd+/αd+λ

2
+ 2E+/αd+], b+ = 1/2(1+ αd+βd+)

3/2.
The stationary solution of (2.55) can be written as,

ϕ1 = ϕ
+

1msech2
[(ξ −Mτ)/W+], (2.56)

which represents

soliton of amplitude ϕ+1m =
3M
a+

and width W+ = 2

√
b+
M
. (2.57)

2.2.2. Non-adiabatic dust charge variation
For non-adiabatic dust charge variation the application of the reductive perturbation

method, the stretched coordinate on the grain charging equation (2.45) and a
comparison of the coefficients of ε and ε2 gives,

Q1 =−βd+Φ1, Q2 =−βd+Φ2 + rd+Φ
2
1 +µ1+

∂Φ1

∂ξ
. (2.58a,b)

Elimination of all second-order terms from (2.51)–(2.53) and (2.58) gives the KdV–
Burger equation,

∂Φ1

∂τ
+ a+Φ1

∂Φ1

∂ξ
+ b+

∂3Φ1

∂ξ 3
=µ+

∂2Φ1

∂ξ 2
, (2.59)

where µ+ = −µ1+λ
3αd+/2 is the Burger coefficient representing the pseudoviscosity

induced by non-adiabatic dust charge variation when the equilibrium dust charge is
positive. The expression for µ1+ is provided in appendix B. Solutions of the above
KdV equation (2.55) and KdV–Burger equation (2.59) are plotted in § 3 for different
negative ion to electron density and temperature ratios δn and σn and compared with
solutions of § 2.1.

3. Numerical estimation
Our objective of this paper is to see the effect of density and temperature of the

negative ions (i) on the amplitude of the dust-acoustic soliton when the grain charge
fluctuation is adiabatic and (ii) on the nature of the dust-acoustic shock wave when
the grain charge variation is non-adiabatic for both the cases of low and high negative
ion populations. In both models we have considered that electrons are suprathermal,
but negative ions and positive ions are Maxwellian as both ions are heavy particles.
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(a) (b)

FIGURE 1. (a) Plot of the rarefied dust-acoustic soliton for negative equilibrium dust
charge (low negative ion population) at δn = 0.1, 0.3 and σn = 0.1 at κe = 4. (b) Plot of
the compressive dust-acoustic soliton for positive equilibrium dust charge (high negative
ion population) δn = 5, 15 and σn = 0.1 at κe = 4.

(a) (b)

FIGURE 2. (a) Plot of the rarefied dust-acoustic soliton for negative equilibrium dust
charge (low negative ion population) at σn = 0.1, 0.3 and δn = 0.3 at κe = 4. (b) Plot of
the compressive dust-acoustic soliton for positive equilibrium dust charge (high negative
ion population) at σn = 0.1, 0.3 and δn = 10 at κe = 4.

In the ionosphere the maximum electron density is 106 cm−3, the electron and ion
temperatures vary from 1500 to 4000 K (Donley 1969) and 1000–3000 K (Willmore
1970) and the kappa index ranges between 2 and 6 (Pierrard & Lazar 2010). We
have considered these data with negative ion–electron density ratio δn = 0.1, 0.3 for
a low negative ion population and δn = 5, 15 for a high negative ion population. The
negative ion–electron temperature ratio has been considered σn= 0.1, 0.3 (Ghosh et al.
2008). For the case of an adiabatic dust charge variation soliton the solutions (2.30)
for low negative ion population (equilibrium dust charge negative) and (2.56) for high
negative ion population (equilibrium dust charge positive) are depicted in figures 1(a)
and 1(b) respectively considering fixed values of κe= 4, σn= 0.1 and varying δn. For
a low negative ion population (in figure 1a) δn = 0.1, 0.3 and for a high negative ion
population (in figure 1b) δn = 5, 15 have been considered. Similarly figure 2(a,b) has
been plotted for κe = 4, σn = 0.1, 0.3 with δn = 0.3 for a low negative ion population
(figure 2a) and δn = 10 for a high negative ion population (figure 2b). These two
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(a) (b)

FIGURE 3. (a) Plot of the oscillatory dust-acoustic shock for negative equilibrium dust
charge (low negative ion population) at δn = 0.1, 0.3 and σn = 0.1 at κe = 4. (b) Plot
of the unstable solution of the KdV–Burger equation for positive equilibrium dust charge
(high negative ion population) at δn = 5, 15 and σn = 0.1 at κe = 4.

