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Abstract
Face-to-face interactions in social groups are a central aspect of human social lives. Although the compo-
sition of such groups has received ample attention in various fields—e.g., sociology, social psychology,
management, and educational science—their micro-level dynamics are rarely analyzed empirically. In
this article, we present a new statistical network model (DyNAM-i) that can represent the dynamics of
conversation groups and interpersonal interaction in different social contexts. Taking an actor-oriented
perspective, this model can be applied to test how individuals’ interaction patterns differ and how they
choose and change their interaction groups. It moves beyond dyadic interaction mechanisms and trans-
lates central social network mechanisms—such as homophily, transitivity, and popularity—to the context
of interactions in group settings. The utility and practical applicability of the new model are illustrated in
two social network studies that investigate face-to-face interactions in a small party and an office setting.

Keywords: Network models; social interactions; group interactions; statistical models; social sensors; relational events; actor-
oriented models.

1. Introduction
The social occasions when people gather around particular events, such as weddings, dinner par-
ties, joint activities, lectures, or conferences, mark the times and places when they escape their
routine everyday lives and interact with each other. Here, experiences are shared, common iden-
tities confirmed, informal hierarchies negotiated, and collective memories created (A. Goffman,
2019; E. Goffman, 1967; Simmel &Hughes, 1949;Wynn, 2016). Unsurprisingly, individuals invest
a considerable amount of time and resources into joining or organizing social gatherings. Some
social occasions even mark turning points in the course of individuals’ personal and professional
lives (Goffman, 2019).

The social occasion has a further unique role in defining individuals’ social lives, as it is the
birthplace of many social relations that have a crucial and lasting impact on their life courses. For
example, family routines of repeated interactions, such as shared mealtimes, are paramount in the
development of emotional bonds between parents and their children (Spagnola & Fiese, 2007).
Outside of the home, schoolyard interactions and extracurricular activities play a crucial role in
the organization of children’s social groups (Moody, 2001). In the professional lives of adults,
meetings within formal settings such as offices and conferences become instrumental in providing
individuals the means to achieve their professional goals. For example, exchanges during interna-
tional conferences might promote better collaboration between scientists (Wang et al., 2017) or
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facilitate political negotiations between different countries representatives (Schroeder & Lovell,
2012). Smaller gatherings such as coffee breaks or meetings in an office allow employees of the
same organization to share knowledge and support each other (Lazega et al., 2006;Wineman et al.,
2014). Such interactions eventually contribute to defining families’ identities (Spagnola & Fiese,
2007), social groups composition (Lazarsfeld & Merton, 1954; Moody, 2001), or organizational
structures (Allen et al., 2007; Lazega et al., 2006). Following its importance for understand-
ing human relationships, this paper proposes a statistical framework to analyze dynamic group
interactions occurring during social occasions.

1.1 Studying group-based interactions
The importance of group-based gatherings and interactions is a consistent theme in the litera-
ture on network formation. Numerous social network theories underline the influence of social
occasions on social organization (Carley & Krackhardt, 1996; Fischer, 1982; Lazarsfeld &Merton,
1954; Lazega et al., 2006; Moody, 2001) and often rely, implicitly or explicitly, on the occurrence of
face-to-face interactions to explain the formation of social ties. Social occasions are also crucial for
the maintenance of ties, as people even meet most of their existing social contacts only in group-
based settings. Dyadic social interactions are indeed often reserved for their innermost social
circles, composed of romantic partners, family, and close friends (Block, 2018; Fischer, 1982).
Umbrella concepts for such group-based meetings that only differ in nuances are social circles
(Simmel & Hughes, 1949), social foci (Feld, 1982), social settings (Pattison & Robins, 2002), or
social situations (Block, 2018).

While such approaches acknowledge the importance of interactions within social settings of
individuals, they implicitly assume that everybody within this setting interacts with all others
equally. Thus, the further structuring of interactions within these occasions is not analyzed.
However, social interactions are driven by two complementary processes: a “meeting” process
that brings different individuals together within specific occasions and a “mating” process that
defines how these individuals will interact within these occasions (Verbrugge, 1977). Applied to
our case, most network research considers individuals “meeting” within the same social occasions
but disregards the “mating” dimension of these situations. In our model, we explicitly model the
“mating” dimension; that is, we aim to analyze how individuals move between interactions within
social gatherings. By doing so, we can examine whether individual interaction dynamics have
similar patterns as those observed in more durable ties, such as homophily or transitivity.

Interactions within groups have nonetheless received scholarly attention. Micro-sociological
and social psychological theories have stressed the importance of social processes occurring dur-
ing face-to-face interactions. On the one hand, theories by Goffman (1967) or Collins (2014) on
face-to-face interactions and interaction rituals have defined a wide range of social behaviors as
the elementary bricks of social interactions. For example, Goffmans theory explores the com-
plex interdependencies between basic signals such as glances or gestures, as well as more complex
actions, such as adaptation to conversational norms or turn-taking, among different individuals
interacting in a group.

On the other hand, social psychologists have emphasized the idea that some social processes
might result from “group dynamics” (as coined by Lewin, 1947). Such processes can help us under-
stand how social interactions in and between social groups lead to individual and group-level
outcomes. Most notably, Tajfel’s social identity theory and the minimal group paradigm (Tajfel
et al., 1979; Tajfel, 1970) posit that individuals swiftly categorize themselves and others in such
situations into social groups that guide their behavior toward in and out-group members. Other
influential approaches focus more on how individuals engage in social interactions with groups,
such as Bales (1950)’s interaction process analysis. In these approaches, not only the social dynam-
ics of groups are of interest but also how individual characteristics affect the formation of social
interactions in groups.
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1.2 Motivation for a newmodel
Although interest in social interactions within group-based settings is well established, researchers
have long-lackedmethods to collect high-resolution data on such interactions. Recent advances in
current sensor technologies, such as Bluetooth or RFID badges (Cattuto et al., 2010; Elmer et al.,
2019), sociometric badges (Olguín et al., 2008; Pentland, 2008), or Wi-Fi traces (Hong et al., 2016;
Sapiezynski et al., 2015), now provide new opportunities to measure the occurrence as well as
the composition and evolution of face-to-face interactions. However, previous analyses of these
data have rarely taken the group nature of face-to-face interactions into account, i.e., that most
conversations and interactions at social occasions happen in multi-person cliques, with some rare
exceptions (Sekara et al., 2016). Moreover, most network methods consider interactions as dyadic
events rather than dynamic “multi-person ties”.

The current paper addresses this gap by providing a statistical model that can express the social
mechanisms underlying face-to-face interactions between two or more individuals in larger social
settings. Drawing from relational event models (Butts, 2008; Stadtfeld, 2012), and in particular
from the Dynamic Network ActorModel (DyNAM, Stadtfeld & Block, 2017; Stadtfeld et al., 2017),
we propose a model that can take into account the particular format and the interdependencies of
such data. These include interdependencies between individuals (i.e., interactions between indi-
viduals depend on the interaction patterns of other individuals), between time points (i.e., current
interactions depend on previous interactions), and between group members (i.e., interactions of
an individual in a group depend on the group’s composition). To this end, we extend the defini-
tions of classic mechanisms commonly observed in social networks based on pairwise ties to the
group case. For instance, homophily and transitivity are relevant in group-based interactions but
require elaboration beyond dyadic or triadic configurations.

