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In a car navigation system the conventional information used to guide drivers in selecting
their driving routes typically considers only one criterion, usually the Shortest Distance Path
(SDP). However, drivers may apply multiple criteria to decide their driving routes. In this
paper, possible route selection criteria together with a Multi Objective Path Optimisation
(MOPO) model and algorithms for solving the MOPO problem are proposed. Three types of
decision criteria were used to present the characteristics of the proposed model. They relate to
the cumulative SDP, passed intersections (Least Node Path –LNP) and number of turns
(Minimum Turn Path –MTP). A two-step technique which incorporates shortest path
algorithms for solving the MOPO problem was tested. To demonstrate the advantage that the
MOPO model provides drivers to assist in route selection, several empirical studies were
conducted using two real road networks with different roadway types. With the aid of a
Geographic Information System (GIS), drivers can easily and quickly obtain the optimal
paths of the MOPO problem, despite the fact that these paths are highly complex and difficult
to solve manually.
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1. INTRODUCTION. Contemporary car navigation systems generally pro-
vide the Shortest Distance Path (SDP) between two locations – one of the most
important functions for drivers. The key technology underpinning SDP is the Shortest
Path (SP) algorithm. The SP problem was proposed in the 1950s and has been
intensively studied in the intervening years. Many algorithms for solving the SP
problem have been developed (e.g. Moore, 1957; Bellman, 1958; Dijkstra, 1959).
Although selecting driving routes with the assistance of SDP information is easy to
understand and relatively intuitive, as several researchers have pointed out, drivers
may apply multiple criteria to decide their driving routes (e.g. Hansen, 1980; Climaco
and Martins, 1982; Henig, 1985; Hallam et al., 2001; Chakraborty et al., 2005).
Therefore the single-objective SP problem was extended with two objectives. Usually,
the two objectives are the travel time and cost. Nevertheless, in addition to distance,
time and cost objectives, there are other objectives that may be relevant to drivers.
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For example, drivers may prefer a road with a higher speed limit. They may also be
concerned with how many intersections or traffic signals they will pass, and/or how
many turns they have to make until they reach their destination. Hence, to develop a
more precise simulation of the decision-making behaviour of drivers for route
selection, it is necessary to extend the SP problem with two or more objectives.
From the Multi Objective Programming (MOP) literature, a multi objective SP

problem can be classified as a MOP problem and will share the same problem-solving
procedures as the MOP problem. Unlike identifying the optimal path of the SP
problem, which could proceed directly to an optimal solution, a two-step process is
required to identify the optimal solution of a MOP problem. The first step is to find all
non-inferior (non-dominant or Pareto-optimal) solutions that are feasible solutions to
the MOP problem, if no other feasible solutions exist that will yield an improvement in
one objective without causing degradation in at least one other objective. The second
step tends to emphasise the linkages of decision-makers and their preferences through
which the best-compromise solution can be identified from non-inferior solutions
(Cohon, 1978).
In the past, researchers dealing with SP problems of a network were focused on the

single objective. Even when the SP problems with two objectives were proposed, they
were solved directly by the Dijkstra’s algorithm. Since the SP problem with two
objectives is a type of MOP problem, solving it by the integration of the Dijkstra’s
algorithm and MOP problem-solving techniques is more meaningful. However, as the
links of a network increase, the decision variables also increase. Hence MOP problem-
solving techniques were rarely applied in solving the multi objective SP problem. If a
route selection problem contains more than one type of decision variable, solving it is
much more complex than solving the multi objective SP problem. This is due to the
Dijkstra’s algorithm being only applicable for solving the SP problem with links as
decision variables. To solve problems with nodes and two-links as decision variables,
new algorithms have to be developed.
The remainder of this paper is organised as follows. A Multi Objective Path

Optimisation (MOPO) model is proposed in Section 2. Firstly, utilising the MOP
approach, five objectives corresponding to three types of decision variables (i.e. nodes,
links and turns) are taken into account in the construction of such a MOPO model
and each is a Single Objective Path Optimisation (SOPO) model. Section 3 presents
the development of techniques and algorithms for solving the MOPO and SOPO
problems. Firstly, the issue of choosing proper techniques that are applicable for
solving the MOPO problem is addressed. Secondly, the development of algorithms for
solving the Least Node Path (LNP) and Minimum Turn Path (MTP) problems is
presented. In Section 4, based on the MOPO and SOPO problems, experimental
programs for solving the problem with nodes, links and turns were developed and
implemented by integration with a commercial Geographic Information System (GIS)
package. To demonstrate the advantages of the MOPO model for supporting more
diverse and richer information to drivers to assist route selection, several experiments
were conducted, utilising two real road networks with different roadway types and
numbers of nodes and links. The conclusion ends the paper.

