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ABSTRACT
Aircraft sequencing and scheduling within terminal airspaces has become more complicated
due to increased air traffic demand and airspace complexity. A stochastic mixed-integer linear
programming model is proposed to handle aircraft sequencing and scheduling problems using
the simulated annealing algorithm. The proposed model allows for proper aircraft sequencing
considering wind direction uncertainties, which are critical in the decision-making process.
The proposed model aims to minimise total aircraft delay for a runway airport serving mixed
operations. To test the stochastic model, an appropriate number of scenarios were generated
for different air traffic demand rates. The results indicate that the stochastic model reduces
the total aircraft delay considerably when compared with the deterministic approach.
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NOMENCLATURE

A arrival

AD airborne delay

ADP aircraft departure problem

ALP aircraft landing problem
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ASSP aircraft sequencing and scheduling problem

ATCos air traffic controllers

D departure

ETAs estimated times of arrival

EV expected value

FCFS first-come first-served

GD ground delay

GH ground holding

H heavy

LTFJ Istanbul Sabiha Gökçen International Airport

M medium

MILP mixed-integer linear programming

PMS point merge system

PSA position-shifted aircraft

RP here and now

SA simulated annealing

SP stochastic programming

TAS true airspeed

TMA terminal manoeuvring area

VSS value of stochastic solution

1.0 INTRODUCTION
The volume of air transportation has grown considerably due to recent economic develop-
ments and the increased number of low-cost airlines. The aviation industry is resistant to
external effects, and thus the amount of air traffic has more than doubled in the past 20 years(1).
This increasing traffic demand also raises the importance of issues regarding airport and
airspace management. If the development and enhancement of airspaces and airports are not
prioritised, there will be a significant increase in both airborne and ground delays. The aircraft
sequencing and scheduling problem (ASSP) is connected with the reduction of these delays
using different air traffic flow management and separation techniques, such as ground holding
(GH), the point merge system (PMS), vectoring and speed reduction. These techniques allow
air traffic controllers (ATCos) to re-sequence aircraft to maintain safe and orderly air traffic
flow. Although re-sequencing results in an additional workload for ATCos, its effective use
contributes to significant reductions in delay and congestion, not only at a specific airspace or
airport but also across the entire air traffic system.

In this study, we aim to obtain resilient aircraft sequencing that takes wind direction
changes into account in the terminal manoeuvring area (TMA). The ASSP includes two sub-
problems: the aircraft landing problem (ALP) and the aircraft departure problem (ADP). The
majority of previous studies, on the other hand, have presented solution approaches for either
ALP or ADP, however, airports provide services for both arrival and departure operations.
Bennell et al.(2) and Bianco et al.(3) provided comprehensive reviews regarding the ALP and
ADP. Different deterministic and stochastic meta-heuristic algorithms have been applied to
these problems to achieve good solutions in a short computational time. The frequently used
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algorithms are tabu search (Atkin et al.(4), D’Ariano et al.(5), Furini et al.(6), Samà et al.(7)),
simulated annealing (Hancerliogullari et al.(8), Salehipour et al.(9), Liang et al.(10)), variable
neighbourhood search (Salehipour et al.(11)), ant colony optimisation (Jiang et al.(12), Zhan
et al.(13)), the genetic algorithm (Beasley et al.(14), Hu and Chen(15), Hu and Di Paolo(16),
Hu and Di Paolo(17)), scatter search (Pinol and Beasley(18)), and particle swarm optimisa-
tion (Hong et al.(19)). The following reviewed studies focus on stochastic approaches to the
ASSP: Solveling et al.(20) developed two-stage stochastic programming for stochastic runway
scheduling including uncertainties in pushback delay, taxiing and deviations from estimated
times of arrival (ETAs). Their findings indicated that a stochastic approach performed bet-
ter than deterministic or first-come first-served (FCFS) approaches. Solveling and Clarke(21)

