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Viscoelastic liquids are usually blends of a polymeric solute and a Newtonian solvent.
In the presence of a temperature gradient, stratification of these solutes can take place via
the Soret effect. Here, we investigate the classical Marangoni instability problem for a thin
viscoelastic film considering this binary aspect of the liquid. The film, bounded above by
a deformable free surface, is subjected to heating from below by a solid substrate. Linear
stability analysis performed numerically for perturbations of finite wavelength (short-wave
perturbations) reveals that both monotonic and oscillatory instabilities can emerge in this
system. In the presence of Soret diffusion, the interaction between thermocapillary and
solutocapillary forces is found to give rise to two different oscillatory instabilities, of
which one mode was overlooked previously, even for the Newtonian binary mixtures.
As a principal result of this work, we provide a complete picture of the susceptibility
to different instability modes based on model parameter values. Finally, an approximate
model is developed under the framework of long-wave analysis, which can qualitatively
depict the stability behaviour of the system without numerically solving the problem.
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1. Introduction

A gradient of surface tension caused by inhomogeneities in temperature (thermocapilla-
rity) or concentration (solutocapillarity) on the free surface of a pure liquid or liquid
mixtures has the ability to induce motion in its bulk phase. Typically known as
the Marangoni convection, this phenomenon is frequently encountered in small-scale
systems (e.g. a thin liquid film, droplet, vapour bubble or liquid bridge) where the
surface effects dominate over the volumetric ones. Understanding the dynamics of
Marangoni convection is essential for optimizing operations such as interfacial heat
and mass transport (applications include thin-film evaporation, liquid–liquid extraction)
and materials processing problems (semiconductor crystal growth, weld deposition),
especially for a microgravity environment where the buoyancy-driven Rayleigh–Bénard
convection gets inhibited.

Since the founding experiments of Bénard (1901), several theoretical, experimental
and numerical investigations have been carried out over the years to elucidate the major
features of this convection phenomenon. For a short historical account on these works, the
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reader is referred to monographs and review papers by Oron, Davis & Bankoff (1997),
Colinet, Legros & Velarde (2001), Nepomnyashchy (2001), Schatz & Neitzel (2001),
Craster & Matar (2009) and Shklyaev & Nepomnyashchy (2017). It is now well known that,
unlike pure liquids, Marangoni convection in a multicomponent liquid film can develop
under the simultaneous actions of thermocapillary and solutocapillary effects. Such liquid
mixtures usually exhibit a strong Soret effect (a cross-diffusive effect that leads to the
spontaneous generation of solute concentration gradient under an imposed temperature
gradient). Therefore, two different physical situations are possible while investigating
the Marangoni convection in a multicomponent liquid film: (i) the temperature and the
concentration gradients are caused by independent sources (often called double-diffusive
convection); and (ii) the temperature gradient is externally imposed, while the Soret effect
generates the concentration gradient.

Motivated by their importance in materials processing, and species separation in
food, chemistry and biomedical applications, both the aforementioned cases have been
extensively investigated in the literature. The double-diffusive problem was pioneered by
McTaggart (1983) to analyse the linear stability characteristics of a horizontally infinite
binary liquid film. Later, Ho & Chang (1988) extended her analysis to study the nonlinear
aspect of the convection process; Arafune, Yamatoto & Hirata (2001) investigated the
double-diffusive problem experimentally, while Chen, Li & Zhan (2010) tackled the
problem for a confined cavity. More recently, D’Alessio et al. (2020) have theoretically
analysed the double-diffusive instabilities in a liquid film falling down a heated inclined
plate. These analyses demonstrate that both monotonic and oscillatory instabilities are
possible in a binary liquid film. The monotonic mode appears when the shear stresses
induced by thermal and solutal components enhance each other, and the oscillatory
convection develops whenever they counteract.

The cross-diffusive Marangoni convection problem has also been the subject of
numerous investigations, starting with the precursor works of Bhattacharjee (1994), Joo
(1995) and Skarda, Jacqmin & McCaughan (1998). These authors addressed the problem
for a horizontal liquid film resting on an ideally thermally conductive substrate (i.e.
considering a constant-temperature bottom boundary condition). Under the framework
of linear stability analysis, it was shown that, although monotonic disturbances can
emerge in the long-wave form in a non-deformable surface, nevertheless, the free surface
deformability is essential for the appearance of long-wave oscillatory perturbations.
For a poorly conductive substrate (i.e. the condition of fixed heat flux at the bottom
boundary), later Oron & Nepomnyashchy (2004) detected a different kind of long-wave
oscillatory disturbance that can develop even without surface deformations. Shklyaev,
Nepomnyashchy & Oron (2009) extended this analysis to decipher the short-wave mode
of this particular oscillatory instability. Recent research in the field of cross-diffusive
Marangoni convection has focused on exploring the role of free surface deformability
(Podolny, Oron & Nepomnyashchy 2005; Hu et al. 2008; Bestehorn & Borcia 2010), the
effect of surfactant adsorption/desorption on the free surface (Shklyaev & Nepomnyashchy
2013) or the influence of modulated boundary conditions (Fayzrakhmanova, Shklyaev &
Nepomnyashchy 2013) on the stability behaviour of the system. However, it should be
noted that all these above-mentioned studies deal with a Newtonian binary mixture.

Despite such remarkable advancements towards understanding the Marangoni
convection in Newtonian fluids, relatively little attention has been devoted to viscoelastic
liquids. Viscoelastic liquids, e.g. polymeric solutions, biofluids, paints, lubricants, etc.,
exhibit complex rheological behaviour due to both the viscous and elastic character (Bird,
Armstrong & Hassager 1987). A non-trivial relaxation time (a measure of elasticity of the
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liquid) significantly alters the dynamics of such liquids from their Newtonian counterpart.
Marangoni convection is often encountered in viscoelastic fluids during phenomena
such as the drying of thin polymeric films, paint films, etc. (Toussaint et al. 2008;
Bassou & Rharbi 2009; Bormashenko et al. 2010). The convective patterns developed
in such liquid films have promising properties for nanotechnological applications, e.g.
organic photovoltaics and photodiodes (Heriot & Jones 2005). It is important to note that
viscoelastic liquids are usually composed of a polymeric solute and a Newtonian solvent,
and thus essentially they are binary mixtures. The Soret effect can yield a stratification
of the solutes in such liquids as well (de Gans et al. 2003). Usually, while the solutes
tend to migrate towards a colder region (owing to their large masses), nevertheless,
sometimes, depending on the solvent quality and the temperature of the mixture, they
can also move into the warmer region (Zhang & Müller-Plathe 2006; Würger 2007).
Such migration of solutes can lead to the development of solutocapillary stress on the
free surface of a viscoelastic liquid film. This aspect necessitates the consideration of
a complete thermosolutal model to investigate the Marangoni instability problem in a
viscoelastic liquid.

In the previously reported studies on Marangoni instability in a viscoelastic film, either
this binary aspect of the liquid was completely ignored, or the problem was analysed
separately for the thermal and solutal convections (i.e. without considering a complete
thermosolutal model). A purely thermal model (Getachew & Rosenblat 1985; Dauby et al.
1993; Parmentier, Lebon & Regnier 2000; Sarma & Mondal 2019) suggests the emergence
of both monotonic and oscillatory disturbances in the system. The monotonic mode is
found to become dominant in a weakly viscoelastic liquid, while the oscillatory instability
prevails in highly viscoelastic liquids. However, such a model is inadequate to illustrate the
instability modes caused by the solutocapillary force. The solutal problem was analysed
by Doumenc et al. (2013) and Yiantsios et al. (2015) in the context of evaporation in a
polymeric film. In these works, the concentration gradient was considered to be solely
caused by the difference in evaporation rate between the constituents, neglecting the Soret
effect. These analyses provide a deep insight into the problem regarding the onset of
convection in the film and the evolution of disturbances in the nonlinear regimes. However,
the role of liquid elasticity on the film dynamics is not clear from these works, since
the polymeric solution was treated as a Newtonian liquid. Furthermore, it also needs to
be pointed out that separate thermal and solutal models are incapable of depicting the
instability modes that may emerge from the interaction between them.

The present work aims at developing a complete thermosolutal model to investigate the
Marangoni instability problem for a thin viscoelastic film. The liquids considered here can
spontaneously generate a concentration gradient via the Soret effect on the imposition
of a temperature gradient, e.g. poly(ethylene oxide)/water, poly(vinyl alcohol)/water,
polystyrene/dioctyl phthalate (Zhang & Müller-Plathe 2006). Employing a viscoelastic
constitutive model to depict the rheology of the liquid, we study the stability characteristics
of the system under the framework of linear analysis. Besides exploring the role of liquid
elasticity on the underlying convection, the present investigation also reveals the instability
modes originating from the interaction between thermocapillary and solutocapillary
forces. In light of the results obtained in this work, another principal goal of this paper
is to encourage future work with viscoelastic liquids.

The remainder of the paper proceeds as follows. In § 2, we formulate the problem
by presenting the set of governing equations and boundary conditions. Linear stability
analysis of the system is then carried out in § 3. The stability picture generated by
numerically solving the eigenvalue problem is analysed in § 4. In § 5, we study the effect
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Air: T∞ g

Free surface σ = f(T, c)|z = h (x,t)

Viscoelastic binary liquid: v (u, w), p, T (x, z, t), c (x, z, t)

JH = –κ∇T, JM = –ρD(∇c + S∇T)
dT/dz|z = 0 = –ϑ

Hot substrate
x

z

FIGURE 1. Schematic illustration of the physical system under consideration. A thin
viscoelastic film (composed of a polymeric solute in a Newtonian solvent), confined between
its deformable free surface z = h(x, t) and a horizontal substrate in the gravitational field g,
is subjected to a vertical temperature gradient. This applied temperature gradient induces a
concentration gradient in the film via the Soret effect. The surface tension gradient arising from
inhomogeneities in temperature and concentration at the air–liquid interface induces Marangoni
convection in the liquid layer. The dashed line corresponds to the undeformed interface in the
quiescent base state.

of liquid elasticity on the spatial structure of eigenvectors at the neutral stability boundary.
An approximate model is then developed in § 6. To provide a comprehensive picture of the
susceptibility to different instability modes based on model parameter values, we plot the
phase diagrams in § 7. And, finally, conclusions are drawn in § 8.

