Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2006), 20, 185-199. Printed in the USA.

Copyright © 2006 Cambridge University Press 0890-0604/06 $16.00
DOI: 10.1017/S0890060406060161

Atoms of EVE': A Bayesian basis for esthetic analysis

of style in sketching

KEVIN BURNS
MITRE Corporation, Bedford, Massachusetts, USA

(RECEIVED July 5, 2005; AccEPTED March 11, 2006)

Abstract

At its root level, style is actually an esthetic agreement between people. The question is, how can esthetic agreements
be modeled and measured in artificial intelligence? This paper offers a formal theory called EVE’ and applies it to a
novel test bed of dynamic drawings that combine features of music and sketching. The theory provides mathematical
measures of expectations, violations, and explanations, which are argued to be the atomic components of the esthetic
experience. The approach employs Bayesian methods to extend information measures proposed in other research. In
particular, it is shown that information theory is useful at an entropic level to measure expectations (E) of signals and
violations (V') of expectations, but that Bayesian theory is needed at a semantic level to measure explanations (E’) of
meaning for the signals. The entropic and semantic measures are then combined in further measures of tension and

pleasure at an esthetic level that is actually style.
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1. ESTHETIC AGREEMENT

Style is a matter of substance in the arts and fashion, where
distinctive and desirable styles are design objectives. How-
ever, style is also important in any effort that involves com-
munication of information in human—cultural interaction,
including modern domains involving human—computer inter-
action. Thus, a scientific understanding of style is needed
for many reasons, not the least of which is to advance the
practice of artificial intelligence in design of information
applications.

However, what exactly is style? In arts and fashion peo-
ple recognize styles when they see them, and people often
agree on what is stylish or what is not. Superficially these
agreements are governed by observable features, such as
textures and patterns, but fundamentally they are grounded
in emotional feelings, such as tension and pleasure. In
between there are complex psychosocial processes that deter-
mine how features give rise to feelings and vice versa. Thus,
the substance of style can be characterized as esthetic agree-
ment in a cultural context.
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In short, styles exist in a social culture (Sosa & Gero,
2006) where people produce styles and perceive styles in
mutual interaction (see Fig. 1). People have preferences
that produce distinctive styles in conceptual spaces, and
people use prototypes (Rosch, 1978) to perceive distinc-
tions in corresponding style spaces. At the highest level
these are spaces of features, but at the deepest level they are
spaces of feelings. Therefore, a challenge for style research
is to connect these spaces computationally.

There are many levels at which people can agree or dis-
agree, but a useful breakdown is the triad proposed by
Weaver in his introduction to Shannon’s theory of commu-
nication (Shannon & Weaver, 1949). Weaver defined “com-
munication” in a broad sense to include “all the procedures
by which one mind may affect another.” His three levels
can be characterized as follows:

A. the entropic level, which is concerned with signals;

B. the semantic level, which is concerned with meaning;
and

C. the esthetic level, which is concerned with feelings.

Similarly, one can use the same levels to describe how a
sample of “information” (in language, drawing, music, or
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Fig. 1. (a) Production and perception by agent A, an artist; (b) production
and perception by agent A, an artist, with perception by agent B, an audi-
ence; and (c) the cultural context in which people perform, where artists
(A and C) are producing and perceiving while an audience (B) is perceiving.

any other medium) may be said to have a style. For exam-
ple, if the sample of information is a motion picture, then
one might distinguish between different styles at level A of
signals (e.g., predictable or unpredictable), level B of mean-
ing (e.g., fantasy or documentary), or level C of feelings
(e.g., uplifting or depressing).

Shannon’s theory of information was concerned only with
signals at the entropic level. In fact, he wrote, “These seman-
tic [and esthetic] aspects of communication are irrelevant to
the engineering problem” (Shannon & Weaver, 1949). Thus,
for Shannon the engineering problem was limited to level A.
Now, to advance the theory and practice of information
engineering, we must address semantics and esthetics at
levels B and C. Toward that end, this paper combines infor-
mation theory and Bayesian theory in a novel framework
called the Aroms of EVE'.

In developing this framework I focus on style in sketch-
ing because sketches play a key role in the design of build-
ings, clothing, and many other artifacts. That is, in addition
to being worthy of study as artworks themselves, sketches
also serve as representations of objects and actions in many
engineering and design efforts. This makes sketching a use-
ful test bed for theoretical investigations of style and even-
tual applications to communication challenges in fields
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ranging from architectural design (Do, 2002) to military
defense (Forbus, 2004).

Human sketches are often said to exhibit certain styles,
and here again we can distinguish between different levels
of style. At level A, which is concerned with information in
signals, one might refer to the actual drawing as jagged or
curvy. At level B, which is concerned with recognition of
meaning, one might refer to the depicted subject as a cat or
dog. At level C, which is concerned with emotional feel-
ings, one might refer to the audience response as pleased or
tense. Clearly these levels are closely related and one must
analyze signals at the highest level if one is to understand
meaning and feelings at the other levels. However, I argue
that the deeper levels are of special concern for style research
simply because these levels are the least understood (Oat-
ley & Johnson-Laird, 1987).

Thus, here I focus on esthetic level C that is concerned
with emotional feelings and how they arise from observ-
able features. I consider production of drawings as well as
perception of drawings (see Fig. 1), but I stress perception
for two reasons. First, previous research on style in artifi-
cial intelligence has been more concerned with production
of styles than with perception of styles (Stiny & Mitchell,
1978; Kirsch & Kirsch, 1986; McCorduck, 1991; Boden,
2004). Second, artificial agents cannot truly capture human
styles unless they perceive styles as well as produce styles,
because both are part of the cultural context in which peo-
ple perform (see Sosa & Gero, 2006). In short, an artificial
artist who sketches but does not see can never simulate the
psychosocial processes that underlie esthetic agreements.

2. DYNAMIC DRAWINGS

The act of producing a sketch is clearly a dynamic process,
but so is the act of perceiving a sketch. That is, even though
sketches are often treated as static objects, the cognitive
processes by which people perceive them are not static at
all. With conscious gazes and unconscious saccades, human
perception of a sketch involves the piecing together of numer-
ous snapshots in a temporal sequence, which depends on
where one attends, which in turn depends on what one per-
ceives. In this sense sketches are like songs or stories that
are not only produced in a sequential manner by artists but
are also perceived in a sequential manner by audiences.