2. MULTI OBJECTIVE PATH OPTIMISATION MODEL.
Identifying objectives and decision variables is the first step in modelling a MOPO
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problem. In addition to the shortest distance objective, two groups of objectives -
aggregate and disaggregate decision criteria - can be used to establish the MOPO
decision model. The aggregate decision criterion stands for those objectives where
some of their decision variables are not strongly related to or cannot be directly
measured by nodes, links, or turns. The disaggregate decision criterion is just the
opposite. Objectives of the former group (including time, cost, comfort, and safety)
are used to evaluate the influence on the MOPO problem from decision variables like
traffic condition, automobile models, etc., that are assumed the same for all roadway
networks. On the other hand, objectives of the latter group (including passed
intersections, cumulative distance, roadway capacity, roadway grade, and number of
turns) are used to represent the individual influence on the MOPO problem from the
decision variables such as nodes, links, or turns.
Constructing a hierarchical value tree is the best way to represent the MOPO

problem. For aggregate and disaggregate decision criteria, one can construct the tree
as a two-level hierarchy where the upper-level contains aggregate criteria and the
lower-level includes disaggregate criteria. Perhaps one could also organise the tree on
only one level including all criteria. In principle, the travel time is affected not only by
how many intersections are passed and the distance to be travelled, but also by traffic
conditions, and many other factors. Similarly, travel cost is affected not only by the
distance to be travelled, but also by the engine’s volume, petrol prices, etc. Since (in
contrast to passed intersections and distance objectives) the traffic conditions and
petrol prices are relatively difficult to measure, they are not applicable for modelling
the problem within a car navigation system. In addition, because both comfort and
safety criteria contain many decision variables that cannot easily and directly be
measured, they also are not applicable to be taken into account as the decision criteria
for the MOPO problem.
Although a hierarchical value tree is a commonly used approach to describe a

complex decision-making problem, constructing one for a MOPO problem may not
be necessary. The reason is quite simple – the value trees constructed by decision-
makers vary from one to the other. If drivers had to spend a lot of time constructing a
value tree for a MOPO problem before they could make a decision, it would not be
applicable to a practical car navigation system. To drivers, a value tree with only one
level is perhaps the best way to describe the MOPO problem, due to its simplicity and
convenience. On the other hand, for the MOPO problem, even a value tree with only
one level may be too complex for drivers to make decisions if there are too many
decision criteria. Therefore, a smaller set of decision criteria makes the MOPO more
applicable to practical use within a car navigation system. In this paper only the
disaggregate objectives are taken into account to establish a decision-making model
for MOPO problems.
Let Oi denote the multi objective function with minimisation goals. Therefore the

MOPO problem can be formulated as:

MinOi[f1(Intersection), f2(Distance), f3(Grade), 1/f 4(Capacity), f5(Turn)] (2.1)
Note that all optimisation functions of the MOPO problem can be solved

individually or in various combinations. The former approach assumes that each
optimisation function is independent or has no relation to the others, while the latter
does not. Moreover, if the latter approach is applied, there are many combinations
which can be used (e.g. the combination of f1 and f2 or f1, f2 and f3, etc.). Also note the
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different decision variables used by each SOPO problem of the MOPOmodel. For the
passed intersections objective, the decision variable is a node. For cumulative distance,
roadway grade and roadway capacity, the decision variable is composed of two nodes
or a link. For the turn objective, the decision variable is measured with three nodes or
two links. It is also worth noting that, except for the roadway capacity objective, all
objectives in the MOPO problem are pursuing a minimisation goal.

2.1. Measuring Objectives with Links as Decision Variables. There are three
objectives in this group, including cumulative distance, roadway grade and roadway
capacity. The first objective in this group is cumulative distance. In practice, the
distance is measured by the actual length of links (in units such as metres). The second
objective in this group is roadway grade. Roadways with a higher grade promise to
have greater turning radii, higher quality pavement, and wider lanes. In contrast with
lower grade highways, it also implies that it is much safer, more comfortable, and can
be driven at a higher speed. Moreover, driving at a higher speed implies lower fuel
consumption. Therefore, driving on higher grade highways is the ultimate goal of
drivers when they are planning their automobile travel. It is worth noting that the
decision variable of roadway grade can be represented by an ascending or descending
integer value. The goal for the grade objective should be minimisation if the former
method is applied.
The last objective in this group is roadway capacity. The lane width of highways or

streets is designed and deployed usually according to the roadway grade. The higher
grade roadways will have wider lanes. Wider lanes in a roadway network imply that
drivers can drive their automobiles in a relaxed manner and more easily than on
narrower lanes. Accordingly, more lanes also promise higher capacity, and easier and
safer passing of one automobile by another. Imagine how much more dangerous it is
to overtake the front vehicles on a single-lane highway than on a highway with two
lanes travelling in the same direction. Hence, the ultimate benefit for drivers driving on
roadway networks is maximised capacity.
All the objectives mentioned above can be formulated by applying the same linear

integer programming form as follows:

Minimise f2, f3 =
∑

(i,j)[E

e(i,j)w(i,j) (2.2)

Minimise 1/
f4 = 1

/ ∑
(i,j)[E

e(i,j)w(i,j) (2.3)

subject to
∑

( j,i)[E

e( j,i)−
∑

(i,j)[E

e(i,j) =
1 if i = O

0 for all i [ N − O−D{ }
−1 if i = D







e(i,j) = [0, 1] or all (i, j) [ E

where w(i,j) can be substituted with the distance, and roadway grade or roadway
capacity to represent each corresponding objective. Note the difference between
Equation (2.2) and (2.3). Because the capacity objective function pursues the
maximum value as a goal, the same result can be obtained by converting the original
function into a reciprocal form.
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2.2. Measuring the Passed Intersections. Intersections are the main bottlenecks
in urban street networks. Even in highway systems, intersections can also cause some
traffic delay regardless of whether the intersections are provided with signals or not.
Going through intersections forces vehicles to slow down, or fully stop, in order to
safely pass intersections where traffic facilities are installed to control the traffic flow.
Even if on a highway or express road, the speed limit at the interchange is slower than
on the major lanes. When vehicles are merging from the interchanges to the major
lanes, the traffic flow is also delayed. It is sufficient to conclude that the more
intersections a path contains, the greater the resulting delay, despite the intersections
being provided with signals or not.
Although the traffic delay caused by intersections can be measured by the travel

time, there are many other aspects remaining of notable significance to drivers. The
traffic light is the major tool to control and maintain traffic flows at intersections,
regardless of the location on highways or street networks. However, a path associated
with more traffic lights increases the probability that drivers will be forced to stop and
wait. The resulting increase in acceleration events (from a stopped to moving status)
also implies that more fuel will be consumed. Accordingly, during the acceleration
process, drivers and passengers suffer and feel uncomfortable from the change in
inertia. Moreover, the repeated operations associated with the increased number of
stops, and increased complexity of the driving task will tire drivers. Therefore, it is
reasonable to assume that minimising the number of passed intersections for a trip is
the preference for all drivers and passengers. For the path optimisation problem with
the objective function of minimising passed intersections, the tree of a directed least
node path from a given origin node to destination node can be formulated as:

Minimise f1 =
∑
i[N

i (2.4)

subject to
∑n
i=1

i ≤ n

∑n
i=1

i . 0

i = 1 if i is selected

0 otherwise

{ }
for all i [ N

2.3. Measuring the Number of Turns. Making turns implies that drivers are
forced to slow down and pay more attention to driving. Turns are usually made at
road intersections. In contrast with driving on roadways, passing an intersection
implies that drivers will encounter more conflict and potential crash points –
increasing traffic-accident probabilities, and decreasing safety. On the other hand,
since traffic conditions at roadway intersections are very complicated, drivers are
forced to focus more on driving and to take care of any situations that may arise. This
increases the driving stress on drivers and may result in the drivers’ fatigue.
Furthermore, turns may also make both drivers and passengers suffer nausea caused
by centrifugal force. Hence, it is acceptable for most drivers to set a minimisation
objective for making turns when they plan their automobile travel. Therefore, for the
path optimisation problem of the objective function of a minimum number of turns,
the tree of a directed minimum-turn path from a given origin node to destination node
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can be formulated as follows:

Minimise f5 =
∑

(i,j),( j,k)[E
e(i,j,k) (2.5)

subject to
∑

j|(i,j)[E

e(i,j)−
∑

j|(j,i)[E

e(j,i) =
1 if i = O

0 for all i [ N − O,D{ }
−1 if i = D







∑
k|(j,k)[E

e(j,k)−
∑

k|(k,j)[E

e(k,j) =
1 if j = O

0 for all j [ N − O,D{ }
−1 if j = D







e(i,j) and e(j,k) = {0, 1} for all (i, j) and (j, k) [ E

3. SOLVING THE MOPO PROBLEM. Unlike identifying the optimal
solution of the single-objective problem, it takes two steps to identify the best solution
for a MOP problem. The first step focuses on employing the Dijkstra algorithm to
identify the feasible solutions for the cumulative distance. The second step addresses
the challenge of choosing appropriate techniques that are applicable for solving the
MOPO problem and the effort of investing to obtain non-inferior solutions and best-
compromise solution. Nevertheless, the Dijkstra algorithm is not applicable for
solving both passed intersections and number of turns. To solve these two problems,
two new algorithms will be presented in this section.