The remainder of this article is structured as follows: Section 2 defines the statistical model;
Section 3 discusses the implementation of theoretical mechanisms. Estimation and model imple-
mentation are outlined in Section 4. We present an example application to a data set of social
interactions collected via video recordings during a social gathering in Section 5 and a larger case
study on daily interactions in an office setting in Section 6. The article concludes with a brief
discussion of the model in relation to the literature and future research avenues.

2. Statistical model
2.1 Previous models
The method presented here builds upon a rich tradition of statistical frameworks that aim at
explaining the emergence and dynamics of social networks (for a review, see Robins, 2015).
Modeling social network ties as dependent variables require to pay particular attention to
dependencies among observations when examining network mechanisms such as reciprocity,
homophily, transitivity, or preferential attachment. Frequently applied statistical network models
are Exponential Random Graph Models (ERGMs, Lusher et al., 2013) and Stochastic Actor-
Oriented Models (SAOMs; Snijders, 1996; Snijders et al., 2010). They explicitly express complex
dependencies between individual and tie variables to draw inference about relations measured at
one or multiple points in time (e.g., friendship and collaboration).

More recently, statistical methods for the analysis of relational events (Butts, 2008) have been
proposed. Relational events are sequences of discrete dyadic events, such as phone calls, social
media activities, or contracts for which exact time-stamped information can be measured. The
first of these models is the Relational Event Model (REM; Butts, 2008) which expresses event
sequences as continuous-time Markov chains, in the tradition of earlier approaches in social
network literature (e.g., Holland & Leinhardt, 1977; Snijders, 1996; Wasserman, 1980).

A number of subsequent models extend the REM (e.g., Brandes et al., 2009; Stadtfeld & Geyer-
Schulz, 2011; Perry & Wolfe, 2013; Marcum & Butts, 2015; Vu et al., 2015; Schecter et al., 2018;

https://doi.org/10.1017/nws.2020.3 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.3


Network Science S7

Amati et al., 2019; Brandenberger, 2019; Lerner & Lomi, 2019; Mulder & Leenders, 2019). The
model introduced in this paper extends the Dynamic Network Actor Model (DyNAM; Stadtfeld
& Block, 2017; Stadtfeld et al., 2017) that formulates an actor-oriented framework for relational
events. In the DyNAM framework, an event is decomposed in first an actor’s decision to send an
event at a certain point in time, and second the decision to send this event to a specific actor. These
two steps define two conditionally independent models called the rate and the choice models. The
new model extends this logic to model face-to-face interactions.

2.2 General logic
Face-to-face interactions are a specific case of relational events that can not only occur dyadically
but also between more than two people. When we speak of groups in this article, we refer to two
or more individuals who are part of the same face-to-face conversation. The first assumption of
this model is that individuals can only be part of one or no group at a time (i.e., membership
in groups is exclusive). A second assumption is that changes in group compositions can be rea-
sonably approximated by sequences of non-simultaneous individual decisions to join and leave
groups. An interaction group forms when at least two individuals meet; actors might join or leave
this group, but it will exist as long as at least two individuals keep interacting.

Conceptually, we can think of group interactions as a two-mode network with a dynamically
changing node set, where the first mode refers to individuals or actors and the second mode to
groups. In our mathematical definitions, the second mode comprises nodes representing interac-
tion groups (i.e., group nodes) as well as nodes representing isolated actors (i.e., isolate nodes). At
any given point in time, each actor is thus affiliated with exactly one node in the second mode.
A new group emerges when one actor decides to start an interaction with another isolated actor.
In this case, these two actors belong to the same group node. While this group node exists, other
isolated actors can similarly join the group. The group dissolves when only two actors belong to it,
and one of them decides to leave. From there, the two actors are only affiliated with an isolate node.

This paper proposes a model that extends the DyNAM framework to explain sequences of
joining and leaving events in the context of group interactions. We call this model DyNAM-i,
the letter i referring to interaction. Following an actor-oriented logic, the model consists of three
steps:

1. The first step describes how individuals who are not part of an interaction (isolates) decide
to join a group or another isolate.

2. The second step describes how individuals who decided to approach a group (step 1)
choose which group or isolate to join.

3. The third step describes how individuals who are part of a group decide to leave the
interaction (and become isolates).

This formulation differs from the original DyNAM definition in three ways. First, a third step
is added to model the end of an interaction, which allows us to explain both its occurrence and its
duration. Second, the sets of actors who can make decisions in steps 1 and 3 are restricted by the
actors’ position in the two-mode network (e.g., only isolates can join a group, only individuals in
a group can leave their group). Third, the mechanisms dictating the choices of actors in step 2 are
no longer defined at a dyadic level, which will become apparent in Section 3.

Themodel aims at explaining sequences of “joining events” and “leaving events” between actors
and groups. A joining event occurs when an actor starts interacting with another actor (hence
creating a new group) or an already existing group of actors. It is defined by the sequence of
steps 1 and 2 of the model. A leaving event occurs when an actor leaves the group she currently
belongs to, which is determined by step 3.
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By modeling the three steps separately, we can test a wide range of hypotheses from social
theories related to individuals’ preferences given available interaction opportunities. Social mech-
anisms can consider individual attributes, group attributes, other social ties (e.g., friendship ties),
and prior changes. By modeling step 1, we can examine how individual characteristics and prior
activities predict individuals’ tendencies to join groups. One can ask, for example, if personality
traits like extraversion explain the preference of not being isolated in the interaction network.
Modeling step 2 allows us to understand how individual characteristics, characteristics of the
group and its members, and prior activities affect how individuals choose a group to join. For
instance, some individuals might prefer to interact in groups with many members of the same
gender (individual-group homophily). Finally, the model for step 3 allows us to test whether indi-
vidual characteristics and group characteristics explain the tendency of individuals to stay in a
conversation or to leave. One could then examine, for example, whether people are more likely to
leave a group interaction in which they have no friends.

2.3 Notation
For the mathematical formulation of the model, we propose the following notation. We consider

I (t)= {1, ..., n(t)}
the set of actors who are present at time t and

G (t)= {1, ...,m(t)}
the set of interaction groups at time t. For better readability, we may omit the indicator t in some
notations below. The interaction network at a given time is denoted by an n(t)×m(t) matrix X(t),
whose elements xi,g(t) equal to one if the actor i is interacting within the group g at time t, and 0
otherwise:

X(t)= [xi,h]i∈I (t),h∈G (t).

