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CHANGE POINT TESTS FOR THE TAIL
INDEX OF β-MIXING RANDOM

VARIABLES

YANNICK HOGA
University of Duisburg-Essen

The tail index as a measure of tail thickness provides information that is not cap-
tured by standard volatility measures. It may however change over time. Currently
available procedures for detecting those changes for dependent data (e.g., Quintos
et al., 2001) are all based on comparing Hill (1975) estimates from different sub-
samples. We derive tests for a wide class of other tail index estimators. The limiting
distribution of the test statistics is shown not to depend on the particular choice of
the estimator, while the assumptions on the dependence structure allow for suffi-
cient generality in applications. A simulation study investigates empirical sizes and
powers of the tests in finite samples.

1. MOTIVATION

The tail index of a distribution is of great importance in statistics, in particu-
lar in extreme value theory. It determines the limit distribution of the (suitably
normalized) sample maximum and minimum. Also, the tail index determines the
existence of higher-order moments and consequently is used as a measure for the
thickness of the tail of a distribution. As such it is of interest in fields as diverse
as finance, hydrology, and internet-traffic engineering, where heavy tails are fre-
quently encountered in real data. Moreover, it is important to know if the tail index
of a time series has changed at some point during the observation period, since
ignoring such a change can have negative consequences. For example, being un-
aware of a change to thicker tails of financial returns may lead to avoidable losses
due to inadequate risk management, or, if tails vary from thicker to thinner, fore-
gone profits because too much capital is put aside as a cushion against extreme
losses. Indeed, there is empirical evidence that such changes do occur for many
time series (Quintos, Fan and Phillips, 2001; Galbraith and Zernov, 2004; Werner
and Upper, 2004).

The tail index is superior to other volatility measures, like the variance, when
measuring volatility in at least the following two respects: It only captures the
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behavior of the distribution in the tail, upon which interest in, e.g., financial risk
management frequently centers. This is by definition not the case for the variance,
suggesting that there is information in the tail index that is not present in other
volatility measures, which Werner and Upper (2004) also found indications for
in empirical work. Secondly, the variance as a measure of tail behavior is only
available if second moments exist. Well-known empirical results show that this is
not always the case (e.g., Resnick, 2007, Figures 4.12 and 4.15). The tail index,
in contrast, does not require the existence of p-th moments for some p > 0.

Much research has been devoted to tail index estimation, see, e.g., Drees
(1998a,b) for some general results in the independent and identically distributed
(i.i.d.) case and Drees (2000) for the dependent case. But estimating the tail index
from a sample X1, . . . ,Xn assumes (often implicitly) homogeneity in the tail in-
dex, which might not be warranted. A test of this assumption is useful for at least
two reasons: First, in the case of an undetected break in the tail index from, say,
α1 to α2 > α1, where tails get lighter after the break, most tail index estimators
will consistently estimate 1/α1 (see Theorem 3), suggesting a heavier tail for the
postbreak period. In the above example of financial returns, this would lead to ex-
cessive conservatism. Second, the tail behavior depends in a very sensitive way on
the tail index; e.g., for a Student’s t2-distribution (where the tail index equals the
degrees of freedom) the 99.9%-quantile is 22.3 and for a t1-distribution the same
quantity is 318. Combined with the first reason this suggests that an undetected
break in the sample would lead to a wrong tail index estimate and hence a very
misleading picture of the tail behavior.

Tests for a change in the tail index at a known breakpoint have been avail-
able for some time (Koedijk, Schafgans and de Vries, 1990). So called recursive,
rolling and sequential tests for an unknown break point in the tail index were
first proposed by Quintos et al. (2001) for i.i.d. and GARCH(1,1) data. These
tests were subsequently investigated by Kim and Lee (2011) to cover strictly sta-
tionary, β-mixing random variables. All these tests are based on comparing Hill
(1975) estimates of different subsamples. However, many other, possibly better
(in a mean-squared error sense), estimators exist; see, e.g., Figure 1 in de Haan
and Peng (1998) for the i.i.d. case and the simulation results in Wagner and Marsh
(2004) for ARCH-type data. Very recently, under ‘heteroscedastic extremes’,
Einmahl, de Haan and Zhou (2016) allowed for other estimators to be used, al-
though they only focused on the Hill (1975) estimator. Our first main contribution
is to show that a vast range of tail index estimators is covered under their and
(equivalently) our scheme, while, unlike Einmahl et al. (2016), allowing for de-
pendent data, which is crucial for most real-world applications. Previously, con-
sistency of change point tests for the tail index has only been proved under inde-
pendence (Quintos et al., 2001; Kim and Lee, 2009) or not at all (Einmahl et al.,
2016; Kim and Lee, 2011). The second main contribution is to demonstrate con-
sistency under dependence. Further, we show that if there is a single tail index
break in the sample, tail index estimators will still converge weakly, though with
a different limit distribution. This result might be of independent interest.

https://doi.org/10.1017/S0266466616000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000189


CHANGE POINT TESTS FOR THE TAIL INDEX 917

A simulation study investigates whether gains in power can be achieved in a
change point context by using other tail index estimators than Hill’s covered by our
framework. For instance for ARCH data ‘there is a tendency of the Hill estimator
to overestimate small tail indices and to underestimate large tail indices’ (Wagner
and Marsh, 2004, p. 3), which may lead to poor power properties of the change
point tests based on the Hill estimator, as confirmed by our simulations. Another
problem with the application of change point tests for the tail index to ARCH-
models is that to the best of our knowledge, all currently available tests (Quintos
et al., 2001) are derived using standard-normally distributed innovations, which in
empirical work is often not credible (e.g., Aguilar and Hill, 2015, Figure 2). This
issue is also addressed in this paper by allowing for, e.g., t-distributed innovations,
which are also used in the simulations. Furthermore, our simulations reveal that
the problem of nonmonotonic power emerges for some tail index estimators.

The generality of our results rests on the insight that a wide range of tail in-
dex estimators can be written as functionals of the (slightly adapted) sequential
tail empirical process. Allowing for dependence requires consistent estimates of
the asymptotic variance of the tail index estimator. With the exception of Drees
(2003), such estimators have so far only been considered for very specific depen-
dence structures and tail index estimators, e.g., in Quintos et al. (2001) (for the
Hill estimator and GARCH(1,1) data) and Chan, Li, Peng and Zhang (2013) (for
a moment-type estimator and AR(1) data with ARCH innovations). We propose a
consistent variance estimator for the tail index estimators we consider under weak
conditions on the dependence of the time series observations, which might be of
independent interest.

The main results are stated in Section 2. Simulation evidence is presented in
Section 3 and the proofs are relegated to Section 4.

2. MAIN RESULTS

This section is organized as follows: Subsection 2.1 introduces basic notation and
the main assumptions that will be used throughout. It also gives examples of lin-
ear and nonlinear models for which these assumptions have been verified. Subsec-
tion 2.2 introduces some of the estimators that can be used under our scheme and
states convergence results under the null. Results under a one-break alternative
are stated in Subsection 2.3.

2.1. Preliminaries

Consider stationary random variables (r.v.s) {Xi }i∈N defined on some probability
space (�,A, P). Let F be the distribution function (d.f.) of X1, where 1− F is
assumed to be regularly varying with parameter−α < 0 (written 1− F ∈ RV−α),
i.e.,

1− F(ty)

1− F(t)
−→
(t→∞)

y−α ∀ y > 0, (1)
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where α is called the tail index of X1. If we define

U (t) := F←
(

1− 1

t

)
, t > 1,

as the (1−1/t)-quantile, where← denotes the left-continuous inverse, then (1) is
equivalent to

U(ty)

U(t)
−→
(t→∞) yγ ∀ y > 0, (2)

with γ = 1/α > 0 the extreme value index (cf. de Haan and Ferreira, 2006). We
will use both notations, γ and α.

Remark 1. If {Xi } are i.i.d., then by the well-known Fisher–Tippett theorem
the extreme value index γ determines (apart from a location and scale parameter)
the possible limiting d.f.s of

max (X1, . . . ,Xn)−bn

an
(an > 0,bn ∈R), (3)

namely Gγ (x)= exp
(−(1+γx)−1/γ ), 1+γx > 0.

In the sequel, k = kn ∈ N with k ≤ n−1 will be an intermediate sequence, i.e.,

k −→
(n→∞)∞ and

k

n
−→
(n→∞) 0,

controlling the number of “extremely large” observations used in the estimation
of the tail index. For t− s ≥ 1/n and y ∈ [0,1] set

Xk (s, t, y) := (
k(t− s)y�+1
)
-th largest value of X
ns�+1, . . . ,X
nt�. (4)

For clarity of exposition we will sometimes write X1:n ≤ ·· · ≤ Xn:n for the order
statistics of X1, . . . ,Xn . The dependence concept used here is that of β-mixing.
Recall that a sequence of random variables {Xi }i∈N is β-mixing iff

β (l) := sup
m∈N

E

[
sup

A∈F∞m+l+1

∣∣P (A
∣∣Fm

1

)− P (A)
∣∣] −→

(l→∞) 0,

where F∞m := σ (Xm ,Xm+1, . . .) and Fm
l := σ (Xl , . . . ,Xm) are the σ -algebras

generated by the respective r.v.s.
If it is in doubt whether all X1, . . . ,Xn have the same extreme value index

γ1 = ·· · = γn , it is important for reasons detailed in the motivation to test the
following hypothesis:

H0 : γ1 = ·· · = γn versus

H1 : Not H0.
(5)

We now state our main assumptions that will be maintained throughout.
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(C1) {Xi }i∈N is a strictly stationary β-mixing process with continuous
marginals and mixing coefficients β (·), such that

lim
n→∞

n

rn
β (ln)+ rn√

k
log2(k)= 0 (6)

for sequences {ln}n∈N ⊂N,{rn}n∈N ⊂N tending to infinity with ln = o(rn),
rn = o(n).

(C2) There exists a function r (·, ·), s.t. for all x, y ∈ [0, y0+ δ] (δ > 0)

lim
n→∞

n

rnk
Cov

⎛⎝ rn∑
i=1

I{Xi>U( n
kx )},

rn∑
j=1

I{
Xj>U

(
n
ky

)}
⎞⎠= r (x, y) . (7)

(C3) For some constant C > 0

n

rnk
E

[
rn∑

i=1

I{
U
(

n
ky

)
<Xi≤U( n

kx )
}]4

≤C(y− x) ∀0≤ x < y ≤ y0+δ, n ∈N.

(C4) There exist ρ < 0 and a function A(·), eventually positive or negative,
limt→∞ A(t)= 0, s.t.

lim
t→∞

U (t y)
U (t) − yγ

A(t)
= yγ

yρ−1

ρ
∀ y > 0,

where
√

k A(n/k)→ 0 as n→∞.

Remark 2. (a) Conditions (C1), (C2), and (C3) are discussed in some
detail in Drees (2000, 2003) and Rootzén (2009). They are almost iden-
tical to conditions (C̃1), (C̃2), and (C̃3∗) in Drees (2000). (C4) is a stan-
dard second-order condition (used in, e.g., Einmahl et al., 2016) that
controls the speed of convergence in (2). It is slightly stronger than
Drees’ (2000) corresponding condition (3.5), which can be seen from
de Haan and Ferreira (2006, Theorem 2.3.9).

(b) If (C2) holds for kn and kn,λj ∼ λj kn (λj ∈ (0,1)), j = 1,2, then (cf. Drees,
2003, p. 629)

r(tx, ty)= tr(x, y), (8)

which will simplify the expressions for the asymptotic variances of the
estimators we consider.

Conditions (C1)–(C4) relax some assumptions of previous tests. For instance,
our scheme covers a wide range of short-memory processes (see Rootzén, 2009,
Section 4, for an overview) in contrast to Einmahl et al. (2016), where only in-
dependent r.v.s are considered. Allowing for dependence is essential as, under
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dependence, the limit distribution of the test statistic considered in Einmahl et al.
(2016, Corollary 2) will be scaled by some (dependence-structure dependent) fac-
tor. Note that the presence of ‘heteroscedastic extremes’ introduced in Einmahl
et al. (2016) does not influence the limit behavior of their test statistic. Next,
heavy-tailed innovations for ARCH(1)-processes are allowed under our condi-
tions (and not under those of Quintos et al., 2001); see also Remark 8.

The next two examples, taken from Drees (2000, Section 4) and Drees (2003,
Subsections 3.1 & 3.2), give specific models where (C1)–(C3) have been verified.
While the first-order condition in (2) is satisfied for both examples, the second-
order condition (C4) has not yet been verified.