2. Mathematical model

2.1. Problem statement and the governing equations
We begin by considering a thin, two-dimensional layer of an incompressible viscoelastic
polymer solution in the gravitational field g (see figure 1). The solution is a binary
mixture of polymeric solute and Newtonian solvent, characterized by the relaxation time
–λ, viscosity μo, density ρ, thermal conductivity κ , thermal diffusivity α, mass diffusivity
D and surface tension σ .

We consider the film to be of infinite horizontal extent x ∈ (−∞,∞) with unperturbed
thickness H. At the z = 0 plane, the film is in thermal contact with a poorly conductive
rigid substrate, while a deformable free surface located at z = h(x, t) separates it from the
ambient gas phase. A transverse temperature gradient exists in the entire binary mixture,
which is specified to be −ϑ at z = 0. This signifies that ϑ > 0 (ϑ < 0) corresponds to
the case of heating the liquid layer from the substrate (gas) side. The incorporation of the
Soret effect into the analysis indicates that mass flux in the flow domain is a combination
of concentration and temperature gradients (de Groot & Mazur 2011). Hence, the heat J H
and mass J M fluxes within the film are governed by

J H = −κ∇T (2.1a)

and
J M = −ρD(∇c + S∇T), (2.1b)

where S is the Soret coefficient of the mixture. For a polymeric solution, S can be
either positive or negative depending on the solvent quality, the mole fractions of the
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components and the temperature of the binary mixture (Zhang & Müller-Plathe 2006).
A negative (positive) sign of S signifies the migration of polymeric solutes towards the
warmer (colder) region. It follows from (2.1) that, at the conductive state, the externally
applied heat flux generates a temperature difference �T = ϑH, which, in turn, yields a
concentration difference �c = −S�T across the layer.

Now, above a particular temperature gradient, the thermo- and solutocapillary effects
induce Marangoni convection in this mixture. The buoyancy effect is neglected in this
study considering the small thickness of the film (H <∼ O(1) cm; see Pearson 1958). We
assume the surface tension to vary linearly with temperature and solute concentration,
dictated by the relationship

σ = σo − σT(T − To)+ σc(c − co), (2.2)

where σo is the surface tension at the reference temperature To and concentration co;
and σT = −∂σ/∂T and σc = ∂σ/∂c quantify the rate of change of surface tension with
respect to temperature and concentration, respectively. It should be noted that for most
polymeric solutions (σT, σc) > 0 (Doumenc et al. 2013). Furthermore, except for σ , all
other thermophysical properties are assumed to remain invariant with temperature in this
analysis.

In the presence of a linear Soret effect, the equations governing the fields of
liquid velocity v ≡ {u(x, z, t),w(x, z, t)}, pressure p(x, z, t), temperature T(x, z, t) and
concentration c(x, z, t) in the bulk of the film are given by

∇·v = 0, (2.3a)

ρ

(
∂v

∂t
+ v·∇v

)
= −∇p + ∇·τ − ρgk, (2.3b)

∂T
∂t

+ v·∇T = α∇2T, (2.3c)

∂c
∂t

+ v·∇c = D∇2c + SD∇2T, (2.3d)

respectively, where t represents time, τ = [
τ x x τ x z
τ z x τ z z

]
is the deviatoric stress tensor, k is the

unit vector in the z-direction and ∇ ≡ {∂/∂x, ∂/∂z}. The above set of governing equations
are accompanied by the following boundary conditions.

At the z = 0 plane, where the film is in thermal contact with a rigid substrate,
the pertinent boundary conditions encompass the no-slip, no-penetration condition for
velocity, a specified uniform normal heat flux and the mass impermeability condition,
represent respectively by

v = 0,
∂T
∂z

= −ϑ, ∂ c
∂z

= Sϑ at z = 0. (2.4a–c)

At the deformable free surface z = h(x, t), the boundary conditions comprise the
kinematic boundary condition, heat exchange with the ambient gas phase (characterized
by Newton’s law of cooling), mass impermeability condition and the balance of tangential
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and normal stress components, represented respectively by

w = ∂h
∂t

+ u
∂h
∂x
, (2.5a)

−κ
(
∂h
∂x

∂T
∂x

− ∂T
∂z

)
+ q(T − T∞)

√
1 + (∂h/∂x)2 = 0, (2.5b)

κ

(
− ∂h
∂x

∂c
∂x

+ ∂c
∂z

)
− Sq(T − T∞)

√
1 + (∂h/∂x)2 = 0, (2.5c)

1√
1 + (∂h/∂x)2

{
τx z

[
1 −

(
∂h
∂x

)2
]

+ τz z
∂h
∂x

− τx x
∂h
∂x

}
= ∂σ

∂x
+ ∂σ

∂z
∂h
∂x
, (2.5d)

− p + 1
1 + (∂h/∂x)2

[
τz z + τx x

(
∂h
∂x

)2

− 2 τx z
∂h
∂x

]
= σ ∂2h/∂x2

[1 + (∂h/∂x)2]
3/2 at z = h(x, t).

(2.5e)

In (2.5b,c), q denotes the rate of heat exchange between the free surface and the ambient air
at temperature T∞. The kinematic boundary condition (2.5a) gives the interface location at
time t, while the mass impermeability condition (2.5c) portrays the non-volatile behaviour
of the binary mixture. The dynamics of the gas phase are decoupled here from the liquid
phase by considering large differences in the physical properties between the two phases.

2.2. Constitutive model for the liquid
Viscoelastic liquids exhibit complex rheology under the simultaneous actions of viscous
and elastic character. Unlike Newtonian liquids, stress exhibits here an elastic response
to strain characterized by the relaxation time of the liquid. A wide variety of constitutive
relationships, comprising both linear and nonlinear models, have been developed over the
years to describe the rheology of viscoelastic liquids. In this analysis, we proceed with the
linear Maxwell model (Maxwell 1867),

τ + –λ
∂τ

∂ t
= μo[(∇v)+ (∇v)T], (2.6)

which characterizes the liquid by a single relaxation time –λ (here –λ is interpreted as the
longest relaxation time out of the spectrum of relaxation times exhibited by a viscoelastic
liquid) without incorporating the rheological nonlinearity. The reasons behind adopting
this particular constitutive model for this investigation are as follows. First, in the present
convection phenomenon, motion is developed in a liquid film which was at rest in its
equilibrium state. This indicates that the shear rates involved with the underlying process
are also extremely small. A nonlinear model (viz. the upper-convected Maxwell model,
wherein the ordinary time derivative of τ in (2.6) is replaced by the ‘upper-convected’ time
derivatives) is essential to describe the flow dynamics only at high shear rates. Second,
since a linear stability analysis will be carried out around a quiescent base state, here
any nonlinear terms in the constitutive equation will not make any contribution to the
final linearized set of equations. Therefore, the stability picture obtained using a linear
model will be identical to that with the inclusion of upper-convected terms. The aspects
mentioned above suggest that the linearized Maxwell model is deemed sufficient to reveal
the basic effect of elasticity for this analysis.
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2.3. Non-dimensionalization
The boundary value problem (BVP) formulated by (2.3)–(2.5) is now non-dimensionalized
by considering the unperturbed film thickness H as characteristic length scale, the thermal
diffusion time H2/α as characteristic time scale and ϑHas temperature scale.

This allows us to define the following set of dimensionless variables:

(x̄, z̄) = (x, z)
H

, h̄ = h
H
, t̄ = t

H2/α
, (ū, w̄) = u,w

(α/H)
, τ̄ = τ

μoα/H2
,

p̄ = p
μoα/H2

, T̄ = T − T∞
ϑH

, c̄ = c
σTϑH/σc

.

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

Note that, although the bulk concentration c (defined either as mass fraction or volume
fraction) is a dimensionless quantity, its rescaling in the above-mentioned manner keeps
this analysis coherent with the previously reported studies (Podolny et al. 2005; Shklyaev
et al. 2009; Sarma & Mondal 2018). With this choice of the non-dimensional variables, we
finally obtain the governing equations and the boundary conditions (dropping the overbar
sign for notational convenience) in the following dimensionless form:

∇·v = 0, (2.8a)

Pr−1

(
∂v

∂t
+ v·∇v

)
= −∇p + ∇·τ − Gak, (2.8b)

∂T
∂t

+ v·∇T = ∇2T, (2.8c)

∂c
∂t

+ v·∇c = Le(∇2c + χ∇2T); (2.8d)

v = 0,
∂T
∂z

= −1,
∂c
∂z

= χ at z = 0, (2.9a–c)

w = ∂h
∂t

+ u
∂h
∂x
, (2.10a)(

∂T
∂z

− ∂h
∂x

∂T
∂x

)
+ BiT

√
1 + (∂h/∂x)2 = 0, (2.10b)

(
∂c
∂z

− ∂h
∂x

∂c
∂x

)
− χBiT

√
1 + (∂h/∂x)2 = 0, (2.10c)

−p + 1
1 + (∂h/∂x)2

[
τz z + τx x

(
∂h
∂x

)2

− 2τx z
∂h
∂x

]
= Σ

∂2h/∂x2

[1 + (∂h/∂x)2]
3/2 , (2.10d)