X(t) is a two-mode network. At each point in time, we define for I (t) the subset I (0)(t) that
contains all isolated actors (those who are not part of a group interaction) and the subsets I (g)(t)
for actors who are members of the groups g ∈ G (t). The setI (t) is, therefore, the (disjoint) unions
of these sets:

I (t)=
⋃

0≤h≤m(t)
I (k)(t),

i ∈ I (0)(t)⇔ ∀h ∈ G (t) : xi,h = 0

i ∈ I (g) ⇔ xi,g = 1

∀h, h′ : I(h) ∩ I(h
′) = {}, if h 	= h′

In order to account for the history of events, we also define the network of past interactions as
an n(t)× n(t) matrix Xpast(t), with xpasti,j (t) indicating the number of interactions in which both
actors i and j participated before time t. Additional networks of past interactions may express
past interactions that occurred within a specific time window δ and include all interactions in the
interval [t − δ, t].

Xpast(t)= [xpasti,j ]i,j∈I (t)

Each actor can be characterized by a set of p stable or changing attributes (e.g., gender,
personality traits, current mood) that define the actor attribute matrix

A(t)= [ai,h]i∈I (t),1≤h≤p
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containing all p attributes of actors at time t. Similarly, a group attribute matrix can be defined to
represent the context in which groups form or the content of the interactions within them.

Additional relational information relevant to the analysis, such as other interpersonal ties
between actors, can be defined as n(t)× n(t) matrices denoted by:

Z(1)(t), Z(2)(t), . . .
The dependent variable of our model consists of a sequence � of joining and leaving events

between actors and interaction groups. An event ω is defined as the quadruplet
ω = (tω, iω, gω, dω)

with tω being the time at which the event occurs, iω the actor initiating the event, gω the group
that i is joining or leaving, and dω the description of the event, i.e., a boolean indicating whether
ωi is a joining event (dω = 1) or leaving event (dω = 0). The dependent variable explained by the
model is the complete, ordered sequence of all observed events in the data:

� = {ωk}k.

2.4 Model definition
In order to define a probability model, we consider a continuous-timeMarkov chain similar to the
one presented by Stadtfeld & Block (2017). This Markov process operates on the state space y that
represents all possible situations that can exist among a given set of actors. To fulfill the Markov
criterion, the process state y(t) must contain all information relevant for modeling the probability
of an event to occur at time t. It is defined as a discrete vector:

y(t)=
(
I (t), G (t), X(t), Xpast(t),A(t), B(t), Z(1)(t), Z(2)(t), ...

)
(1)

It should contain information on the individuals present, the existing groups, and the current
group partition. Depending on the mechanisms of interest, it can also include information on
past interactions, individual or group attributes, and relational ties.

The stochastic process is entirely defined by the transition rate matrix Q whose elements
q(y1 → y2) describe the rate of the transitions from a state y1 to another state y2 and therefore
specify the occurrence and timing of interaction events. The use of a Markov process simplifies
the definition of the probability model for events ω to occur andmake the estimation of the model
parameters tractable.

A graphical representation of the modeled process is shown in Figure 1. It follows the concep-
tual three-step logic outlined above. We define τ

joining
i and τ

leaving
i as Poisson rates for joining a

group or an isolate (step 1) and leaving a group (step 3), respectively. Step 1 and 3 will be referred
to as the rate model (green box in Figure 1). We define pi,g as the probability for an actor i to
choose a group g among all options available (step 2). We will refer to this as the choice model
(blue box in Figure 1).

For a given event ω, with the boolean dω indicating whether it is a joining or leaving event, let
the previous process state be y0, and yω the process state once updated according to the event ω.
The transition rate from y0 to yω is defined by a combination of the three sub parts:

q(y0 → yω)= dωτ
joining
iω piω ,gω + (1− dω)τ

leaving
iω ,gω (2)

This combination of three sub processes makes specific assumptions. The timing of joining
events (step 1) is assumed to be conditionally independent of the actors’ choices (step 2). The
two timing processes (step 1 and step 3) are also assumed to be conditionally independent given
the process state y0. Thereby, we can define the process as a composite Poisson process, in which
waiting times before joining or leaving an interaction follow two Poisson processes and the choice
of interaction groups follows a discrete probability model.
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Figure 1. Description of the three-step process modeled by DyNAM-i.

Step 1 of the model is expressed as a Poisson process. The rates τ
joining
i are defined for each iso-

lated actor i ∈ I (0). Different actors can have different tendencies to join interactions, and these
tendencies can evolve through time. The joining rate is mathematically expressed as an expo-
nential link function for a linear combination of a statistics vector (sjoiningk,i )k, conditioned by the
parameter vector (αjoining

k )k, where k refers to the index of the effects with which the model was
specified. Parameter α

joining
0 is the intercept of the model and expresses the baseline waiting time

for joining a group when all other statistics are null.

τ
joining
i (y(t)|αjoining)= exp

(
α
joining
0 +

∑
k

α
joining
k sjoiningk,i (y(t))

)
(3)

Step 3 of the model is expressed as a Poisson process in a similar way. The rates τ
leaving
i,g are

defined for each actor i 	∈ I (0) that is currently interacting in a group g. It is also expressed as a
linear combination of a statistic vector (sleavingk,i,g )k conditioned by the parameter vector (αleaving

k )k
that includes another intercept αleaving

0 . Here, the statistics not only depend on the focal actor but
also on the characteristics of the group.

τ
leaving
i (y(t)|αleaving)= exp

(
α
leaving
0 +

∑
k

α
leaving
k sleavingk,i,g (y(t))

)
(4)

These two Poisson processes are competing. The actions of an actor, however, only follow one
of the two rate functions, depending on whether she is isolated or not. The rate of all actors is
denoted by:

τi(y(t), α)=
⎧⎨
⎩

τ
joining
i (y(t)|αjoining), i ∈ I (0)

τ
leaving
i (y(t)|αleaving), i 	∈ I (0)

(5)

with α = (αleaving, αjoining) the parameter vector for the whole rate model. The probability of the
next (joining or leaving) event to be initiated by the actor i can be calculated as:

p(actor i is active next|y(t), α)= τi(y(t)|α)∑
j∈I (t) (y(t)|α)

(6)
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Step 2 of the model is expressed as a multinomial choice probability (McFadden, 1974), sim-
ilarly to DyNAM and SAOM frameworks. Provided that an actor decided to join an interaction
(step 1), she tries to optimize an objective function defined for each interaction group that is
currently present. This objective function is defined by a linear combination of a statistic vector
(schoicek,i,g )k with k elements, conditioned by a parameter vector (βk)k:

μi,g(y(t))= exp

(∑
k

βkschoicek,i,g (y(t)))

)
(7)

The probability of actor i choosing the group g is expressed as the ratio of the objective function
μi,g to the sum of all objective functions for available options. In other words, the actor compares
all her options according to Equation (7).

p(g|i, t, β)= μi,g(y, t)∑m(t)
h=1 μi,h(y, t)

(8)

We have translated the three conceptual steps of the model into a mathematical framework.
The rates and the choice function are conditional on parameters α and β that are unknown but
are estimated from the data. The probability of the data given the parameters (the likelihood)
can be expressed similarly to the formulations derived in Stadtfeld (2012) and in Stadtfeld &
Block (2017). Section 3 provides possible specifications for the statistics (sjoiningk,i )k, (s

leaving
k,i,g )k, and

(schoicek,i,g )k. Section 4 details the implementation of the maximum likelihood estimation routine.