Here, I study style in dynamic drawings, which are
sketches in time. These dynamic drawings are akin to musi-
cal melodies that do not fade, so that each signal segment
adds to the drawing without attenuation. One advantage of
this medium is that it offers more control over what a viewer
sees at each point in time, compared to static drawings where
there is no control over how a viewer attends to various
segments. Another advantage is that the dynamics of these
drawings are similar to music and stories and the motion
pictures seen in video media. I begin by reviewing some
research on sketching and music to motivate the study of
dynamic drawings.
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2.1. Sketching silhouettes

Pilot studies of style in sketching (Burns, 2004) explored
the art of caricature, which some have suggested is the
essence of all art (Ramachandran & Hirstein, 1999). In
these studies I focused on contour drawings of animal sil-
houettes, which are much like the first forms of wall art
(Wachtel, 1993; Mithen, 1996).

I studied both perception and production of animal cari-
catures by human beings and machine programs. In percep-
tion the problem involved judging similarity relative to a
prototype, and I found that a piecewise matching method
could be used to compute a measure that corresponded to
human judgments of similarity. In production my approach
used this matching method to compute the caricature of a
subject drawing relative to a reference drawing, by making
“controlled” exaggerations between “matched” segments
of the two drawings. This automated the whole process of
drawing a caricature, which was an improvement over pre-
vious work in which the piecewise matching was done
manually and the matched segments were input to an exag-
geration algorithm (Brennan, 1985).

In production, the “control” comes from an artist’s pref-
erence for an exaggeration magnitude and the “matching”
is to a prototype in his mind. In perception, the audience
presumably has a similar prototype in their minds as well as
their own preferences for an exaggeration magnitude that
looks best. My main finding was that computer-drawn car-
icatures did indeed appear to capture and enhance the style
of human drawings (see also Brennan, 1985), and exagger-
ation in moderation did indeed seem to produce more dis-
tinctly recognizable animal silhouettes (see also Rhodes et al.,
1987; Rhodes & McLean, 1990). In short, these studies
suggested that the art of caricature can be characterized as a
computational process that employs preferences and proto-
types in producing and perceiving exaggerations of a thing,
much like the musical device of variations on a theme (see
also Matisse, 1995).

2.2. Musical measures

Dubnov et al.’s (2004, in press) recent research on music
also studied similarity and other esthetic aspects of style. In
particular, they developed two measures, called signal recur-
rence (SR) and information rate (IR), and discovered a
correlation between these computational measures and
psychological judgments of familiarity rating (FR) and
emotional force (EF), respectively. Listeners made the psy-
chological judgments continuously in time as they heard a
musical piece. This research is reviewed here because it
relates to my studies of sketching and because it suggests
how one might derive mathematical measures of esthetic
experience in any medium.

2.2.1. Similarity

The research by Dubnov et al. (2004, in press) focused
on timbre, which refers to the tonal quality or “texture” of
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the music. Compared to contour segments in outline draw-
ings, the analysis of timbre in music involves a much more
complex signal of numerous dimensions at each time seg-
ment. Nevertheless, the same basic notion of similarity
applies and in fact Dubnov’s measure of similarity in music
was analogous to my measure of similarity in drawings. In
both cases, the signal (music or contour) was approximated
by a sequence of vectors at discrete times or points, each
with a computed orientation in a dimensional space where
piecewise similarity is measured by vector differences. How-
ever, I computed similarity between two drawings, where
one served as the prototype (baseline) for comparison,
whereas Dubnov et al. computed the similarity of each sig-
nal segment’s orientation relative to the average orientation
of all signal segments in the same song. This may help
explain why their data show large differences between the
computational measure of similarity (SR) and the psycho-
logical judgment of familiarity (FR) near the beginning of
the song. That is, listeners were asked to rate “how familiar
what they were currently hearing was to anything they had
heard from the beginning of the piece,” and it is not clear
what prototype the listeners were actually using as a base-
line for comparison. However, it was probably not the aver-
age of all signals for the piece simply because they had not
yet heard the whole piece.

Nevertheless, it is interesting that Dubnov et al. (2004, in
press) found significant correlation between a computa-
tional measure (SR) and a psychological judgment (FR) for
timbre in music (mostly later in the piece), much as I did for
contour in drawings. However, it is also important to
acknowledge that the prototypes for these studies were either
assumed from a computed average (in the music) or given
as reference images (in the drawings). A major challenge
for style research is to better characterize the details of the
prototypes that exist in the minds of human perceivers be-
cause a machine cannot make matches to a model it does
not have.

2.2.2. Entropy

In addition to using SR to measure signal similarity,
Dubnov et al. (2004, in press) derived another measure
called IR that uses entropy (Shannon & Weaver, 1949)
to measure signal unpredictability. More formally, the
marginal entropy of a single signal (m;) is measured as
—P(m;|M)log P(m;|M), where M is a model of the under-
lying process that generates a set of signals {m;} and
P(m;|M) is the probability of a single signal m; being
selected from the set. Mathematically, the entropy for a
set of signals {m,} is the sum of marginal entropies for all
m; in the set, that is, ==, P(m;|M)log P(m;|M). Concep-
tually, entropy is highest when there are numerous mes-
sages in the set and when all messages are equally likely to
be selected, whereas entropy is lower when there are fewer
messages in the set and/or some messages are more likely
than others to be selected.
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An elegant aspect of information theory is the correspon-
dence between entropy as defined above and entropy as
derived in statistical mechanics. However, this correspon-
dence arises in part because Shannon chose to measure
expectation as log P rather than raw P, for which he offers
three reasons (Shannon & Weaver, 1949):

1. “It is practically more useful,” for example, in hard-
ware like bistable relays where the log number of mes-
sages is what determines the number of relays needed
to encode the set of messages.

2. “Itis nearer to our intuitive feeling as the proper mea-
sure . . . since we intuitively measure entities by linear
comparison with common standards.”

3. “It is mathematically more suitable,” in that it sim-
plifies some limiting operations in the governing
equations.