1√
1 + (∂h/∂x)2

{
τx z

[
1 −

(
∂h
∂x

)2
]

+ τz z
∂h
∂x

− τx x
∂h
∂x

}

= Ma
[
−∂T
∂x

+ ∂ c
∂ x

+
(

−∂T
∂z

+ ∂ c
∂z

)
∂h
∂ x

]
at z = h(x, t). (2.10e)

Moreover, in non-dimensional form, the Maxwell constitutive model (2.6) reads

τ + De
∂τ

∂t
= [(∇v)+ (∇v)T]. (2.11)
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This problem is now characterized by the following set of dimensionless parameters:
the Marangoni number Ma, the Prandtl number Pr, the Deborah number De, the (inverse)
Lewis number Le, the Soret number χ , the Biot number Bi, the Galileo number Ga, and
the (inverse) capillary number Σ :

Ma = σTϑH2

μoα
, Pr = μo

ρα
, De =

–λα

H2
, Le = D

α
,

χ = Sσc

σT
, Bi = qH

κ
, Ga = ρgH3

μoα
, Σ = σH

μoα
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

The Marangoni number governs the present instability phenomenon. For the convection
to set in, the thermosolutocapillary stresses must have to overcome the stabilization
effects of viscous and thermal diffusion. The Marangoni number Ma gives the critical
temperature difference across the film (ϑH) at which convection appears in the film.
Note that, for σT > 0, Ma can assume both positive and negative values depending on
the direction of the applied temperature gradient ϑ . A positive (negative) Ma indicates
that the liquid layer is subjected to heating from below (above). However, we restrict this
analysis only to positive values of Ma. The Prandtl number Pr is a material property of
the liquid. Excluding the rarefied gases (which display a strong viscoelastic character
with Pr � 1), for most viscoelastic liquids Pr � 1. This indicates a larger thermal
diffusion time scale (H2/α) compared to the viscous diffusion time scale (ρH2/μo)
for such liquids. The Deborah number De is a measure of elasticity of the liquid. The
value De = 0 indicates a Newtonian liquid (–λ = 0), while higher values of De signify
enhanced elastic behaviour of the liquid. The (inverse) Lewis number Le compares the
characteristic mass diffusion time scale H2/D to the thermal diffusion time scale H2/α.
Usually Le is small for binary liquid mixtures and lies within 10−5 ≤ Le ≤ 10−1. The
Soret number χ takes into account the relative contributions of thermocapillary and
solutocapillary forces to the free surface force. Note that χ can be either positive or
negative based on the Soret coefficient S (see § 2.2). The typical value of χ varies within
−1 ≤ χ ≤ 1. The Biot number Bi characterizes the heat transfer rate across the free
surface. The Galileo number Ga and the (inverse) capillary number Σ take account of the
free surface deformability through the magnitude of g and σ . For a 0.1 mm thick layer of
a polymeric solution with μo = O(10−2) Pa s, ρ = O(103) kg m−3, α = O(10−7) m2 s−1,
σ = O(10−2) N m−1 and g = O(0.1) m s−2, we obtain Ga = 0.1, which corresponds to
the microgravity environment. It is important to note that a free surface can be treated as
non-deformable in the limit (Ga,Σ) → ∞, which is usually the case for a liquid layer
with very high surface tension in the terrestrial environment. In order to reveal the role of
surface deformability on the stability characteristics of the system, we consider here two
separate cases : (i) (Ga,Σ) = (0.1, 103), which represents a liquid layer with a deformable
free surface in the microgravity environment, and (ii) (Ga,Σ) → ∞, which refers to a
liquid layer with a non-deformable free surface.

3. Basic state and linear stability analysis

In this section, we present a linear stability analysis for small perturbations around the
quiescent liquid film with laterally uniform temperature and concentration distribution.
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This purely conductive state of the system is represented by

vo = 0, τ o = 0, ho = 1, po = Ga(1 − z),

To = 1 − z + Bi−1, co = χz + const.,

}
(3.1a–f )

which are steady-state solutions of (2.8)–(2.10). One can notice that the elasticity of the
liquid does not influence this basic state. We now study the stability of this basic state by
introducing the following two-dimensional infinitesimal normal perturbations (denoted by
a tilde) to the steady-state solutions (3.1):

v = vo + ṽ(x, z, t), τ = τ o + τ̃ (x, z, t), p = po + p̃(x, z, t),

T = To + θ̃ (x, z, t), h = ho + ξ̃ (x, z, t), c = co + c̃(x, z, t).

}
(3.2a–f )

Linearization of (2.8)–(2.10) by neglecting the terms nonlinear in perturbations yields the
following set of governing equations and boundary conditions:

∇·ṽ = 0, (3.3a)

Pr−1 ∂ ṽ

∂t
= −∇p̃ + ∇·τ̃ , (3.3b)

∂θ̃

∂t
= ∇2θ̃ + w̃, (3.3c)

∂ c̃
∂t

+ χ w̃ = Le(∇2c̃ + χ∇2T̃); (3.3d)

ṽ = 0,
∂θ̃

∂z
= 0,

∂ c̃
∂z

= 0 at z = 0, (3.4a–c)

∂ξ̃

∂t
= w̃,

∂θ̃

∂z
= −Bi(θ̃ − ξ̃ ),

∂ c̃
∂z

= χBi(θ̃ − ξ̃ ),

τ̃xz = Ma
∂

∂x
(c̃ − θ̃ + ξ̃ + χξ̃), −p̃ + Gaξ̃ + τ̃zz = Σ

∂2ξ̃

∂x2
at z = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.5a–e)

whereas the constitutive equation (2.11) reads

τ̃ + De
∂ τ̃

∂t
= [(∇ṽ)+ (∇ṽ)T]. (3.6)

We now cast the BVP (3.3)–(3.5) in terms of the streamfunction ψ̃(x, z, t) so that

ũ = ∂ψ̃

∂z
, w̃ = −∂ψ̃

∂x
. (3.7a,b)

The basic idea behind the streamfunction formulation is to eliminate the pressure term
p̃ from the system of equations (3.3)–(3.5). Introducing relationships (3.7) and the
constitutive equation for Maxwell viscoelastic model (3.6) into (3.3)–(3.5), we finally
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arrive at

Pr−1

(
∂

∂t
∇2ψ̃ + De

∂2

∂ t2
∇2ψ̃

)
= ∇4ψ̃, (3.8a)

∂θ̃

∂t
= ∇2θ̃ − ∂ψ̃

∂x
, (3.8b)

∂ c̃
∂ t

− χ
∂ψ̃

∂x
= Le[∇2c̃ + χ∇2T̃], (3.8c)

with the boundary conditions

ψ̃ = 0,
∂ψ̃

∂ z
= 0,

∂θ̃

∂z
= 0,

∂ c̃
∂z

= 0 at z = 0, (3.9a–d)

∂ξ̃

∂t
= −∂ψ̃

∂x
,

∂θ̃

∂z
= −Bi(θ̃ − ξ̃ ),

∂ c̃
∂z

= χBi(θ̃ − ξ̃ ), (3.10a–c)

∂2ψ̃

∂ z2
− ∂2ψ̃

∂ x2
= Ma

∂

∂ x
(c̃ − θ̃ + ξ̃ + χξ̃)+ Ma De

∂2

∂t∂x
(c̃ − θ̃ + ξ̃ + χξ̃), (3.10d)

(
1 + De

∂

∂ t

)(
Σ
∂3ξ̃

∂x3
− Pr−1 ∂

2ψ̃

∂t∂z
− Ga

∂ξ̃

∂x

)
= − ∂

∂z

(
3
∂2

∂x2
+ ∂2

∂z2

)
ψ̃ at z = 1.

(3.10e)

Noticing that the basic state (3.1) is invariant with respect to x and t, we use the Fourier
decomposition to separate the x and t dependences of the perturbed fields (ψ̃, θ̃ , c̃, ξ̃ )
from that with z:

(ψ̃(x, z, t), θ̃ (x, z, t), c̃(x, z, t), ξ̃ (x, z, t)) = (
�

ψ(z),
�

θ(z), �c(z),
�

ξ(z))exp(ikx − λt),
(3.11)

where (
�

ψ,
�

θ,
�c,

�

ξ) are the amplitudes of perturbations, k denotes the dimensionless
horizontal wavenumber and λ = Ω + iω refers to the decay rate of perturbations. The
parameter ω (a real quantity) represents the frequency of perturbation. Hence, the
dynamics of these infinitesimal perturbations is now governed by the following eigenvalue
problem (EVP):

Pr
d4 �

ψ

dz4
− (λ2De − λ+ 2Prk2)

d2 �

ψ

dz2
+ (λ2De − λ+ Prk2)k2 �

ψ = 0, (3.12a)

d2�θ

dz2
+ (λ− k2)

�

θ = ik
�

ψ, (3.12b)

Le
d2�c
dz2

+ (λ− Lek2)
�c = −Leχ

(
d2�θ

dz2
− k2�θ

)
− iχk

�

ψ; (3.12c)

�

ψ = 0,
d

�

ψ

dz
= 0,

d
�

θ

dz
= 0,

d�c
dz

= 0 at z = 0, (3.13a–d)

ik
�

ψ = λ�ξ, d
�

θ

dz
= −Bi(

�

θ − �

ξ),
d�c
dz

= χBi(
�

θ − �

ξ), (3.14a–c)
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d2 �

ψ

dz2
+ k2 �

ψ = iMak(1 − λDe)(�c − �

θ + χ
�

ξ + �

ξ), (3.14d)

Pr
d3 �

ψ

dz3
+ (λ− λ2De − 3Prk2)

d
�

ψ

dz
= ikPr(1 − λDe)(Ga +Σk2)

�

ξ at z = 1, (3.14e)

with λ and Ma as the eigenvalues. This problem was recently analysed by Sarma & Mondal
(2019) for a pure viscoelastic film (Le, χ → 0). Surpassing this restriction, the more
realistic binary aspect of the liquid is considered here, along with the incorporation of the
Soret effect. Solving the system (3.12)–(3.14) for Ω = 0, one can now obtain the neutral
stability curves that demarcate the stable regime from the unstable one. However, the
complexity of solvability conditions here restrains us from taking an analytical approach.
Therefore, the EVP is solved numerically using the fourth-order Runge–Kutta method
with shooting technique (Keller 2018) for disturbances with arbitrary values of k. An
approximate model will be developed in § 6 in the asymptotic limit k → 0.