3. Model specifications
The statistics (sjoiningk,i )k, (s

leaving
k,i,g )k, and (schoicek,i,g )k introduced in Equations (3), (4), and (7) define the

characteristics of the observed events that influence the probability of their occurrence. Prominent
examples of such network mechanisms are reciprocity, transitivity, homophily, and preferential
attachment (Robins, 2015). Mathematical specifications of such network mechanisms have been
specified for statistical models such as ERGMs, SAOMs, REMs, and DyNAMs (Butts, 2008; Lusher
et al., 2013; Snijders, 2017; Stadtfeld, 2012). Some of these mechanisms can be translated into our
model, while others need to be adapted to the notion of group interactions. In the following,
we discuss three classes of network mechanisms that relate to (i) actor or group attributes, (ii)
relational ties between actors in other networks, and (iii) previous interaction events. The naming
conventions resemble those of previous instances of DyNAM models (Stadtfeld & Block, 2017;
Stadtfeld et al., 2017).

3.1 Mechanisms related to actor and group attributes
One class of mechanisms is concerned with how individual attributes affect the tendency to join
or leave groups (steps 1 and 3) and how group attributes affect individuals’ tendency to choose or
leave a group interaction (steps 2 and 3).

Snijders & Lomi (2019) classify attribute-related network mechanisms into four classes of
effects, namely sociability (i.e., the tendency for actors scoring high on a particular attribute to
send more ties), aspiration (i.e., the tendency to bond with individuals scoring high on a certain
attribute), homophily or assortativity (i.e., the tendency to bond with similar others), or conformity
(i.e., the tendency to bond with individuals who are closer to a certain norm).

Following the idea of sociability, we define the ego effect that captures the influence of an indi-
vidual’s attribute on her tendency to join or leave interactions in steps 1 and 3. One might, for
example, test whether introverted individuals are less likely to interact with others or to stay in an
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interaction. The associated statistic for an actor i given the process y(t) (in this case sjoiningi (y(t))
or sleavingi,g (y(t))) is defined by the value of the attribute Ah:

sego;i(y(t))= ai,h(t) (9)
This effect can further be used time-varying, location-varying, or event-varying attributes, to test
whether individuals are more or less likely to interact in certain periods, locations, or situations.
Members of an organization might, for example, be more likely to interact during lunch breaks,
in the cafeteria, or during a corporate event.

Aspiration refers to the tendency of actors to join or leave a group g depending on its members
or its own attributes. First, we can define a size effect to test whether the size of a group can
influence the tendency of actors to join or leave it (steps 2 and 3). This effect is calculated as
the in-degree of this group within the interaction network, similarly to popularity or preferential
attachment effects (e.g., Merton, 1968).

ssize,g(y(t))=
∑

j∈I (t)
xj,g(t) (10)

A novelty of this model is its flexibility regarding group attributes. For a given actor attribute
h, one can construct various descriptive values of the distribution of this attribute among the
members of group g. It is then important to keep such values independent from the size of g, in
order to be able to compare interactions in groups of two, three, and so on. We use the function f
as a placeholder:

f (g, h, y(t))= f ([[aj,h(t)]]j∈I (g) ) (11)

that can represent, among others, the mean (e.g., the average age of a group), the minimum, or
the maximum (e.g., the lowest or highest status individual in the group). The effect definition for
a function f and an attribute h is then defined with a group alter effect as follows:

sgroup-alter,g(y(t))= f (g, h, y(t)) (12)
We can extend this effect to group attributes that are exogenously defined, for instance, if we

have some qualitative information on the purpose of this group or the content of the interactions
in this group.

Homophily (McPherson et al., 2001) can be generalized to the group context as well if we
assume that individuals are more likely to join or stay when a high number of actors are simi-
lar to them. It can be operationalized by counting the number of group members j in g with the
exact same value aj,h(t) as ai,h(t) by using an indicator function I( · ), which we name a same effect.
This is normalized by the size of g to keep the statistic comparable over the whole model.

ssame,i,g(y(t))=
∑

j∈I (g)(t) I
[
aj,h(t)= ai,h(t)

]
|I (g)(t)| (13)

When the mere presence of an actor with the same attribute as i is relevant, we can also define
a presence same effect:

spresence-same,i,g(y(t))=max
([
aj,h(t)= ai,h(t)

]
j∈I (g)(t)

)
(14)

We can also consider a broader definition of homophily by looking at the tendency of the actor
i to choose groups in which actors’ attributes are close to hers. This can be done by calculating the
absolute difference between those values, normalized again. This difference statistic is null when
every single member of the group has the same attribute as actor i and increases as soon as one
actor is different:

sdifference,i,g =
∑

j∈I (g)(t) |aj,h(t)− ai,h(t)|
|I (g)(t)| (15)
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When the actor’s attribute is comparable to a group measure (e.g., the average of attributes
within a group), we can also study the tendency of actors to choose or leave groups who have an
average, minimum, or maximum value similar to theirs.

Conformitymechanisms can be constructed by comparing the distribution of group members’
attributes to an exogenously defined norm value. Thereby, we can test whether individuals are
more likely to join a group where individuals are on average close to a norm (say, an expected
level of performance). This highlights how the framework can adapt to various attribute-related
mechanisms that may matter in specific empirical contexts.

3.2 Mechanisms related to relational ties
This model can also test the influence of relational variables (e.g., friendship, collaboration)
between actors on group interactions. These variables are represented by weighted or binary
matrices Z(h)(t) that can vary through time exogenously to the explained process.

The most basic tie-related mechanism expresses the tendency of an individual i to interact
with actors j with whom they have a tie (i.e., z(h)i,j (t) 	= 0). We can first consider the preference of
individuals to choose or leave groups that contain a high proportion of individuals they are related
to. We refer to this as a tie effect. We can also define a presence tie effect if we consider that only
the presence of at least one connected actor matters.

stie,i,g(y(t))=
∑

j∈I (g)(t) z
(h)
i,j (t)

|I (g)(t)| (16)

spresence-tie,i,g(y(t))=max
[
z(h)i,j (t)> 0

]
j∈I (g)(t) (17)

In the case of a weighted network, the tie effect can be defined from the weighted sum of the ties
and the presence-tie effect can be understood as the presence of at least one positive tie (or any
other threshold).

Similar to the logic outlined above, we can define transitivity, degree-popularity, or assortativity
effects known from statistical network modeling.

3.3 Mechanisms related to previous interactions
The probability of changes in the interaction network might further depend on previous and
ongoing interactions. The Markovian framework of the model allows us to store information on
past changes as networks or attributes in the process state in Equation (1). Here, we consider,
for instance, the network Xpast(t) that defines how many times actors have interacted with one
another prior to time t. Moreover, additional networks may be included in the process state that
represent previous interactions within specific time windows, similar to the approached proposed
by Stadtfeld & Block (2017).