Example 1 (Linear model)
Consider stationary {Xi }i∈N with representation

Xi =
∞∑

j=0


j Zi− j , i ∈ N,

where {Zi }i∈Z are i.i.d., 
0 = 1 without loss of generality (w.l.o.g.) and
∣∣
j
∣∣ =

O (τ j
)
, j →∞, for some τ ∈ (0,1). If for FZ the d.f. of Z1 we have 1− FZ ∈

RV−α (α > 0) and some further conditions hold, then (C1)–(C3) hold for se-
quences k = kn satisfying

log2(n) log4(logn)= o(k) and k = o (n/ log(n)) . (9)

In that case, the Xi also have tail index α.

Example 2 (Nonlinear model)
Consider a squared ARCH(1)-process

{
X2

i

}
i∈N

X2
i =

(
α0+α1 X2

i−1

)
Z2

i , i ∈N,

where α0,α1 > 0 and {Zi }i∈N i.i.d.∼ (0,1). If Z1 satisfies the following moment
conditions

∃ κ,ξ > 0 : E log
(
α1 Z2

1

)
< 0, E

(
α1 Z2

1

)κ = 1,

E
(
α1 Z2

1

)κ+ξ
<∞, E

(
α0 Z2

1

)κ+ξ
<∞, (10)

then conditions (C1)–(C3) were shown to hold for sequences k = kn satisfying

log2(n) log4(logn)= o(k) and k = o
(

n2ρ/(2ρ+1)
)

for some ρ > 0.

The tail index α = κ > 0 of (the strictly stationary) X2
i is determined by the mo-

ment condition E
(
α1 Z2

i

)α = 1. Hence, α can be changed either by varying α1 or
the distribution of Zi . Note that light-tailed Zi , e.g., Zi ∼N (0,1), lead to heavy
tails in Xi , which is not true for Example 1.
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2.2. Results Under the Null

The generality of our approach rests on a (weighted) weak convergence result for

Fn(s, t, y) := 1


k(t− s)�

nt�∑

i=
ns�+1

I{Xi>y Xk(s,t,1)}.

A wide range of tail index estimators can be written as functionals of Fn(s, t, y).
For example, the Hill estimator γ̂H (0,1) based on the full sample X1, . . . ,Xn can
be written as

γ̂H (0,1) := 1

k

k∑
i=0

log

(
Xn−i:n

Xn−k:n

)
=
∫ ∞

1
Fn(0,1, y)

dy

y
; (11)

see also Examples 3–5. In the first step, we will establish weighted convergence
of the sequential tail empirical process

√
k

⎧⎨⎩1

k


nt�∑
i=1

I{Xi>yU (n/k)} − y−1/γ t

⎫⎬⎭ .
Then a variant of this result for Fn(s, t, y) will be used to investigate weak con-
vergence of (suitably normalized) generic tail index estimators

γ̂ (s, t) that can be written as functionals of Fn(s, t, y),

i.e., estimators based on subsamples X
ns�+1, . . . ,X
nt�.
Under (C1)–(C4) it will be possible to derive the limiting distributions of the

test statistics (where σ̂ 2
γ̂ ,γ ∈

{
σ̂ 2
γ̂ ,γ ,nor, σ̂

2
γ̂ ,γ ,rev

}
is defined in Theorem 2)

Qrec := 1

σ̂ 2
γ̂ ,γ

sup
t∈[t0,1−t0]

{
t
√

k
[
γ̂ (0, t)− γ̂ (0,1)]}2 ;

Q←rec := 1

σ̂ 2
γ̂ ,γ

sup
t∈[t0,1−t0]

{
(1− t)

√
k
[
γ̂ (t,1)− γ̂ (0,1)]}2 ;

Qseq := 1

σ̂ 2
γ̂ ,γ

sup
t∈[t0,1−t0]

{
t (1− t)

√
k
[
γ̂ (0, t)− γ̂ (t,1)]}2 ;

Qrol := 1

σ̂ 2
γ̂ ,γ

sup
t∈[t0,1−t0]

{
t0
√

k
[
γ̂ (t, t + t0)− γ̂ (0,1)

]}2 ;

(12)

for the testing problem (5), namely (see Corollary 2)

Q(←)
rec

D−→
(n→∞) sup

t∈[t0,1−t0]
{W (t)− tW (1)}2 ,

Qseq
D−→

(n→∞) sup
t∈[t0,1−t0]

{W (t)− tW (1)}2 ,

Qrol
D−→

(n→∞) sup
t∈[t0,1−t0]

{[W (t + t0)−W (t)]− t0W (1)}2 ,

(13)
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where W (·) denotes a standard Brownian motion. The general form of the test
statistics in (12) is taken from Quintos et al. (2001). We have modified Qseq
slightly by including the factor (1− t). Without it Qseq, by construction, would
be more likely to detect a change in the tail index at the end of the observa-
tion period, where t is large, than towards the beginning, which may not be
desirable.

We assume throughout that t0 ∈ (0,1/2). In our framework t0 and (1− t0) de-
note the time before and after which the change is not allowed to occur. Since
all tests allow to take t0 arbitrarily close to zero, this does not impose a seri-
ous restriction. Further, by choosing t0 closer to 1/2 one can incorporate prior
knowledge of the change point location in the tests, which, as unreported simu-
lations for Q(←)

rec show, leads to higher power. It is easy to verify that asymmet-
ric intervals à la [t0, t1], t1 ∈ (t0,1) over which the supremum is taken in (12)
and (13) are also possible, lending more flexibility to the incorporation of prior
beliefs.

The weighted convergence result stated in the next theorem is fundamental to
our approach (see also Remark 3 (b)). For this, define non-negative, continuous
weight functions q(·), similarly as in Drees (2000, Eq. (1.3)), as functions satis-
fying

inf
y>ϑ

q(y) > 0 ∀ϑ > 0 and yν |log y|μ =O (q(y)), y ↓ 0, (14)

for some ν ∈ [0,1/2), μ ∈ R or ν = 1/2, μ> 1/2. Then we may prove

THEOREM 1. Suppose (C1)–(C4) hold and q(·) satisfies (14). Then for some
δ̃ > 0, under a Skorohod construction,

sup
t∈[t0,1−t0]
y≥y−γ0 −δ̃

1

q
(
y−1/γ

)
∣∣∣∣∣∣∣
√

k

⎛⎜⎝ 1
k

∑
nt�
i=1 I{Xi>yU (n/k)} − y−1/γ t

1
k

∑n
i=
nt�+1 I{Xi>yU (n/k)} − y−1/γ (1− t)

1
k

∑
n(t+t0)�
i=
nt�+1 I{Xi>yU (n/k)} − y−1/γ t0

⎞⎟⎠

−
⎛⎝ W (t, y−1/γ )

W (1, y−1/γ )−W (t, y−1/γ )

W (t + t0, y−1/γ )−W (t, y−1/γ )

⎞⎠∣∣∣∣∣∣ a.s.−→
(n→∞) 0, (15)

where {W (t, y)} is a continuous zero-mean Gaussian process with covariance
function

Cov (W (t1, y1) ,W (t2, y2))=min(t1, t2)r (y1, y2) .

A slightly modified version of (15), where U(n/k) is replaced by an appropri-
ate empirical counterpart, will be more convenient for our purposes. This results
in a change of the limiting processes.
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COROLLARY 1. Suppose (C1)–(C4) hold for some y0 ≥ 1 and q(·) satisfies
(14). Then, under a Skorohod construction,

sup
t∈[t0,1−t0]

y≥y−γ0

1

q
(
y−1/γ

)
∣∣∣∣∣∣√k

⎛⎝ t
(
Fn(0, t, y)− y−1/γ

)
(1− t)

(
Fn(t,1, y)− y−1/γ

)
t0
(
Fn(t, t + t0, y)− y−1/γ

)
⎞⎠

−
⎛⎝ W (t, y−1/γ )− y−1/γ W (t,1)

W (1, y−1/γ )−W (t, y−1/γ )− y−1/γ [W (1,1)−W (t,1)]
W (t + t0, y−1/γ )−W (t, y−1/γ )− y−1/γ [W (t + t0,1)−W (t,1)]

⎞⎠∣∣∣∣∣∣ a.s.−→
(n→∞) 0, (16)

where {W (t, y)} is as in Theorem 1.

Since the above asymptotic results become stronger the smaller q(·) is, it would
in fact suffice to only consider the case ν = 1/2 in (14).

In the following three examples, we will demonstrate how the convergence
result of Corollary 1 can be used to establish joint convergence of

√
k(γ̂ (0, t)−

γ, γ̂ (t,1)−γ, γ̂ (t, t + t0)−γ )T .

Example 3 (WLS estimator)
Consider the class of weighted least squares (WLS) estimators of the tail index

γ̂W L S(0,1) :=
k∑

j=1

∫ j/k

( j−1)/k
J (s)ds log(Xn+1− j :n)

and with a finite-sample correction

γ̂W̃ L S(0,1) :=
∑k

j=1

∫ j/k
( j−1)/k J (s)ds log(Xn+1− j :n)∑k

j=1

∫ j/k
( j−1)/k J (s)ds log(k/j)

discussed in Csörgő and Viharos (1998), where the weighting function J (·) satis-
fies

(W1)
∫ 1

0 J (s)ds = 0,

(W2) J (·) is nonincreasing and continuous on [0,1],

(W3) −∫ 1
0 log(s)J (s)ds = 1.

PROPOSITION 1. Suppose (C1)–(C4) hold for y0 = 1. Then for J (·) satisfy-
ing (W1)–(W3)

√
k

⎛⎝ γ̂W L S(0, t)−γ
γ̂W L S(t,1)−γ

γ̂W L S(t, t + t0)−γ

⎞⎠ D−→
(n→∞) σγ̂W L S ,γ

⎛⎝ W (t)/t
(W (1)−W (t))/(1− t)
(W (t + t0)−W (t))/t0

⎞⎠
in D3[t0,1− t0], (17)

where W (·) is a standard Brownian motion and

σ 2
γ̂W L S ,γ

= γ 2
∫ 1

0

∫ 1

0

r(x, y)

xy
J (x)J (y)dxdy. (18)
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Specifically, Csörgő and Viharos (1998) consider weight functions fulfilling
(W1)–(W3)

Jθ (s) := θ +1

θ
− (θ +1)2

θ
sθ , s ∈ [0,1] , θ > 0,

yielding estimators denoted by γ̂C Vθ , that possess certain optimality properties in
a mean-squared error sense (cf. Csörgő and Viharos, 1998, Weight Theorem (ii)).
Then, under (8), (18) simplifies to

γ 2
∫ 1

0

∫ 1

0

r(z,1)

z
Jθ (zy)Jθ (y)dydz = 2

(θ +1)2

2θ +1
γ 2
∫ 1

0

r(x,1)

x
xθdx . (19)

Remark 3. (a) Inclusion of the finite-sample correction does not change
the convergence result in (17) (cf. Csörgő and Viharos, 1998, p. 18).

(b) The need for a weighted convergence result as in Corollary 1 can be seen
most clearly from (62) in the proof of Proposition 1, where without weight-
ing (i.e., q ≡ 1) the integral in that expression would not generally be finite.

Example 4 (Hill estimator)
As in the proof of Proposition 1, we will only derive weak convergence of
γ̂H (0, t) from the first component of (16). Joint convergence as in (17) can
again be obtained from (16). Check that similarly as in (11) we have γ̂H (0, t) =∫∞

1 Fn(0, t, y) dy
y , such that by Corollary 1

√
k (γ̂H (0, t)−γ ) =

√
k
∫ ∞

1

(
Fn(0, t, y)− y−1/γ

) dy

y

D−→
(n→∞)

1

t

∫ ∞
1

[
W (t, y−1/γ )− y−1/γW (t,1)

] dy

y

= γ

t

∫ 1

0
[W (t,u)−uW (t,1)]

du

u
.