It is well known that, provided with a good initial guess, the shooting method usually
yields a more accurate solution at reduced computational cost compared to most other
numerical methods (McFadden, Coriell & Lott 2010; Hirata et al. 2015). We have verified
the accuracy of our numerical scheme by comparing the results with those available in
the literature as well as with the results obtained from the approximate model. However,
confronted by the lack of published results on the thermosolutal Marangoni convection for
viscoelastic liquids, we first test the accuracy of our numerical solution against the results
of Shklyaev et al. (2009). These authors numerically investigated the instability problem
for a Newtonian binary mixture. In figure 2, one can see that an excellent quantitative
agreement exists between the present results and the computations of Shklyaev et al.
(2009) for both values of Bi. The numerical results are also found to agree well with
the results of the approximate model (see figures 14–16) for all but the parameter values
that violate the approximations necessary to derive the model (discussed in § 6). These
comparisons ensure the accuracy of the present numerical scheme for the entire parametric
range of interest.

The EVP posed by (3.12)–(3.14) suggests the possible emergence of two different
instability modes in the system: (i) monotonic mode (or stationary convection) and
(ii) oscillatory mode (or overstability) for which the disturbances grow with temporal
oscillations. The stability thresholds for the monotonic and oscillatory modes can be
obtained from (3.12)–(3.14) by substituting λ = 0 and λ = iω, respectively. Note that, to
find the stability margin for the oscillatory instability mode, we numerically seek such a
value of ω for which the imaginary part of Ma vanishes. Repetition of this procedure for a
broad range of k yields the neutral stability curve for this particular instability mode.

4. The linear stability picture

In this section, we analyse the stability picture obtained through numerical
computations. Emphasis is put on understanding how viscoelasticity in the presence of
the Soret effect deviates the stability characteristics of the system from its Newtonian
counterpart. For convenience in analysis, we divide the entire disturbance spectrum
into two different regimes: (i) long-wave regime, k < O(1), and (ii) short-wave regime,
k >∼ O(1). Furthermore, it is important to remark that we fix Pr = 10 for all the graphical
results. This is because the stability margin shows no substantial variation with Pr
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2

FIGURE 2. Comparison of the present numerical result with the results of Shklyaev et al. (2009)
(shown by markers ‘o’) via the neutral stability curve at Pr = 2, χ = −0.2 and Le = 10−3.
Curves marked by 1 and 2 correspond to Bi = 0 and Bi = 0.1 respectively. To represent the
characteristics of a Newtonian binary liquid with a non-deformable free surface, we consider
De = 0 and (Ga,Σ) → ∞.

against both the long-wave and short-wave perturbations (this is also apparent from the
approximate model derived in § 6).

4.1. Effect of elasticity and the free surface deformability
Let us first start with the monotonic instability mode. Figure 3 plots the neutral stability
curves for this particular instability mode. The solid line here represents the stability
threshold for a liquid layer with a deformable free surface (Ga,Σ) = (0.1, 103), while
the dotted one depicts the stability margin for a non-deformable surface (Ga,Σ) → ∞.
It can be observed that, over the entire range of disturbance wavenumber k, there exists a
minimum value for the Marangoni number Ma (indicated by the marker ‘o’; see inset
of figure 3) only above which the instability first sets in in the system. We call this
Ma the critical Marangoni number (Mac) and the corresponding k and ω as the critical
wavenumber (kc) and critical oscillation frequency (ωc), respectively.

From figure 3 it is clear that, irrespective of the free surface deformability, the
monotonic disturbances always emerge in the long-wave form (kc � O(1)). Nevertheless,
the increased gravitational and surface tension forces for a non-deformable surface slightly
delay the onset of these disturbances in the system (Mac,(Ga,Σ)→∞ > Mac,(Ga,Σ)→(0.1,103);
see inset of figure 3). Notably, the monotonic instability threshold is not affected by the
elastic behaviour of the liquid. This is due to the vanishing of any temporal components
for this stationary convection (cf. (3.12)–(3.14) substituting λ = 0). The role of other
non-dimensional parameters on the stability margin for this instability mode will be
discussed systematically in the subsequent subsections.

We now focus our attention on the disturbances that emerge with temporal
oscillations (ω /= 0), giving rise to Hopf bifurcation. Previous investigations on the
pure thermocapillary instability in a viscoelastic film (Lebon et al. 1994; Parmentier
et al. 2000; Ramkissoon et al. 2006) suggest that the oscillatory disturbances are more
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0 0.1 10

0

0.5

1.0

k

Ma

0 0.5
0.117

0.121

Mon.

Stable

FIGURE 3. Neutral stability curves Ma(k) for the monotonic instability mode. The solid line
represents the stability threshold for a deformable free surface (Ga,Σ) = (0.1, 103), whereas the
dotted line demonstrates the stability margin for a non-deformable free surface (Ga,Σ) → ∞.
The dot (o) mark on each neutral curve represents the critical point of the curve. The inset depicts
the effect of free surface deformability on the stability threshold in the long-wave regime. Other
parameters: Bi = 0.01, χ = 0.5, Le = 10−3 and Pr = 10.

likely to appear in a highly viscoelastic film (highly and weakly viscoelastic liquids
will be defined shortly). For the present thermosolutal convection process, we will
demonstrate that, depending on the nature of the Soret coefficient (i.e. whether χ > 0
or χ < 0), two different oscillatory instabilities can emerge in the system. We call them
the oscillatory-I and oscillatory-II modes. It is important to remark that the characteristics
of the oscillatory-I mode have been extensively studied in the literature in the context of a
Newtonian binary mixture (Skarda et al. 1998; Podolny et al. 2005; Shklyaev et al. 2009;
Bestehorn & Borcia 2010). However, its behaviour for a viscoelastic binary liquid has not
been investigated yet. On the other hand, to our knowledge, the oscillatory-II mode has
remained entirely unexplored, even for a Newtonian binary liquid (perhaps due to limited
examination over the model parameters). We will demonstrate that, for a viscoelastic
binary mixture, while the oscillatory-I mode is more universal, the oscillatory-II instability
can also become dominant in the system under appropriate model parameter values.

Figure 4 plots the neutral stability curves as well as the corresponding oscillation
frequencies for the oscillatory-I mode. The solid and the dash-dotted lines represent here
the stability margin for a deformable free surface, while their adjacent dotted lines depict
the stability boundary for a non-deformable free surface.

Figure 4(a) demonstrates that, for χ < 0, the neutral curves consist of two branches,
each characterized by a distinct local minimum. Note that, of these two minima, while
one resides in the long-wave regime (kc < O(1)), the other lies in the short-wave regime
(kc >∼ O(1)). Accordingly, we call these branches the long-wave and short-wave branch,
respectively. It can be clearly seen that, for the long-wave branch, Mac is a strong function
of the deformability of the free surface. Similar to the monotonic mode, a reduced
free surface deformability enhances the stability of the system against the long-wave
oscillatory-I disturbances as well. However, the onset of these disturbances essentially
remains unaffected by the elastic behaviour of the liquid (see figure 4a; the long-wave
branch for De = 0 and 1 merge into a single curve). On the other hand, Mac for the
short-wave branch is not influenced by the deformability of the free surface, but is
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FIGURE 4. (a,c) Neutral stability curves Ma (k), and (b,d) the corresponding oscillation
frequency ω for the oscillatory-I instability mode for χ < 0 (= −0.5) and χ > 0 (= 0.5),
respectively. For panels (a,b), the lines marked by 1 and 2 correspond to De = 0 and
De = 1, respectively; for panels (c,d), the lines marked by 1 and 2 correspond to De = 0.1 and
De = 1, respectively. In each panel, the solid and the dash-dotted lines depict the results for a
deformable free surface (Ga,Σ) = (0.1, 103); the adjacent dotted line represents the results for
a non-deformable free surface (Ga,Σ) → ∞. The dot (o) mark on each neutral curve denotes
the critical point (or the global minimum) of the curve. Other parameters: Bi = 0.1, Le = 0.01
and Pr = 10.

governed by the elasticity of the mixture. An increased elasticity of the liquid substantially
promotes here the onset of instability in the system. This suggests that, depending on the
free surface deformability and the elasticity level of the liquid, either of the long-wave or
short-wave branches can hold the position of global minimum (see the marker ‘o’ on each
neutral curve in figure 4a). In other words, the oscillatory-I disturbances can emerge in
both the long-wave and short-wave form for χ < 0.

Figure 4(c) shows that, for χ > 0, the long-wave branch disappears, leaving only the
short-wave branch. In particular, in this regime of χ , the oscillatory-I disturbances are
found only for De > 0. This indicates that the emergence of short-wave oscillatory-I
instability for χ > 0 is a sole manifestation of the elastic behaviour of the liquid. Similarly
to the case χ < 0, the stability threshold remains unaltered by the deformability of the free
surface but diminishes drastically with the increasing elasticity of the mixture.
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FIGURE 5. Variation of the (a) critical Marangoni number Mac, and the corresponding critical
(b) wavenumber kc and (c) oscillation frequency ωc with Deborah number De for the oscillatory-I
instability mode for χ < 0. The solid line depicts the variation for a deformable free surface
(Ga,Σ) = (0.1, 103); and the dotted line is that for a non-deformable surface (Ga,Σ) → ∞.
The arrow marks in panels (b,c) illustrate a switchover in the instability behaviour with the
increasing elasticity of the liquid. Other parameters: Bi = 0.1, Le = 0.01 and χ = −0.5.