(a) (b)

FIGURE 4. (a) Plot of the oscillatory dust-acoustic shock for negative equilibrium dust
charge (low negative ion population) at σn = 0.1, 0.3 and δn = 0.3 at κe = 4. (b) Plot
of the unstable solution of the KdV–Burger equation for positive equilibrium dust charge
(high negative ion population) at σn = 0.1, 0.3 and δn = 10 at κe = 4.

set of figures show that a rarefied dust-acoustic soliton exists for a low negative ion
population (equilibrium dust charge negative) and a compressive dust-acoustic soliton
exists for a high negative ion population (equilibrium dust charge positive). In both
cases the amplitude of the soliton decreases with increasing negative ion population
and decreasing negative ion temperature.

For the case of non-adiabatic dust charge variation the solutions of the KdV–Burger
equation (2.33) for a low negative ion population (equilibrium dust charge negative)
and (2.59) for a high negative ion population (equilibrium dust charge positive) are
depicted in figure 3(a,b) considering fixed values of κe= 4 and σn= 0.1. In figure 3(a),
δn = 0.1, 0.3 and in figure 3(b), δn = 5, 15 have been considered. Figure 4(a,b) has
been plotted for the fixed values κe= 4, σn= 0.1, 0.3. For low negative ion population
(in figure 4a) δn = 0.3 and for high negative ion population (figure 4b) δn = 10 have
been considered. All these figure 3(a–b) and figure 4(a–b) are plotted for weak
non-adiabaticity, taking ν = 0.5. Figures 3(a) and 4(a) show the existence of a stable
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(a) (b)

FIGURE 5. (a) Plot of the coefficient of viscosity µ versus z for negative equilibrium
dust charge (low negative ion population) at σn= 0.3, δn= 0.3 and κe= 4. (b) Plot of the
coefficient of viscosity µ versus z for positive equilibrium dust charge (high negative ion
population) at σn = 0.1, δn = 15 and κe = 4.

oscillatory dust-acoustic shock whose oscillation decreases to a non-zero value when
the negative ion population is low. But for a high negative ion population figures 3(b)
and 4(b) show that the oscillation develops from a zero value and increases rapidly
to give an unstable solution. Moreover, figures 3(a) and 4(a) show that for a low
population of negative ions the oscillation of the dust-acoustic shock reduces with
an increase in the negative ion density and decreases with negative ion temperature.
On the other hand, for a high negative ion population the oscillation of the unstable
solution grows faster with an increase in the negative ion density and decrease with
negative ion temperature. This ultimately leads to an instability. Figures 5(a) and 5(b)
have been drawn for the pseudo-viscosity coefficient µ versus z for a low negative
ion population (equilibrium dust charge negative) and a high negative ion population
(equilibrium dust charge positive) respectively. These two figures show that µ is
positive when the equilibrium dust charge is negative (negative ion population is low)
and it is negative when the equilibrium dust charge is positive (negative ion population
is high). This is the reason for giving the stable dust-acoustic shock solution when
the equilibrium dust charge is negative and an unstable solution when the equilibrium
dust charge is positive. The stability analysis of the KdV–Burger equation is given in
appendix C where we have shown that at low negative ion population the non-zero
equilibrium point is a stable spiral generating a stable oscillatory dust-acoustic shock
whereas at high negative ion population it is an unstable spiral generating an unstable
solution of the KdV–Burger equation.

4. Conclusion
In this paper we have investigated the characteristics of nonlinear dust-acoustic wave

propagation in a Lorentzian dusty plasma in the presence of negative ions considering
both adiabatic and non-adiabatic dust charge variation. The concentration of negative
ions changes with the rate of attachment of the background electrons to the neutrals.
For a low population of negative ions the dust grains are negatively charged whereas
for a high population of negative ions the dust grains are positively charged. We have
studied both the cases developing separate models. Our investigation shows that for
adiabatic dust charge variation in both cases of a low and high population of negative
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ions, the amplitude of the dust-acoustic soliton reduces with increasing negative
ion density and decreasing negative ion temperature. This dust-acoustic soliton is
rarefied for a low negative ion population and compressive for a high negative ion
population. For non-adiabatic dust charge variation, a low negative ion population
generates a stable oscillatory dust-acoustic shock at weak non-adiabaticity but a high
negative ion population generates an oscillatory instability. This has been justified by
the phase space analysis done in appendix C. The phase space analysis shows that
the two-dimensional dynamical system corresponding to the KdV–Burger equation
(2.33) and (2.59) has two fixed points. The trivial fixed point with zero potential is
a saddle and hence unstable. The non-trivial fixed point with constant potential is a
stable focus when the negative ion population is low and an unstable focus when
the negative ion population is high. Thus a low negative ion population and negative
equilibrium dust charge generates a stable oscillatory dust-acoustic shock whereas
a high negative ion population with positive equilibrium dust charge generates a
physically unstable solution. Investigation also shows that an increase in the negative
ion density and decrease in the negative ion temperature have a stabilizing effect
so long as the equilibrium dust charge is negative and a destabilizing effect when
the equilibrium dust charge is positive. This destabilization is developed due to
the negative viscosity of the medium when the equilibrium dust charge is positive.
Such an oscillatory instability may be saturated if higher-order nonlinearities can be
considered.
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Appendix A. Low negative ion population (equilibrium dust charge negative)