3.1. MOP Techniques for Solving the MOPO Problem. The decision-maker’s
preferences and the number of decision-makers are two important characteristics used
to establish the decision-making process (Brownlow and Watson, 1987). The former
indicates when the preferences will be given by the decision-maker, while the latter
defines how many decision-makers will join the decision-making process.The number
of decision-makers referred to above is actually two sets of problems, namely the
single-decision-maker problem and the multiple-decision-maker problem. The former
includes those situations in which there is a single-decision-maker or group-decision-
makers that share similar objectives and preferences. The latter situation is directed at
those cases in which there are many decision-makers or interest groups, each of which
has its own conflicting objectives. In the case of the MOPO problem applied to car
navigation, there is only one driver at a time who will play the role of decision-maker.
The discussion of which techniques are more applicable for solving the MOP problem
will focus on the single-decision-maker case.
The key to solving the single-decision-maker MOP problem is determining when

and how to obtain the preferences from the decision-maker. There have been many
attempts to classify techniques for solving the MOP problem by utilising the above
two criteria. Among which the preference-flow concept proposed by Cohon (1978)
suggests a strong relationship between the decision-maker and the analysts, which
respectively stand for who articulates preferences and techniques for solving the MOP
problem. In other words, the preference-articulation time, which refers to when the
preferences are to be given, before, during or after finding all non-inferior solutions,
may give more importance to the role that a decision-maker may play (Hwang and
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Lin, 1987). Based on Cohon (1978), the preference-flow classification categorises the
technique into three types:

. Type I -No preference articulation. Preferences are implicitly articulated by
decision-makers after an approximate or exact non-inferior set is generated.
Methods of this type includes the ε-constraint (Haimes, 1973), global criterion
method (Salukvadze, 1974), and weighted-sum method (Zadeh, 1963).

. Type II -Prior preference articulation. Either certain desired achievable objectives
or definite pre-ordering goals can be performed by decision-makers prior to
finding the non-inferior solutions. Methods in this group include goal pro-
gramming (Charnes et al., 1969), multi-attribute utility function (Keeney and
Raiffa, 1976; Berger, 1980), and lexicographic (Ben-Tal, 1980; Rao, 1996; Sarma
et al., 1993).

. Type III -Interactive or progressive preference articulation. Methods in this group
include: probabilistic trade-offs development method (Goicoechea et al., 1979),
step method (Benayoun et al., 1971), and sequential multi objective problem
solving method (Monarchi et al., 1973; Goicoechea et al., 1982).

It is clear that applying techniques in Type III to identify the best-compromise
solution to the MOPO problem is not a wise idea. This is not only because of the
complex burden of the driver interactively participating in the process of identifying
best-compromise solutions requires repeated iterations, but also because it is hard for
the driver to sharply or clearly distinguish differences in objectives and alternatives.
The complexity of articulating preferences and the computational efficiency for
obtaining non-inferior solutions are important criteria to evaluate which methods
based on Type I and II techniques are most applicable for solving theMOPO problem.
Undoubtedly, for car drivers to specify the range of feasible bounds for each objective
is very easy. However, specifying meaningful ranges of feasible bounds that result in
the MOPO problem having an optimal solution is very hard for drivers in practice.
Image how difficult it is for drivers to judge what is the reasonable distance and travel
time between two places, or how many intersections will be passed and turns to be
made from an origin to a destination. It is hard for drivers to specify any target values
for objectives of the MOPO problem. This is because the decision-maker may not
know whether a path is valid or not, let alone what is the best value. Hence, the
ε-constraint, multi-attribute utility function and global criterion methods for solving
the MOPO problem are not wise choices.
There are two main advantages that make the lexicographic method highly

applicable for solving the MOPO problem. Firstly, it is due to the simplicity in
requiring a decision-maker to rank the objectives in order based on one’s preferences
from best to worst. Once the order of the objectives has been obtained, the optimum
solution can easily be identified by starting with the most important objective and
proceeding according to the assigned order of the objectives. Secondly, even if a
decision-maker does not provide ranking information for the objectives, it is also
possible to select randomly an objective to be optimised at each time.
The weighted-sum method has considerable advantages due to its simplicity. Since

there is only one driver who will play the role of decision-maker, the MOPO problem
can be classified as the single-decision-maker problem in which the relative
importance among objectives is defined only by one person. For every driver,
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articulating one’s preference in order of relative importance of objectives is easily
done.