presented a stochastic branch-and-bound algorithm to obtain an optimum or near-optimum
solution that aimed to minimise the total makespan. The findings revealed that such mod-
els can reduce the production time by between 5% and 7% compared with the deterministic
approach. Choi et al.(22) developed a mixed-integer linear programming model for the design
of the route structure in extended TMA operations. They also proposed a genetic algorithm
to minimise CPU time. Bosson and Sun(23) proposed a multi-stage stochastic programming
model and the sample average approximation method to obtain a solution. According to their
results, stochastic optimisation methods provide better sequencing than the FCFS policy.
Heidt et al.(24) presented a stochastic runway scheduling model. The results showed that their
robust model made fewer changes to aircraft sequences and produced more stable traffic plans.
Ng et al.(25) presented a stochastic programming model using the min–max regret approach
for mixed operations runway. The artificial bee colony algorithm was applied to obtain a feasi-
ble solution. Solak et al.(26) presented two different stochastic runway scheduling models and
tested them using realistic data. Their conclusion was that stochastic models are very useful
and can be implemented easily to solve the ASSP. Liu et al.(27) proposed a two-stage stochastic
programming model. The first stage obtains the aircraft weight class sequence, then the sec-
ond stage assigns the individual flight to the aircraft sequence. Similarly, Khassiba et al.(28)

proposed a two-stage stochastic programming model for a single-runway airport. Their find-
ings indicated that their stochastic model reduced the need for a holding stack by a few hours
by offering more upstream linear holding. Hong et al.(29) proposed a two-stage stochastic
algorithm using mixed-integer linear optimisation for the ALP. Due to the complexity of the
problem, particle swarm optimisation was implemented. The problems of the first and sec-
ond stages are sequencing and scheduling. Also, they used the PMS to regulate arrival traffic
where uncertainties emerge in descent times from sequencing legs to the final approach point.

In this study, a stochastic mixed-integer linear programming model based on the simulated
annealing algorithm is presented to minimise total aircraft delay for a single-runway airport.
The ASSP can easily be affected by external disturbances, so we propose an algorithm that
includes wind direction uncertainties for both upper and lower altitudes of sequencing legs.
While Hong et al.(29) only considered uncertain aircraft arrival times from sequencing legs to
the merge point for a single runway, we focus on the entire TMA, including all flight levels,
and utilise a mixed operation runway.

Our contributions are as follows: (1) the model takes wind direction uncertainties based
on real historical data into consideration and integrates them into the model. To the best of
our knowledge, the effects of wind direction have not been investigated in the ASSP litera-
ture. (2) The model aims to obtain resilient aircraft sequencing, thus avoiding the need for
re-sequencing. (3) Two independent wind directions for above and below the sequencing legs
are adapted to the model, and an appropriate number of scenarios are generated to test the
stochastic programming.
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The remainder of this manuscript is structured as follows: Section 2 defines the problem
and mathematical model; Sections 3 and 4 provide the simulated annealing algorithm and
computational results, then Section 5 presents the conclusions.

2.0 PROBLEM DEFINITION
The aircraft sequencing and scheduling problem is a real challenge for ATCos, especially
when they aim to determine optimum sequencing that maximises or minimises their objec-
tives. Obtaining proper sequencing can reduce their workload because the need to re-schedule
aircraft disappears during TMA operations. ATCos can regulate the arrival traffic using vec-
toring and speed reduction techniques, holding stacks or the point merge system within
TMAs. The PMS is a systematic method that allows ATCos to sequence arrival traffic flows
without using vectoring techniques(30). In this system, ATCos separate arriving aircraft sys-
tematically in sequencing legs and then direct them to a merge point. The benefits of the PMS
can be listed as: reduced ATCo workload, increased efficiency and predictability for aircraft
trajectories, and therefore improved traffic management within TMAs(31). Numerous stud-
ies have presented the implementation of the PMS technique to various ASSPs, by Boursier
et al.(31), Ivanescu et al.(32), Hong et al.(29) Liang et al.(10) and Sahin et al.(33). In this study,
Istanbul Sabiha Gökçen International Airport (LTFJ) and its surrounding TMA is selected for
modelling, based on the airspace and runway layout of 2019(34). PMS has already been imple-
mented at LTFJ. The airport has a single runway 06/24, which denotes the runway directions,
as the angles on the horizontal plane from magnetic north are 60◦ and 240◦. This runway
serves for mixed operations of arrivals and departures. It is one of the busiest single-runway
airports in the world, with passenger use of 35.5 million in 2019(35). Arrivals enter the TMA
from six different entry points: ATVEP, GELBU, TURCO, PAZAR, EVNOT and ELVON
(Fig. 1). In this study, we assume that both arrivals and departures use only runway orien-
tation 06. The PMS consists of two sequencing legs separated vertically by 1000feet and
a merge point. All arriving aircraft fly with a constant airspeed along the sequencing legs
located at FL100 and FL110 according to the location of their entry points. Before entering
the sequencing legs, safe separation among the arrival aircraft on the same leg can be main-
tained using vectoring or airspeed reduction. In addition to these methods, sequencing legs
can also provide the required separations between arrival (A) and departure (D) operations.
Two different aircraft performance categories are also considered in this study according to
their wake turbulence categories: heavy (H) and medium (M). Aircraft are directed to the
merge point after the time separation between an aircraft pair is achieved. The PMS includes
three important times: the entry time to the sequencing leg, qi; the travelling time along the
sequencing legs xi; and the touchdown time on the runway ti.