The oscillation frequency ω of the neutral perturbations corresponding to each neutral
curve of figure 4(a,c) is plotted in figure 4(b,d). The deformability of the free surface
controls ω only in the long-wave regime, whereas ω is primarily modulated by the
elasticity of the liquid in the short-wave regime. It should be further noted that, although
the ω (k) variation is smooth in the long-wave regime, discontinuity appears in the
short-wave regime (in particular at higher values of De). In the neighbourhood of such
points of discontinuity, a sudden change in the gradient of Ma(k) neutral curve occurs,
as can be observed from figure 4(a,c). Similar features of the neutral curves have been
reported previously by Dauby et al. (1993) and Parmentier et al. (2000) in the context of
pure thermocapillary-driven convection in a viscoelastic film.

It is now clear that, for χ < 0, the oscillatory-I disturbances can develop in both
Newtonian and viscoelastic binary mixtures. However, the elasticity of the liquid
significantly influences the onset of this particular instability mode in the system. To
illustrate this elasticity-based transition of the stability picture, we plot in figure 5
the critical Marangoni number Mac, the corresponding wavenumber kc, and oscillation
frequency ωc as functions of Deborah number De for both the cases of deformable (solid
line) and non-deformable (dotted line) free surface. Note that Mac refers here to the global
minimum of the oscillatory-I neutral curve. Two regimes are clearly distinguishable from
the variations depicted by figure 5: a weakly elastic regime (for De <∼ 0.1) wherein the
stability behaviour resembles that of a Newtonian binary liquid (at least for bifurcation
around the conductive base state), and a strong elastic regime (for De > 0.1) where the
elasticity of the liquid governs the stability threshold and the critical parameters (kc, ωc).
The transition between these two regimes is marked by sharp discontinuities in kc and ωc
(see the arrow marks in figure 5b,c).

A key observation from figure 5 is that, in the weakly elastic regime, while the
critical parameters (Mac, kc, ωc) are governed by the deformability of the free surface
rather than the elasticity of the liquid, the opposite is true for the highly elastic regime.
Figure 5(a) shows that the reducing deformability of the free surface dampens the onset of
oscillatory-I instability for De <∼ 0.1. The resulting disturbances emerge in the long-wave
form (kc ≈ 0.1) for a deformable free surface and the short-wave form (kc ≈ 1) in case of
a non-deformable free surface (see figure 5b). On the other hand, for a highly viscoelastic
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FIGURE 6. Neutral stability curves Ma(k) for the monotonic and oscillatory-I modes in the (a,c)
positive and (b) negative Soret number χ domains. The long-wave branch for the oscillatory-I
mode emerges only when χ < 0. The dot (o) mark on each neutral curve represents the critical
point of the curve. Other parameters: Bi = 0.01, De = 1, Le = 10−3 and (Ga,Σ) = (0.1, 103).

mixture (De > 0.1), irrespective of the free surface deformability, the disturbances always
set in in the short-wavelength form. An inverse variation of the parameters (Mac, kc, ωc)
with De in this regime suggests that, for the enhanced elasticity of the binary mixture, the
conductive state is more likely to bifurcate to the short-wave oscillatory-I mode with a
more easily detectable convective pattern.

Another interesting feature presented by figure 5 is that, for De ≈ 0.1 (i.e. the boundary
separating the weakly and highly elastic regimes for a liquid layer with a deformable
free surface), Mac for the onset of long-wave and short-wave oscillatory-I perturbations
coincide. Therefore, a competition between the respective instability modes can take place
in the system for (De,Ga,Σ) ≈ (0.1, 0.1, 103).

4.2. The role of thermocapillary and solutocapillary effects
In this subsection, we investigate the contributions of thermocapillary and solutocapillary
forces on the development of instabilities in the system. This is done by plotting the
neutral stability curves for monotonic and oscillatory modes at different values of χ .
Recall that χ = 0 refers in this analysis to the case of purely thermocapillary-driven
convection. Figure 6(a) shows that the domain of stability reduces substantially as χ
increases from zero. This suggests that both thermocapillary and solutocapillary forces
play a destabilizing role in the emergence of monotonic instability for χ > 0. However, it
is important to note that kc for this instability mode is not decided by the solutal effects
(at least for a deformable surface; the case of a non-deformable surface will be discussed
in figure 7). Although not shown here graphically, this particular instability mode can
appear even for χ < 0, within a narrow interval of χ . This range will be identified in § 6,
performing a long-wave asymptotic analysis of the problem.

Figure 6(b) demonstrates that, for the long-wave branch of oscillatory-I mode,
solutocapillarity acts as stabilizing, while thermocapillarity turns into the destabilizing
mechanism. Such opposite contributions of the driving forces give rise to the long-wave
oscillatory-I perturbations in the system. On the other hand, thermocapillarity, coupled
with the elasticity of the liquid, primarily give rise to the short-wave disturbances.
Solutocapillarity provides here only a small correction to the stability margin.
Interestingly, for this short-wave branch, an increasing |χ | in the range χ < 0 weakly
destabilizes the system, whereas an increment in χ for χ > 0 leads to a mild stabilization
of the system (see insets in figure 6b,c).
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FIGURE 7. Variation of the (a) critical Marangoni number Mac, and the corresponding
(b) critical wavenumber kc with χ . In each panel, the solid, dash-dotted and dashed lines
represent the variations for a deformable free surface (Ga,Σ) = (0.1, 103). The dotted lines
adjacent to each instability mode represent the variations for a non-deformable free surface
(Ga,Σ) → ∞. Other parameters: Bi = 0.01 and Le = 10−3.

Figure 7 plots the variations of critical Marangoni number Mac and the corresponding
wavenumber kc with χ for the cases of both a deformable and a non-deformable free
surface. Clearly, an increasing χ (> 0) leads to a strong destabilization of the system with
respect to the monotonic disturbances (see figure 7a). It should be noted that, for this
instability mode, although the deformability of the free surface only weakly influences
the stability threshold (see figure 3; this is not even perceptible in the scale of figure 7a),
nevertheless, it plays an important role in determining the size of the convection cells.
In figure 7(b) one can see that kc,(Ga,Σ)→∞ > kc,(Ga,Σ)= (0.1,103), implying that a highly
deformable free surface allows the formation of much larger sized stationary convective
patterns compared to its non-deformable counterpart.

For the oscillatory-I mode, figure 7(a) shows that an increasing |χ | augments the
stability region for a Newtonian binary liquid film having a deformable free surface.
However, in the case of a non-deformable free surface (or for a highly viscoelastic mixture
irrespective of the free surface deformability), the stability thresholds are found to remain
nearly independent of χ . In this regard, it is important to observe in figure 7(b) that, for
a Newtonian binary mixture with a deformable surface, kc lies in the long-wave regime,
whereas, for a non-deformable surface (or for a highly viscoelastic mixture), kc resides
in the short-wave regime. The fact that the solutocapillary effect is dominant only in the
long-wave regime (see figure 6) thus explains the variations in figure 7(a).

Before concluding this subsection, an additional remark about figure 7(a) is necessary.
Note that, at the intersection point between the neutral curves for monotonic and
oscillatory-I modes, Mac,mon = Mac,osc.-I . Therefore, a competition between the respective
instability modes can occur for χ values corresponding to this point. Now, for De >
0, since the oscillatory-I disturbances can appear for any χ ∈ R, and as their onset
gets triggered by the increasing elasticity of the liquid, the neutral curve for the
monotonic mode presented in figure 7(a) is essentially the locus of codimension-two
bifurcation points. Towards the left of this curve, the conductive state bifurcates into the
oscillatory-I mode, while a steady bifurcation (i.e. monotonic instability) takes place on its
right.
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FIGURE 8. Effect of Lewis number Le on the monotonic and oscillatory instability threshold for
(a,c) χ < 0 (= −0.5) and (b) χ > 0 (= 0.5). The dot (o) mark on each neutral curve represents
the critical point of the curve. Panel (c) shows that, for a deformable free surface at higher value
of Le, a different type of long-wave oscillatory instability (oscillatory-II) can emerge in the fluid
layer. Other parameters: Bi = 0.01, De = 1 and (Ga,Σ) = (0.1, 103).

4.3. The role of thermal and solutal diffusivities
Let us now discuss the influence of thermal and solutal diffusivities on the onset of
instability in the system. Here, we will demonstrate that, based on the diffusivity ratio
Le (= D/α), a different kind of oscillatory instability (i.e. oscillatory-II) can emerge in
the liquid layer. Before that, we first investigate the role played by Le on the emergence of
oscillatory-I disturbances.

Figure 8(a) shows that an increased solute diffusivity corresponding to higher values of
Le enhances the stability of the system against the long-wave oscillatory-I disturbances.
This is due to the stabilizing role of solutocapillarity (see figure 6b) in producing this
instability mode. Similarly, a destabilizing (stabilizing) solutocapillary force for χ <
0 (χ > 0) in the short-wave regime leads to a reduction (enhancement) in the stability
threshold for higher solute diffusivity (compare figure 8a,b with figure 6b,c).

Figure 8(c) shows that, for a sufficiently large Le ( >∼ O(10−2)), the oscillatory-II
disturbances can emerge in systems with a deformable free surface. Note that, at higher k
values, the neutral curve for this particular instability mode (the dotted line) merges with
the neutral curve for the monotonic mode (the solid line). This limits the appearance of
oscillatory-II disturbances only in the long-wave form.