3.2. Solving the Least Node Path Problem. Although the SDP between two
locations as determined by SP algorithms provides useful information for selecting
driving routes, does this method conclusively result in the optimal path in a real road
network, typical of the street networks in an urban area? The answer is very likely
“No”. If the optimal path is measured by travel time, it is obvious that it might not be
the SDP. This is because most traffic delays occur at traffic junctions. Take a radial-
circumferential network as an example, as depicted in Figure 1. If the start node s and
destination node t are located at both sides of a radial-circumferential network, clearly
the shortest distance path might go through the city centre along the straight line
connecting s and t. However, since the total passed intersections by the path through
the city centre may be greater than those passed on the by-pass roads, the total travel
time of the former path may be greater than the latter path. In that case, the Shortest
Time Path (STP) may be the LNP instead of the SDP. For example, in Figure 1, if one
travels from s to t through the city centre, the total number of intersections crossed
along the straight line connecting s and t is six. Obviously, this is greater than the total
passed intersections along the upper and lower circle by-pass roads. Therefore, the
LNP gives comparative information for evaluation against the shortest distance path
to assist drivers in selecting driving routes.
The LNP problem can be seen as finding the SP in a network where all attributes

associated with links are the same or are not associated with any attributes at all.
Using Figure 2 as an example, the LNP problem can be defined as finding the shortest
path in the network depicted in Figure 2 where all links have no associated attribute.

City Centre 

t s 

Figure 1. An example of a radial-circumferential network.
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Figure 2. An example network of the LNP problem.
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Based on how many SPs need to be solved, the SP problem can be classified into
three types, namely one-to-one, one-to-many, and all-to-all SP problems. The one-to-
one SP problem refers to the cases where there is only one origin node and one
destination node. The SOPO and MOPO problems can be categorised as the one-to-
one SP problem. There are two major approaches for solving the one-to-one SP
problem, namely the label-setting approach and the label-correcting approach. The
former approach is best represented by Dijkstra’s (1959) algorithm, which can be
applied to networks with non-negative-length links. The latter approach, represented
by Bellman’s (1958) and Moore’s (1957) algorithms may be used in networks
with negative-length and non-negative-length links. However, neither approach is
applicable for networks with loops or a negative cycle.
The attributes associated with links are the keys to determining the SPs. However,

when all attributes have the same value, say 1, neither label-setting and label-
correcting algorithms may be applicable for solving the SP problem. This is because
all the cumulative distances of all the links connecting to each scan node are the same.
There is no additional information to assist the SP algorithm in choosing the current
shortest distance. Therefore, SP algorithms are no longer useful for solving the
LNP problem. To solve the LNP problem, in this paper, an algorithm based on set
operation is proposed. The set operation first scans from the start node in breadth-first-
search order and uses two lists: one to record all scanned nodes and another for the
nodes that are going to be scanned in the next step. Then the scan process is repeated
until the destination node is reached. Once the destination node is reached, the
LNP can be obtained by sorting the set of scanned nodes in connecting order. The
algorithm for solving the LNP problem is as follows:

G: a network with n nodes
S: start node of a path
T: destination node of a path
Gα: a set of nodes with i number of members currently being traced
Gβ: all nodes connecting with Gα

Gi
β: nodes connecting with the ith Gα

Gλ: nodes which have been traced
Gj
λ: nodes which have been traced in the jth run
Initialisation:
Gα� S
Gβ�Ø
Gλ�Ø
j=0
Main loop:
DO WHILE GαNOT Ø
j= j + 1
i=member of Gα

FOR 1 TO i
Gi
β� get nodes connecting with ith Gαand�Gλ

Gβ � Gβ
i < Gβ

{ }
IF T[Gi

β THEN
report the path with least nodes by sorting Gα
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EXIT DO
END IF
END FOR

Gj
λ�Gα

Gλ � Gα < Gλ
{ }

Gα � Gα < Gβ
{ }− Gα > Gβ

{ }
� Gα

END DO

3.3. Solving the Minimum-Turn Path Problem.
3.3.1. Measuring the Turns. As mentioned, a turn can be represented with two

links or three nodes. However, before one can use nodes and links to represent a turn,
one should determine the definition of a turn in a real road network. In principle a turn
can be identified and measured in two ways, manually by human knowledge
or automatically by measuring the angle change of driving direction. The former
approach can be done by humans scanning the whole real road map to retrieve turns
and then recording this information in the network topology with ‘1’ representing the
situation where there is a turn between two links and ‘0’ where there is no turn. The
latter approach can be implemented by calculating the angle between two links.
However, it is difficult to identify a value for which an angle change can be classified as
a turn.
Take both cross and Y-type road junctions for example, as depicted in Figures 3 and