Airspeed values, the distance between the entry point and sequencing legs and the distance
between the sequencing legs and merge point are very important parameters to detect aircraft
conflict situations. In the method proposed herein, such conflicts are detected by checking the
crossing times of aircraft at each critical point along the sequencing legs and on the runway.
The wind direction is important in the calculation of these crossing times, because the airspeed
of aircraft may increase or decrease according to the wind direction. Airspeeds are expected
to be stochastic because of the wind direction.

It is assumed that a set of I = (1, 2. . . n) of i aircraft are in the TMA and that the airport
is used for arrivals and departures. Aircraft can use the runway for either departure (D) or
arrival (A) operations without violating the vortex separation times given in Table 1.
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Table 1
Time separations, in seconds(21)

Operation type
Leading–trailing aircraft A–A A–D D–A D–D

H–H 96 68 54 90
H–M 138 68 58 120
M–H 60 62 54 60
M–M 72 62 58 60

Figure 1. PMS route structure of LTFJ within the Istanbul TMA.

2.1 Stochastic programming
The air traffic system is easily affected by uncertainties and external disturbances. These sit-
uations cause extra airborne and ground delays as well as re-sequencing in TMA operations.
Nevertheless, punctuality is very important for an airport to maintain safe, efficient and eco-
nomic flight operations. Therefore, steady scheduling is of great importance for both airport
and airspace operations. Stochastic programming (SP) takes such uncertainties into considera-
tions and produces more resilient solutions to handle these disturbances. Uncertain parameters
can be obtained using historical data or expert opinion. In general, the stochastic program-
ming approach makes decisions considering the uncertainties in the future. Uncertainties can
be represented in two different ways. The first one is the continuous probability distribution
where numerical integration is employed over the random continuous probability space. This
approach limits the model size but the problem presents nonlinearities and computational
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difficulties. The second approach is the scenario-based stochastic approach, where the ran-
dom space is considered to comprise discrete events. The main difficulty of this approach is
the considerable increase in computational requirements with increasing number of uncertain
parameters(36).

As indicated by Kaya et al.(37), the scenario-based stochastic optimisation approach gener-
ates different sets of variables for each particular scenario S. In this approach, which was
originally proposed by Dantzig(38), the probabilities for each scenario are assigned and a
solution for each scenario is obtained (see Birge and Louveaux(39), Kall and Wallace(40)).
Nevertheless, the optimum solution for a particular scenario S might not be the optimum
for the general problem. We consider a scenario-based stochastic programming approach, in
which the uncertainties are modelled using several scenarios that can occur, with their respec-
tive probabilities. The general formulation of a stochastic programming is given below, where
f(x) is the scenario-independent cost and Q(x,S) is the cost when the scenario S is realised.
The objective function in Equation (1) of the problem consists of the value of f(x) and the
expected value of Q(x,S) with respect to the possible scenarios. Some of the constraints of
the model might be scenario independent, as given in Equation (2), or scenario dependent, as
given in Equation (3).

Minx(f(x) + Es[Q(x, S)]) · · · (1)

subject to g(x) = a · · · (2)

h(x, S) = b(S) ∀S · · · (3)

In our problem, two different altitude layers are considered, in which the wind directions show
independent uncertainties. First, we determined the wind directions based on weather sound-
ing observation data at 12:00 pm for Istanbul between 2015 and 2019(41). Then we obtained
the histogram for two altitude layers, i.e., layer 1 (25,000 to 11,000ft) and layer 2 (11,000 to
3,000 t), as shown in Fig. 2.

In this study, eight different wind directions were determined to represent all wind direc-
tions (20◦, 70◦, 110◦, 160◦, 200◦, 250◦, 290◦ and 330◦) with reasonable discrete wind
directions. The probabilities of the wind direction are given in Table 2.