All network-related effects introduced above can be transformed to relate to prior interactions
by replacing networks Z(h)(t) in the above equations with Xpast(t). We believe that accounting
for previous interactions, in particular within time windows, is a powerful approach to overcome
over-simplistic network models in terms of assumed time homogeneity.

Most importantly, one can then test whether people who have been interacting with group
members in the past (or in a given window) are more likely to join their group. We call this the
inertia effect and define it similar to the tie effect above:

sinertia,i,g(y(t))=
∑

j∈I (g)(t) x
past
i,j (t)

|I (g)(t)| (18)

spresence-inertia,i,g =max [xpasti,j > 0]j∈I (g)(t) (19)
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Effects related to the degree of actors can further test whether individuals who have interacted
with many others (recently “popular” actors) have a higher tendency to join or leave interactions
(ego popularity effect) or to be chosen as interaction partners (alter popularity effect):

sego-popularity,i(y(t))=
∑

j∈I (t)
x(past)i,j (t) (20)

salter-popularity,i,g(y(t))=mean
[ ∑
k∈I (t)

x(past)j,k (t)
]
j∈I (g)(t) (21)

When no time window is defined, we recommend to normalize all these statistics to avoid time
heterogeneity in the model.

4. Implementation
4.1 Estimation
The model described in Section 2 contains three sub-parts that are parameterized by the two
vectors α and β . The estimation of these parameters is done in a similar way as for the original
DyNAM (Stadtfeld & Block, 2017). The likelihood of observing the given data under the rate
and choice models defined by these parameters can be calculated as the sum up the partial log-
likelihoods derived from the probabilities in the Equations (6) and (8). The values of α and β are
then optimized to maximize these two likelihood values, following a standard Newton–Raphson
procedure (Deuflhard, 2004).

For more details on this calculation, one can refer to the details provided by Stadtfeld (2012)
and Stadtfeld & Block (2017). An important feature of the estimation is that it can be run in
parallel over different events. Moreover, the sizes of the actors’ opportunity sets within this model
are considerably reduced compared to the original DyNAM definitions, which also contributes to
greatly decreasing the computational costs and speed up the estimation routine. We thus foresee
that this method could scale up to large datasets as collected, although computational limits have
not been explored systematically.

4.2 Software
The data preparation and estimation routine are currently implemented within the R package
Goldfish that also includes the estimation of DyNAM and REM models. The software is available
on the website of the Social Networks Lab at ETH Zürich.1

4.3 Data requirements
While the mathematical model determines the agency and timing of actors’ actions, empirical
data can be less detailed. Records of face-to-face interactions as collected via wearable sensors, for
example, usually consist of a list of time-stamped dyadic edges that indicate when two individuals
were found to be physically close enough to interact. Each observation contains the identifiers of
two individuals as well as two time-stamps that indicate when the interaction began and when it
stopped. For the presentedmodel, these edges must be translated into eventsω, each defined by an
actor, an interaction group, a time-stamp, and a variable indicating whether it is a joining or leav-
ing event. Thus, the one-mode network constructed from the original observations is transformed
into the two-mode logic of our model. In addition, a list of events indicating the times of forma-
tion and dissolution of the second mode nodes is maintained (but these events are not modeled
themselves). Figure 2 presents a simple example of this translation for four fictitious actors.

We construct joining events as follows. If a dyadic edge is created between actors A and B
and these actors are not interacting with any other actor, we add a joining event from A to the
isolate node of B or vice versa. Without any information on agency, the directionality is decided
at random.We also remove then the isolate node of the sender of the event from the second mode
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Figure 2. Illustration of the construction of two-mode network events from dyadic interaction records.

set. If an edge is created when A already belongs to a group but B does not, we create a joining
event from B to the group of A (and remove the isolate node of B). B is then assumed to interact
with all actors present in this group even if some of these edges are not recorded. In cases where
both A and B were previously engaged in two different groups, we merge these two groups in a
multi-step process. We randomly pick one group to be dissolved and create simultaneous leaving
events for the actors of this group and joining events to the group that remains.

Leaving events are created when an edge disappears between two actors A and B. If they are
the only members of a group, a leaving event is created from one of the two and an isolate node is
created for this actor. If A remains engaged with others, we only create a leaving event for B and
an isolate node is created. If one group splits into two subgroups, we randomly pick one of the two
and create leaving events for the actors in this subgroup as well as joining events to a new group
node. We can represent more complex merges or splits with the same logic.

Some of these practical procedures might affect the model results. Random decisions about the
order of actors’ actions in the case of simultaneous events influences the rate model’s definition
and estimation. Randomly picking the groups to create or dissolve also affects the choicemodel. In
cases of splits, for example, only some actors within the group make leaving and joining decisions
while others do not. All these effects can be mitigated by performing different randomizations on
these procedures and comparing their results.

5. Application 1: the Pizza Party Data set
The following section exemplifies how the proposed model can be used to analyze a data set of
precise video records of social interactions between 11 individuals in an informal setting. The
data were collected by Elmer et al. (2019) and are available on https://osf.io/rrhxe as well as in the
relevant R packageGoldfish. The presentedmodels describe howmechanisms related to individual
attributes, dyadic attributes, and past interactions affect how individuals engaged in their social
interactions.
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A convenience sample of staff and students from a university were asked to participate in an
experiment in exchange for free pizza and beverages. During 76.7minutes, their social interactions
were videotaped and later coded by two independent confederates, with high inter-rater reliability
κ = 0.96 (Cohen, 1968; Landis & Koch, 1977). Participants were mostly males (Nmale = 8;73%),
with a mean age of 29.3 (SD= 3.5). Three were master students, another three were Ph.D. stu-
dents, four were postdocs, and one was a professor. They belonged to four different work units,
and of all pairs of individuals, 26 (47%) knew each other before the event. In total, the data set
contains 229 joining and leaving events. Groups that included at least three people were present
during 196 (85%) of those events.

5.1 Model specification
To understand the timing of interactions, we jointly estimate the joining and leaving rate mod-
els with two different intercepts. To illustrate individual differences, we include in both models
the ego effects of individuals’ age (centered around the mean) and the ego popularity effects of
their number of past interactions (normalized over actors). For the leaving rate, we also con-
sider parameters taking into account group characteristics. We include a size effect accounting for
the preference for staying in larger groups. We also use the network of previous acquaintances
with a tie effect to test whether individuals stay longer with persons they already knew before the
event. We finally examine homophilic tendencies: age and seniority are tested with a normalized
difference effect, while gender and unit affiliation are tested with a normalized same effect.

To understand how people chose their groups, we include again the size effect, the tie effect, the
difference effects on age and level, and the same effects on gender and affiliation. Besides, we add
endogenous effects related to previous interactions. First, with an inertia effect, we test whether
individuals are more likely to interact with others when they have interacted together within the
last minute or the last five minutes.2 Second, with a normalized alter popularity effect, we test
individuals’ preference for individuals who interacted with many others before.