4 respectively. Obviously, there are eight valid turns in Figure 3 including <a�b’>,
<a�c>, <b�d>, <b�a’>, <d’�c>, <d’�b’>, <c’�a’> and <c’�d>.
However, in the case of Figure 4, one may recognise that there are six valid turns, i.e.
<a�b>, <a�c’>, <b’�a’>, <b’�c.’>, <c�a’> and <c�b>. But it may
also be argued that turn <c�a’> should be excluded depending on the acceptable
threshold of the angle-change to be utilised in identifying a turn. Since a path is
composed of many links, it is possible to measure the total turn angle by calculating
the cumulative angle change of the driving direction. Furthermore, by comparison
with a turn definition using a 0–1 integer value retrieved manually in advance, it is a
better approach to transform the MTP problem into the minimum turn-angle problem,
thus minimising the cumulative angle-change of a path.
In order to use the cumulative change of driving direction as the measure for the

minimum-turn objective, the angle of each driving direction has to be determined
before the SP algorithm can be applied. Using Figure 3 as an example, each driving
direction can be represented as a vector in the format from node to node. Suppose that
the points A andC in Figure 2 have coordinates (x1, y1) and (x2, y2), respectively. Then
the direction θac of vector AC can be represented by:

θac = cos−1(x2 − x1)/r (3.1)
Note that the parameter r represents the Euclidean distance from point A to point C

and is the Pythagorean distance, given by:

r =
����������������������������
(x2 − x1)2 + (y2 − y1)2
[ ]√

(3.2)

Assume that the network in Figure 2 is symmetrical. Then each link is associated
with two vectors that represent corresponding driving directions. The whole network
and its vectors can be depicted as in Figure 5.
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3.3.2. Algorithm for Solving the MTP Problem. All SP algorithms for solving the
one-to-one SP problem initialise a zero value for the start node and label the node
currently with the shortest distance. Unlike the SP problem, there are at least three
links in a start node for the MTP problem, each of which is a possible driving direction

a
a’

cc’

b’

b

Figure 4. An example of turns in a Y-type road junction.
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with a possible non-zero initialisation value. Therefore, to solve the MTP problem
each driving direction of the start node has to be considered as having the same role as
the start node in the SP problem. In other words, if one applies an SP algorithm to
solve a MTP problem, the MTP problem should first be divided into at least three sub-
problems. Then the final solution can be obtained from the sub-problem which has the
minimum value. Taking the path from start node A to destination node F in Figure 5
as an example, there are three driving directions denoted by vectors AB, AC and AI.
The MTP problem can be divided into three sub-problems, namely finding the MTPs
of vector AB to node F, vector AC to node F, and vector AI to node F. To obtain the
solution of the MTP problem, SP problems vector AB to node F, vector AC to node F,
and vector AI to node F should be solved.
To solve each sub-problem, first, the start node is initialised with one of its

connecting vectors. Taking the third sub-problem as an example, the initialisation
value of node A is the θai radius. Second, set node I as the new start node and label it.
Then use the θai radius as the origin direction to determine which vectors have the
smallest angle difference. Label the node connecting to the new start node with the
smallest angle difference. Repeat the second step until the destination node is reached.
For the first sub-problem it is obvious that the MTP is composed of nodes A, B, G, H
and F. For the second sub-problem, clearly the MTP is concerned with nodes A, C, D,
and F. However, the third sub-problem becomes ambiguous when traversing to node
E, if the angle difference of vectors EH and EF are the same. To cope with such a
problem, a directing vector defined by node E to the destination node (in this case,
node F ) can be used to determine which vector should be chosen. The directing
procedure is achieved by using both vectors IE and IF to determine the vector with the
smallest angle difference.

4. EXPERIMENTAL ANALYSIS. Clearly, as the number of nodes and
links in a road network increases, the total number of decision variables in the MOPO
and SOPO problems will also increase. As the number of decision variables increases,
solutions to the MOPO and SOPO problems can become intractable. Manual
solutions may only be feasible in cases which involve a small number of nodes and
links. Solutions to problems involving large road networks therefore require the
assistance of GIS software. A program which integrated MapInfo GIS software for
solving the MOPO and SOPO problems was developed in order to facilitate empirical
studies using real road networks. In addition, because the decision variables of the
objectives of cumulative distance, roadway grade and roadway capacity are based on
links and share the same problem solving methods, in order to reduce computational
load during experimental analysis, only cumulative distance was used. Hence, only
three of the five objectives of the proposed model were selected for the empirical
studies. They relate to the SDP, LNP and MTP problems. All experiments were
carried out on the test bed with an Intel Xeon 3.2 GHz CPU and 2.0 GB of RAM
running Microsoft Windows XP Professional.