Calculate covariances to obtain that the right-hand side is distributed as
σγ̂H ,γ W (t)/t , where W (·) denotes a standard Brownian motion and

σ 2
γ̂H ,γ
= γ 2

∫ 1

0

∫ 1

0

{
r(x, y)

xy
− r(x,1)

x
− r(1, y)

y
+r(x, y)

}
dxdy

(8)= γ 2r(1,1). (20)

Example 5 (Moments ratio estimator)
We consider convergence of the moments ratio estimator based on the subsample
X1, . . . ,X
nt�. Define, for j = 1,2,

Mj (t) := 1


kt�

kt�∑
i=1

(
log(X
nt�−i+1:
nt�)− log(X
nt�−
kt�:
nt�)

) j
.
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Then

γ̂M R(0, t) := 1

2

M2(t)

M1(t)
= 1

2

M2(t)

γ̂H (0, t)

is the so called moments ratio (MR) estimator of the tail index introduced by
Danı́elsson, Jansen and de Vries (1996). One may verify that (cf. also the proof
of Proposition 1)

M1(t)=
∫ ∞

1
Fn(0, t, y)

dy

y
and M2(t)=

∫ ∞
1

Fn(0, t, y)2log(y)
dy

y
. (21)

Then, under (C1)–(C4), for y0 = 1

γ̂H (0, t) ·
√

k (γ̂M R(0, t)−γ )=
√

k

(
1

2

∫ ∞
1

Fn(0, t, y)2log(y)
dy

y
−γ

∫ ∞
1

Fn(0, t, y)
dy

y

)
=√k

∫ ∞
1

Fn(0, t, y)
[
log(y)−γ ] dy

y

=
∫ ∞

1

√
k
[

Fn(0, t, y)− y−1/γ
][

log(y)−γ ] dy

y

+√k
∫ ∞

1

[
log(y)−γ ] y−(1/γ+1)dy

D−→
(n→∞)

1

t

∫ ∞
1

[
W (t, y−1/γ )− y−1/γ W (t,1)

][
log(y)−γ ] dy

y
+0

=−γ
2

t

∫ 1

0
[W (t,u)/u−W (t,1)]

[
log(u)+1

]
du

=−γ
2

t

∫ 1

0
W (t,u)/u

[
log(u)+1

]
du.

Use γ̂H (0, t)= γ +oP(1) uniformly in t ∈ [t0,1− t0] (from Example 4) and cal-
culate covariances to obtain

t
√

k (γ̂M R(0, t)−γ ) D−→
(n→∞) σγ̂M R ,γW (t) in D[t0,1− t0],

where W (·) is a standard Brownian motion and

σ 2
γ̂M R ,γ

= γ 2
∫ 1

0

∫ 1

0

r(x, y)

xy

[
log(x)+1

][
log(y)+1

]
dxdy

(8)= 2γ 2
∫ 1

0

r(x,1)

x
dx . (22)

Again, joint convergence as in (17) can be obtained by virtue of the joint conver-
gence in (16).

Clearly, we have to consistently estimate σ 2
γ̂ ,γ , the asymptotic variance of

γ̂ (0,1). To that end we propose the following method. The basic idea is as fol-
lows: With only one sample X1, . . . ,Xn we can only estimate γ once with γ̂ (0,1)
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and infer nothing on the variance of the estimate. To get more estimates we calcu-
late γ̂ (0, t) for t ∈ (0,1]. Calculating suitably normalized sample variances of all
these estimates yields a consistent estimate of the variance of γ̂ (0,1), as shown in

THEOREM 2. Let W (·) denote a standard Brownian motion.

(a) If for any t0 > 0

t
√

k (γ̂ (0, t)−γ ) D−→
(n→∞) σγ̂ ,γW (t) in D [t0,1] , (23)

then for all sequences tn ↓ 0 tending to 0 not too fast,

σ̂ 2
γ̂ ,γ,nor := 1

log(n/(
ntn�+1))

k

n

n∑
i=
ntn�+1

[
γ̂

(
0,

i

n

)
− γ̂ (0,1)

]2
P−→

(n→∞) σ
2
γ̂ ,γ .

(b) If for any t0 > 0

(1− t)
√

k (γ̂ (t,1)−γ ) D−→
(n→∞) σγ̂ ,γ (W (1)−W (t)) in D [0,1− t0] , (24)

then for all sequences tn ↓ 0 tending to 0 not too fast,

σ̂ 2
γ̂ ,γ,rev := 1

log (n/(
ntn�+1))

k

n

n−(
ntn�+2)∑
i=0

[
γ̂

(
i

n
,1

)
− γ̂ (0,1)

]2
P−→

(n→∞) σ
2
γ̂ ,γ .

Remark 4. (a) See the proof of Theorem 2 for why tn must not approach 0
too fast.

(b) If (C1)–(C4) hold for y0 = 1, then the convergences in (23) and (24) hold
for any t0 > 0 for the estimators given in Examples 3–5.

(c) In simulations we choose tn as small as possible such that γ̂
(
0, 
ntn�+1

n

)
(or γ̂

( n−(
ntn�+2)
n ,1

)
) is still well-defined for all choices of k. In fact, un-

reported simulations show that the estimates are quite robust with respect
to the choice of tn .

(d) Note that in the case of (e.g.) (a) in the above theorem

1

σ 2
γ̂ ,γ

k

n

n∑
i=
ntn�+1

[
γ̂

(
0,

i

n

)
− γ̂ (0,1)

]2 D≈ 1

n

n∑
i=
ntn�+1

[
W (i/n)

(i/n)
−W (1)

]2

,

where the expectation of the right-hand side is (approximately)⎡⎣⎛⎝ n∑
i=
ntn�+1

1

i

⎞⎠− (1− tn)

⎤⎦∼ log(n/(
ntn�+1)). (25)

Hence, we use the left-hand side of (25) as a finite-sample correction for
log(n/(
ntn�+1)) in the estimator from Theorem 2 (a). A similar argu-
ment reveals that the finite-sample correction is also sensible for σ̂ 2

γ̂ ,γ ,rev.
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(e) The result of the above theorem may be of independent interest and could
be adapted to a wide range of estimators investigated in a change-point
context, where limit results as (23) with

√
k replaced by some other se-

quence tending to infinity and γ̂ (0, t) replaced by some other estimator
(based on observations X1, . . . ,X
nt�) of an unknown parameter.

The joint convergences (as in (17)) established in the above examples and the
continuous mapping theorem now allow us to easily derive the null distributions
of our test statistics from (12).

COROLLARY 2. For the estimators from Examples 3–5 and σ̂ 2
γ̂ ,γ ∈

{̂σ 2
γ̂ ,γ ,nor, σ̂

2
γ̂ ,γ ,rev} the convergences in (13) hold under the conditions of Corol-

lary 1 with y0 = 1.

2.3. Results Under the Alternative

We will explore the behavior of our tests under two specific one-break alterna-
tives:

H≶
1 : γ1 = ·· · = γ
nt∗� ≶ γ
nt∗�+1 = ·· · = γn, (26)

for some t∗ ∈ (t0,1− t0) and γi > 0 for all i = 1, . . . ,n. To avoid repetition in the
following theorem we state conditions that must hold under H<

1 and that differ
from the ones under H>

1 in parentheses (e.g., (28)).

THEOREM 3. Under H>
1

(H<
1

)
let the triangular array

{
Xi,n

}
i=1,...,n;n∈N be

given by

Xi,n :=
{

Y pre
i , i ∈ Ipre := {1, . . . ,
nt∗�} ,

Y post
i , i ∈ Ipost := {
nt∗�+1, . . . ,n} ,

where
{
Y pre

i

}
i∈N and

{
Y post

i

}
i∈N both satisfy conditions (C1)–(C4) with

kpre, γpre, Upre(·), rpre(·, ·), y0,pre = 1− t0
t0

(
y0,pre =

(
1− t0

t0

)γpost/γpre
)

and

kpost, γpost, Upost(·), rpost(·, ·), y0,post=
(

1− t0
t0

)γpre/γpost
(

y0,post = 1− t0
t0

)
,

respectively. Suppose further that q(·) satisfies (14), and

kpost =O (kpre
)
, s.t. kpost

⎛⎝Upost

(
n

kpost

)
Upre

(
n

kpre

)
⎞⎠1/γpost

−→
(n→∞) 0 (27)

⎛⎜⎝kpre =O (kpost
)
, s.t. kpre

⎛⎝ Upre

(
n

kpre

)
Upost

(
n

kpost

)
⎞⎠1/γpre

−→
(n→∞) 0

⎞⎟⎠ . (28)
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Then, for the estimators from Examples 3–5, under H>
1√

kpre
(
γ̂ (0, t)−γpre

) D−→
(n→∞) Bpre(t)/t in D [t0,1] , (29)

where

Bpre(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γpre

∫ 1
0 Wpre

(
tmin,u

t
tmin

)
J (u) du

u , for γ̂W L S,

γpre
∫ 1

0

[
Wpre

(
tmin,u t

tmin

)
−uWpre

(
tmin,

t
tmin

)]
du
u , for γ̂H ,

−γpre
∫ 1

0 Wpre

(
tmin,u

t
tmin

)[
log(u)+1

] du
u , for γ̂M R,

with tmin := min(t, t∗) and Wpre(·, ·) as in Theorem 1 with r(·, ·) replaced by
rpre(·, ·), and under H<

1√
kpost

(
γ̂ (t,1)−γpost

) D−→
(n→∞) Bpost(t)/(1− t) in D [t0,1] ,

where

Bpost(t) :=

⎧⎪⎨⎪⎩
γpost

∫ 1
0 W̃post(t,u)J (u)

du
u , for γ̂W L S,

γpost
∫ 1

0

[
W̃post(t,u)−uW̃post(t,1)

] du
u , for γ̂H ,

−γpost
∫ 1

0 W̃post(t,u)
[
log(u)+1

] du
u , for γ̂M R,

with W̃post(t,u) :=Wpost

(
1,u 1−t

1−tmax

)
−Wpost

(
tmax,u

1−t
1−tmax

)
, tmax :=max(t, t∗),

and Wpost(·, ·) as in Theorem 1 with r(·, ·) replaced by rpost(·, ·).
Remark 5. (a) Quintos et al. (2001, Theorem 3) show that the Hill estima-

tor applied to an i.i.d. sample with one break in the tail index as in (26)
converges in probability to max(γpre,γpost). Theorem 3 obviously substan-
tially generalizes this result.

(b) Theorem 3 does not make any assumption on the dependence between Y pre
i

and Y post
i .

(c) For the time series models from Examples 1 and 2 conditions (C1)–(C3)
were satisfied for sequences k with lower and upper bound

log2(n) log4(logn)= o(k) and k = o(nξ ), ξ ∈ (0,1)
(recall (2) and (9)). Hence for a sample with a break in the tail index it does
not seem to be overly restrictive to assume k = kpre = kpost, which is what
we do in the following.

(d) Under H>
1 (H<

1 ) condition (27) ((28)) ensures that the part of the sequen-
tial tail empirical process appertaining to the post- (pre-) break period is
asymptotically negligible (see the proof of Theorem 3).
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How stringent is (27)? (A similar argument also holds for (28).) For any
ε > 0 and n sufficiently large, note that

Upost

(
n

kpost

)
Upre

(
n

kpre

) =
(

n
kpost

)γpost+ε ( n
kpost

)−ε
Lpost

(
n

kpost

)
(

n
kpre

)γpre−ε ( n
kpre

)ε
Lpre

(
n

kpre

)
<

(
n

kpost

)γpost+ε( n

kpre

)−γpre+ε
,

where Lpre(post)(x) = x−γpre(post)Upre(post)(x) ∈ RV0 and Bingham, Goldie
and Teugels’ (1987) Proposition 1.3.6 (v) was used for the inequality. If
k = kpre = kpost = nξ for some ξ ∈ (0,1), then (27) is satisfied for ξ <
1−γpost/γpre. That is, for small breaks, i.e., γpre−γpost close to 0, k must
be rather small relative to n. Similar arguments apply to (28).

(In-)Consistency results can now easily be proved:

COROLLARY 3. Under the conditions of Theorem 3 with k = kpre= kpost, we
have for the estimators from Examples 3–5 and for all sequences tn ↓ 0 tending
to zero not too fast:

(a) σ̂ 2
γ̂ ,γ ,nor

P−→
(n→∞) σ

2
γ̂ ,γpre

under H>
1 ,

(b) σ̂ 2
γ̂ ,γ ,rev

P−→
(n→∞) σ

2
γ̂ ,γpost

under H<
1 .

Using σ̂ 2
γ̂ ,γ ,nor or σ̂ 2

γ̂ ,γ ,rev according as H>
1 or H<

1 , we further have:

(c) The tests based on Qseq and Qrol are consistent under H≶
1 , where for Qrol

the additional assumption t∗ ∈ (t0,1−2t0) (t∗ ∈ (2t0,1− t0)) has to hold
under H>

1

(H<
1

)
.

(d) The test based on Qrec
(
Q←rec

)
is consistent under H<

1

(H>
1

)
, whereas un-

der H>
1

(H<
1

)
we have

Q(←)
rec =

(n→∞)OP(1).

Remark 6. For an estimator of the change point t∗ that is consistent under
weak conditions we refer to Kim and Lee (2009, Theorem 3).