We present here a first model estimated only for attribute effects (Model 1) and a secondmodel
that includes structural and endogenous effects of past interactions (Model 2).

5.2 Results
5.2.1 Rate model
The intercepts of the rate model describe the baseline waiting times to either join or leave a group,
all other statistics being null. For example, we see in Model 1 (Table 1) that the expected waiting
time for an actor of average age to join an interaction is 33 seconds.3 On the other hand, the
waiting times for the leaving rate should be interpreted with caution as they depend on available
options for groups (e.g., a fully homophilic group was never possible in the data). However, we
can observe that the time to leave an interaction will be much higher than the time to join one,
indicating that individuals were engaged in a group most of the time.

In Model 1, the age ego parameter of the joining rate is positive and significant, suggesting
that older individuals join social groups slightly faster than younger individuals. The effect of age
is also positive but just below the significance level in the leaving rate, indicating that age has a
similar but less pronounced effect with regard to leaving a group. Moreover, the age difference
to the other group members appears to have a negative effect on leaving an interaction, which
points to a preference of individuals to stay in groups with a large age difference. Similarly, the
parameter associated with the percentage of individuals of the same unit is positive and significant,
which indicates a tendency to stay longer in groups with smaller proportions of direct colleagues.
Aside from the effects of age and unit affiliation, we find no evidence for the effects of seniority
differences, gender homophily, and previous acquaintances.

Model 2 in Table 1 further includes the effects of group size and the number of past interactions
of the focal actors and groupmembers. The parameter for group size in the leaving rate is negative
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Table 1. Rate and choice results of the Pizza Party Data set for two models: M1 only contains
attribute effects, M2 includes endogenous effects related to the size of the groups and previous
interactions

Model 1 Model 2

Parameter est. s.e. sig. est. s.e. sig.

Rate model

Joining parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Intercept joining −3.507 (0.092) ∗∗∗ −3.508 (0.093) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age (ego) 0.076 (0.025) ∗∗ 0.074 (0.026) ∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of past interactions (ego) −0.028 (0.095)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Leaving parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Intercept leaving −6.141 (0.337) ∗∗∗ −6.109 (0.414) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age (ego) 0.068 (0.037) 0.068 (0.037)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Difference age (group) −0.149 (0.072) ∗ −0.147 (0.073) ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Difference seniority (group) 0.270 (0.231) 0.266 (0.236)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% same gender (group) 0.014 (0.261) 0.021 (0.263)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% same unit (group) 0.897 (0.379) ∗ 0.894 (0.394) ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% known before (group) −0.228 (0.359) −0.234 (0.369)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Size (group) −0.011 (0.084) ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of past interactions (ego) 0.019 (0.119)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Log likelihood −1236 −1236
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AIC 2490 2496

Choice model

Age (group) 0.037 (0.017) ∗ 0.038 (0.018) ∗

Difference age (group) −0.122 (0.070) −0.113 (0.072)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Difference seniority (group) 0.105 (0.229) 0.003 (0.235)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% same gender (group) 0.035 (0.320) 0.220 (0.332)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% same unit (group) 0.397 (0.425) 0.161 (0.452)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% known before (group) 1.052 (0.401) ∗∗ 1.0455 (0.418) ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Size (group) 0.017 (0.105)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of past interactions (group) 0.380 (0.182) ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Repetition 1 min (group) −0.355 (0.462)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Repetition 5 min (group) 0.082 (0.239)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Log likelihood −182 −178
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AIC 376 375

∗∗∗ :< 0.001, ∗∗ :< 0.01, ∗ :< 0.05

and significant, showing that individuals tended to remain longer engaged in larger groups. Both
effects for past interactions are non-significant, showing no evidence for endogenous effects in
this model. Other parameters remain similar to the ones in Model 1, and the total likelihood is
not affected. The small decrease of the AIC points to a very marginal influence of structural and
endogenous effects.

5.2.2 Choice model
In the choice model of Model 1 (Table 1), we observe a significant effect of the average age of a
group, with a tendency of individuals to choose older groups. Another significant parameter is
found for the dyadic effect of previous acquaintances, providing some evidence for individuals’
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preference for groups in which they already know more group members. Other effects of age,
seniority, and gender homophily are non-significant.

Of all effects added in Model 2 (Table 1), only the average number of past interactions of group
members is associated with a significant parameter. This result suggests a popularity effect, with
individuals choosing to interact with others who were involved in a higher number of interac-
tions. The size parameter is positive, indicating a preference for larger groups again, although it
remains below the significance level. The two other effects are windowed inertia effects for win-
dows of 1 and 5minutes. Although both effects are not significant, their different directions would
suggest an interesting pattern. They would indeed indicate that people chose groups with individ-
uals with whom they had interacted recently (within 5 minutes), but less so if this interaction was
very recent (within one minute). Other parameters remain similar, and we can observe a small
improvement of the log-likelihood and the AIC.

As explained in Section 4, we applied different randomizations to the data processing step
and found that all previous results were robust. We only observed some small variations in the
significance level of the significant parameters. Moreover, we solely analyze here the direction and
significance levels of our estimates. An in-depth interpretation of effect sizes would require to take
into account the opportunity sets of each event carefully.

6. Application 2: the Badge Data set
This section aims at showing howmicro temporal patterns of face-to-face interactions in an office
setting can be explained by organizational and spatial attributes, as well as endogenous mecha-
nisms related to past interactions. We use the Badge Data set collected by Olguín et al. (2008) and
further analyzed byWu et al. (2008) and Dong et al. (2012). This data set contains records of inter-
actions between 37 employees of an IT firm for one month. These interactions were measured
by giving each participant a sociometric badge (Olguín et al., 2008) that could detect proximity
to other employees within a range of one meter. Each badge also recorded the approximate
location, the movements, and the voice of its wearer. The data set further provides information
on employees’ tasks during the time of the study, as well as a detailed floorplan of the office space.

The sample comprises 37 employees grouped into three branches, 26 of them working as con-
figuration experts, 7 of them being in charge of pricing, and 4 having a coordinator role. Four of
them held amanaging position. All desks were located on the same floor, close to each other (mean
distance = 24.75 m, SD= 3.5), and 40 pairs of employees had their cubicles adjacent (around 6%
of the total 666 pairs). Finally, 14 employees’ desks were situated along the central corridor that
gave access to the coffee machine, the kitchen, and the printers.

We model the interactions recorded during the second week of the study on each day from
Monday to Friday.4 We preprocessed these dyadic events by merging subsequent events occur-
ring within 30 seconds, similarly to the approach suggested by Elmer et al. (2019). This time
interval was chosen because shorter intervals created many repeated events, while longer inter-
vals produced a more stable number of events. In total, our data contain 688 joining events and
987 leaving events. Groups with more than two actors account for approximately 3% of those
events. Employees’ task records are also included in our analyses, with a total of 290 tasks assigned
during the week.

6.1 Model specification
Our models are specified according to observations made in the original studies of this data set by
Wu et al. (2008) and Dong et al. (2012), as well as other studies examining the link between office
layouts and social interactions (Sailer &McCulloh, 2012; Sailer et al., 2012; Wineman et al., 2014).