As a result, the model has 64 different scenarios for the stochastic programming model.
The wind speed is calculated using Equation (4) presented by Turgut and Usanmaz(42), where
the altitude is in metres:

Wind speed(m/s) = −9.2 × 10−8
[
Altitude2

] + 3.7 × 10−3[Altitude] + 6.5 · · · (4)

The ground speed of the aircraft can be expressed as

Vground = VTAS + Vwind cos
(
Aircraftheading − Winddirection

)
· · · (5)

In Equation (5), VTAS is the true airspeed, Vwind is the wind speed, and Aircraftheading and
Winddirection are the aircraft heading angle and wind direction, respectively.

To test our model, we use the expected value (EV), the here-and-now solution (RP) and
the value of the stochastic solution (VSS) to analyse the benefits of the stochastic program-
ming model. Firstly, without taking wind direction uncertainties into considerations, we solve
the ASSP using deterministic programming, assuming that the wind direction is known and
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Table 2
The wind direction probabilities according to wind direction

Wind direction
range

0–45◦ 46–90◦ 91–135◦ 136–180◦ 181–225◦ 226–270◦ 271–315◦ 316–360◦

Selected wind
direction

0◦ 70◦ 110◦ 160◦ 200◦ 250◦ 290◦ 330◦

Layer 1
probability

0.122 0.111 0.047 0.070 0.134 0.2941 0.128 0.09

Layer 2
probability

0.282 0.458 0.056 0.034 0.0253 0.040 0.0436 0.0604

Figure 2. The wind direction histograms: (a) layer 1 and (b) layer 2.
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fixed. We use the expected value of the possible wind directions as the deterministic parameter
for the wind direction in this model and obtain an aircraft sequencing as a result. The val-
ues in column EV of Table 5 show the actual expected value of the objective function with
the obtained sequence when wind direction uncertainties exist. These values are calculated
by finding the objective function value of the stochastic ASSP model for the fixed aircraft
sequence decisions obtained from the deterministic model. Secondly, we take wind direction
uncertainties into account when developing and solving the model, instead of assuming a
fixed wind direction. Considering various scenarios for possible wind directions, the stochas-
tic ASSP model determines the best aircraft sequencing and calculates the expected total delay
considering different scenarios according to the probability of the wind directions. We solve
the stochastic ASSP model directly by considering the randomness of the wind direction, and
the objective function value of this model is shown in column RP. The difference between
EV and RP is shown in column VSS, and this value reflects the benefits of considering the
randomness in wind directions via stochastic programming, instead of using the expected
value of the wind direction as a deterministic parameter, and using decisions obtained by
deterministic programming.

VSS = EV − RP · · · (6)

2.2 Mathematical model
The objective is to minimise the total aircraft delay. The entire mathematical model is given
below for the ASSP.

Indices

I : set of aircraft in the sector i, i1, i2 ∈ l

M : set of entry points m ∈ M

K: set of aircraft performance categories k1 k2 ∈K

O: set of operation types o1, o2 ∈ U

L: set of wind directions l, l1, l2 ∈ L

Parameters

M: very large positive number

gi: entry time into the TMA for aircraft i

pxi: side the aircraft approaches from i

ri: entry point into the sector for aircraft i

pi: operation type of aircraft i

apci: performance category of aircraft i

vm,l: airspeed value between sector entry point and sequencing legs for an aircraft

using entry point m in scenario l

vdl: airspeed value between the sequencing leg and the merge point for an aircraft

in scenario l

vmf : airspeed value between the merge point and the runway

dhm: distance from entry point m to sequencing leg

dl: distance from the sequencing leg to the merge point
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dmf : distance from the merge point to the runway

phl: probability of the wind direction of l for layer 1

pll: probability of the wind direction of l for layer 2

sepo1,o2,k1,k2 : separation time between operation type of o1 and o2 with aircraft performance

category k1 and k2

Decision variables

qi,l1,l2 : entry time onto the sequencing leg for aircraft i with wind direction at layer 1

being l1 and l2 at layer 2

ti,l1,l2 : runway use time of aircraft i with wind direction at layer 1 being l1 and l2 at

layer 2

hi,l1,l2 : delay time before entering the sequencing leg for aircraft i with wind direction

l1 for layer 1 wind direction and wind direction l2 for layer 2

xi,l1,l2 : travel time on the sequencing leg for aircraft i with wind direction at layer 1 of