The other features of this instability mode are also quite different from those of the
oscillatory-I mode. First, while the oscillatory-I instability can emerge in the system for
the entire permissible range of model parameters, the oscillatory-II instability appears only
in the case of a deformable free surface, for χ > 0 and Le >∼ O(10−2). Although not shown
here graphically, such disturbances get damped with the reducing deformability of the free
surface and eventually disappear in a non-deformable free surface. Second, the oscillation
frequency of the oscillatory-II mode is several orders of magnitude smaller than that of the
oscillatory-I mode (see figure 9). This suggests that the oscillatory-II perturbations develop
with a significantly large oscillation period compared to the oscillatory-I disturbances.

Now, in order to understand the physical mechanism behind the origination of the
oscillatory-II disturbances and to elucidate the role of liquid elasticity on their onset,
we plot in figure 10 the variation of Mac(χ) with De for this instability mode. The
disappearance of these disturbances for purely thermocapillary-driven convection (Mac →
∞ as χ → 0) and the reduction of Mac with χ suggest that the competition between
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FIGURE 9. Comparison of the oscillation frequency of neutral perturbations for the
oscillatory-II mode with oscillatory-I mode (shown in the inset). Parameters: χ = 0.5, Bi = 0.01,
De = 1, Le = 0.1 and (Ga,Σ) = (0.1, 103).
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χ

FIGURE 10. Variation of the critical Marangoni number Mac with χ for the oscillatory-II mode
at Bi = 0.01, Le = 0.1 and (Ga,Σ) = (0.1, 103). Note that no oscillatory-II instability emerges
for χ ≤ 0.

stabilizing thermocapillary and destabilizing solutocapillary forces gives rise to the
oscillatory-II mode. A shorter mass diffusion time scale (H2/D) is here essential to
overcome the stabilizing action of thermocapillarity by the destabilizing solutocapillary
force. This explains the reason behind the emergence of oscillatory-II instability only
for higher values of Le (= (H2/α)/(H2/D) >∼ O(10−2)). Another key observation from
figure 10 is that the Mac(χ) neutral curves for different values of De (= 0 and 1) collapse
onto a single curve. This implies that the stability threshold for the oscillatory-II mode is
not affected by the elastic behaviour of the binary mixture.
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FIGURE 11. Effect of Biot number Bi on the monotonic and oscillatory instability threshold
for (a) χ < 0 (= −0.5), and (b,c,d) χ > 0 (= 0.5) for a film with deformable free surface
(Ga,Σ) = (0.1, 103). Other parameters: De = 1 and Le = 0.01.

4.4. The role of heat transfer rate at the free surface
Lastly, we discuss the role of the Biot number on the stability threshold of the system. In
figure 11, the neutral stability curves for each instability mode are plotted for two different
values of Bi (= 10−3 and 0.1). It turns out that, at higher values of Bi, the enhanced
heat transfer rate from the free surface increases the stability of the system against the
long-wave disturbances (see figure 11(a,c,d) at small k). However, the influence of Bi is
less significant in the short-wave regime, as reflected by the saturation of curves in this
regime (see figure 11(a–c) at large k). The magnitude of Bi, therefore, bears significant
importance in the emergence of long-wave instability in the liquid layer.

5. Spatial structure of eigenvectors at neutral stability

We now briefly examine the effect of elasticity on the spatial structure of eigenvectors
�

ψ,
�

θ and �c at the neutral stability boundary. Figure 12 plots the normalized spatial profiles
of

�

ψ for each instability mode at two different levels of elasticity (De = 0 and 1) of the
binary mixture.
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FIGURE 12. Effect of liquid elasticity on the eigenvector
�

ψ profiles (normalized) at the neutral
stability boundary for (a) monotonic mode, (b) oscillatory-II mode, (c) long-wave oscillatory-I
mode and (d) short-wave oscillatory-I mode. Profiles in panels (a,b) correspond to the critical
point of the respective neutral curve presented in figure 8(a). Profiles in panels (c,d) refer to
the critical point of the long-wave and short-wave branches of the neutral curves depicted in
figure 4(a). The eigenvectors are plotted for a deformable free surface (Ga,Σ) = (0.1, 103).

Note that
�

ψ (= �

ψ r + i
�

ψ i) is a complex-valued eigenvector. For the monotonic

instability mode,
�

ψ r = 0, and thus
�

ψ (= i
�

ψ i) assumes a purely imaginary value (see

figure 12a). Similarly to the monotonic instability threshold, the spatial structure of
�

ψ
also remains independent of the elasticity of the mixture. For the oscillatory-II as well
as the long-wave oscillatory-I mode, figure 12(b,c) demonstrate that the spatial structures

of
�

ψ are identical and essentially remain unaltered by the elasticity of the liquid. This
observation is also consistent with the results obtained in § 4 (which suggest that the
onset of long-wave oscillatory disturbances get least affected by the elastic behaviour
of the binary mixture). On the other hand, the spatial shape of

�

ψ for the short-wave
oscillatory-I mode is found to be highly sensitive to the liquid elasticity (see figure 12d).
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FIGURE 13. Effect of elasticity on the spatial profiles of (a) temperature
�

θ and (b) concentration
�c eigenvectors (normalized) at the neutral stability point. Profiles for each De in panels (a,b)
correspond to the critical point of the short-wave oscillatory-I branch presented in figure 4(a).

Here
�

ψ exhibits substantial spatial distortions, with sharp gradients for higher values of
De, yielding more complicated structures.

The spatial structures of eigenvectors
�

θ (= �

θ r + i
�

θ i) and �c (= �cr + i�ci) for the
short-wave oscillatory-I mode are presented in figure 13. Clearly, both eigenvectors
demonstrate more distorted spatial structures for an increasing level of elasticity of the
mixture.

We can, therefore, conclude that, except for the short-wave oscillatory-I mode, the
spatial structure of eigenvectors for the remaining instability modes is not influenced by
the elastic behaviour of the liquid.

6. An approximate model

In this section, we derive an approximate model by performing a long-wave asymptotic
expansion of the EVP (3.12)–(3.14) and rescaling the parameters (Bi,De,Σ). This model
can be helpful in getting a qualitative insight into the stability picture without numerically
solving the problem.

In the long-wavelength limit, given the very small ratio between mean film thickness
H and disturbance wavelength � (i.e. ε = H/� � 1), the horizontal variations evolve
much more slowly compared to the vertical ones. Here, we can apply the lubrication
approximation, consisting of slow longitudinal X ∼ εx and temporal T ∼ ε2t variables.
We, therefore, proceed by introducing the following scaling for k and λ:

k = εq, λ = ε2λo. (6.1a,b)

Furthermore, for this analysis, we rescale the parameters Bi, De and Σ as

Bi = ε2B, De = ε−2De, Σ = ε−2Ca. (6.2a–c)

Scaling (6.2) suggests that the proposed model remains effective only for small values of
Bi and large De and Σ . Recall that a small Bi physically represents a poorly conducting
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free surface, while large De signifies a highly viscoelastic liquid. It is important to note
that, owing to the weak influence of elasticity on the long-wave instability threshold (see
figures 4 and 10), the projected model would be able to predict the stability margin in the
long-wave regime even for small values of De (graphically demonstrated a little later). The
scaling (6.2b) will only help in better predicting the stability boundary in the short-wave
regime at higher values of De (surpassing the approximations made in (6.1)). Furthermore,
the consideration of large Σ is well justified here since its magnitude is usually high.
However, we do not impose any restrictions on the magnitude of other dimensionless
parameters, and they remain at O(1) with respect to ε.

The perturbation fields are now expanded for ε as follows:

�

ψ = εψo + ε3ψ2 + · · · , �

θ = To + ε2T2 + · · · , �c = co + ε2c2 + · · · ,
�

ξ = ξo + ε2ξ2 + · · · .

}
(6.3a–d)

Introducing the rescaled parameters and expansions (6.1)–(6.3) into the EVP (3.12)–(3.14),
we first collect the terms with identical order in ε. At the leading order, the governing
equations (3.12a–c) simplify to

d4ψo

dz4
= 0,

d2To

dz2
= 0,

d2co

dz2
= 0; (6.4a–c)

and are accompanied by the following set of boundary conditions:

ψo = 0,
dψo

dz
= 0,

dTo

dz
= 0,

dco

dz
= 0 at z = 0, (6.5a–d)

iqψo = λo ξo,
dTo

dz
= 0,

dco

dz
= 0, (6.6a–c)

d3ψo

dz3
= iqξo(Ga + Caq2 )(1 − λoDe), (6.6d)

d2ψo

dz2
= iqMa(1 − λoDe)(co − To + ξo + χξo) at z = 1. (6.6e)

The solutions to BVP (6.4)–(6.6) is given by

ψo = iξo

6q
[q2(Ga + Ca q2)(1 − λoDe)(z3 − z2)− 6λo z2], To = J , co = ϕ,

(6.7a–c)

where J and ϕ are constants yet to be determined.
At the second order with respect to ε, only the energy and mass balance equations find

relevance. They read

d2T2

dz2
+ (λo − q2)To = iqψo, (6.8a)

Le
d2c2

dz2
+ (λo − Leq2)co = −iχ(1 + Le)qψo + LeχλoTo. (6.8b)
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The associated boundary conditions (3.13c,d) and (3.14b,c) now take the following form:

dT2

dz
= 0,

dc2

dz
= 0 at z = 0, (6.9a,b)

dT2

dz
= −B(To − ξo),

dc2

dz
= χB(To − ξo) at z = 1. (6.10a,b)

Integrating (6.8a,b) across the film 0 ≤ z ≤ 1 and incorporating the boundary conditions
(6.9) and (6.10), we obtain

ξo = 72(φ + q2)

72B − 24λo − GQq2
J , (6.11)

ϕ = χ φ(72B − 24λo − GQq2)+ [χ(1 + Le−1)(24λo + GQq2)− 72Bχ ](φ + q2)

(72B − 24λo − GQq2)(q2 − λo Le−1)
J ,
(6.12)

where φ = B − λo, G = (1 − λoDe) and Q = Ga + Caq2.
Finally, the substitution of ξo and ϕ into the tangential stress balance boundary condition

(6.6e) yields the following sought expression for Ma:

Ma = 24
q2

N 0 + λoN 1 + λ2
oN 2 + λ3

oN 3

D0 + λoD1 + λ2
oD2 + λ3

oD3
; (6.13)

the coefficients Nj and Dj ( j = 0–3) are defined in appendix A.
Equation (6.13) governs the stability threshold for both the monotonic and oscillatory

disturbances within the approximations made in (6.1) and (6.2). The validity bound for this
analysis will be discussed in the forthcoming subsections. An inspection of (6.13) reveals
that, in accordance with the numerical results presented in § 4, the stability threshold for
both the instability modes are independent of Pr.