We first investigate the impact of tasks and organizational roles on interaction patterns. Wu
et al. (2008) and Dong et al. (2012) observe that communication was essential for employees to
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complete their tasks. This finding suggests that the more tasks a person has, the more likely she
will interact with others, and perhaps stay longer in these interactions. We test these tendencies
with an ego effect of the number of ongoing tasks on the rate of joining and leaving interactions.
Dong et al. (2012) also note that many interactions occurred among configuration employees, and
between configuration and pricing employees. Other studies also find more frequent interactions
inside work units (Sailer & McCulloh, 2012; Wineman et al., 2014). We examine the tendencies
in the choice and the leaving models with a normalized homophily effect (i.e., same effect) on
the employees’ role and an attraction effect (i.e., alter effect) to groups that contain at least one
configuration employee. We further explore differences in the interaction behaviors of different
branches with an ego effect for configuration employees in the rate models.

Second, we investigate the effect of the spatial layout. Dong et al. (2012) note that employees
with close desks spent more time together, consistently with other studies (Sailer & McCulloh,
2012; Sailer et al., 2012; Wineman et al., 2014). This effect of proximity is modeled with a tie effect
of two dyadic attributes. The first is the euclidean distance between two employees’ desks, and the
second is an indicator for employees to have neighboring desks. Previous research also finds that
coffee machines, kitchens, and printers were crucial areas in an office (Sailer et al., 2012;Wineman
et al., 2014). We thus include ego and alter effects for employees having their desk adjacent to the
central corridor, as they could have been more frequently visited because of their central position.

Third, we control for differences in group sizes and temporal patterns. We add a size effect
that represents individuals’ tendency to join and stay in groups with more than two individuals.
Following the observation of Dong et al. (2012) that some individuals were more often involved
in interactions than others, we also include ego popularity and alter popularity effects. Finally,
we explore the propensity of actors to interact if they have recently interacted by using an ego
popularity effect with a window of an hour in the joining model.5 We also add an inertia effect for
windows of 1 hour and 1 day5 to account for individuals’ preference to repeatedly interact with
the same individuals within those intervals.

We report the results of a first model with only organizational and spatial effects (Model 1) and
another model containing all effects, including size and temporal effects (Model 2).

6.2 Results
6.2.1 Rate model
Results of Model 1 are reported in Table 2. The intercepts of the joining and the leaving models
considerably differ, suggesting that individuals waited longer to join an interaction than to leave.
This is consistent with the high proportion of short interactions and long times being isolated
that we observe in the data. Regarding individual attributes, we observe a positive and signifi-
cant effect of the number of tasks on the rate of joining and leaving interactions. This indicates
that employees with ongoing tasks interacted more often with their colleagues but for shorter
times. Roles also seem to have an impact on employees’ activities, with configuration employ-
ees being faster to leave an interaction or to be left by others. This finding supports the idea
that the branches behaved differently and suggests that configuration employees were involved
in shorter interactions. We find evidence for role homophily; individuals tend to remain longer
with employees of the same branch. Finally, the central position of an employee does not have a
significant impact on her joining an interaction but does increase her tendency to stay longer in
an interaction. Similarly, individuals stayed longer with central employees. We also observe that
interactions with proximate others tended to be shorter.

Model 2 (Table 2) further includes the effects of group sizes and past interactions. We first
observe a drop in the values of the log-likelihood, which suggests that the added variables are par-
ticularly relevant for explaining the patterns observed in the data. Most of the parameters remain
similar to the ones observed inModel 1. An exception for this is the effect related to working in the
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Table 2. Rate and choice results for the Badge Data set: M1 only contains attribute effects,
M2 includes endogenous effects related to the size of the groups and previous interactions

Model 1 Model 2

Parameter est. s.e. sig. est. s.e. sig.

Rate model

Joining parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Intercept joining −9.976 (0.089) ∗∗∗ −10.406 (0.106) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Configuration role (ego) −0.054 (0.085) −0.353 (0.096) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Corridor desk (ego) 0.035 (0.078) 0.095 (0.084)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N current tasks (ego) 0.056 (0.025) ∗ 0.054 (0.031) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N past interactions (ego) 0.457 (0.029) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N past interactions 1 hour (ego) 0.082 (0.002) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Leaving parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Intercept leaving −2.369 (0.301) ∗∗∗ −2.779 (0.246) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Configuration role (ego) 0.551 (0.100) ∗∗∗ 0.418 (0.103) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Corridor desk (ego) −1.554 (0.100) ∗∗∗ −1.595 (0.100) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N current tasks (ego) 0.099 (0.029) ∗∗ 0.048 (0.027)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Configuration role (group) 0.737 (0.106) ∗∗∗ 0.842 (0.106) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% same role (group) −1.744 (0.210) ∗∗∗ −1.187 (0.178) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Corridor desk (group) −1.430 (0.102) ∗∗∗ −1.307 (0.097) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distance desks (group) −0.002 (0.006) 0.015 (0.005) ∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neighbor desks (group) 0.724 (0.200) ∗∗∗ 0.395 (0.193) ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Size (group) 2.528 (0.201) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N past interactions (group) -0.169 (0.027) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Log likelihood −10864 −9518
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AIC 21754 19071

Choice model

Configuration role (group) −0.396 (0.092) ∗∗∗ −0.438 (0.154) ∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Corridor desk (group) 0.141 (0.077) ∗∗∗ −0.212 (0.123)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% same role (group) 1.054 (0.109) ∗∗∗ 1.036 (0.181) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distance desks (group) 0.004 (0.003) −0.008 (0.006)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neighbor desks (group) −0.399 (0.171) ∗ 0.470 (0.196) ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Size (group) 4.609 (1.227) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N past interactions (group) 0.409 (0.042) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Repetition 1 hour (group) 0.490 (0.038) ∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Repetition 24 hours (group) −0.025 (0.013)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Log likelihood −2428 −976
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AIC 4867 1969

∗∗∗ :< 0.001, ∗∗ :< 0.01, ∗ :< 0.05

configuration branch, which becomes significant and negative in the joining rate. This result indi-
cates that configuration employees joined interactions at a lower rate than others. In the leaving
rate, the effect of having a task disappears, while the distance between desks becomes a posi-
tive predictor for the rate of leaving. This second result is in line with the common finding that
individuals tend to spend more time with others sitting close to them. Regarding new effects, we
observe a positive and significant parameter for group sizes, indicating that individuals stay longer
in dyadic interactions. We also observe significant parameters for the popularity effects, showing
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that individuals who had already interacted more were more likely to join an interaction and that
others were more likely to stay with them too. The effect of previous interactions with a window
of an hour shows a similar trend, which indicates that recent interactions play a particular role in
interaction processes.