For Shannon the first and third reasons were the most
important because his theory was concerned only with sig-
nals at entropic level A. However, in extending this theory
to semantic level B (meaning) and esthetic level C (feel-
ings), the second reason is actually the most important
because it is not clear exactly what intuitive means.

Here I suggest that intuitive means consistent with the
cognitive structure by which people naturally reason, which
is known to involve a mental “number line” (Dehaene, 1997).
Thus, assuming that psychological estimation is basically
linear, a condition that should be satisfied by an intuitive
measure of expectation is as follows: the measure and its
inverse should sum to zero, which is the mental anchor
about which linear inverses are symmetric. At first exami-
nation, a measure of raw P and its additive inverse 1 — P
might appear to be the most intuitive. However, P and 1 —
P sum to 1.0 (not zero) and they are symmetric about 0.5
(not zero). Similarly, a measure of raw P and its multipli-
cative inverse 1/P do not satisfy the condition. However,
log P and the log of P’s multiplicative inverse log 1/P =
—log P do satisfy the condition, and in this sense log P can
be considered as an intuitive measure of expectation. Note
that this “intuitive” argument (above) makes no commit-
ment as to the base of the log, which can be converted from
any base “a” to another base “b” by a multiplicative con-
stant log,a.

2.2.3. Predictability

Founded on entropy, Dubnov et al. (2004, in press) pro-
pose IR to measure the predictability of a signal segment m;
given a model M of the process that is generating the signal
segments. In the case of music, a listener’s model is a model
of the composer/performer’s preferences, as measured rel-
ative to some prototype, because these preferences deter-
mine the likelihood that a segment m; will be generated and
hence heard by the listener.

Formally, the IR at a segment (snapshot) m; of music is
defined as the difference in multiple information between

https://doi.org/10.1017/50890060406060161 Published online by Cambridge University Press

K. Burns

two sets of signals: {all signals heard up to time i} and {all
signals heard up to the previous time i — 1}. This difference
can be written as the mutual information between two sets
of signals, a single-item set {m;} and a multiple-item set
{m;_y, ..., m}, as follows:
IR; = I({m;}; {m;—y, ..., my}).

Using H to denote entropy, the mutual information between
two sets X and Y is as follows:

I(X;Y) = H(X)+H(Y) - H(X, Y),
where the joint entropy H(X, Y) is as follows:
H(X,Y) = H(X|Y) + H(Y).

Thus, as shown by Dubnov et al. (2004, in press), the def-
inition of IR reduces to the following expression:

IR; = H(m;) — H(m;|m;_y, ... ,my)=H(m;|My) — H(m;|M,),
where M denotes a model of the signals that captures the
conditional dependency of a given signal m; on previous
signals, and the subscript n denotes the Markov order of
this dependency. For example, if the model of the composer/
performer is such that each note in a song depends only on
the previous two notes of the song (m,_;, m;_,), then the
subscript n would be 2. Here, M, denotes a “baseline” model,
which Dubnov et al. (2004, in press) assume is the same
model M but of Markov order zero, such that the probabil-
ity of m; in My is the independent probability of m; com-
puted from M, ignoring the dependencies of m; onm;_q, .. .,
and so forth, that are modeled in M,,. Therefore, one might
say that H(m;|M,,) reflects the preference of a producer to
generate a signal m; as modeled by the perceiver’s model
M,, of the producer. Likewise, one might say that H (m;| M)
reflects a prototype that serves as a baseline from which
preferences can be measured by perceivers and producers
in their common culture.

Fundamentally, IR measures the amount of information
provided to a listener by a signal m; in light of the mental
models (see Burns, 2001) M, and M, that the listener is
assumed to have in his head. Mathematically, IR is given by
the entropy of m; computed from the reference model M,
minus the entropy of m,; computed from the preference model
M,,. Conceptually, IR is large when the unpredictability of
m; is much lower (i.e., the predictability of m; is much
higher) in model M,, than in model M,, which means that
having model M, gives the observer a lot of information
about m;. Thus, large IR means that having model M,, allows
the observer to make a much better prediction of m; than he
could otherwise make from model M,,.

Note that the entropy difference computed by IR mea-
sures the predictability of signals within a model M, using
the joint entropy of a single-item set {m;} and a multiple-
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item set {m;_,, . .., m} to measure how well M, predicts
m; (relative to how well M, predicts m;). This can be con-
trasted to the cross entropy that might be computed as a
measure of similarity taken between two models. For exam-
ple, others (Jupp & Gero, 2003) use the cross entropy of
two multiple-item sets as an overall measure of similarity
between these two sets, which is more a measure of model
similarity than it is a measure of signal predictability.

As a practical matter, the psychological plausibility of IR
is critically dependent on the correspondence between actual
mental models and assumed mathematical models, in this
case M, and M,. In their study of music, Dubnov et al.
(2004, in press) assumed that M,, was of low order (e.g., n =
1 or 2), and they used the whole data set (song) to construct
the models M,, and M. In computing IR, these M, and M,
were then assumed to apply at each segment i, even early in
the song when the listener’s models may be much different
from M, and M, because they have not yet heard much of
the song (signals). These assumptions appear to be reason-
able for the case of timbre in music, as evidenced by the
experimental finding of a correlation between the compu-
tational measure of IR and the psychological judgment of
EF. However, the same assumptions may not be so reason-
able for other aspects of music, such as melody, which is
analogous to contour in drawings.

Moreover, I posit that IR, which concerns the prediction
of signals, is missing an important component of esthetic
experience, which concerns the perception of meaning. Later
I discuss the difference in the context of a dynamic drawing
that combines features of music and sketching. However, I
first discuss the notion of Bayesian belief as a basis for
perception of meaning as well as prediction of signals.

2.3. Bayesian belief

In Bayesian belief there is an important distinction between
probabilities of the form P(m|M) and probabilities of the
form P(M|m), where M is a model (e.g., of a song or sketch);
mis a datum (e.g., a signal or segment); P(m|M) is called a
likelihood, which is the probability of m in light of M before
m is observed; and P(M|m) is called a posterior, which is
the probability of M in light of m after m is observed. The
likelihood and posterior are related by a prior P(M), which
is the probability of M before m is observed. The relation is
based on the following axiom of probability theory:

P(M, m) = P(m) X P(M|m) = P(M) X P(m|M) = P(m, M),
where the middle equality can be rewritten as follows:
P(M|m) = P(M) X P(m|M)/P(m).
Now assuming that there are K models {M,, M>, . . .,
My} in a perceiver’s frame of discernment, where each model

M, has a prior probability P(M,) and a likelihood P(m|M,)
of causing m, the term P(m) can be written as the sum of
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P(M,) X P(m|M,) over all k and Bayes rule can be rewrit-
ten as follows:

P(M|m) = P(M;) X P(m|My)
+[P(M) X P(m|M,) + P(M,) X P(m|M,) ---

+ P(Mg) X P(m|Mg)].