3. SIMULATIONS

This section investigates the finite-sample properties of our tests for specific mod-
els from Examples 1 and 2. We do so only for Qrec and Q←rec, because we want
to explore the differences between the tail index estimators and not between the
different test statistics in (12). The latter has already been done in the literature
(Quintos et al., 2001; Kim and Lee, 2011). We just remark that the qualitative
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conclusions from the other studies hold here as well. The Q(←)
rec - and Qseq-test

have slightly better size than the Qrol-test, presumably because the estimates
γ̂ (t, t+ t0) are always based on relatively small rolling windows. Under the alter-
native, when the tests based on Q(←)

rec are consistent, they have the highest power
of all alternatives, which is why we focus on these tests here.

We use t0 = 0.2, sample sizes of n = 500 and n = 2000, and tn = 50/n. With
this choice of tn all estimates γ̂

(
0, 
ntn�+1

n

)
and γ̂

( n−(
ntn�+2)
n ,1

)
remained well-

defined and tn is reasonably small, as required by Theorem 2. Table 1 shows
critical values, obtained by 100,000 realizations of the approximations to the limit
distribution supt∈[t0,1−t0] {W (t)− tW (1)}2 from (13) (where the Brownian motion
itself was generated from 100,000 independent normally distributed r.v.s). We use
the estimators γ̂H , γ̂M R , and γ̂C Vθ for θ = 1. The corresponding tests will be
denoted H , M R and CV1.

In order for tests to be consistent, we estimate σ 2
γ̂ ,γ using σ̂ 2

γ̂ ,γ ,nor for Q←rec (un-

der H0 andH>
1 ) and σ̂ 2

γ̂ ,γ ,rev for Qrec (underH<
1 ). We modify σ̂ 2

γ̂ ,γ ,nor and σ̂ 2
γ̂ ,γ ,rev

by requiring that they be at least as large as the (consistent) variance estimate
in the independent case, i.e., γ̂ 2

H (0,1) for γ̂H (0,1), 2γ̂ 2
M R(0,1) for γ̂M R(0,1)

and 2θ+2
2θ+1 γ̂

2
C Vθ

(0,1) for γ̂C Vθ (0,1). This is warranted by the observation that our
models from Examples 1 and 2 satisfy the conditions of Drees (2003, Prop. 2.1),
whence r(x, y) ≥ min(x, y). (Note that r(x, y) = min(x, y) under independence
and (C4).) Hence, the asymptotic variances given in (19), (20), and (22) cannot
be lower under dependence than under independence, such that our modified es-
timators are still consistent for σ 2

γ̂ ,γ under independence and dependence.
Concretely, we simulate from the two data generating processes (DGPs)

Xi = 0.5 · Xi−1+ Zi , (AR)

X2
i =

(
α0+α1 · X2

i−1

)
Z2

i . (ARCH)

Remark 7. (a) In the AR(1) case, it is also possible to use the change
point test proposed in Kim and Lee (2012), which is based on AR(p)-
residuals. However, in the context of extreme quantile estimation Drees
(2008, Section 2) cautions against using residual-based tail index estima-
tors for AR(p)-models, since they can be very sensitive to ever so slight
misspecifications. We therefore advocate using nonmodel-based estima-
tors in a change point context as well.

(b) For the (G)ARCH-model with innovations that have finite (4 + δ)-th
moments, there exist more precise estimators of the tail index (e.g., in
Berkes, Horváth and Kokoszka, 2003, and Chan et al., 2013) in the sense of

TABLE 1. Quantiles of supt∈[t0,1−t0] {W (t)− tW (1)}2 for t0 = 0.2

αq 0.50 0.60 0.70 0.80 0.90 0.95 0.99
αq -quantile 0.650 0.767 0.918 1.128 1.478 1.821 2.653
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being
√

n-consistent instead of the slower
√

k. Using these estimators in a
change point test could potentially result in more powerful tests. However,
as in part (a) of this remark, slight departures from the model could then
lead to severe mis-estimation of tail parameters.

For the ARCH-model one often uses Zi
i.i.d.∼ N (0,1) or the normalized

√
ν−2
ν tν

(ν > 2) with unit variance. For standardized tν-innovations the first moment
condition in (10) implies that α1 ∈ (0,exp{ψ(ν/2)−ψ(1/2)}/{ν−2}), where
ψ(z)= �′(z)/�(z) denotes the digamma function, since

0> E log(α1 Z2
i )= log(α1)+ log

(
ν−2

ν

)
+ log(ν)+ψ(1/2)−ψ(ν/2), (30)

where log(t2
ν )/2 ∼ log(F1,ν)/2 follows Fisher’s z-distribution with mean[

log(ν)+ψ(1/2)−ψ(ν/2)]/2.

Remark 8. The only existing change point test known to the author for ARCH
data in Quintos et al. (2001) relies on standard-normally distributed innovations,

whereas our tests permit, e.g.,
√
ν−2
ν tν-distributed innovations for ν > 2. If only

standard-normally distributed innovations are permitted, tail index break tests de-
generate to tests for parameter constancy for α1 (recall from Example 2 that the
tail index of an ARCH(1) can only be changed by varying α1 or the distribution
of Z1). We venture to claim that tests for parameter constancy for GARCH(p,q)
models as proposed in Berkes, Horváth and Kokoszka (2004) then perform better,
as more observations are effectively used in the estimation of α1.

For the results under the null in Table 2, we choose Zi ∼
√
ν−2
ν tν with ν = 5/2

for the ARCH(1)-model along with α0 = 0.01 and α1 = 0.95, i.e., tail index equal
to 1.01 determined from E(α1 Z2

i )
α = 1. Note that by choosing ν = 5/2 the in-

novations barely have existing second moments, which is required in ARCH-
type models. Note further that by (30) the choice of ν = 5/2 necessitates α1 ∈
(0,11.34...), which is of course satisfied for our particular choice of α1. For the
AR(1)-model we also use Zi ∼ tν with ν = 5/2, i.e., tail index equal to 2.5. Hence,
the process in (AR) does have finite second moments, while that in (ARCH)
does not.

For both models the results show that, by and large, sizes only slightly de-
crease in k. This is encouraging since the choice of k can be a very sensitive
issue in tail index estimation, see, e.g., Section 4.4.2 in Resnick (2007) for a Hill
horror plot and some references on the topic. As a referee pointed out, this may
be explained by the canceling of bias terms (that arise in tail index estimation
for large k) in (12). For n = 500 most tests are conservative for both models.
The convergence to the nominal level for n = 2000 is satisfactory for the H
and the CV1 test for a wide range of k’s, while the M R test is still somewhat
conservative.
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TABLE 2. Empirical sizes of Q←rec-tests in % for n realizations of (AR) and
(ARCH)

Test Size DGP n = 500 n = 2000

k/n

0.04 0.08 0.12 0.16 0.2 0.04 0.08 0.12 0.16 0.2

H 0.05 (AR) 6.3 4.5 4.8 4.2 4.1 5.7 5.6 4.8 4.5 4.1
0.01 1.8 1.3 1.0 1.1 0.8 1.4 1.2 0.9 0.8 0.7

M R 0.05 2.1 2.9 2.5 2.0 1.5 3.9 3.4 3.2 2.7 2.3
0.01 0.5 1.1 0.7 0.4 0.3 1.5 0.8 0.8 0.6 0.4

CV1 0.05 2.4 2.0 1.9 1.9 1.7 3.8 3.8 3.8 3.4 3.2
0.01 0.4 0.4 0.3 0.2 0.3 0.7 0.7 0.6 0.5 0.3

H 0.05 (ARCH) 7.1 5.7 5.5 4.4 4.4 7.8 6.9 6.1 5.4 5.2
0.01 2.4 1.6 1.0 1.0 0.9 2.2 1.8 1.1 1.0 1.1

M R 0.05 2.0 3.0 2.8 2.4 1.9 5.0 4.6 3.8 3.2 3.0
0.01 0.5 1.1 1.0 0.7 0.6 1.7 1.6 1.1 0.7 0.7

CV1 0.05 4.0 2.8 2.1 1.8 1.5 4.5 4.5 4.4 4.6 4.4
0.01 1.2 0.8 0.6 0.4 0.2 1.0 0.9 0.7 0.7 0.7

To examine power we simulate according to model (AR) again, only that now
Zi := Zi,n with

Zi,n ∼
{

t2, i ≤ 
nt∗� ,
tν, i > 
nt∗� , (31)

where we choose t∗ = 0.25,0.5, and ν ∈ [2,4]. Hence, there is a break in the tail
index of {Xi } from 2 to ν, i.e., lighter postbreak tails. To investigate power for a
nonlinear model as well, we simulate from

X2
i,n :=

{
(0.01+0.45 · X2

i−1,n)Z
2
i , i ≤ 
nt∗� ,

(0.01+α1 · X2
i−1,n)Z

2
i , i > 
nt∗� , (32)

where again t∗ = 0.25,0.5, α1 ∈ [0.45,0.95], and Zi
i.i.d.∼ N (0,1). This ARCH(1)-

model with a break in α1 has tails varying from thinner (α = 2.67 corresponding
to α1 = 0.45) to thicker (α = 1.07 corresponding to α1 = 0.95). Throughout we
take n = 2000.

The simulation results for different values of ν in (31) and α1 in (32) are dis-
played in Figure 1. We choose k = 0.2 ·n for both models, because for these val-
ues of k the differences in size (i.e., ν = 2 in the AR(1)-case and α1 = 0.45 in the
ARCH(1)-case) are smallest, such that direct power comparisons are more mean-
ingful. Figure 1 (a) displays the results for the AR(1)-model with innovations as
in (31) using the Q←rec-test, which is consistent. In the bottom part, where results
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FIGURE 1. (a) Fraction of rejections for Q←rec-test using (AR) with innovations (31) and
(b) for Qrec-test using (32) with t∗ = 0.25 (top), t∗ = 0.5 (bottom).

are shown for t∗ = 0.5, tests have roughly comparable properties. It is notable
that, despite being slightly conservative, the M R test offers higher power than the
other two tests, the more so the larger ν. The difference for ν = 4 is between 13
and 15 percentage points. This is even more apparent when t∗ = 0.25, where the
M R test performs only marginally worse than before, but the CV1 test and the H
test in particular lose sizable amounts of power. Here the biggest difference is as
high as 38 percentage points.

Panel (b) shows results for the ARCH(1) with a break in α1 using Qrec. The
top part for t∗ = 0.25 shows that the M R test has comparable power as the other
two tests despite being more conservative. When t∗ = 0.5 (bottom part) it seems
to gain more power than the other two offerings, so that power for the M R test
is 18 percentage points higher than that for the H test for α1 = 0.95. In light of
the simulation, evidence in Wagner and Marsh (2004) already mentioned in the
motivation, this was to be expected.

In the upper left plot in Figure 1, the CV1 test seems to suffer slightly from non-
monotonic power—a well-known phenomenon in the literature on change point
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detection (Vogelsang, 1997, 1999)—i.e., it does not show increasing power in
distance from the null in some ranges. In the context of mean-shift detection,
Vogelsang (1999) identifies long-run variance estimates as one major source of
nonmonotonicity. We also find indications for this here. For ν = 2 the average
estimate of σ̂ 2

γ̂CV1 ,γ
(̂σ 2
γ̂M R ,γ

) over all 5000 replications is 0.74 (0.82), while for

ν = 2.7 it is 0.95 (0.70). Hence, while for the M R test the denominator of Q←rec
even decreased, it increased markedly for the CV1 test. Apparently, it increased
roughly proportionately to the numerator of Q←rec for CV1, which could be a rea-
son for the flat profile for ν ∈ [2,2.7].

All in all, our simulations reveal reasonable size of our tests for quite a wide
range of k’s with some conservative tendencies. Under the alternative we find the
M R test to clearly deliver the best results, with the H and CV1 test performing
similarly.

4. PROOFS

In the following K ,K1,K2, and δ̃ denote large and small positive constants that
may change from line to line. D[t0,1] denotes the space of càdlàg functions
equipped with the Skorohod metric and the Borel σ -field D [t0,1]. For brevity
put D2 := D ([t0,1]× [0, y0+ δ]) (δ ≥ 0) for the space of two-parameter càdlàg
functions on [t0,1]× [0, y0+ δ], which is equipped with the multiparameter ex-
tension of the Skorohod metric (cf. Bickel and Wichura, 1971, p. 1662) and the
Borel σ -field D2. As usual, define ‖·‖2 to be the Euclidean metric, |·| to be cardi-
nality when applied to a set and

∑ j
i := 0 for i > j .