6.2.2 Choice model
Table 2 shows the results of the choice models. Model 1 suggests that employees were more likely
to interact with others of the same branch and less with configuration employees. This finding
complements the previous result that individuals stayed longer with others from the same branch
but left faster configuration employees. Results concerning spatial attributes show that having
neighboring desks is a negative predictor for social interactions, while the parameter associated
with desk distances remains non-significant. The effect of having a central desk is significant and
positive, suggesting that individuals occupying a desk along the corridor were more often chosen
as interaction patterns. This supports the idea that individuals who were more central in the office
were interacting more with others.

Results for Model 2 show that some parameters change when including the effect of group
sizes and endogenous mechanisms. Although the findings related to employees’ roles remain
unchanged, the conclusions that can be drawn for the spatial effects differ. The parameter related
to neighboring desks becomes positive, and the effect of having a central desk disappears. Thus,
the results of Model 2 suggest that neighbors were more likely to interact, which provides some
evidence for the impact of co-location on social interactions that previous studies found. They do
not show, however, that individuals who were more central in the office were interacting more
with others. Regarding new effects, we first observe a significant propensity to choose groups with
more than two individuals when they are available. Moreover, individuals who interacted many
times before seem to be chosen more often, which is coherent with the popularity effects observed
in the rate models. Finally, having interacted in the last hour is a significant predictor for the
choice of the interaction partner. The same effect applied to a window of 1 day is not significant.
Overall, we observe a substantial decrease of the log-likelihood and the AIC inModel 2. This drop
suggests that these endogenous effects are important to explain the patterns observed in these data
and that Model 1 is likely to be misspecified. It is important to note that some endogenous effects
might reflect the effect of missing covariates that were not available in the data set. For example,
previous studies find that shared projects and gender homophily also predict interactions among
office mates (Potter et al., 2015), which could be captured by the inertia effects.

7. Discussion and conclusions
Face-to-face interactions are a central aspect of our social lives. Many of these interactions occur
during social occasions in which conversations not only unfold in dyads but also in groups. Such
group interactions naturally emerge in various settings, for example, in the family, at school, at the
workplace, and during occasions such as social gatherings or scientific conferences. The empirical
study of these group interactions promises to open insights into social mechanisms proposed
by many theories from sociology, social psychology, or management literature. The analysis of
data collected on face-to-face interactions, however, remains difficult. Current statistical methods
are not suited for the group structures typically present in such interactions and can only model
mechanisms operating at a dyadic level. New data collection strategies to measure interaction
dynamics on a fine-grained level have recently been proposed, but the challenge remains to align
them with statistical methodology.

This article proposes a new statistical model, DyNAM-i, that addresses the challenges of mod-
eling the complex dynamics of face-to-face interactions. It extends the class of relational event
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models in three ways. First, this model is suited for group interaction data and allows us to ana-
lyze the formation and dissolution of groups without any restriction on their size. Second, it can
incorporate complex interdependencies between interaction events by extending the common
social network mechanisms—such as inertia, transitivity, popularity, and homophily—to the set-
tings of groups. The DyNAM-i model can be flexibly specified and be used to test how aggregate
outcomes, such as group sizes and group compositions, can affect how individuals engage in inter-
actions. Third, it is built to align with newly available data collection strategies in the context of
group interactions. It can thus be applied to dyadic time-stamped events as usually collected by
social sensors, video data, or RFID-, Bluetooth-, or wifi-based proximity measures (Cattuto et al.,
2010; Elmer et al., 2019; Hong et al., 2016; Olguín et al., 2008; Pentland, 2008; Sapiezynski et al.,
2015). Other data of the same format of which the underlying processes align with the assump-
tions of this model could theoretically also be analyzed (e.g., time-stamped data on the joining
and leaving of employees of different companies). A software implementation of the estimation
method is available in the R package Goldfish. It is worth noting that the computational costs of
the model estimation are lower than most other network models, which allows the analysis of
comparatively large data sets.

In two different applications, we demonstrate that this model can provide insights on micro-
temporal patterns of social interactions. Our first example setting is a small social gathering during
which individuals lively engaged in small groups interactions (Elmer et al., 2019). Our models
show that interactions in this context could be explained by age effects (older individuals joined
and left interactions more often, and individuals remained longer in groups with higher age differ-
ences), by previous acquaintances (individuals joined groups where they knew more members),
and group affiliation (individuals interacted longer withmembers of other research groups). In the
second application, we treat a large data set of interaction records between employees of a same
office (Dong et al., 2012; Olguín et al., 2008; Wu et al., 2008). In this context, face-to-face interac-
tions were mainly dyadic and punctual. Our analyses suggest that these interactions were mostly
driven by employees’ organizational roles (we found evidence for role homophily and preference
for certain roles), spatial layouts (employees were more likely to interact with their neighbors),
and endogenous effects of past interactions (individuals tended to repeat previous interactions,
and some employees appeared more popular than others).

Some limitations remain. One can be derived from its actor-oriented nature: Individuals are
assumed to be in control of their actions and to “optimize” their own interaction situation by
joining and leaving groups. This assumption might be problematic in settings where individu-
als coordinate their interactions, and the agency is situated at the group level. Further, complex
changes of the interacting groups such as splits and mergers might not be well represented by
sequences of individual actions to join and leave groups. Finally, a practical challenge in applying
the model is the collection of data that accurately represents social behavior and the design of
appropriate data preprocessing strategies.

Future developments should address some of these limitations. In particular, the mecha-
nisms underlying actors’ coordination, or groups splitting and merging, could be circumvented
by developing models similar to tie-oriented network models in which the agency assumptions
are relaxed. Furthermore, we highlighted that group interactions might be related to crucial
individual, relational, and group-level outcomes. Emerging interaction patterns may, for exam-
ple, affect individuals’ well-being, who they become friends with, or whether a team is solving
problems successfully. Understanding such dynamics would require to extend the model so that
dynamic-dependent variables on these levels can be modeled simultaneously. Finally, some cru-
cial observations, such as agency in group mergers or detailed spatial information, are difficult to
collect with current techniques. We hope that the availability of the newmodel will inspire further
data collection strategies that aim at closing these empirical gaps.

We believe that the possible applications of the DyNAM-i model are manifold. It could be
used to study, for example, the interaction routines of families, the dynamics of children groups

https://doi.org/10.1017/nws.2020.3 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.3


Network Science S23

at school, the communication structure of an organization, or the emergence of new social groups
at social gatherings or conferences. We argued that the dynamics of face-to-face interactions in
such social occasions are theoretically meaningful and a core element of social lives. The new
model aims at contributing to closing the current gap between theory and empirical research on
the dynamics of face-to-face interactions in social groups.
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Notes
1 www.sn.ethz.ch/research/goldfish; An updated version that includes a documentation of DyNAM-i will be available by
Summer 2020.
2 The choice of the time windows is arbitrary. In substantive articles with specific research questions, the choice of these
lengths should be argued for and tested with robustness analyses.
3 Calculated as 1

exp (−3.507+0∗0.076) seconds.
4 To account for the difference between days and nights, we estimate our rate models assuming that 07:00 in the morning
immediately followed 21:00 of the previous day.
5 The lengths of time windows are arbitrarily chosen here, but alternative specifications could be used.
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