In other words, the probability that an observed signal m
was caused by a modeled process M, is the product of the
prior P(M,;) and the likelihood P(m|M,), normalized by
the sum of such products for all modeled processes that
might have caused the observed m.

The advantage of Bayes rule is that it allows one to infer
cause (M) from effect (m). That is, the world works from
cause to effect where a cause modeled by M gives rise to an
effect observed as m. This causal knowledge can be cap-
tured in a likelihood of the form P(m|M), which is useful
for predicting the most likely effect (1) given a causal model
(M). However, these likelihoods alone are not enough for
perceiving (Knill & Richards, 1996) the most likely model
(M) for the cause of the effect (m), which is the reverse
inference. Bayes rule provides the mathematical machinery
for making this reverse inference of meaning (M) from
signal (m), using likelihoods along with priors to compute
posteriors.

As such, a Bayesian approach is useful for two kinds of
model-based reasoning: forming expectations (i.e., for pre-
diction of signals before they are received) and forming
explanations (i.e., for perception of meaning after signals
are received). The Bayesian approach is especially impor-
tant for forming explanations of meaning, but a Bayesian
approach is also important for forming expectations of sig-
nals because it considers more than one model in its prior-
weighted computations. That is, the above expression for
P(m) gives a measure of expectation for the signal m over
all models {M,} that might cause that m. This expectation
will be equal to the likelihood P(m|M,) given by a single
model M;, as employed by IR, only if M, is the only model
in a perceiver’s frame of discernment.

Now I present an example of esthetic experience using a
dynamic drawing to highlight the advantage of a Bayesian
approach. The example is presented as a thought experi-
ment. Imagine that the dog in Figure 2¢ was drawn in time
from start to end, starting at the ear and moving counter-
clockwise. For example, Figures 2a and 2b show snapshots
in the sequence.

At a given point in this dynamic drawing, the questions
are how a viewer would form expectations about what she
will see next in the sequence, as well as explanations about
what she has seen thus far in the sequence, and how these
expectations and explanations would affect the viewer’s
esthetic experience. More specifically, in the language of
information theory, how would one compute the “amount
of information” that a perceiver receives from each seg-
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(a)

(b)

(c)

Fig. 2. The dynamic drawing used in a thought experiment.

ment of the signal (drawing or music), and how might this
measure of information at level A (see Section 1) be related
to the perceiver’s recognition at level B or emotion at level C?

2.3.1. Discretizing the curve

To begin a perceiver must have a mental model (Burns,
2001) of the animal/artist that is producing the signals, as a
basis for forming expectations and explanations. In fact, a
perceiver probably has many such models M, in mind, but
for now I assume just one model in which a perceiver has
internalized the probabilistic structure of the dog drawing
based on having seen this drawing or other dogs. A simple
version of such a model can be computed as follows: first
we select 200 equally spaced points along the dog contour
(Fig. 2¢) and connect them by straight lines (d;). Using the
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vector orientations of these segments (see Fig. 3a), we com-
pute curvature at each segment using the method of Mokh-
tarian and Mackworth (1986; see Fig. 3b). We then take
curvature as a feature basis for modeling the process that
generated the contour and compute the probability density
of discrete curvature values ranging from very concave (large
negative) to very convex (large positive).

The result is a Gaussian-like distribution (Fig. 3¢), which
is skewed toward positive because the silhouette is a closed
contour (i.e., overall it is more convex than concave). This
discrete distribution of curvatures can now be treated as a
model M of the process by which the drawing was gener-
ated. That is, Figure 3¢ models the probability P(cy4|M) on
the y axis of each discrete curvature value (cq) on the x axis,
and this gives the probability that a ¢4 will actually appear
as the curvature (c;) at time i in the dynamic drawing. Here,
I denote this model as M, because it assumes that the cur-
vature of each segment is independent of other segments,
that is, the animal /artist who produced the dog drawing is
modeled as a Markov process of order zero.

Now with such a model M,,, a perceiver could form expec-
tations about the curvature that will be seen at each time i
as the dog is drawn. Likewise, a perceiver could measure
the amount of information given by a segment at time i
based on the unexpectation of that segment’s curvature c; in
the model M, that is, —log P(c;| M), which is high when P
is low. In short, when P(c;|M,) is low, then seeing the
segment c; gives the perceiver a lot of information in light
of model M, because M, had little expectation for a seg-
ment with curvature ¢; = c4. Thus, the amount of informa-
tion in a signal is a measure of unexpectation for that signal.

2.3.2. Recognizing a cat

In fact, the above approach has recently been used by
several researchers to compute a measure of information
along contours (Feldman & Singh, 2005). The idea was
first proposed informally by Attneave (1954) in his famous
drawing known as “Attneave’s cat” (see Fig. 4a), which
Attneave made to demonstrate that relatively few points of
high curvature could be connected by straight lines to make
a recognizable drawing. This suggested to him that these
points held most of the information in the drawing. Sub-
sequent researchers (Resnikoff, 1985; Feldman & Singh,
2005) have formalized this claim assuming a Markov model
of order zero, arguing that because segments of high curva-
ture contain the most information, they must be the most
important segments for making a recognizable drawing, that
is, the amount of information and the goodness of recogni-
tion are directly related.