To derive weighted weak convergence results involving the weight function
q(·), we may assume w.l.o.g., as in the proof of Drees (2000, Theorem 2.2), that
for some ϑ > 0 sufficiently small

q(y)= yν |log y|μ , y ∈ (0,ϑ] ,

s.t. q is increasing and q/Id decreasing on (0,ϑ] , (33)

where Id(·) denotes the identity function.
In the first step, we will consider uniformly distributed r.v.s Ui ∼ U [0,1] and

then suitably apply this result to Xi satisfying (C4). To this end we need the
following analogs of conditions (C1)–(C3):

(U1) {Ui }i∈N is a strictly stationary β-mixing process with mixing coefficients
β (·), such that

lim
n→∞

n

rn
β (ln)+ rn√

k
log2(k)= 0

for sequences {ln}n∈N ⊂N,{rn}n∈N ⊂N tending to infinity with ln = o(rn),
rn = o(n).
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(U2) There exists a function r (x, y), such that for all x, y ∈ [0, y0+ δ]

lim
n→∞

n

rnk
Cov

⎛⎝ rn∑
i=1

I{
Ui>1− k

n x
}, rn∑

j=1

I{
Uj>1− k

n y
}
⎞⎠= r (x, y) .

(U3) For some constant C > 0,

n

rnk
E

[ rn∑
i=1

I{
1− k

n y<Ui≤1− k
n x
}]4

≤C(y− x) ∀0≤ x < y ≤ y0+δ, n ∈N.

We start with a nonweighted weak convergence result for the sequential tail
empirical process for the {Ui }:

THEOREM 4. Suppose (U1)–(U3) hold. Then

√
k

⎧⎨⎩1

k


nt�∑
i=1

[
I{

Ui>1− k
n y
}− k

n
y

]⎫⎬⎭ D−→
(n→∞) W (t, y) in D2, (34)

where {W (t, y)} is a continuous zero-mean Gaussian process with covariance
function

Cov (W (t1, y1) ,W (t2, y2))=min(t1, t2)r (y1, y2) . (35)

Proof. For notational convenience and w.l.o.g. δ = 0. We use a classical ‘big
block - small block’ approach, where the small blocks are asymptotically negligi-
ble. For t ∈ [0,1] define

mn (t) :=
⌊ 
nt�

rn+ ln

⌋
and for j = 1, . . . ,mn (1) define Ij (the big blocks) and Jj (the small blocks) to be
consecutive blocks of integers of length

∣∣Ij
∣∣= rn and

∣∣Jj
∣∣= ln , i.e.,

I1 = {1, . . . ,rn} , J1 = {rn +1, . . . ,rn + ln} , etc.

Choose the length of Imn (t)+1 such that the integers {1, . . . ,
nt�} are covered.
Now decompose

√
k

⎧⎨⎩1

k


nt�∑
i=1

[
I{

Ui>1− k
n y
}− k

n
y

]⎫⎬⎭=
mn(t)∑
j=1

Y I
j (y)+

mn(t)∑
j=1

Y J
j (y)+ Rn (t, y) ,
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where

Y I
j (y)=

1√
k

∑
i∈Ij

[
I{

Ui>1− k
n y
}− k

n
y

]
,

Y J
j (y)=

1√
k

∑
i∈Jj

[
I{

Ui>1− k
n y
}− k

n
y

]
,

Rn (t, y)= 1√
k

∑
i∈Imn (t)+1

[
I{

Ui>1− k
n y
}− k

n
y

]
.

We will consider these terms separately. First, noting that the cardinality∣∣Imn (t)+1
∣∣≤ rn+ ln−1,

0≤ sup
(t,y)∈[t0,1]×[0,y0]

|Rn (t, y)| ≤ 2
rn+ ln−1√

k

(U1)−→
(n→∞) 0. (36)

Second, set Ln (t, y)=∑mn(t)
j=1 Y I

j (y) and define the measurable mapping

Mn : (Dmn [0, y0] ,Dmn [0, y0])→ (D2,D2)

Mn
(
t,x1 (·) , . . . ,xmn (·)

)= mn (t)∑
i=1

xi (y) , (t, y) ∈ [t0,1]× [0, y0] .

Then for H ∈D2 using Lemma 2 of Eberlein (1984) and (U1)

P(Ln ∈ H ) = P
((

Y I
1 (·) , . . . ,Y I

mn
(·)
)
∈ M−1

n (H )
)

= P̃
((

Ỹ I
1 (·) , . . . , Ỹ I

mn
(·)
)
∈ M−1

n (H )
)
+O (mnβ(ln))

(U1)= P̃(L̃n ∈ H )+o(1), (37)

where L̃n (t, y) =∑mn(t)
j=1 Ỹ I

j (y) and the Ỹ I
j (·) are i.i.d. copies of Y I

1 (·) defined

on the product probability space (�̃,Ã, P̃) :=⊗∞i=1(D [0, y0] ,D [0, y0] , PYi ) via

Ỹi : (�̃,Ã)→ (D [0, y0] ,D [0, y0]), Ỹi (ω) := πi (ω) := ωi .

Now Corollary 3.3 of Hill (2009) implies

L̃n (t, y)
D−→

(n→∞) W (t, y) in D2, (38)

where {W (t, y)} is a zero-mean Gaussian process with continuous paths along t
and y. For the covariance structure of the process consider weak convergence of
the R2-valued random vector(

L̃n (t1, y1)
L̃n (t2, y2)

)
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or, using the Cramér–Wold device, of

aL̃n (t1, y1)+bL̃n (t2, y2)= b
[
L̃n (t2, y2)− L̃n (t1, y2)

]
+ [aL̃n (t1, y1)+bL̃n (t1, y2)

]=: An+ Bn,

for arbitrary a,b ∈ R. Observe that An and Bn are independent for each n and
hence it suffices to consider weak convergence of An and Bn separately. W.l.o.g.
let t1 ≤ t2.

For An we have

L̃n (t2, y2)− L̃n (t1, y2)=
mn(t2)∑

j=mn(t1)+1

Ỹ I
j (y2) .

Then (U2) implies

s2
n :=

mn(t2)∑
j=mn(t1)+1

V ar
(

Ỹ I
j (y2)

)
= mn (t2)−mn (t1)

k
V ar

( rn∑
i=1

I{
Ui>1− k

n y2

})
−→
(n→∞) (t2− t1)r (y2, y2)=: σ 2

A. (39)

The Lyapunov condition (cf., e.g., Billingsley, 1968, Theorem 7.3) is satisfied (for
δ = 2), since

1

s4
n

mn(t2)∑
j=mn(t1)+1

E

(
Ỹ I

j (y2)
)4 ≤ K

1

k

n

rnk
E

[
rn∑

i=1

(
I{

Ui>1− k
n y2

}− k

n
y2

)]4
(U3)−→

(n→∞) 0. (40)

Using (39) we thus get

An
D−→

(n→∞)N
(

0,b2σ 2
A

)
. (41)

For Bn we have

aL̃n (t1, y1)+bL̃n (t1, y2)=
mn(t1)∑

j=1

(
aỸ I

j (y1)+bỸ I
j (y2)

)
.

Reasoning similarly as for the weak convergence of An (using Loève’s cr inequal-
ity for the analog of (40)) we get

Bn
D−→

(n→∞)N
(

0,σ 2
B

)
, (42)

where σ 2
B = a2t1r (y1, y1)+2abt1r (y1, y2)+b2t1r (y2, y2). Combining (41) and

(42) gives

An+ Bn = aL̃n (t1, y1)+bL̃n (t2, y2)
D−→

(n→∞)N
(

0,σ 2
)
,
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where σ 2 = b2σ 2
A+σ 2

B = a2t1r (y1, y1)+2abt1r (y1, y2)+b2t2r (y2, y2), i.e.,(
L̃n (t1, y1)
L̃n (t2, y2)

)
D−→

(n→∞)N (0,�)
D=
(

W (t1, y1)
W (t2, y2)

)
,

where

� =
(

t1r (y1, y1) t1r (y1, y2)
t1r (y1, y2) t2r (y2, y2)

)
.

Thus, {W (t, y)} has the claimed covariance structure in (35). By (37) we also
have

Ln (t, y)
D−→

(n→∞) W (t, y) in D2. (43)

Third, in view of (36) and (43) it remains to prove

sup
t∈[t0,1]
y∈[0,y0]

∣∣∣∣∣∣
mn(t)∑
j=1

Y J
j (y)

∣∣∣∣∣∣ =(n→∞) oP(1). (44)

Set

Sm(y) :=
m∑

j=1

Ỹ J
j (y) and ‖Sm‖ := sup

y∈[0,y0]
|Sm(y)| ,

where Ỹ J
j (·) are i.i.d. copies of Y J

j (·) as above. Similarly as in (37), to show that∑mn (t)
j=1 Y J

j (y) is asymptotically negligible, it suffices to do so for
∑mn (t)

j=1 Ỹ J
j (y).

To this end the Ottaviani inequality (cf., e.g., Shorack and Wellner, 1996, Propo-
sition A.1.1) yields for any ε > 0

P

⎧⎪⎨⎪⎩ sup
t∈[t0,1]
y∈[0,y0]

∣∣∣∣∣∣
mn (t)∑
j=1

Ỹ J
j (y)

∣∣∣∣∣∣> 2ε

⎫⎪⎬⎪⎭≤ P

{
max

m∈{1,...,mn (1)}
‖Sm‖> 2ε

}

≤ P
{‖Smn (1)‖> ε

}
1−maxm∈{1,...,mn(1)} P {‖Sm‖> ε} .

We show that P {‖Sm‖> ε} = o(1) uniformly in m = 1, . . . ,mn(1). For this let
� = �n > 0 be a sequence, s.t. �= O(k−1/2) and y0/� ∈ N. Observe that (be-
cause of m ≤ n/rn) for all y ∈ [(i −1)�, i�]

Sm((i −1)�)− ln

rn

√
k�︸ ︷︷ ︸

→0

≤ Sm(y)≤ Sm(i�)+ ln

rn

√
k�︸ ︷︷ ︸

→0

,
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from which we conclude via Markov’s inequality

P {‖Sm‖> ε} ≤ P

{
max

i∈{0,...,y0/�}
|Sm(i�)|> ε/2

}
≤ (ε/2)−4E

[
max

i∈{0,...,y0/�}
|Sm(i�)|4

]
.

First we bound E
[|Sm(i�)|4

]
by arguments similar to Rootzén (2009, p. 479).

We have

E

[ rn∑
i=1

I{
Ui>1− k

n y
}]4

≥ E

[ rn∑
i=1

I{
Ui>1− k

n y
}]2

, (45)

because the sum of the indicators is N0-valued, and (also using strict stationarity)
for p = 2,4

E

[ rn∑
i=1

I{
Ui>1− k

n y
}]p

≥ E

⎡⎣
rn/ ln�∑
w=1

wln∑
i=(w−1)ln+1

I{
Ui>1− k

n y
}
⎤⎦p

≥
⌊

rn

ln

⌋
E

[ ln∑
i=1

I{
Ui>1− k

n y
}]p

,

whence E

[
Ỹ J

j (y)
]p ≤ K ln

n k1−p/2y with (U3). Rosenthal’s inequality now im-

plies

E

[
|Sm(i�)|4

]
≤ K

{
mE

[
Ỹ J

j (i�)
]4+

(
mE

[
Ỹ J

j (i�)
]2
)2
}

≤ K

{
ln

rnk
i�+

(
ln

rn

)2

i2�2

}
for K independent of m. Then, applying Móricz’ (1982) Theorem in a similar
way as for (5.2) in Drees (2000), we get

E

[
max

i∈{0,...,y0/�}
|Sm(i�)|4

]
≤ K

{
ln

rnk
log4

(
1

�

)
+
(

ln

rn

)2
}
−→
(n→∞) 0,

whence (44) follows, completing the proof. �
Based upon the result of Theorem 4, we can derive a weighted version of the

convergence in (34):

THEOREM 5. Suppose (U1)–(U3) hold and q(·) satisfies (14). Then
√

k

q(y)

⎧⎨⎩1

k


nt�∑
i=1

[
I{

Ui>1− k
n y
}− k

n
y

]⎫⎬⎭ D−→
(n→∞)

W (t, y)

q(y)
in D2,

where {W (t, y)} is as in Theorem 4.
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Proof. For brevity put en(t, y) := 1√
k

∑
nt�
i=1

[
I{

Ui>1− k
n y
}− k

n y

]
. In view of

Theorem 4 and Billingsley (1968, Theorem 4.2), it suffices to prove that for all
ε > 0

lim
ϑ↓0

limsup
n→∞

P

⎧⎪⎨⎪⎩ sup
t∈[t0,1]
y∈(0,ϑ]

∣∣∣∣en(t, y)

q(y)

∣∣∣∣> 3ε

⎫⎪⎬⎪⎭= 0, (46)

lim
ϑ↓0

P

⎧⎪⎨⎪⎩ sup
t∈[t0,1]
y∈(0,ϑ]

∣∣∣∣W (t, y)

q(y)

∣∣∣∣> ε
⎫⎪⎬⎪⎭= 0. (47)

We first show (46). For s = 1, . . . ,n define

Ss(y) := 1

q(y)

1√
k

s∑
i=1

(
I{

Ui>1− k
n y
}− k

n
y

)
and ‖Ss‖ := sup

y∈(0,ϑ]
|Ss(y)| ,

such that en(t, y)/q(y)= S
nt�(y). Then

P

⎧⎪⎨⎪⎩ sup
t∈[t0,1]
y∈(0,ϑ]

∣∣∣∣en(t, y)

q(y)

∣∣∣∣> 3ε

⎫⎪⎬⎪⎭
= P

{
max

s∈{
nt0�,...,n}
‖Ss‖> 3ε

}

≤
P {‖Sn‖> ε}+ P

{
maxr<s∈{
nt0�,...,n}

s−r≤2rn

‖Ss − Sr‖> ε
}
+ n

rn
β(rn)

1−maxs∈{
nt0�,...,n} P {‖Sn − Ss‖> ε} , (48)

where the last step follows from the Ottaviani-type inequality in Bücher (2015,
Lemma 3) combined with the fact that α-mixing coefficients are bounded by
β-mixing coefficients. Next, we show that the numerator tends to zero and the
denominator tends to 1. First consider the three terms in the numerator.