αd− =
(δp − δn − 1){(

κe −
1
2

)(
κe −

3
2

) + δp

σp
+
δn

σn

} ,

βd− =

{(
1+

Z
σp

)
A
σp
+

B−
(
κe −

1
2

)(
κe −

3
2

) + B1C
σn

}
{
(κe − 1)(
κe −

3
2

) (1−
κeZ(
κe −

3
2

)) Z +
AZ
σp
+

C (1− Z) Z
σn

}


(A 1)

B− = 1−
(κe − 1)Z(
κe −

3
2

) + (κe − 1)κeZ2

2
(
κe −

3
2

)2 , A=
√
σp

µp

δpΓ
(
κe −

1
2

)(
κe −

3
2

)1/2
Γ (κe − 1)

,

B1 = 1−
Z
σn
+

Z2

2σ 2
n

 (A 2)

C=
√
σn

µn

δnΓ
(
κe −

1
2

)(
κe −

3
2

)1/2
Γ (κe − 1)

, Ω =
Γ
(
κe −

1
2

)(
κe −

3
2

)1/2
Γ (κe − 1)

(A 3a,b)
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E− =
1
λ2αd−

(
1−

1
λ2

)
−

1
2


δp

σ 2
p

−

(
κe −

1
2

) (
κe +

1
2

)(
κe −

3
2

)2 −
δn

σ 2
n(

κe −
1
2

)(
κe −

3
2

) + δp

σp
+
δn

σn

 (A 4)

νd− = πr2
0ne0z

√
8Te

πme

(κe − 1)Γ (κe − 1)

zd0
(
κe −

3
2

)1/2
Γ
(
κe −

1
2

) {1+
Z(

κe −
3
2

)}−κe

×

[
A
(
κe −

3
2

)
σp(κe − 1)

{
1+

Z(
κe −

3
2

)}κe

+ 1+
C
(
κe −

3
2

)
σn(κe − 1)

×

{
1+

Z(
κe −

3
2

)}κe

exp
(
−

Z
σn

)]
(A 5)

rd− =−
rd1−

rd2−
(A 6)

rd1− =
AZβd−

σ 2
p

−

{
1+

Z
σp

}
A

2σ 2
p

+
(κe − 1)κeZ2β2

d−

2
(
κe −

3
2

)2 −

{
1−

κeZ(
κe −

3
2

)} Zβd−(κe − 1)
(
κe −

1
2

)(
κe −

3
2

)2

+
B−
(
κe −

1
2

) (
κe +

1
2

)
2
(
κe −

3
2

)2 +
CZ2β2

d−

2σ 2
n

+
B1C
2σ 2

n

−

{
1−

Z
σn

}
CZβd−

σ 2
n

(A 7)

rd2− =
AZ
σp
+
(κe − 1)(
κe −

3
2

) {1−
κeZ(
κe −

3
2

)} Z +
{

1−
Z
σn

}
CZ
σn

(A 8)

µ1− =
µ11−

µ12−
(A 9)

µ11− = νλβd−Z(κe − 1)

(
1+

Z(
κe −

3
2

))−κe
[

A
σp

(
κe −

3
2

)
(κe − 1)

(
1+

Z(
κe −

3
2

))κe

+ 1

+
C
σn

(
κe −

3
2

)
(κe − 1)

exp
(
−

Z
σn

)(
1+

Z(
κe −

3
2

))κe
]

(A 10)

µ12− =

(
κe −

3
2

)[
AZ
σp
+
(κe − 1)(
κe −

3
2

) (1−
κeZ(
κe −

3
2

)) Z +
CZ
σn

(
1−

Z
σn

)]
. (A 11)
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Appendix B. High negative ion population (equilibrium dust charge positive)

αd+ =
(1+ δn − δp){(

κe −
1
2

)(
κe −

3
2

) + δp

σp
+
δn

σn

}

βd+ =

−
AB+
σp
−

{
1+

(κe − 1)Z(
κe −

3
2

) } (κe −
1
2

)(
κe −

3
2

) − C
σn

(
1+

Z
σn

)
A
(
−1+

Z
σp

)
Z
σp
−
(κe − 1)Z(
κe −

3
2

) − CZ
σn


(B 1)

E+ =
1
λ2αd+

(
1−

1
λ2

)
+

1
2


δp

σ 2
p

−

(
κe −

1
2

) (
κe +

1
2

)(
κe −

3
2

)2 −
δn

σ 2
n(

κe −
1
2

)(
κe −

3
2

) + δp

σp
+
δn

σn

 (B 2)