To test this claim, I took Figure 4a and deleted some
portions of straight segments to get Figure 4b. Then, I de-
leted all segments of high curvature (i.e., intersections)
in Figure 4b to get Figure 4c. Thus, Figure 4b should be
almost as recognizable as Figure 4a because I deleted just a
small amount of information (also see Biederman, 1987),
and Figure 4c should be nearly unrecognizable because I
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Fig. 3. (a) The orientation of contour segments computed along the dog of Figure 2, starting at the ear and moving counterclockwise;
(b) the curvature of contour segments computed along the dog of Figure 2, starting at the ear and moving counterclockwise; and
(c) the probability density for discrete curvature of contour segments in the dog of Figure 2.
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Fig. 4. Attneave’s (a) original cat and (b, ¢) variations.

deleted nearly all the information. In other words, the rel-
ative amount of information, hence, the relative goodness
of recognition, is predicted to be in relation Figure 4a ~
4b > 4c. However, examination of these three cats indi-
cates that the goodness of recognition is Figure 4a ~ 4b ~
4c, perhaps even Figure 4a ~ 4b < 4c. That is, Figure 4c is
still recognizable; in fact, many viewers report that Fig-
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ure 4c is even more recognizable than Figure 4b (which
presumably has much more information) and even more
recognizable than Figure 4a (which presumably has the most
information). They said that one reason is that Figure 4c
has a softer style that is more characteristic of a cat. More-
over, many viewers report that the most important segment
in all three figure parts (a, b, ¢) as far as recognizing a
sleeping cat, which is the object that Attneave (1954)
intended to draw, is the small straight segment that depicts
the cat’s eye; and yet this segment, because it is straight,
carries almost no information!

Thus, although curvature extrema are certainly impor-
tant in the human perception of shape from contour (Rich-
ards et al., 1988), there is something missing from the above
information-theoretic argument about how the goodness of
recognition depends on the amount of information. I argue
here that the problem is the model. That is, any measure of
information by a perceiver is critically dependent on the
perceiver’s models because information must always be mea-
sured in the context of models. In that vein I argue that
there are at least three flaws in the information-theoretic
analysis of Attneave’s cat (1954). The first flaw is that the
analysis did not consider assumptions that the viewer makes
in mentally modeling the data itself, for example, the way
the viewer might fill in the gaps with lines of her own. The
second flaw is that the analysis considered only one causal
model; that is, it did not address the fact that the viewer is
also considering other possibilities about what the drawing
may depict other than a sleeping cat, perhaps a dog. Here
the cat is recognized when P(cat|c) > P(dog|c), so recog-
nition is governed by multiple posteriors P(cat|c) and
P(dog|c) rather than a single likelihood P(c|cat).

The third flaw in the information-theoretic argument is
that the assumed model is of Markov order zero, which
means that all segments are independent. This is not a good
model of the cats depicted in mental models. To see why,
consider another thought experiment in production rather
than perception and imagine that the same Markov model
was sampled in a sequence to make a dynamic drawing.
With this model of zero order, low curvature segments would
be drawn much more often than high curvature segments
and positive curvature would be drawn more often than
negative curvature. However, the chances are slim that the
result would look anything like a cat or dog. This is because
cats and dogs and other animals are characterized by dis-
tinctive features like heads and tails and legs, and the mod-
eled dependencies between contour segments must be much
higher than zero order to generate these naturalistic regu-
larities (Richards, 1988) in random sampling. For example,
in my mental model of a cat, the chances of seeing a leg are
fairly high if none has been seen yet because cats have legs;
and the chances of seeing a leg are very high in the neigh-
borhood where one leg has already been seen because cats
legs are usually close together, but the chances of seeing a
leg drop to almost zero after four legs have been seen because
most cats have just four legs.
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2.3.3. Recognizing the dog

In light of this critique, I now return to the dog in Fig-
ure 2 and consider IR. Using two models (M, and M), IR
would compute the amount of information for a segment m;
as the difference between two unpredictabilties (entropies)
for m; in these two models, rather than the unexpectation
for m; in a single model M|, as discussed above.

However, IR really uses only one model, M. Thus, IR is
actually measuring the amount of information in M, rela-
tive to M, and realistically M, is probably not much better
than M, for modeling the probabilistic dependencies in men-
tal models of dogs and cats (see above). In contrast, if one
were interested in recognizing the texture or character of
the contour (e.g., jagged or curvy) rather than recognizing
the meaning or animal depicted in the drawing (e.g., dog or
cat), then a low order model like M, may be enough. More-
over, because timbre in music is analogous to texture in
drawing, a low order may also be enough for the case of
timbre in music. However, for other features like melody,
which is analogous to contour, the comparison of music to
drawings suggests that a much higher order will be needed
if a measure like IR is to predict EF or any other esthetic
feeling.

Nevertheless, the Markov order is an issue for the model
used by IR and is not a fundamental limitation of the mea-
sure IR itself. A more critical limitation of the measure
itself is that IR considers only one model M so it can only
measure things within that single model, not between dif-
ferent models M and N. In addition, although current research
is underway to extend IR to the case of multiple models
(Dubnov, 2006), a fundamental limitation is that even a
multimodel IR would still only measure expectations for
signals among these models; that is, it would not measure
explanations of meaning between the models. To see the
difference, I return to my thought experiment on the dog
drawing.

To begin, I have a high prior for cats even before the
dynamic drawing begins, perhaps because we have just dis-
cussed Attneave’s cat (1954). Thus, assuming that I have
only two models (cat and dog) in my frame of discernment,
my belief would be P(cat) > P(dog). At some time when I
have seen a fraction D of the complete contour, perhaps
the back and tail (Fig. 2a), which look rather catlike, I
might think “Yes, it’s a cat.” Mathematically, P(cat|D) >
P(dog|D).

Now my mental models (Burns, 2001) for cats and dogs
also include likelihoods for P(D;|cat) and P(D;|dog), which
reflect my knowledge of how some sample D; of the con-
tour will look at a later time if indeed the drawing is one of
a cat or a dog. Weighted by my priors for P(cat|D) and
P(dog|D) above, these likelihoods govern my expecta-
tions for the future D;. For example, because cats and
dogs both have legs my likelihoods would be P(leg|cat) ~
P(leg|dog) ~ 1, so T would expect a leg regardless. Notice
that these high likelihoods mean that a leg carries only a
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small amount of information in each model (cat or dog),
and yet legs are clearly important for distinguishing cats or
dogs from other objects like snakes. Notice also that the leg
likelihood is about the same in each cat and dog model,
which means that although a leg may be a good feature for
distinguishing cats or dogs from snakes, it is not good for
distinguishing cats from dogs.