l1 and l2 at layer 2

wi,l1,l2 : ground delay time for aircraft i with wind direction l1 at layer 1 and l2 at layer 2

delayi,l1,l2 : total delay time of aircraft i with wind direction l1 at layer 1 and l2 at layer 2

ci1,i2 : 0–1 variable that takes a value of 1 if aircraft i1 uses the runway before aircraft

i2; otherwise, it is zero

min
∑

i

∑

l

∑

l2

phl · pll2 · delayi,l,l2 · · · (7)

qi,l1,l2 = gi + hi,l1,l2 + dhm

vm,l1

∀i, l1, l2, m|pi = 2, m = ri · · · (8)

qi2,l1,l2 − qi1,l1,l2 ≥ sreq − ci1,i2 M · · · (9)

∀i1, i2, l1, l2|i1 �= i2, pxi1 = pxi2 , pi1 = 2, pi2 = 2

qi1,l1,l2 − qi2,l1,l2 ≥ sreq − (1 − ci1,i2 )M · · · (10)

∀i1, i2, l1, l2|i1 �= i2, pxi1 = pxi2 , pi1 = 2, pi2 = 2

ti,l1,l2 = qi,l1,l2 + xi,l1,l2 + dl

vdl2

+ dmf

vmf
∀i, l1, l2, m|pi = 2, m = ri · · · (11)

ti,l1,l2 = gi + wi,l1,l2∀i, l1, l2, m|pi = 1 · · · (12)

ti2,l1,l2 − ti1,l1,l2 ≥ sepo1,o2,k1,k2 − ci1,i2 M · · · (13)

∀i1, i2, l1, l2, o1, o2, k1, k2|i1 �= i2, pi1 = o1, pi2 = o2, apci1 = k1, apci2 = k2

ti1,l1,l2 − ti2,l1,l2 ≥ sepo1,o2,k1,k2 − (1 − ci1,i2 )M · · · (14)
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i1, i2, l1, l2, o1, o2, k1, k2|i1 �= i2, pi1 = o1, pi2 = o2, apci1 = k1, apci2 = k2

delayi,l1,l2 = xi,l1,l2 + hi,l1,l2 + wi,l1,l2 ∀i, l1, l2 · · · (15)

qi,l1,l2 ≥ 0 ∀i, l1, l2 · · · (16)

wi,l1,l2 ≥ 0 ∀i, l1, l2 · · · (17)

delayi,l1,l2 ≥ 0 ∀i, l1, l2 · · · (18)

ti,l1,l2 ≥ 0 ∀i, l1, l2 · · · (19)

xi,l1,l2 ≥ 0 ∀i, l1, l2 · · · (20)

ci1,i2 ∈ {0, 1} ∀i1, i2 · · · (21)

The objective of Equation (7) is to minimise the total delay. The constraint set in Equation (8)
calculates the entry time onto the sequencing legs and the airborne delays before entering the
sequencing leg for each aircraft with a wind direction of l1 in layer 1 and l2 in layer 2. The con-
straint sets in Equations (9) and (10) check the conflicts for arriving aircraft on the sequencing
legs according to their routes. The constraint set in Equation (11) calculates the runway touch-
down time of the arrival and the travel time on the sequencing leg for each arrival. Similarly,
the constraint set in Equation (12) calculates the ground delay of each departure for a wind
direction of l1 in layer 1 and l2 in layer 2. The constraint sets in Equations (13) and (14)
control the conflicts for both arrival and departure operations on the runway according to the
vortex separation times given in Table 1. The constraint set in Equation (15) calculates the
delay time of each aircraft for a wind direction of l1 in layer 1 and l2 in layer 2. The delay is
calculated as the sum of three different delay components. The first two components are the
two airborne delays of arrivals, while the third component reflects the ground delay (wi,l1,l2 )
for departures. Airborne delays can occur before an aircraft enters the sequencing leg (hi,l1,l2 )
and/or during its flight along the sequencing leg

(
xi,l1,l2

)
. An aircraft suffers airborne delays if

it is an arrival, or a ground delay if it is a departure. The constraint sets in Equations (16)–(21)
are sign constraints.