6.1. Monotonic mode
Let us start with the case of monotonic instability. Substitution of λo = 0 into (6.13) yields
the explicit expression for the neutral stability curve of this instability mode:

Mamon. = 48LeQ(B + q2)

BχQ + [Qχ + Le(72 + Q)(1 + χ)]q2
. (6.14)

Returning to the unscaled parameters k, Bi and Σ , we get

Mamon. = 48Le(Ga +Σk2)(Bi + k2)

Biχ(Ga +Σ k2)+ [χ(Ga +Σk2)+ Le(1 + χ)(72 + Ga +Σk2)]k2
. (6.15)

Equation (6.15) depicts the stability boundary for a system with deformable free surface.
For a non-deformable surface (i.e. in the limit (Ga +Σk2) → ∞), the stability margin
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FIGURE 14. Comparison of results obtained from the approximate model (solid and dash-dotted
lines) with the numerical results (dotted lines) for the monotonic instability mode via the neutral
stability curve (a) deformable surface (Ga,Σ) = (0.1, 103), and (b) non-deformable surface
(Ga,Σ) → ∞. The dot (o) mark on each neutral curve represents the critical point of the curve.
Other parameters: Bi = 0.01 and Le = 0.1.

(6.15) becomes

Mamon. = 48Le(Bi + k2)

Biχ + (Le + χ + Leχ)k2
. (6.16)

The minimization of (6.15) for Ma now yields the following expression for critical
wavenumber kc:

kc =
√

BiGaΣ + √
72BiGaΣ(72 + Ga − BiΣ)
Σ(72 − BiΣ)

for χ /= −1. (6.17)

Interestingly, (6.17) also indicates the domain of validity of this approximate model.
Note that, for BiΣ = 72, one has kc → ∞, violating the lubrication approximation,
k � 1. Therefore, the proposed model holds good only for BiΣ < 72. This event is
graphically demonstrated in figure 14. One can readily see that the critical parameters
(Mac, kc) predicted by the long-wave theory agree with the numerical results only for
BiΣ = 10 (< 72) (i.e. for a deformable free surface, see figure 14a).

Equations (6.15) and (6.16) indicate that, at k → ∞, irrespective of the deformability of
the free surface, Ma attains the limiting value

Mamon.,k→∞ = 48Le
Le + χ + Leχ

. (6.18)

It should be noted that, for BiΣ ≥ 72, Ma → Mac in (6.18). However, this Mac has lost the
quantitative agreement with the numerical results owing to the violation of the long-wave
approximation (compare panels figure 14a,b).

From (6.15) and (6.16) it further follows that, for k ∈ [0,∞), irrespective of the
deformability of the free surface, Ma remains positive for χ > 0 and becomes negative
when χ < −Le/(1 + Le). Hence, there must be a discontinuity in the neutral curves in
the domain 0 > χ > −Le/(1 + Le), suggesting the emergence of instability for heating
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from the top as well as from below. For the case of a deformable free surface, this point of
discontinuity (kd) is given by the real and positive root of

γ0 k4
d + γ1k2

d + γ2 = 0; (6.19)

the coefficients γj ( j = 0–2) are presented in appendix B.
On the other hand, for a non-deformable surface, the point of discontinuity (knd

d ) lies at

knd
d =

√
− Biχ

Le + χ + Leχ
. (6.20)

Thus, for χ ∈ (0,−Le/(1 + Le)), the monotonic instability sets in for heating the liquid
layer from below with k > kd (or knd

d for a non-deformable surface) and vice versa. For
the parameter values (Le, χ) = (0.1,−0.05) this situation is graphically illustrated in
figure 14. Here, kd = 2.8 × 10−3 and knd

d = 0.105 (see figure 14a,b). A comprehensive
study of the stability characteristics of the branch pertaining to the negative values of Ma
is beyond the scope of this paper.

Finally, a few previously reported results in the literature can be derived from the
expressions (6.15) and (6.16). Since the monotonic instability threshold remains unaffected
by the elastic behaviour of the liquid, therefore, in the limit χ = 0, (6.15) yields the
results for purely thermocapillary-driven convection in a Newtonian liquid layer (Shklyaev,
Alabuzhev & Khenner 2012). For such a film, (6.16) yields the well-known asymptotic
value Mamon. = 48 in the limit (Ga,Σ) → ∞, for either Bi = 0 or k → ∞ (Pearson
1958).

6.2. Oscillatory mode
The stability threshold for this instability mode is obtained by substituting λo = iω in
(6.13). This yields

Ma±osc. =
(N0 − ω2

±N2)(D0 − ω2
±D2)+ ω2

±(N1 − ω2
±N3)(D1 − ω2

±D3)

(D0 − ω2±D2)
2 + ω2±(D1 − ω2±D3)

2 , (6.21)

where ω± = (ω+, ω−) are the oscillation frequencies for Ma±osc. = (Ma+osc.,Ma−osc.),
respectively, and are given by

ω2
± = 1

2(N3D2 − N2D3)
[(N1D2 + N3D0 − N2D1 − N0D3)

±
√
(N2D1 + N0D3 − N1D2 − N3D0)

2 − 4(N3D2 − N2D3)(N1D0 − N2D3)].
(6.22)

Note that ω2
+ (ω

2
−) refers to the oscillation frequency obtained from adding (subtracting)

the square root terms in the numerator of (6.22). For a given set of model parameters
(B,Ca,De,Ga,Le, χ), the presence of two different oscillation frequencies (i.e. ω+ and
ω−) suggests the possible emergence of two different oscillatory instabilities in the system
(namely, oscillatory-I and oscillatory-II, as discussed in § 4). Confirming the numerical
results, one of the oscillation frequencies vanishes for a non-deformable surface (must be
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FIGURE 15. Comparison between results of the numerical computation (dotted lines) and the
approximate model (solid and dash-dotted lines) for the oscillatory-I mode via neutral stability
curve: (a) long-wave branch at Le = 0.1, χ = −0.5; and (b) short-wave branch at Le = 10−3,
χ = 0.5. Other parameters: Bi = 0.01 and (Ga,Σ) = (0.1, 103).

the one related with the oscillatory-II mode), for which the expressions of the neutral curve
and oscillation frequency are given by

Maosc. = 48(Bi + k2 + Lek2)

[(1 + DeLek2)+ χ(1 + BiDe + Dek2 + DeLek2)]k2
(6.23)

and

ω2 = L0k6 + L1k4 + L2k2 + L3

L4 k2 + L5
, (6.24)

respectively. The coefficients Lj ( j = 0–5) are defined in appendix C. It is worth noting
that, in the limit De = 0, (6.23) matches with the results for a Newtonian liquid (Podolny
et al. 2005).

Given the convoluted form of the neutral curves (6.21) and (6.23), any further analytical
progress in estimating their validity bound now becomes a rather intricate task. Thus, we
verify the accuracy of this analysis by comparing the results with numerical computations
for a wide range of the parameters (De,Le, χ) within the limit BiΣ < 72. For the
long-wave branch of oscillatory-I mode, figure 15(a) shows that the results obtained
from the approximate model agree with the numerical results in an excellent manner
for both the Newtonian (De = 0) and highly viscoelastic (De = 10) binary mixtures.
Here, the oscillation frequency is given by ω−. However, this agreement is found to be
poor for the short-wave branch, due to the violation of the lubrication approximation
(see figure 15b). Nevertheless, the scaling adopted for De (see 6.2b) helps in achieving
a qualitative agreement at higher values of De. The oscillation frequency for this branch
is given by ω+.

Finally, this approximate model also predicts the emergence of oscillatory-II instability
in the system. The oscillation frequency for this mode is given by ω−. Figure 16 shows
that the developed model is capable of depicting the stability threshold in a fairly accurate
manner for this instability mode as well.
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FIGURE 16. Comparison of results obtained from the approximate model (solid and dash-dotted
lines) with the numerical results (dotted lines) for the oscillatory-II mode via the neutral stability
curve at Bi = 0.01, De = 1, Le = 0.1 and (Ga,Σ) = (0.1, 103).