First, because β-mixing coefficients are nonincreasing in the argument, we can
bound

n

rn
β(rn)≤ n

rn
β(ln)

(U1)=
(n→∞) o(1).

Second, because of (5.3) in the proof of Drees (2000, Theorem 2.2),

lim
ϑ↓0

limsup
n→∞

P {‖Sn‖> ε} = lim
ϑ↓0

limsup
n→∞

P

{
sup

y∈(0,ϑ]

∣∣∣∣en(1, y)

q(y)

∣∣∣∣> ε
}
= 0.

https://doi.org/10.1017/S0266466616000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000189


CHANGE POINT TESTS FOR THE TAIL INDEX 941

Now, for the numerator it remains to be shown that

lim
ϑ↓0

limsup
n→∞

P

⎧⎨⎩ max
r<s∈{
nt0�,...,n}

s−r≤2rn

sup
y∈(0,ϑ]

1

q(y)

∣∣∣∣∣∣ 1√
k

s∑
i=r+1

(
I{

Ui>1− k
n y
}− k

n
y

)∣∣∣∣∣∣> ε
⎫⎬⎭= 0,

where

max
r<s∈{
nt0�,...,n}

s−r≤2rn

sup
y∈(0,ϑ]

1

q(y)

∣∣∣∣∣∣ 1√
k

s∑
i=r+1

(
I{

Ui>1− k
n y
}− k

n
y

)∣∣∣∣∣∣
≤ max

r<s∈{
nt0�,...,n}
s−r≤2rn

sup
y∈(0,ϑ]

1

q(y)

∣∣∣∣∣∣ 1√
k

s∑
i=r+1

I{
Ui>1− k

n y
}
∣∣∣∣∣∣︸ ︷︷ ︸

=:An

+ sup
y∈(0,ϑ]

1

q(y)

∣∣∣∣2rn√
k

k

n
y

∣∣∣∣︸ ︷︷ ︸
=:Bn

.

By condition (U1) Bn tends to zero. As for An

P

⎧⎨⎩ max
r<s∈{
nt0�,...,n}

s−r≤2rn

sup
y∈(0,ϑ]

1

q(y)

∣∣∣∣∣∣ 1√
k

s∑
i=r+1

I{
Ui>1− k

n y
}
∣∣∣∣∣∣> ε/2

⎫⎬⎭
≤ P

⎧⎨⎩ max
m∈{0,...,
n/(2rn)�}

sup
y∈(0,ϑ]

1

q(y)

∣∣∣∣∣∣ 1√
k


(m+2)2rn�∑
i=
m2rn�+1

I{
Ui>1− k

n y
}
∣∣∣∣∣∣> ε/2

⎫⎬⎭
≤
⌊

n

2rn

⌋
P

⎧⎨⎩ sup
y∈(0,ϑ]

1

q(y)

∣∣∣∣∣∣ 1√
k

4rn∑
i=1

I{
Ui>1− k

n y
}
∣∣∣∣∣∣> ε/2

⎫⎬⎭
≤
⌊

n

2rn

⌋ ∞∑
j=0

P

⎧⎨⎩ sup
y∈(ϑe−( j+1),ϑe− j]

1

q(y)

∣∣∣∣∣∣ 1√
k

4rn∑
i=1

I{
Ui>1− k

n y
}
∣∣∣∣∣∣> ε/2

⎫⎬⎭
(33)≤

⌊
n

2rn

⌋ ∞∑
j=0

P

⎧⎨⎩ 1√
k

4rn∑
i=1

I{
Ui>1− k

n ϑe− j
} > ε/2q(ϑe−( j+1))

⎫⎬⎭
≤
⌊

n

2rn

⌋ ∞∑
j=0

E

⎡⎣ 1√
k

4rn∑
i=1

I{
Ui>1− k

n ϑe− j
}
⎤⎦2

(ε/2)−2q−2
(
ϑe−( j+1)

)

≤
⌊

n

2rn

⌋ ∞∑
j=0

K
rnk

n

1

k
ϑe− j (ε/2)−2q−2

(
ϑe−( j+1)

)

≤ K
∞∑

j=0

ϑe− j q−2
(
ϑe−( j+1)

)
,
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where the second inequality follows from strict stationarity and the second to last
one from Loève’s cr inequality combined with (45) and (U3). Using (33) the last
term can be bounded by

K
∞∑

j=0

[
ϑe−( j+1)

]1−2ν ∣∣∣log
(
ϑe−( j+1)

)∣∣∣−2μ ≤ K
∫ ∞

0

(
ϑe−t )1−2ν ∣∣log

(
ϑe−t )∣∣−2μ

dt

= K
∫ ∞
− log(ϑ)

e−z(1−2ν)z−2μdz,

which tends to 0 as ϑ ↓ 0, if and only if ν < 1
2 or ν = 1

2 and μ > 1
2 . All in all the

numerator tends to zero as n→∞ followed by ϑ ↓ 0.
Now consider the denominator of (48): by strict stationarity we can write

max
s∈{
nt0�,...,n}

P {‖Sn− Ss‖> ε}
= max

s∈{
nt0�,...,n}
P {‖Sm‖> ε}

= max
s∈{
nt0�,...,n}

P

{
sup

y∈(0,ϑ]

∣∣∣∣∣ 1

q(y)

1√
k

m∑
i=1

(
I{

Ui>1− k
n y
}− k

n
y

)∣∣∣∣∣> ε
}
,

where

1

q(y)

1√
k

m∑
i=1

(
I{

Ui>1− k
n y
}− k

n
y

)
= 1

q(y)


m/rn�−1∑
w=0

1√
k

(w+1)rn∑
i=wrn+1

(
I{

Ui>1− k
n y
}− k

n
y

)
︸ ︷︷ ︸

=:Cm,n

+ 1

q(y)

1√
k

m∑
i=
m/rn�rn+1

(
I{

Ui>1− k
n y
}− k

n
y

)
︸ ︷︷ ︸

=:Dm,n

.

We have

Dm,n = 1

q(y)

1√
k

m∑
i=
m/rn�rn+1

I{
Ui>1− k

n y
}

︸ ︷︷ ︸
=: Ãm,n

− m−
m/rn�rn√
k

k

n

y

q(y)
.︸ ︷︷ ︸

=:B̃m,n

Because there are at most rn terms in the sum in Ãm,n , that supy∈(0,ϑ] Ãm,n =
oP(1) uniformly in m can be seen as for An . The convergence of supy∈(0,ϑ] B̃m,n

(uniformly in m) can also be seen as the one for Bn . It remains to investigate
Cm,n . To this end consider the proof of Theorem 2.2 in Drees (2000). Replacing

his mn =
⌊

n
2rn

⌋
by mn =

⌊
m

2rn

⌋
in the proof it is easy to see that

lim
ϑ↓0

lim
n→∞ P

{
sup

y∈(0,ϑe− jn ]

∣∣Cm,n
∣∣> ε}= 0 uniformly in m ∈ {1, . . . ,n} ,
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where jn := min{j ∈ N :
√

k ≤ η q
I d (ϑe−( j+1))} for some small η > 0. The

uniformity is due to the fact that for all m ∈ {1, . . . ,n} in Drees’ (2000) notation

E

(
S̃n(ϑe− j )

)
≤√kϑe− j

in the step leading to his (5.6). Using assumption (U3) and again replacing mn =⌊
n

2rn

⌋
by mn =

⌊
m

2rn

⌋
in the proof of Drees (2000, Theorem 2.3), retracing the

proof again yields

lim
ϑ↓0

lim
n→∞ P

{
sup

y∈(ϑe− jn ,ϑ]

∣∣Cm,n
∣∣> ε}= 0 uniformly in m ∈ {1, . . . ,n} .

The uniformity is due to the uniformity of his moment inequality (5.14) derived
there by an application of Burkholder’s inequality.

Next we will prove (47) via Lin and Choi (1999, Lemma 2.1). Use the fact that
(U3) implies

n

rnk
V ar

(
rn∑

i=1

I{
1− k

n y2<Ui≤1− k
n y1

})≤ n

rnk
E

[
rn∑

i=1

I{
1− k

n y2<Ui≤1− k
n y1

}]4

≤C(y2− y1).

(Recall again for the first inequality that the sum of the indicators is N0-valued.)
By (U2) the left-hand side converges to r(y2, y2)−2r(y1, y2)+ r(y1, y1) as n→
∞. Hence,

r(y2, y2)−2r(y1, y2)+ r(y1, y1)≤ C |y1− y2| . (49)

Assume w.l.o.g. t1 > t2 and use the Cauchy–Schwarz inequality in the last in-
equality to obtain

E [W (t1, y1)−W (t2, y2)]
2 = V ar(W (t1, y1))+V ar(W (t2, y2))−2Cov(W (t1, y1),W (t2, y2))

= t1r(y1, y1)+ t2r(y2, y2)−2min(t1, t2)r(y1, y2)

= (t1− t2)r(y1, y1)+ t2 {r(y2, y2)−2r(y1, y2)+ r(y1, y1)}
≤ C {|t1− t2|+ |y1− y2|}
≤ √2C

{
|t1− t2|2+|y1− y2|2

}1/2

=: ϕ2
(∥∥∥∥( t1

y1

)
−
(

t2
y2

)∥∥∥∥
2

)
,

i.e., ϕ(r)=√2C
√

r . Next, define

Dj := [t0,1]×
[
ϑe−( j+1),ϑe− j

]
;

�2
j := sup

(t,y)∈Dj

E [W (t, y)]2 = sup
y∈[ϑe−( j+1),ϑe− j ]

r(y, y)
(49)≤ Cϑe−( j+1),

λj := ϑe−( j+1) [e−1],
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so that∫ ∞
0
ϕ(
√

2λj 2−x2
)dx ≤ K

√
λj

∫ ∞
0

2−x2/2dx =O
(
ϑ1/2e−

1
2 ( j+1)

)
,

and apply Lemma 2.1 of Lin and Choi (1999) to get, using ν < 1
2 or ν = 1

2 and
μ > 1/2 from (14),

P

⎧⎪⎨⎪⎩ sup
t∈[t0,1]
y∈(0,ϑ]

∣∣∣∣W (t, y)

q(y)

∣∣∣∣> ε
⎫⎪⎬⎪⎭

≤
∞∑

j=0

P

⎧⎪⎪⎨⎪⎪⎩ sup
t∈[t0,1]

y∈(ϑe−( j+1),ϑe− j ]
|W (t, y)|> ε

(
ϑe−( j+1)

)ν ∣∣∣log(ϑe−( j+1))
∣∣∣μ
⎫⎪⎪⎬⎪⎪⎭

≤ K
∞∑

j=0

exp

⎧⎨⎩−1

2

(
ε
(
ϑe−( j+1)

)ν ∣∣log(ϑe−( j+1))
∣∣μ

�j + (2
√

2+2)K1
∫∞

0 ϕ(
√

2λj 2−x2
)dx

)2
⎫⎬⎭

≤ K
∞∑

j=0

exp

{
−K1

(
ϑe−( j+1)

)2ν−1 ∣∣∣log(ϑe−( j+1))
∣∣∣2μ}

≤ KϑK2

∞∑
j=0

exp{−K2} j+1 −→
(ϑ↓0)

0, (50)

by boundedness of the sum. �

PROPOSITION 2. Suppose q(·) and W (·, ·) are as in Theorem 5. Then

lim
ϑ↓0

sup
t∈[t0,1]
y∈(0,ϑ]

∣∣∣∣W (t, y)

q(y)

∣∣∣∣ a.s.= 0.