Eventually I will see D; that includes the head (Fig. 2c),
which shows a snout. This was not my expectation, be-
cause my prior was P(cat) > P(dog) and my likelihoods
for snouts are P(snout|cat) ~ 0 and P(snout|dog) =~ 1, that
is, P(snout|cat) < P(snout|dog) because cats do not have
snouts and dogs do. Thus, I am surprised and aroused by
this violation of my expectation. To update my beliefs in
light of this new datum, I then take the normalized product
of the snout likelihoods and my priors, per Bayes rule, and
form an explanation of the snout that I have just seen. This
normalized product of prior X likelihood (see Section 2.3)
makes my posterior belief P(cat|D;) < P(dog|D;), which
is areversal of my prior belief P(cat| D) > P(dog|D). Thus,
I think “Hey, it’s not a cat . . . It’s a dog!” This explanation
helps to resolve the tension caused by the earlier violation
of my no-snout expectation, which gives me pleasure, much
like the feeling of satisfaction I get in solving a crime in
mystery or “getting” a joke in comedy. Therefore, based on
this example I would argue that IR or any other measure of
information, which is really a measure of E, is missing an
important component of esthetic experience, namely, a mea-
sure of E'.

In short, expectations occur before signals are observed
and they are concerned with predicting the signals, whereas
explanations occur after signals are observed and they are
concerned with perceiving the meaning. The two are at dif-
ferent levels of Weaver’s triad (see Section 1) because E are
concerned with signals at level A while E’ are concerned
with meaning at level B. However, the two are connected
because meaning is derived from signals and because expec-
tation (E) and explanation (E') can both affect feelings at
level C.

3. MATHEMATICAL MEASURES

3.1. Atoms of EVE’

Here I propose that the atomic components of esthetic expe-
rience are E, V, and E’ (EVE’). The theory is that a feeling
of pleasure arises in two ways, both involving some level of
success in cognitive processing during a media experience.
One kind of pleasure (p) arises from success in forming E
and avoiding V, whereas another kind of pleasure (p') arises
from success in forming E’ and resolving V.

3.1.1. Expectation

Assume that a perceiver has a set of posterior explana-
tions {P(H[{D;_,})} for a set of observations {D,_,} up to
some time i — 1. Here, P denotes probability and H is a
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hypothesized explanation for the observations {D;_;}. Each
posterior probability P(H|{D;_,}) then becomes a prior
probability for the next i, and these priors along with like-
lihoods of the form P(D; ;| H;) can be used to establish the
expectation for each possible datum D; ; of type j that might
be observed at i.

For example, near the end of the thought experiment in
Section 2.3.3, T had two possible explanations, H. = cat and
Hy = dog, and I considered two possible observations at i,
D, ; = snout or D, ; = no snout. In this case there would be
four likelihoods and each probability P(D;;) would be a
prior-weighted sum of likelihoods as follows:

P(Dy ;) = P(H{D;-1}) X P(Ds ;|H.) + P(Hg{D;-})

X P(Ds,i ‘Hd)’

P(Dn,i) = P(Hc‘{szl}) X P(Dn,i‘Hc) + P(Hd‘{szl})

X P(Dn,i ‘Hd)

Here, log P(D ;) and log P(D, ;) can be taken as measures
of expectation for each datum, thus:

E;; =1ogP(D; ;).

3.1.2. Violation

Now when time i comes and a particular datum D, ;
is actually observed, the inverse of E or log(1/P(D;;)) =
—log P(Dj,,-) can be taken as a measure violation at that
time. Thus, V = —E; hence,

Vi = —log P(D;;).

Note that this measure of V is not a measure of information
(entropy) per se, because entropy would be —P(D;;) X
log P(D; ;). However, before the datum is actually observed
at time i, a measure of apprehension (A) about which data
will actually be observed is in fact equal to entropy. That is,
taking the sum of all possible V weighted by their respec-
tive probabilities, and using this as a measure of A about
which data will be observed, we have

A; = —z P(Dj,i) X logP(Dj,,-)-
J

The difference between V and A is as follows: V measures
unexpectation for the single datum D;; that was actually
observed with probability one at time i whereas A measures
unpredictability for the set of possible data {D;;}, com-
puted by summing and weighting each unexpectation by its
probability.

In comparing the measure of entropy given by A to that
of IR discussed in Section 2.2.3, I highlight two important
differences. First, in A each P(D; ;) is a prior-weighted like-
lihood computed over all models {H,} in a frame of dis-
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cernment, whereas IR uses just one model (but see Dubnov,
2006). Second, in A the measure is one of absolute entropy
for a set of signals {D;;}, whereas in IR it is the relative
entropy for a single signal m; in a model M,, compared to its
“baseline” entropy in a model M,,, which is the same model
M but of Markov order zero. In short, A measures absolute
entropy for a set of signals in a set of models whereas IR
measures relative entropy for a single signal between two
versions of a single model.

3.1.3. Explanation

Now after a violation of a prior expectation, the modeled
hypotheses {H,} in a frame of discernment serve as pos-
sible explanations (E’), and the after-datum posteriors
{P(H,|D;;)} computed by Bayes rule can be used to mea-
sure how well the datum has been explained, that is, how
well the violation has been resolved. Here I assume that a
posterior probability of one would completely resolve the
violation; hence, P(H,|D; ;) measures the fraction of V =
—log P(D; ;) that has been successfully resolved by an expla-
nation H,. Thus,

Ei ;= —P(H|D; ;) X log P(D;,).

For example, in Section 2.3.3 I had a violation of my
expectation when I saw the snout D, ; because P(D, ;) was
low in light of my prior-weighted likelihoods. The magni-
tude of this violation can be measured as —log P(Dy ;). Then,
in forming an explanation, my Bayesian belief changed from
prior P(Hy) < P(H.) to posterior P(Hy|D; ;) > P(H.| Dy ;).
The upshot was some resolution of the V via this E’, which
can be measured as —P(Hy| Dy ;) X log P(D;;). Notice that
this formula is like entropy, that is, —P X log P, except that
itis —P, X log Py, where P, is the posterior probability of a
model after a datum is observed whereas P, is the prior-
weighted likelihood of the datum before that datum was
observed. Notice also that when there is only one model H,
then P(H|D) = 1; for that special case (like IR) we have
E'=V=—E.