7. Phase diagrams

We have now understood that both monotonic and oscillatory instabilities can emerge in
the present system (in either the long-wave or short-wave mode) depending on the values
of the model parameters. The purpose of this section is to explore the parameter regions
for each instability mode, wherein it becomes dominant in the liquid layer. The phase
diagrams displayed in figure 17 are expected to be helpful for carrying out an experimental
investigation of the present problem, especially in situations where one is interested in
observing the convective patterns of a particular instability mode. Note that, since we are
studying here the stability characteristics of a viscoelastic film incorporating the Soret
effect, the phase diagrams are plotted in the χ – De plane. In an effort to identify the
region of dominance for each instability mode, the parameter set (Ga,Σ,Le) is varied to
take into account the surface deformability with weak/strong solute diffusivity. However,
we hold the parameters Bi (= 0.01) and Pr (= 10) fixed. In figure 17(a–d), region 1 stands
for the monotonic mode, region 2 for the long-wave oscillatory-I mode, region 3 for the
short-wave oscillatory-I mode, and region 4 for the oscillatory-II mode. An important point
that needs to be highlighted here is that a dataset in (χ,De) corresponding to the boundary
between adjacent instability modes refers to a competition between them to become the
dominant instability mode in the system. Such interaction between the instability modes
may lead to the formation of convective patterns, which will be significantly different from
the patterns that appear far from this location.

For a liquid layer with a deformable free surface, figure 17(a,b) plot the phase diagrams
for two different values of Le: Le = 10−3 and 0.1, respectively. Figure 17(a) shows that,
in the weakly viscoelastic regime (i.e. De <∼ 0.1), the long-wave oscillatory-I mode (region
2) becomes dominant for χ < 0. The characteristics of this mode are identical for both
the Newtonian and viscoelastic binary mixtures, as we have learned from § 4.1. However,
in the highly elastic regime (i.e. for De > 0.1), this long-wave mode is replaced by its
short-wave counterpart (region 3). Since the onset of this particular instability mode is
triggered by the elasticity of the mixture (but weakly dominated by the solutocapillary
force), the short-wave oscillatory-I mode can become dominant even for χ > 0 at higher
values of De. Except for such larger values of De, the monotonic instability (region 1)
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FIGURE 17. Phase diagrams for (χ, De) at different Le enclosing the regimes of dominant
instability mode: (a,b) deformable free surface (Ga,Σ) = (0.1, 103), and (c,d) non-deformable
free surface (Ga,Σ) → ∞ at Bi = 0.01, Pr = 10. In all panels: regime 1, monotonic instability;
regime 2, long-wave oscillatory-I instability; regime 3, short-wave oscillatory-I instability; and
regime 4, oscillatory-II instability. At the points marked p and q in panels (a,b), the three adjacent
instability modes can coexist.

prevails in the system for χ > 0 as well as for a narrow interval of χ < 0 (as discussed in
§ 6.1).

A comparison between figure 17(a) and (b) now reveals that, for a viscoelastic
mixture with higher solute diffusivity (Le = 0.1), the region of dominant monotonic
instability shrinks drastically, and the oscillatory-II instability (region 4) emerges
in the system for χ > 0. Furthermore, region 1 shifts slightly towards the left
(due to the widening of the range χ ∈ (0,−Le/(Le + 1)); see § 6.1), and region 3
expands towards the right. However, the transition boundary between the long-wave
oscillatory-I (region 2) and short-wave oscillatory-I (region 3) mode remains unaltered
by the value of Le. Another key observation from figure 17(a,b) is that, for (χ,De)
values corresponding to the points p and q, three different instability modes, viz.
monotonic : long-wave oscillatory-I : short-wave oscillatory-I and monotonic : long-wave
oscillatory-II : short-wave oscillatory-I, respectively, can compete together in the system.

For a non-deformable free surface, figure 17(c,d) demonstrate that, irrespective of the
diffusivity ratio Le, the conductive state bifurcates either to the monotonic (region 1) or
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the short-wave oscillatory-I (region 3) mode depending on the parameter set (χ,De). It
should be noted that the long-wave oscillatory mode (both oscillatory-I and oscillatory-II)
cannot become the dominant instability mode here (due to the dampening out of such
perturbations by the increased gravitational and surface tension forces).

Thus, figure 17(a–d) provide a comprehensive review of the stability picture under the
parameter space (De, χ,Le,Ga,Σ). Besides exploring the parameter regions for which
a particular instability mode becomes dominant in the system, they also highlight the
competition between the various instability modes that may occur based upon a few
specific parameter sets. We expect these phase diagrams to provide valuable guidance
in choosing the parameters set for a realistic experimental set-up.

8. Summary and conclusions

In this work, we have investigated the Marangoni instability problem for a thin
viscoelastic film confined between its deformable free surface and a flat rigid substrate.
The novelty of this analysis lies in considering the binary aspect of the liquid, along with
the incorporation of the Soret effect. Linear stability analysis performed around a quiescent
basic state reveals that thermosolutocapillarity, in the presence of Soret diffusion, shows an
entirely different stability picture from that for purely thermocapillary-driven convection
(Sarma & Mondal 2019). For the system subjected to heating from below, it is found
that, apart from the monotonic instability, two different oscillatory instabilities, namely
oscillatory-I and oscillatory-II, can emerge in the system depending on the physical
situations governed by the parameter space (Bi,De,Le, χ,Ga,Σ) (see figure 17).

The monotonic instability threshold remains unaffected by the elastic behaviour of
the mixture, resulting in identical stability characteristics for both the Newtonian and
viscoelastic liquid films. However, the instability mode that draws particular attention in
the context of Marangoni convection in a viscoelastic film is the oscillatory instability
mode. The oscillatory-I instability may appear in either the long-wave or short-wavelength
form depending on the deformability of the free surface and the elasticity level of the
liquid. It is found that, while the short-wave oscillatory-I mode is more universal, the
long-wave oscillatory-I mode can also become dominant in a weakly viscoelastic film
(De <∼ 0.1) with deformable free surface for χ < 0. The oscillatory-II mode is more
case-specific and is likely to emerge in a binary liquid film (irrespective of the elasticity
of the mixture) having a deformable free surface at higher solute diffusivity Le >∼ O(10−2)
and for χ > 0. It is a long-wavelength instability that appears with significantly large
oscillation period compared to the oscillatory-I mode.

This leads to the following main conclusions from this study: the solutocapillary effect
plays a crucial role only in the case of long-wave disturbances. For χ > 0 (or equivalently
S > 0), solutocapillarity causes the appearance of long-wave monotonic or oscillatory-II
instability (depending on the diffusivity ratio Le), whereas for χ < 0, it enhances the
stability of the system against the long-wave oscillatory-I perturbations. On the other
hand, the thermocapillary effect is primarily responsible for the short-wave oscillatory-I
disturbances. The solutocapillarity plays here a minor role. Triggered by the elasticity of
the mixture, the short-wave oscillatory-I instability can, therefore, appear for any χ ∈ R.
While the increased (convective) heat transfer rate and the reduced deformability of the
free surface enhance the stability of the system against long-wave perturbations, the
increasing elasticity of the liquid makes the system more vulnerable towards short-wave
disturbances.
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However, the conditions (viz. the film thickness, the temperature difference across the
film, the corresponding size of the convection cell and its oscillation period) at which one
may experimentally observe a particular instability mode detected in this study remain
unclear. This is primarily due to uncertainty over the data related to physical properties
of the liquid, especially the Soret coefficient S and the relaxation time –λ, which change
with the composition of the liquid. Separate experimentation is needed for this purpose.
Nevertheless, provided with a prior estimation of the parameters ( –λ,S), the present
analysis can be helpful in predicting the instability modes as soon as a bifurcation of the
conductive base state occurs. Further experimental and theoretical investigations are thus
necessary to understand the pattern dynamics in the post-critical regime for the present
convection phenomenon. It is also worth extending the present model to study an unsteady
problem, e.g. evaporative Marangoni convection (Doumenc et al. 2010; Pillai & Narayanan
2018) in a polymeric film, or to develop a coupled film–substrate model (Batson et al. 2019)
to analyse the convection phenomenon for more complex systems.
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Appendix A. Expressions for the coefficients used in (6.13)

The coefficients of (6.13) are as follows:

N 0 = 2BQq4 + 2Qq6, (A 1)

N 1 = −2B(3 + QLe−1)q2 − 2[3 + Q(1 + Le−1 + BDe)]q4 − 2DeQq6, (A 2)

N 2 = 6BLe−1 + 2[(3 + Q + BDeQ)Le−1 + 3] q2 + 2DeQ(1 + Le−1)q4, (A 3)

N 3 = −6Le−1 − 2DeQLe−1q2; (A 4)

D0 = BQχLe−1q2 + [(1 + χ)(72 + Q)+ QχLe−1]q4, (A 5)

D1 = −48BχLe−1 − [(1 + χ)(48 + QLe−1)+ 2(36 + 24χ + DeχQ)Le−1]q2

− 2De[QχLe−1 + (1 + χ)(36 + Q)]q4,
(A 6)

D2 = 48(1 + χ + BDeχ)Le−1 + De2Q(1 + χ + χLe−1)q4

+ De[2(1 + χ)(24 + QLe−1)+ (72 + 48χ + BDeχQ)Le−1]q2,
(A 7)

D3 = −De(1 + χ)(48 + DeQq2)Le−1. (A 8)

Recall that Q = Ga + Caq2.
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Appendix B. Expressions for the coefficients utilized in (6.19)

The expressions for the coefficients of (6.19) are given below:

γ0 = Σ(Le + χ + Leχ), (B 1)

γ1 = χ(Ga + BiΣ)+ Le(1 + χ)(72 + Ga), (B 2)

γ2 = BiGaχ. (B 3)

Appendix C. Expressions for the coefficients used in (6.21)

The coefficients of (6.21) are as follows:

L0 = DeLe(Le + χ + Leχ), (C 1)

L1 = Le2(1 + χ)(BiDe − 1)+ 2BiDeLeχ − χ(1 + Le), (C 2)

L2 = Biχ(BiDeLe − Le − 2), (C 3)

L3 = −Bi2χ, (C 4)

L4 = −De, (C 5)

L5 = 1 + χ − BiDe. (C 6)
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