Proof. The proof of (50) reveals that by choosing ϑ = ϑn = n−2/K2 one obtains

∞∑
n=1

P

⎧⎪⎨⎪⎩ sup
t∈[t0,1]
y∈(0,ϑn]

∣∣∣∣W (t, y)

q(y)

∣∣∣∣> ε
⎫⎪⎬⎪⎭<∞,

which implies by the Borel–Cantelli lemma that, a.s.,

lim
ϑ↓0

sup
t∈[t0,1]
y∈(0,ϑ]

∣∣∣∣W (t, y)

q(y)

∣∣∣∣= limsup
ϑ↓0

sup
t∈[t0,1]
y∈(0,ϑ]

∣∣∣∣W (t, y)

q(y)

∣∣∣∣= 0,

because ε > 0 was arbitrary. �
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Proof of Theorem 1. By the proof of Theorem 3.1 in Drees (2000) (C1)–(C4)
imply (U1)–(U3) for Ui := F(Xi )∼ U [0,1]. Hence, noting that

Xi > U

(
n

ky

)
⇐⇒ Ui > 1− k

n
y,

we obtain from Theorem 5 that
√

k

q(y)

⎛⎝1

k


nt�∑
i=1

I{
Xi>U

(
n
ky

)}− ty

⎞⎠ D−→
(n→∞)

1

q(y)
W (t, y) in D2. (51)

Applying the continuous mapping theorem to (51), we get

√
k

q(y)

⎛⎜⎜⎜⎜⎝
1
k

∑
nt�
i=1 I{

Xi>U
(

n
ky

)}− t y

1
k

∑n
i=
nt�+1 I{

Xi>U
(

n
ky

)}− (1− t)y

1
k

∑
n(t+t0)�
i=
nt�+1 I{

Xi>U
(

n
ky

)}− t0y

⎞⎟⎟⎟⎟⎠ D−→
(n→∞)

1

q(y)

⎛⎝ W (t, y)
W (1, y)−W (t, y)

W (t + t0, y)−W (t, y)

⎞⎠

in D3([t0,1− t0]× [0, y0+ δ]). By Skorohod’s representation theorem (cf., e.g.,
Wichura, 1970, Theorem 1), we can pretend that this convergence holds almost
surely on a suitable probability space:

sup
t∈[t0,1−t0]
y∈(0,y0+δ]

1

q(y)

∣∣∣∣∣∣∣∣∣∣
√

k

⎛⎜⎜⎜⎜⎝
1
k

∑
nt�
i=1 I{

Xi>U
(

n
ky

)}− ty

1
k

∑n
i=
nt�+1 I{

Xi>U
(

n
ky

)}− (1− t)y

1
k

∑
n(t+t0)�
i=
nt�+1 I{

Xi>U
(

n
ky

)}− t0y

⎞⎟⎟⎟⎟⎠
−
⎛⎝ W (t, y)

W (1, y)−W (t, y)
W (t + t0, y)−W (t, y)

⎞⎠∣∣∣∣∣∣ a.s.−→
(n→∞) 0. (52)

(Note that the limits are continuous, hence convergence is uniform.) It remains
to show that U

( n
ky

)
can be replaced by y−γU

( n
k

)
in (52). For brevity we carry

out the steps for the first component of (52) only (the others being dealt with
similarly). Similarly as in the proof of Corollary 3 in Einmahl et al. (2016) we set

yn := n

k

[
1− F

(
y−γU

(n

k

))]
, y ∈ (0, y0+ δ] ,

so that by (C4) (cf. Einmahl et al., 2016, p. 46)

sup
y∈(0,y0+δ]

∣∣∣∣ yn− y

A(n/k)y

∣∣∣∣ =(n→∞)O(1). (53)

Inserting yn for y in the first component of (52) gives

sup
t∈[t0,1−t0]
y∈(0,y0+δ]

1

q(yn)

∣∣∣∣∣∣√k

⎛⎝1

k


nt�∑
i=1

I{Xi>y−γU( n
k )} − tyn

⎞⎠−W (t, yn)

∣∣∣∣∣∣ a.s.−→
(n→∞) 0. (54)
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Now we have to show that yn can be replaced with y at the three occurences in
(54). For q(·), by the first property in (14), it suffices to note that (using yn =

(n→∞)
y(1+o(1)) uniformly in y from (53))

sup
y∈(0,ϑ/2]

∣∣∣∣q(yn)

q(y)

∣∣∣∣ (33)= sup
y∈(0,ϑ/2]

yνn |log yn|μ
yν |log y|μ

= (1+o(1))ν sup
y∈(0,ϑ/2]

∣∣∣∣ log(y)+ log(1+o(1))

log(y)

∣∣∣∣μ =
(n→∞) 1+o(1). (55)

Combine (53) with
√

k A(n/k)→ 0 to see that tyn may be replaced with ty. Fi-
nally, by a simple (uniform) continuity argument we have that for all ϑ > 0

sup
t∈[t0,1−t0]
y∈[ϑ,y0+δ]

1

q(y)
|W (t, yn)−W (t, y)| a.s.−→

(n→∞) 0. (56)

Further, by Proposition 2, (53) and (55)

sup
t∈[t0,1−t0]

y∈(0,ϑ]

1

q(y)
|W (t, yn)−W (t, y)| ≤ sup

t∈[t0,1−t0]
y∈(0,ϑ]

q(yn)

q(y)

∣∣∣∣W (t, yn)

q(yn)

∣∣∣∣
+ sup

t∈[t0,1−t0]
y∈(0,ϑ]

∣∣∣∣W (t, y)

q(y)

∣∣∣∣ a.s.−→ 0,

as ϑ ↓ 0 and n→∞, justifying the replacement in W (·, ·). �

Proof of Corollary 1. We will only prove the convergence of the first com-
ponent in (16), the others being proved similarly. Theorem 1 implies (because
y0 ≥ 1)

sup
t∈[t0,1−t0]

y∈[1/2,1+δ]

∣∣∣∣∣∣√k

⎧⎨⎩ 1

kt


nt�∑
i=1

I{Xi>y−γU (n/k)} − y

⎫⎬⎭− W (t, y)

t

∣∣∣∣∣∣ a.s.−→
(n→∞) 0.

It follows exactly as in the proof of Einmahl et al. (2016, Theorem 3) using a
generalized Vervaat lemma (cf. Einmahl, Gantner and Sawitzki, 2010, Lemma 5)
that

sup
t∈[t0,1−t0]
y∈[1/2,1]

∣∣∣∣∣√k

{(
Xk(0, t, y)

U(n/k)

)−1/γ

− y

}
+ W (t, y)

t

∣∣∣∣∣ a.s.−→
(n→∞) 0, (57)

so in particular

sup
t∈[t0,1−t0]

∣∣∣∣∣√k

{(
Xk(0, t,1)

U(n/k)

)−1/γ

−1

}
+ W (t,1)

t

∣∣∣∣∣ a.s.−→
(n→∞) 0. (58)
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Replacing y with yn := y Xk(0, t,1)/U(n/k) in Theorem 1 implies, using (58),

sup
t∈[t0,1−t0]

y≥y−γ0

1

q
(

y−1/γ
n

)
∣∣∣∣∣∣√k

⎧⎨⎩1

k


nt�∑
i=1

I{Xi>y Xk(0,t,1)} − y−1/γ
n t

⎫⎬⎭
−W

(
t, y−1/γ

n

)∣∣∣ a.s.−→
(n→∞) 0. (59)

Now we show that y−1/γ
n can be replaced by y−1/γ at the three occurrences in

(59). By the first property in (14), we need only justify the replacement in q(·) for
large y. Since by (58) y−1/γ

n
a.s.=

(n→∞) y−1/γ (1+o(1)) uniformly in t and y, it fol-

lows as in (55) that

sup
t∈[t0,1−t0]
y≥(ϑ/2)−γ

∣∣∣∣∣ q(y−1/γ
n )

q
(
y−1/γ

) ∣∣∣∣∣ a.s.=
(n→∞)

1+o(1).

As for W (·, ·), the same arguments as in (56) and below apply. Last, by (58)
uniformly in t (and y)

1

q
(
y−1/γ

) t
√

k
(

y−1/γ
n − y−1/γ

)
a.s.=

(n→∞) −
1

q
(
y−1/γ

) y−1/γW (t,1)+o(1).

Making the replacements in (59) and multiplying through with k/
kt� yields

sup
t∈[t0,1−t0]

y≥y−γ0

1

q
(
y−1/γ

) ∣∣∣∣√k

(
Fn(0, t, y)− kt


kt� y−1/γ
)

− k


kt�
(

W
(

t, y−1/γ
)
− y−1/γW (t,1)

)∣∣∣∣ a.s.−→
(n→∞) 0.

Using k

kt� = 1/t+O(1/k) uniformly in t and Proposition 2, the conclusion fol-

lows. �

Proof of Proposition 1. We will derive convergence of t
√

k(γ̂W L S(0, t)− γ )
from the first component of (16), the convergences of (1− t)

√
k(γ̂W L S(t,1)−

γ ), t0
√

k(γ̂W L S(t, t+ t0)−γ ) following similarly from the other components. The
required joint convergence then follows from the joint convergence in (16).

Noting that for i = 0,1, . . . ,
kt�−1

Fn(0, t, y) = 
kt�− i


kt� constant on y ∈
[

X
nt�−
kt�+i :
nt�
X
nt�−
kt�:
nt�

,
X
nt�−
kt�+i+1:
nt�

X
nt�−
kt�:
nt�

)
and

Fn(0, t, y) = 0 for y ≥ X
nt�:
nt�
X
nt�−
kt�:
nt�

,
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it is straightforward to check with (W1) that∫ ∞
1

{∫ Fn(0,t,y)

0
J (s)ds

}
dy

y
=

kt�−1∑

i=0

{∫ 
kt�−i

kt�

0
J (s)ds

}

× log

(
X
nt�−
kt�+i+1:
nt�
X
nt�−
kt�+i:
nt�

)
= γ̂W L S(0, t).

Using (W2), (W3) and partial integration it is further easy to establish that∫ ∞
1

{∫ y−1/γ

0
J (s)ds

}
dy

y
= γ

∫ 1

0

{∫ z

0
J (s)ds

}
dz

z
= γ.

Combine these two facts to obtain

√
k(γ̂W L S(0, t)−γ )=

√
k
∫ ∞

1

{∫ Fn(0,t,y)

0
J (s)ds−

∫ y−1/γ

0
J (s)ds

}
dy

y

= γ√k
∫ 1

0

{∫ Fn(0,t,u−γ )

0
J (s)ds−

∫ u

0
J (s)ds

}
du

u
. (60)

Write the result of Corollary 1 as

sup
t∈[t0,1−t0]

u∈(0,1]

1

q (u)

∣∣∣∣√k
(
Fn(0, t,u−γ )−u

)− 1

t
[W (t,u)−uW (t,1)]

∣∣∣∣ a.s.−→
(n→∞) 0. (61)

Using the mean value theorem for the function x �→ ∫ x
0 J (s)ds, we get for some

ξ = ξu ∈ (0,1)∫ Fn(0,t,u−γ )

0
J (s)ds =

∫ u

0
J (s)ds+ (Fn(0, t,u

−γ )−u
)

J
(
u+ ξ (Fn(0, t,u

−γ )−u
))
.