4.1. Experimental Road Networks. Two sub-networks of the metropolitan area
of Taichung, located in central Taiwan, covering an area of approximately 2,221·25
square km and with a population of 2·5 million, were selected to conduct the
experiments. The entire road network of metropolitan Taichung and the two sub-
networks indicated by the two boxes are illustrated in Figure 6. The first sub-network
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(top box), referred to as the radial-circumferential road network, as illustrated in
Figure 7, is the largest suburb of metropolitan Taichung, with a total population of
about 150 thousand people. The second sub-network (lower box), referred to as the
grid-type road network, illustrated in Figure 9, is located in the downtown area of
Taichung. The total number of nodes, links and average links connected by a node
(the connecting-ratio) for the entire road network and two sub-networks are listed in
Table 1.

Figure 6. Empirical test road networks.

Table 1. Node and link number and connecting-ratio of the experimental road networks.

Road Network Types Total Nodes Total Links Connecting-Ratio

entire road network 27,641 36,499 2·64
radial-circumferential road network 1,115 1,447 2·01
grid-type road network 693 1,037 2·95
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4.2. Experimental Study of the SOPO Problems. Two links from the radial-
circumferential road network were selected (illustrated in Figure 7) and resulted in the
identification of optimal paths for the SDP, LNP and MTP problems. The results are
illustrated in Figures 7 and 8. Note that the optimal paths for these three problems are
each displayed in the MapInfo map window (Figure 7) and in the message window
(Figure 8). The former shows the intersections of the optimal paths in the experimental
road network, while the latter displays each optimal path’s detailed nodes, objective
values and run time. The two thicker lines were used to indicate the pair (s, t); the IDs
of nodes and the objective values for each optimal path are displayed in the MapInfo
message window as a serial list separated by semicolons; except for the nodes’ list, the
first item of all lists represent the sum of objective values. The units for measuring each
objective’s value of the SDP, LNP and MTP problems are metre, node and degree
(360°) respectively. The run time displayed in the message window is the elapsed time
of the entire calculation, including: the time for loading the network topology to
memory; the time for identifying the location of the pair (s, t); the time for searching
the optimal paths of the SDP, LNP and MTP problems; and the time for converting
the optimal paths from the network topology format to MapInfo’s file format.
As mentioned, if the pair (s, t) is located at both sides of a radial-circumferential

road network the SDP might go through the city centre along the straight line
connecting s and t. The LNP, however, may utilise the by-pass roads. Therefore, the
total passed intersections by the SDP may be greater than those passed by the LNP,

Figure 7. The optimal paths of SDP, LNP, MTP and MOPO problems in a radial-circumferential
road network.
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and the cumulative distance of the LNP may be greater than for the SDP. According
to the results of Figures 7 and 8, it can be seen that the SDP and LNP do result
in different paths in a radial-circumferential road network. Furthermore the total
number of passed intersections by the SDP (33 nodes) is greater than those passed by
the LNP (19 nodes). Despite the many traffic signals the total travel time of the SDP
may be greater than for the LNP, since the total number of intersections of the SDP is
greater than for the LNP. In that case, the shortest-time path may be the LNP instead
of the SDP. The LNP provides comparative information for evaluation against the
SDP to assist drivers in selecting their driving routes. This example illustrates the
above-mentioned scenario. As mentioned, due to the difficulty in identifying a specific
number of degrees at which an angle change can be classified as a turn, this study uses
the cumulative angle change of the driving direction to measure the minimum-turn
objective. Using the same pair (s, t), the MTP is also illustrated in Figures 7 and 8.
A turn angle is calculated by taking the difference of two adjacent items of the MTP
in Figure 8. The unambiguous turns (i.e. the turn angle is close to 90° or 180°), which
may be clearly identified, are six in number and are denoted by the solid black circles
in Figure 7. However, a turn angle of about 57·8° (166·8; 224·6), indicated by the
asterisk, is ambiguous and difficult to classify. This example highlights the difficulty
mentioned earlier, and confirms that the cumulative angle change of the driving
direction is a better approach for resolving the MTP objective.

 

Figure 8. List of nodes and each objective’s values of SDP, LNP and MTP in a
radial-circumferential road network.
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The same experiments were therefore conducted using a grid-type road network.
The results are illustrated in Figures 9 and 10. As in the case of the radial-
circumferential road network, the results also reveal that the SDP and LNP do appear
on different paths in a grid-type road network; the total number of passed
intersections by the SDP (36 nodes) is greater than those passed by the LNP (27
nodes). The unambiguous turns, which may be clearly identified, are six in number
and are denoted by the solid black circles in Figure 9. However, a turn angle, about
23·5° (88·1; 64·6), indicated by the asterisk is ambiguous.