3.1.4. Pleasure and tension

Finally, the expression for total pleasure (p.) can be
written as follows for a single instance (i, j,k) of EVE":

P=ptp =GXE+ G XE/,

where G and G’ are scaling factors that reflect the relative
pleasure that a perceiver gets from a unit of success at E
and E', respectively. These scaling factors must be estab-
lished empirically (see Goldilocks functions in Section 3.2).
Similarly, total tension is the sum of A and V, where these
two sources of tension are weighted by factors W, and Wy,
which must be established empirically. Thus, the expres-
sion for total tension can be written as follows:

fot =+ 1ty =Wy XA+ W, X V.
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3.2. Goldilocks functions

Here it is useful to give an example of the trade-off between
E and E’ that is central to EVE'. The example is illustrated
in plots of Goldilocks functions. As the story goes, Gold-
ilocks is a young girl who is walking in the forest when she
happens upon a bear family’s cottage. The bears are away
so Goldilocks enters. She then proceeds to find and taste
their bowls of porridge, sit on their chairs, and lie in their
beds. The climax of the story comes when the bears return
to find Goldilocks still sleeping in Baby Bear’s bed, and the
reader’s tension is resolved when Goldilocks wakes up and
runs off.

This story is typical in that its main plot has a beginning
(Goldilocks in the forest), middle (Goldilocks in the cot-
tage), and end (Goldilocks running away), as Aristotle wrote
that all stories should (Butcher, 1955). In fact, the same
structure is also repeated at smaller scales in subplots and
subsubplots down to the esthetic atoms of the story, much
like the basic sequence of beginning—middle—end in E-V-E’
itself. For example, in three subplots of the main plot’s
middle we find Goldilocks tasting porridge, sitting on chairs,
and lying in beds. In each of these subplots we find three
subsubplots, for example, with porridge where Goldilocks
finds Papa Bear’s “too hot,” Mama Bear’s “too cold,” and
Baby Bear’s “just right,”

The story is useful in exposing the fact that personal
preferences must be established empirically, as Goldilocks
did, and in expressing the fact that “not too big or too small
but just right” applies to almost all esthetic experiences,
because of trade-offs that give rise to styles. For example,
G > G’ models a listener whose style is such that they
prefer E to E’, so they will enjoy an esthetic experience that
is all or mostly E, such as hearing Goldilocks’ story repeat-
edly. These listeners prefer not giving up a unit of E to V
even if they get it all back in a unit of E'. Conversely, G’ >
G models a listener whose style is such that they prefer E’
to E, so they will enjoy an esthetic experience that has more
E’, such as hearing a new story about the Three Bears.
These listeners prefer to give up several units of E just to
get one unit of E’.

As a concrete example, consider a perceiver listening to
a performer who plays only two notes, A or B, where P(A) =
F and P(B) = 1 — F are the average frequencies at which
the notes are played. Assume also that there is only one
model M of the performer’s preferences in the perceiver’s
frame of discernment, and this model has P(A|M) = P and
P(B|M) =1 — P. Then, by the above measures of EVE/,
the listener has a measure of expectation for note A that is
E, = log P and a measure of expectation for note B that is
Eg = log(l — P). The notes are actually played with fre-
quencies F and 1 — F, so the average pleasure p, which
weighs E, and Eg by their relative frequency of occurrence
and scaling factors G, and Gg, is as follows:

p =G XFXlogP+GgX(1—F)Xlog(l—P).
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Thus, if P = F such that the perceiver’s M of the
performer’s preferences actually matches the performer’s
preferences, then p is simply a G-weighted negative entropy.
Assuming G, = Gg, Figure 5a shows that this is a bowl-
shaped function with peaks at P = 0 and 1. When G # Gg,
the curve is not symmetric but it is still bowl shaped. There-
fore, assuming that E is the only source of pleasure for a
listener, she would most enjoy listening to a performer who
always plays the same note, A or B. However, according to
EVE' there is more to the story, namely, violations of E that
provide the listener with opportunities for E’, which in turn
can bring pleasure-prime. Here, because the listener is
assumed to have only one model M, I assume that all vio-
lations are completely resolved so the measure of explana-
tion E’ = V = —E. Thus, pleasure-prime (p’) is as follows:

p' = -Gy XFXlogP— G X(1—F)Xlog(l—P).

Now with these two expressions for p and p’, if G, =
Gg = G\ = Gg, then p’ from E’ would cancel p from E and
the total pleasure p,,, = p + p’ would be a flat line of zero;
that is, the listener would not prefer any performer or even
any range of performers. In short, if G, = Gg = G = Gg,
then there would be no style. If instead G, = Gg > G) =
Gg, then the total pleasure would be a bowl shape like
Figure 5a, similar to the case of E with no E’ (discussed
earlier), where the listener would prefer a performer who
always plays the same note A or B. However, if G, = G <
G\ = Gg, then p,,, = p + p’ is an inverted bowl, as shown
in Figure 5b for several different G/G’ fractions. As we
know from Goldilocks’ story as well as everyday observa-
tions, this is typically the case in esthetic experiences. There-
fore, I argue that G < G’ for almost any esthetic experience,
which means that £’ is an important addition to £ in EVE’.
Moreover, because E’ arises from semantic (level B) con-
siderations in Bayesian-theoretic analysis, it is an impor-
tant addition to entropic (level A) considerations in
information-theoretic analysis; and both are needed for
esthetic (level C) analysis of styles in media experiences.

However, even this is still not the whole story of
Goldilocks-EVE'’ because different perceivers also have dif-
ferent preferences for different percepts (i.e., notes or songs).
For example, a type A listener like Papa Bear may prefer to
hear note A whereas a type B listener like Mama Bear may
prefer to hear note B, and these preferences will affect the
location of peak pleasure on their Goldilocks curves. To
illustrate this, I assume two such listeners, one for whom
only violations V, = —log P are resolved with pleasure
(because he likes note A) and the other for whom only
violations Vi = —log(l — P) are resolved with pleasure
(because she likes note B). Both listeners are assumed to
have G < G’, as in Figure 5b. The result, plotted in Fig-
ure 5c, shows how these preferences produce Goldilocks
functions that are skewed toward low P or high P; that is,
there are two different “sweet spots” of the pleasure func-
tion for the two different listeners. Notice that the functions
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Fig. 5. A Goldilocks functions plot of total pleasure (p,) versus proba-
bility (P).
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are not peaked at P = 0 and 1, because if they were, there
would be no possible violations and hence no pleasurable
explanations.