Thus, from (60) and (61), uniformly in t ∈ [t0,1− t0]

√
k(γ̂W L S(0, t)−γ )= γ

√
k
∫ 1

0

(
Fn(0, t,u

−γ )−u
)

J
(
u+ ξ (Fn(0, t,u

−γ )−u
)) du

u

a.s.= γ

t

∫ 1

0
(W (t,u)−uW (t,1)+o(1)q(u))

× J
(
u+ ξ (Fn(0, t,u−γ )−u

)) du

u
(62)

−→
(n→∞)

γ

t

∫ 1

0
(W (t,u)−uW (t,1)) J (u)

du

u

(W1)= γ

t

∫ 1

0
W (t,u)J (u)

du

u
.
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Note that the integral in (62) is well-defined because of Proposition 2.
By calculating covariances of γ

∫ 1
0 W (t,u)J (u) du

u , we conclude (going back
to the original probability space)

t
√

k(γ̂W L S(0, t)−γ ) D−→
(n→∞) σγ̂W L S ,γ W (t) in D[t0,1− t0],

where W (·) is a standard Brownian motion and

σ 2
γ̂W L S ,γ

= γ 2
∫ 1

0

∫ 1

0

r(x, y)

xy
J (x)J (y)dxdy. �

Proof of Theorem 2. We only prove part (a), the proof of (b) being similar.
Because t0 can be chosen arbitrarily close to 0 in (23), similarly as in the proof of
Drees (2003, Theorem 2.3), one obtains using a diagonal argument and continuity
of W (·) that in probability

sup
t∈[tn,1]

∣∣∣∣√k (γ̂ (0, t)−γ )−σγ̂ ,γ W (t)

t

∣∣∣∣ −→(n→∞) 0

for some sequence tn ↓ 0 tending to zero not too fast, whence with
t̃n := 
ntn�+1

n (≥ tn)

k

n

n∑
i=
ntn�+1

[γ̂ (0, i/n)− γ̂ (0,1)]2 =
∫ 1

t̃n
k (γ̂ (0, t)− γ̂ (0,1))2 dt

=
∫ 1

t̃n

[√
k (γ̂ (0, t)−γ )−√k (γ̂ (0,1)−γ )

]2
dt

= σ 2
γ̂ ,γ

∫ 1

t̃n

(
W (t)

t
−W (1)

)2

dt (1+oP(1))

= σ 2
γ̂ ,γ

∫ 0

log(̃tn)

(
W (ey)

ey/2
− ey/2W (1)

)2

dy(1+oP(1)), (63)

using the substitution t = ey (dt = eydy) in the fourth equality.
Now observe that W (e·)/e·/2 is a zero-mean Gaussian process with covariance

function

E

[
W (ex )

ex/2

W (ey)

ey/2

]
= e−(x+y)/2 min(ex ,ey)= emin(x−y,y−x)/2 = e−|x−y|/2

only depending on x− y, which implies (cf. Cramér and Leadbetter, 1967, p. 122)
strict stationarity. By an application of the Birkhoff–Khintchine ergodic theorem
(cf. Cramér and Leadbetter, 1967, p. 151) we obtain

1

log(1/̃tn)
σ 2
γ̂ ,γ

∫ 0

log(̃tn)

(
W (ey)

ey/2

)2

dy
a.s.−→

(n→∞) σ
2
γ̂ ,γE

(
W (ey)

ey/2

)2

= σ 2
γ̂ ,γ . (64)

Noting that
∫ 0

log( t̃n)

(
ey/2W (1)

)2
dy =O(1), the conclusion follows from (63) and

(64). �

https://doi.org/10.1017/S0266466616000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000189


950 YANNICK HOGA

Proof of Theorem 3. We will focus on the result under H>
1 (i.e., γpre > γpost,

meaning heavier prebreak tails) as the other can be established similarly. Write
Xi = Xi,n and y0 = y0,pre for brevity. Then Theorem 1 implies for some δ̃ > 0
that may change from line to line in this proof

1

q (y)

√
kpre

⎛⎝ 1

kpre


nt�∑
i=1

I{Xi>y−γpreUpre(n/kpre)} − yt

⎞⎠ D−→
(n→∞)

Wpre (t, y)

q (y)
, (65)

in D([t0, t∗]× [0, y0+ δ̃]) and for the postbreak r.v.s

sup
y≥y

−γpre
0 −δ̃

1

q
(
y−1/γpost

)
∣∣∣∣∣∣√kpost

⎛⎝ 1

kpost

n∑
i=
nt∗�+1

I{Xi>yUpost(n/kpost)} − y−1/γpost(1− t∗)

⎞⎠
−
(

Wpost

(
1, y−1/γpost

)
−Wpost

(
t∗, y−1/γpost

))∣∣∣ a.s.−→
(n→∞)

0. (66)

Inserting yn := yUpre(n/kpre)/Upost(n/kpost) for y in (66) and recalling Proposi-
tion 2 gives

sup
y≥y

−γpre
0 −δ̃

1

q
(

y
−1/γpost
n

)
×
∣∣∣∣∣∣√kpost

⎛⎝ 1

kpost

n∑
i=
nt∗�+1

I{Xi>yUpre(n/kpre)} − y
−1/γpost
n (1− t∗)

⎞⎠
∣∣∣∣∣∣ a.s.−→
(n→∞)

0. (67)

Further, y
−1/γpost
n (1− t∗) may be omitted in (67), since, by (27) and (33), for n

large

√
kpost sup

y≥y
−γpre
0 −δ̃

∣∣∣∣∣∣ y
−1/γpost
n

q
(

y
−1/γpost
n

)
∣∣∣∣∣∣ ≤√kposty

−1/(2γpost)
n =

(n→∞) o(1).

Using kpost = O (kpre
)

and, by (14) and (27), for n sufficiently large

q
(
y
−1/γpost
n

)
/q
(
y−1/γpre

)≤ 1, this yields

sup
y≥y

−γpre
0 −δ̃

1

q
(
y−1/γpre

)
∣∣∣∣∣∣√kpre

⎛⎝ 1

kpre

n∑
i=
nt∗�+1

I{Xi>yUpre(n/kpre)}
⎞⎠∣∣∣∣∣∣ a.s.−→

(n→∞) 0.

Going back to the original probability space we obtain by non-negativity of the
indicators√

kpre

q (y)

⎛⎝ 1

kpre


nt�∑
i=
nt∗�+1

I{Xi>y−γpreUpre(n/kpre)}

⎞⎠ D−→
(n→∞) 0

in D([t∗,1− t0]× [0, y0+ δ̃]). (68)
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Hence, letting k = kpre for brevity in the rest of the proof, we get from (65) and
(68) that
√

k

q (y)

⎛⎝1

k


nt�∑
i=1

I{Xi>y−γpreUpre(n/k)
}− y−1/γpre min(t∗, t))

⎞⎠ D−→
(n→∞)

Wpre
(
min(t∗, t), y

)
q (y)

in D([t0,1− t0]× [0, y0 + δ̃]) or, invoking a Skorohod construction again and
putting tmin :=min(t, t∗),

sup
t∈[t0,1−t0]
y∈(0,y0+δ̃]

1

q (y)

∣∣∣∣∣∣√k

⎛⎝ 1

ktmin


nt�∑
i=1

I{Xi>y−γpreUpre(n/k)} − y

⎞⎠− Wpre (tmin, y)

tmin

∣∣∣∣∣∣ a.s.−→
(n→∞) 0.

(69)

Then, similarly as for (57), it follows that

sup
t∈[t0,1−t0]
y∈[1/2,y0]

∣∣∣∣∣∣√k

⎛⎝( Xk
(
0, t, tmin

t y
)

Upre(n/k)

)−1/γpre

− y

⎞⎠+ Wpre (tmin, y)

tmin

∣∣∣∣∣∣ a.s.−→
(n→∞) 0,

which, for y = t/tmin ≤ (1− t0)/t0 = y0, implies

sup
t∈[t0,1−t0]

∣∣∣∣∣∣√k

((
Xk (0, t,1)

Upre(n/k)

)−1/γpre

− t

tmin

)
+

Wpre

(
tmin,

t
tmin

)
tmin

∣∣∣∣∣∣ a.s.−→
(n→∞) 0. (70)

Substituting
(

Xk (0,t,1)
Upre(n/k) y

)−1/γpre
(y ∈ [1− δ̃,∞)) for y in (69) thus yields

sup
t∈[t0,1−t0]

y≥1−δ̃

1

q

((
Xk(0,t,1)
Upre(n/k) y

)−1/γpre
)

∣∣∣∣∣∣√k

⎛⎝ 1

ktmin


nt�∑
i=1

I{Xi>y Xk(0,t,1)} − y−1/γpre

(
Xk (0, t,1)

Upre(n/k)

)−1/γpre

⎞⎠
− 1

tmin
Wpre

(
tmin,

(
Xk (0, t,1)

Upre(n/k)
y

)−1/γpre
)∣∣∣∣∣ a.s.−→

(n→∞) 0. (71)

As in the proof of Corollary 1 it follows from (70) and (71) that

sup
t∈[t0,1−t0]

y≥1

1

q

((
y t

tmin

)−1/γpre
)
∣∣∣∣∣∣√k

⎛⎝ 1

ktmin


nt�∑
i=1

I{Xi>y Xk(0,t,1)} − y−1/γpre
t

tmin

⎞⎠
− 1

tmin

[
Wpre

(
tmin, y−1/γpre

t

tmin

)
− y−1/γpreWpre

(
tmin,

t

tmin

)]∣∣∣∣ a.s.−→
(n→∞) 0,
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or, using 0≤ q
(
y−1/γpre

)
/q
((

y t
tmin

)−1/γpre
)≤ q

(
y−1/γpre

)
/q
((

y 1−t0
t0

)−1/γpre
)≤ K

for y sufficiently large, because y �→ q(y−1/γpre) is RV−ν/γpre (recall (33)),

sup
t∈[t0,1−t0]

y≥1

1

q
(
y−1/γpre

)
∣∣∣∣∣∣√k

⎛⎝ 1

kt


nt�∑
i=1

I{Xi>y Xk(0,t,1)}− y−1/γpre

⎞⎠
− 1

t

[
Wpre

(
tmin, y−1/γpre

t

tmin

)
− y−1/γpreWpre

(
tmin,

t

tmin

)]∣∣∣∣ a.s.−→
(n→∞) 0.

Using this result the convergence in (29) can be checked easily by following the
derivations in Examples 3–5. �

Proof of Corollary 3. For (a) ((b) being proved similarly) Theorem 3 implies
the convergence in (29), where by calculating covariances the following distribu-
tional equality holds

{
Bpre(t)

}
t∈[0,t∗]

D= {σγ̂ ,γpre W (t)
}

t∈[0,t∗] , (72)

where σ 2
γ̂ ,γpre

is either (18), (20), or (22) with γ , r(·, ·) replaced by γpre, rpre(·, ·)
and W (·) is a standard Brownian motion. Write, using t̃n = 
ntn�+1

n as defined in
the proof of Theorem 2,∫ 1

t̃n
k (γ̂ (0, t)− γ̂ (0,1))2 dt

=
∫ t∗

t̃n
k (γ̂ (0, t)− γ̂ (0,1))2 dt+

∫ 1

t∗
k (γ̂ (0, t)− γ̂ (0,1))2 dt =: An+ Bn.

By following the steps leading to (63) we get from (29)

1

log(1/̃tn)
An = 1

log(1/̃tn)

∫ t∗

t̃n

(
Bpre(t)

t
− Bpre(1)

)2

dt (1+oP(1))

(72)= 1

log(1/̃tn)

∫ t∗

t̃n

(
σγ̂ ,γpre

W (t)

t
− Bpre(1)

)2

dt (1+oP(1))

= 1

log(1/̃tn)

∫ log(t∗)

log(̃tn)

(
σγ̂ ,γpre

W (ey)

ey/2
− ey/2Bpre(1)

)2

dy(1+oP(1)).

By slightly adapting the arguments in the proof of Theorem 2 this term converges
in probability to σ 2

γ̂ ,γpre
. Furthermore Bn/ log(1/̃tn)=OP(1) log−1(1/̃tn)= oP(1)

by (29). The result follows.
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For the consistency results in (c) and (d) combine (a) and (b) with the conclu-
sion of Theorem 3 to deduce for (e.g.) Qseq

Qseq ≥ 1

σ̂ 2
γ̂ ,γ

{
t∗(1− t∗)

√
k
(
γ̂
(
0, t∗

)− γ̂ (t∗,1))}2

=
(

1

σ 2
γ̂ ,max(γpre,γpost)

+oP (1)

)
k

{
t∗(1− t∗)︸ ︷︷ ︸

>0

(
γ̂
(
0, t∗

)︸ ︷︷ ︸
P−→γpre

− γ̂ (t∗,1)︸ ︷︷ ︸
P−→γpost

)}2
P−→

(n→∞)∞.

Note that assumption k = kpre = kpost was needed to deduce via (the equivalents
of) (17)

γ̂
(
0, t∗

) P−→ γpre and γ̂
(
t∗,1

) P−→ γpost,

where by definition of Qseq both extreme value index estimators rely on the same
sequence k.

For the inconsistency in (d) of the test based on Qrec (the proof for Q←rec is
similar and hence omitted) combine the result of Theorem 3 with the continuous
mapping theorem and part (a) of Corollary 3 to deduce

Qrec
D−→

(n→∞)
1

σ 2
γ̂ ,γpre

sup
t∈[t0,1−t0]

{
Bpre(t)− t Bpre(1)

}2
,

whence Qrec =OP(1), n→∞. �
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