4.3. Experimental Study of the MOPO Problem. Unlike solving SOPO problems
where the pair (s, t) is the only parameter that needs to be input, to solve the MOPO
problem more parameters have to be assigned, such as the weighting values for each
SOPO objective. It is important to be aware of the fact that the weighted-sum method
is generally used to approximate the non-inferior set by parametrically varying the
weights wi with a predetermined step value between one to zero if there are more than
two decision-makers involved in the decision-making process. However, this is not an
efficient method for seeking an exact representation of the non-inferior set since a
number of different sets of weights need to be tried until an adequate representation of
the non-inferior set is obtained. This means that as higher degrees of accuracy are
requested in the approximation, the computational burden will increase. On the
other hand, if the weights are obtained directly from decision-makers, the above

Figure 9. The optimal paths for SDP, LNP, MTP and MOPO problems in a grid-type road
network.
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disadvantages will be overcome. Since the proposed MOPO decision will only
involve one decision-maker, the weighting values can be obtained directly from the
driver.
Experiments for solving the MOPO problem were conducted using both the radial-

circumferential and grid-type road networks. In addition, the same links as those used
for the experiments on SOPO problems were used. As before, the results for the
MOPO problem is displayed in two ways: in the MapInfo map window (Figures 7 and
9), and the message window (Figures 11 and 12). Note that the weighting values of
each objective are set to 0·5, 0·25 and 0·25 for the SDP, LNP and MTP objectives
respectively. To make comparison easier, the optimal paths of the MOPO problem
and the optimal paths of all SOPO problems are displayed together in Figures 7 and 9
and the MOPO’s objective values were converted to each objective’s corresponding
value and plotted in Figures 11 and 12. Since the optimal path of the MOPO problem
is a compromise solution, the converted objective values will all be greater than or
equal to the corresponding optimal solutions of the SOPO problems. According to
the experimental results, the converted objective values for each objective of the
MOPO are distance=3183·14, node=33, and turn angle=6826·5; and distance=
2377·79, node=36 and turn angle=2479·2 for the radial-circumferential and grid-type
road networks respectively. Note that these values are greater than or equal to the

 

Figure 10. List of nodes and each objective’s values of SDP, LNP and MTP in a grid-type
road network.

141TOWARDS A MULTI OBJECTIVE PATH OPTIMISATIONNO. 1

https://doi.org/10.1017/S0373463311000579 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463311000579


corresponding optimal values of the SOPO problems that are distance=3183·14,
node=19, and turn angle=6384·2; and distance=2377·79, node=27 and turn angle=
1587·8 for the radial-circumferential and grid-type road networks respectively.

 

Figure 11. List of nodes and objectives’ values of MOPO path in a radial-circumferential road
network.

 

Figure 12. List of nodes and objectives’ values of MOPO path in a grid-type road network.
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The above experiments demonstrate how the proposed MOPO and SOPO models
could be implemented within a GIS as a specialised spatial analysis tool to generate
optimal solutions. They also demonstrate the advantages of integration with the GIS
in supporting both spatial and attribute data displays. Contemporary commercial car
navigation systems typically only provide drivers with the shortest-distance guiding
function. The proposed MOPO and SOPO models not only give drivers more diverse
selection criteria for their driving routes, but also provide transportation planners with
a useful approach to solving the traffic assignment problems in a way which more
closely simulates real driver decision behaviour.

5. CONCLUSION. Car navigation systems and tourist information services
have been recognised as two of the most useful applications of location-based services
(Jeong et al., 2006). One of the most common pieces of information that drivers and
tourists usually request is route direction. The key technologies for supporting this
request are the Shortest Path (SP) algorithms. Currently the only Shortest Distance
Path (SDP) is provided by commercial products where the current SP algorithms only
support the single-objective decision model. To extend the current single-objective
model to a multi objective decision model, this paper proposed a Multi Objective Path
Optimisation (MOPO) model and supplementary Single Objective Path Optimisation
(SOPO) models. Appropriate Multi Objective Programming (MOP) techniques for
solving the MOPO model were discussed and suggested. Algorithms for solving the
Least Node Path (LNP) and Minimum Turn Path (MTP) problems were presented.
To demonstrate the applicability of the proposed MOPO and SOPO models, MOP
techniques and SDP, LNP and MTP algorithms, experiments were conducted.
Through these theoretical and empirical studies several useful conclusions were

drawn. Firstly, the experimental results demonstrate the advantages of integration
with a commercial Geographic Information System (GIS) package in supporting both
spatial and attribute data displays. It can be claimed that by obtaining assistance from
the GIS software it is easy for drivers to obtain the optimal paths of the SDP, LNP,
MTP andMOPO problems very quickly, despite these problems being highly complex
and difficult to resolve manually. Secondly, according to the experimental results, the
proposed LNP, MTP and MOPO decision models provide drivers richer information,
enabling them to choose their driving routes in more diverse ways. Finally, it is shown
by the experimental results that the SDP and LNP mostly locate on different paths in
both radial-circumferential and grid-type road networks, and the total passed
intersections by the SDP are greater than passing by the LNP.
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