3.0 SIMULATED ANNEALING
It is hard to reach an optimum solution using exact algorithms such as the GAMS/CPLEX
solver for large-scale problems in a short time. Therefore, the simulated annealing (SA) algo-
rithm is implemented to solve the ASSP. SA is a single solution-based metaheuristic algorithm
and uses a local search approach to obtain optimum or near-optimum solutions. It begins with
an initial solution, then it creates neighbourhood solutions from the current solution S. The
best neighbourhood solution S′ is then selected and compared with S. If S′ has a better fitness
value than S, S′ it is selected as the current solution. However, if S′ shows weaker performance
than the current solution, the solution is determined according to the probability:

P = e
−�

/
T · · · (22)
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Figure 3. Examples of generating a neighbourhood solution using only two aircraft.

Figure 4. Examples of generating a neighbourhood solution by reversing the entire sequence between a
randomly selected aircraft pair.

A random value between 0 and 1 is generated to select either S or S′ for the next iteration. If
the probability is greater than this random value, S′ is selected as the new current solution.
In Equation (22), � is the difference between the fitness function values of S′ and S such
that, � f (S) − f (S′) and T is the temperature. The temperature steadily reduces from an initial
value to zero. At each step, the algorithm randomly choses a solution close to the current one,
evaluates its quality and proceeds to it according to the temperature-dependent probability of
choosing better or worse solutions. The temperature in each iteration is estimated using the
formula

Ti+1 = βTi · · · (23)

The cooling schedule rate and iteration number are represented using β and i in Equation (23).
The temperature reduces slowly, which enables poorer solutions to be preferred in the early
iterations. When the temperature reaches zero, the probability of preferring poorer solutions
decreases considerably. Two different neighbourhood generation processes are applied in this
problem. The first one switches the sequence of two aircraft randomly, while the second
one reverses the entire sequence of aircraft between a randomly selected aircraft pair. These
neighbourhood generation processes are presented in Figs 3 and 4.

4.0 COMPUTATIONAL RESULTS
The aircraft sequencing and scheduling model is formulated using stochastic mixed-integer
linear programming (MILP) and tested using the GAMS/CPLEX solver for three different
air traffic flow rates: low, medium and high traffic demand (i.e. 30, 37 and 44 aircraft per
hour, respectively). Ten different small-scale test problems are generated, including route,
entry time, entry point, aircraft performance category and aircraft operation type informa-
tion. While the entry times of each aircraft are obtained using an exponential distribution, the
aircraft performance category and route assignments are generated using historical data. The
GAMS/CPLEX solver reaches optimum results for all test problems, then the SA metaheuris-
tic is applied to the test problems to evaluate the performance of the proposed algorithm. The
parameters used in the SA are presented in Table 3. A computer with a 2.3 GHz Intel Core i7
processor and 16 GB of RAM is used in all the computations. MATLAB software is used for
the metaheuristic algorithm.
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Table 3
Simulated annealing parameters

Initial temperature 500
Final temperature 0.001
Cooling rate 0.99
Number of iterations 5000
Number of neighbourhood solutions 40
Stopping criteria 100 iterations without an improvement in

the best solution or a maximum of 300s

Table 4
Test problem results for 10 aircraft per 20min and 30 aircraft per hour

10 aircraft per 20min 30 aircraft per hour
GAMS/CPLEX SA algorithm GAMS/CPLEX SA algorithm

Test problem Z CPU time Z CPU time Z CPU time Z CPU time

1 134.1 1.2 134.1 41.4 >106 300 763.2 97.0
2 93.4 0.69 93.4 51.6 >106 300 792.4 230.8
3 497.6 8.51 497.6 50.1 >106 300 884.0 150.0
4 80.6 1.86 80.6 45.1 >106 300 960.4 101.6
5 219.1 2.08 219.1 45.3 >106 300 1340.9 115.4
6 123.5 0.68 123.5 39.3 >106 300 390.3 175.2
7 251.1 1.44 251.1 43.4 >106 300 766.9 111.3
8 55.2 0.8 55.2 39.4 >106 300 1248.4 102.3
9 308 2.33 308 39.4 >106 300 3098.9 162.1
10 150.5 1.85 150.5 40.0 >106 300 1447.6 95.8

The results for the test problems are presented in Table 4, where the first column shows the
small-scale test problem number, and the second and third columns show the GAMS/CPLEX
solver total aircraft delay (Z) and CPU times in seconds. Similarly, the final columns show the
SA total aircraft delay (Z) and CPU times in seconds for the test problems. For small-scale
problems (ten aircraft), GAMS/CPLEX can find a global optimum solution in a short time, as
shown in Table 4. However, as the size of the problem increases (i.e. 30 aircraft), as also seen
in Table 4, the GAMS/CPLEX solver returns a solution with an objective function of more
than 106 in 300s. On the other hand, the SA algorithm can provide much better solutions in
much shorter CPU times. Therefore, we use the SA algorithm for the larger-sized problems
to obtain better solutions in reasonable time limits.