B+ = 1−
Z
σp
+

Z2

2σ 2
p

(B 3)

νd+ = πr2
0ne0z

√
8Te

πme

(κe − 1)Γ (κe − 1)

zd0
(
κe −

3
2

)1/2
Γ
(
κe −

1
2

)
×

[
A
(
κe −

3
2

)
σp(κe − 1)

exp
(
−

Z
σp

)
+ 1+

C
(
κe −

3
2

)
σn(κe − 1)

]
(B 4)

rd+ =−
rd1+

rd2+
, (B 5)

rd1+ =
AZ2β2

d+

2σ 2
p

+ A
{
−1+

Z
σp

}
Zβd+

σ 2
p

+
AB+
2σ 2

p

+
(κe − 1)

(
κe −

1
2

)
Zβd+(

κe −
3
2

)2 −

{
1+

(κe − 1)Z(
κe −

3
2

) } (κe +
1
2

) (
κe −

1
2

)
2
(
κe −

3
2

)2

+
CZβd+

σ 2
n

−

{
1+

Z
σn

}
C

2σ 2
n

(B 6)

rd2+ = A
(
−1+

Z
σp

)
Z
σp
−
(κe − 1)Z(
κe −

3
2

) − ZC
σn

µ1+ =
µ11+

µ12+
(B 7)

µ11+ = νλβd+z(κe − 1)

[
A
σp

(
κe −

3
2
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(κe − 1)

+ 1+
C
σn

(
κe −

3
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)
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(
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(
−1+

Z
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−
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Appendix C. Stability analysis

The transformation η = Mτ − ξ reduces the Kdv–Burger equation (2.33) for low
negative ion population and (2.59) for high negative ion population to the form

d2Φ

dη2
=

M
b∓
Φ −

a∓
2b∓

Φ2
−
µ∓

b∓

dΦ
dη
, (C 1)

where the negative sign indicates negative equilibrium dust charge when the negative
ion population is low and the positive sign indicates positive equilibrium dust charge
when the negative ion population is high. Assuming Φ = x and dΦ/dη= y we obtain

ẋ= y (C 2)

ẏ=
M
b∓

x−
µ∓

b∓
y−

a∓
2b∓

x2, (C 3)

which represents a two-dimensional dynamical system whose fixed points are (0, 0)
and (2M/a∓, 0). To study the stability the equilibrium points (0, 0) we take the
transformation x = x′ + 0, y = y′ + 0. Then deleting the prime symbol the above
dynamical system can be represented in the form,

(
x′
y′

)
=

 0 1
M
b∓

µ∓

b∓

(x
y

)
+

(
0

−
a∓
2b∓

x2

)
. (C 4)

The characteristic equation of its linear part is,

λ2
+
µ∓

b∓
λ−

M
b∓
= 0, (C 5)

whose roots are λ=−µ∓ ±
√
µ2
∓
+ 4b∓M/2b∓.

If oscillation dominates over dissipation the inequality µ2
∓
� 4b∓M holds. Then

roots of the characteristic equation (C 5) will be

λ=−
µ∓

2b∓
±

√
M
b∓
. (C 6)

This represents the equilibrium point (0, 0) that is a saddle point and hence unstable
when µ2

∓
� 4b∓M in both cases of low negative ion population (equilibrium dust

charge negative) and high negative ion population (equilibrium dust charge positive).
Next, to study the stability of the equilibrium point (2M/a∓, 0) we take the

transformation

x= x′ +
2M
a∓
, y= y′ + 0. (C 7a,b)

Then deleting the prime symbol the dynamical system (C 2) and (C 3) can be written
as,

ẋ= y

ẏ=−
M
b∓

x−
µ∓

b∓
y−

a∓
2b∓

x2,

 (C 8)
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which in matrix notation takes the form,(
ẋ
ẏ

)
=

(
b11 b12
b21 b22

)(
x
y

)
+

(
f1(x, y)
f2(x, y)

)
. (C 9)

Here b11 = 0, b12 = 1, b21 =−M/b∓, b22 =−µ∓/b∓, f1(x, y)= 0, f2(x, y)= a∓/2b∓x2.
The characteristic equation of the corresponding linear system in this case is,

b∓λ2
+µ∓λ+M = 0, (C 10)

whose roots are λ= α∓ ± iβ∓, where

α∓ =−
µ∓

2b∓
, β∓ =

√
M
b∓

(C 11a,b)

for µ2
∓
< 4b∓M. Here (C 11) shows that the critical point (2M/a−, 0) is a stable focus

as µ− > 0 when the negative ion population is low and equilibrium dust charge is
negative. On the other hand (2M/a+, 0) is an unstable focus as µ+ < 0 when the
negative ion population is high and equilibrium dust charge is positive.
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