The results of the large-scale test problems are given in Table 5, where the first column
shows the large-scale test problem number, and the second to fifth columns show the EV, RP,
VSS and CPU times for 30 aircraft. Similarly, the results for 37 and 44 aircraft are presented
in the following columns.

The proposed stochastic programming metaheuristic algorithm found a VSS value of 8,
15 and 15 for 30, 37 and 44 aircraft. The model a VSS value of zero for some scenarios.
This indicates that the stochastic programming model finds the same aircraft sequencing as
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Table 5
Results of the SA algorithm for three different air traffic flow rates per hour

30 aircraft 37 aircraft 44 aircraft
No. EV RP VSS CPU EV RP VSS CPU EV RP VSS CPU

1 763.2 763.2 0.0 97.0 883.9 883.9 0.0 170.3 7828.5 6592.9 1235.5 300.0
2 873.0 792.4 80.6 230.8 2699.2 2699.2 0.0 191.0 4245.8 3532.1 713.6 300.0
3 899.3 884.0 15.3 150.0 1417.4 1215.2 202.2 265.2 3449.9 3441.3 8.6 300.0
4 960.4 960.4 0.0 101.6 1483.7 1464.5 19.2 300.0 2821.9 2810.4 11.5 300.0
5 1340.9 1340.9 0.0 115.4 2279.5 1460.9 818.5 300.0 2134.7 2134.7 0.0 300.0
6 396.8 390.3 6.6 175.2 974.3 974.3 0.0 170.9 6765.8 6765.8 0.0 300.0
7 766.9 766.9 0.0 111.3 2931.4 2379.2 552.2 300.0 6483.4 5783.0 700.3 300.0
8 1248.4 1248.4 0.0 102.3 1971.5 1970.9 0.6 292.5 2619.2 2619.2 0.0 300.0
9 3098.9 3098.9 0.0 162.1 8715.0 6976.9 1738.1 302.0 1158.0 1158.0 0.0 300.0
10 1447.6 1447.6 0.0 95.8 2353.9 1646.7 707.1 206.8 7623.5 5536.9 2086.6 300.0
11 1015.9 1015.9 0.0 108.3 2533.2 1906.4 626.7 300.0 7434.1 4776.2 2657.9 300.0
12 1059.5 617.5 442.0 188.3 1530.2 1527.6 2.6 300.0 2294.9 2141.5 153.4 300.0
13 983.6 725.2 258.4 137.5 1656.9 1608.6 48.3 300.0 4762.9 4411.1 351.8 300.0
14 484.3 484.3 0.0 100.7 3012.9 2254.8 758.1 300.0 4388.1 3905.1 483.0 300.0
15 1340.4 1340.4 0.0 144.1 2293.1 1342.3 950.8 300.0 3141.3 3141.3 0.0 300.0
16 581.9 565.0 17.0 185.4 1887.9 1858.9 28.9 179.1 6995.9 5432.1 1563.8 300.0
17 1073.4 794.2 279.1 182.0 3058.3 2241.9 816.4 300.0 3950.5 2354.4 1596.0 300.0
18 773.8 773.8 0.0 97.8 2483.6 2483.6 0.0 194.9 6981.9 6388.1 593.8 300.0
19 1687.7 1687.7 0.0 140.4 2040.4 1408.8 631.6 300.0 4329.1 4223.8 105.3 300.0
20 2989.3 2483.8 505.5 141.5 1740.6 1645.0 95.6 300.0 6396.0 4110.6 2285.4 300.0
Avg. 1189.3 1109.1 80.2 138.4 2397.3 1997.5 399.8 264.1 4790.3 4062.9 727.3 300.0
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Table 6
GD, AD and PSA results of stochastic programming

30 aircraft 37 aircraft 44 aircraft
Test problem GD AD PSA GD AD PSA GD AD PSA

1 24.0 27.3 0.0 23.5 24.1 0.0 206.9 143.1 4.0
2 29.6 28.6 2.0 44.4 114.9 0.0 86.8 103.2 3.0
3 7.5 44.9 2.0 38.5 38.0 3.0 49.8 109.7 2.0
4 35.4 28.1 0.0 30.1 50.7 2.0 38.5 78.8 2.0
5 27.2 62.2 0.0 41.8 80.4 4.0 47.8 49.0 0.0
6 7.1 21.2 2.0 25.7 27.0 0.0 134.2 175.2 0.0
7 23.6 28.6 0.0 96.4 54.1 4.0 195.0 90.2 4.0
8 35.4 45.8 0.0 53.6 53.0 2.0 67.1 53.2 0.0
9 64.6 233.3 5.0 186.0 293.8 13.0 23.8 28.6 0.0
10 49.0 46.9 0.0 58.5 67.5 3.0 162.7 179.3 11.0
11 11.6 45.0 0.0 78.6 58.9 8.0 126.8 219.6 7.0
12 35.1 35.5 2.0 13.5 58.3 3.0 45.5 59.4 2.0
13 40.6 21.0 2.0 48.2 41.6 4.0 67.3 142.4 2.0
14 18.2 13.5 0.0 88.1 73.6 7.0 103.7 94.4 7.0
15 31.0 53.8 0.0 45.6 75.9 3.0 77.7 64.5 0.0
16 22.4 14.8 4.0 44.1 56.9 2.0 195.9 133.5 8.0
17 21.0 50.5 2.0 80.0 85.4 8.0 71.5 111.8 6.0
18 7.7 46.5 0.0 81.1 44.2 0.0 161.3 155.3 6.0
19 50.0 61.8 0.0 25.7 77.6 7.0 59.8 120.4 5.0
20 105.8 94.3 4.0 51.4 41.3 5.0 126.8 177.9 14.0
Ave. 32.3 50.2 1.3 57.7 70.9 3.9 102.4 114.5 4.2
Max. 105.8 233.3 5.0 186.0 293.8 13.0 206.9 219.6 14.0
Min. 7.1 13.5 0.0 13.5 24.1 0.0 23.8 28.6 0.0

the deterministic programming model. Also, this result indicates that there is no real bene-
fit in considering wind direction uncertainties for these scenarios. The average VSS results
for 30, 37 and 44 aircraft per hour are 80.2, 399.8 and 727.3 in the current version. These
results are shown in the last row of Table 5. This indicates that, when the traffic increases, the
average value of VSS also rises. The average percentage gains in the total aircraft delay are
6.7%, 16.7% and 15.2% when comparing the average results of EV and RS. The benefits of
stochastic programming are more obvious with high traffic demand, but the use of stochas-
tic programming reduced the total aircraft delay for all three traffic demand levels. Table 6
presents how the ground and airborne delays are distributed among the given aircraft sets
in the stochastic programming solutions. The values of PSA, on the other hand, indicate the
number of aircraft for which the sequence was changed when compared with the deterministic
programming aircraft sequence.

The proposed algorithm results in an average airborne aircraft delay that is higher than
the average ground aircraft delay for all traffic rates. The average airborne delays are 55.4%,
22.9% and 11.8% higher than the average total ground delays. Also, it is apparent that the use
of stochastic programming results in some changes in aircraft sequencing and that the amount
of position shifting rises as the number of flights is increased.
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5.0 CONCLUSION
The ASSP is a real challenge for ATCos, and providing resilient aircraft sequencing reduces
their workload. A stochastic programming model using the SA algorithm is presented herein,
considering wind direction uncertainties. The performance of the stochastic algorithm is eval-
uated using an appropriate number of scenarios representing all wind directions. The results
of the stochastic and deterministic approaches are then compared, revealing that the stochastic
version of the model can noticeably reduce airborne delays. Additionally, stochastic pro-
gramming is flexible to tolerate sudden wind direction changes and eliminates the need for
re-sequencing. Furthermore, the proposed algorithm can produce a practical aircraft sequenc-
ing solution and, as a result, be used by ATCos to obtain fast and feasible sequencing. Because
of the robust aircraft sequencing obtained from stochastic programming, it is easy to calcu-
late the landing or departure times of each aircraft using the proposed model by taking into
account the specific wind direction for the specific time window. ATCos can direct the aircraft
set in the TMAs to complete their operations without the need for re-sequencing if any wind
direction change occurs. As the aircraft sequencing is resilient to changing wind direction, the
model can easily find a new schedule for each aircraft using the current wind direction value.
However, the algorithm needs to be improved to be implemented in real-time operations. In
future studies, a dynamic version of this stochastic model can be studied.
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