This shows how a perceiver’s preferences for hearing
specific notes along with his/her mental models of a
producer’s preferences for playing specific notes combine
to create Goldilocks functions in a cultural context where
the perceivers and producers interact. Moreover, although
the preferences are sometimes different between people,
they are often similar among people, too, such as all Papa
Bears or all Mama Bears who have A or B styles.

Thus, the Atoms of EVE’ can be used to develop theo-
retical Goldilocks functions as just described, using the math-
ematical measures outlined in Section 3.1. In addition, data
from field observations or lab experiments can be used to
develop empirical Goldilocks functions in the same format.
The practical value of Goldilocks-EVE' is that the theoret-
ical functions can help engineers analyze and synthesize
styles in design, whereas the empirical functions can help
scientists flesh out and test their theories of style. This makes
Goldilocks-EVE' a formal and useful framework for link-
ing theory to practice. In practice, Goldilocks functions might
be used to program artificial agents that produce esthetic
styles as well as perceive style esthetics or at least act as if
they produce and perceive styles like people do.

3.3. Other fun functions

At first glance the Goldilocks functions in Figure 5 may
appear similar to the famous Yerkes—Dodson (1908) func-
tion shown in Figure 6, which is often cited in human fac-
tors engineering (Wickens & Hollands, 2000).

However, there is an important difference: the Yerkes—
Dodson (1908) function plots objective performance (e.g.,
task score) versus objective arousal (e.g., pulse rate), which
is basically the opposite of a Goldilocks function that plots
subjective pleasure (similar to arousal) versus subjective
success (similar to performance) measured entropically
(probabilistically). Here, I argue that a Goldilocks function
is a better format for esthetic analysis, because it treats
pleasure as the dependent variable and because it shows
that subjective measures of success rather than objective

performance

arousal

Fig. 6. The Yerkes—Dodson function for performance versus arousal.
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measures of success are what give rise to pleasure (although
the objective can affect the subjective, as in game play where
the score affects fun). I also posit that pleasure and tension
are two different but related feelings, as modeled and mea-
sured in the Atoms of EVE’, and that these two feelings are
confounded in a single measure of “arousal.”

The basic notion of a Goldilocks function for fun in per-
ception can also be applied to flow in production. That is,
producers are also perceiving the products of their efforts
(see Fig. 1), and their feelings of flow (engagement) are
feelings of fun (enjoyment) about their performance. Thus,
the Atoms of EVE' is also related to a theory of flow offered
by Csikszentmihalyi (1991; see Fig. 7, which is adapted
from Salen & Zimmerman, 2004), which plots the chal-
lenge (task) versus the person (skill), showing the diagonal
as flow. This theory of flow (Fig. 7) is basically the same
idea as that expressed informally by the Goldilocks story
and captured more formally in Goldilocks functions. That
is, the Goldilocks functions shown in Figure 5b and 5c
show an optimal level of pleasure (fun or flow) on the y
axis that is not too high or too low on the x axis. These
Goldilocks functions are more useful in illustrating the shape
of the pleasure function, which is not seen in Figure 7 but
may be very important as a design guideline. For example,
designers would benefit from knowing not only the loca-
tion of the peak but also how fast fun or flow drops off in
each direction away from the peak, because small increases
in consumer fun or pleasure would not be worth large
increases in designer cost or effort.

Referring to the theory of flow illustrated in Figure 7, it
is not clear how one would go about modeling or measuring
parameters like task or skill or even flow itself; yet, models
and measures are needed for a theory to be formally tested
and practically useful. By comparison, Goldilocks-EVE’
does offer formal models and measures to promote scien-
tific testing and engineering uses. Thus, I believe that the
Atoms of EVE’ and its Goldilocks functions have impor-
tant differences from previous theories of human perfor-

high
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=
=
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Fig. 7. Csikszentmihalyi’s theory of flow as adapted from Salen and Zim-
merman (2004).
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mance in the fields of cognitive psychology and human
factors engineering.

4. EVALUATING EVE’

The contribution of this paper is to outline a basic theory of
esthetic experience and relate it to previous research as well
as potential uses. EVE'’ is evaluated by addressing its nov-
elty, validity, and applicability.

4.1. Novelty of EVE’

With respect to novelty, the question is whether my thesis
about esthetic agreement and my theory about the Atoms of
EVE’ are substantially different from previous authors. In
reference to earlier sections, Section 1 discussed why esthet-
ics are important to style and how esthetics have been largely
ignored in the field of information engineering. Section 2
discussed how my research on sketching can be related to
other research on music and how a Bayesian-theoretic
approach can extend and improve information-theoretic mea-
sures that have been proposed previously. Section 3 dis-
cussed how the Atoms of EVE’ can model and measure the
atomic components of esthetic experience and thereby inte-
grate and generalize other theories in artificial intelligence,
cognitive psychology, and human factors engineering.

4.2. Validity of EVE’

With respect to validity, the question is whether the Atoms
of EVE’ can be empirically tested. Three planned experi-
ments are outlined and three hypotheses are offered. The
experiments employ dynamic drawings of the type dis-
cussed in Section 2, collecting human judgments and com-
paring these empirical data to theoretical measures of EVE/,
much like Dubnov et al. (2004, in press) have done for their
computational measure of IR and psychological judgments
of EF in music.

Experiment 1 measures a viewer’s response continu-
ously, as the dynamic drawing is seen in time, by having the
viewer adjust a sliding scale to provide data on feelings that
are modeled by EVE'. This is similar to the measurement of
EF in music by Dubnov et al. (2004, in press). However,
unlike the judgment of EF, which may confound feelings of
pleasure and tension, this experiment measures pleasure and
tension separately as they are modeled separately in EVE'.

Experiment 2 collects more detailed data on tension in
the same dynamic drawings at key points in time. Here, the
sliding scale is used to measure when the viewer feels appre-
hension about what signal he expects next in the sequence
or to measure when the signal he has just observed feels
like a violation of what he had expected. Afterward the
viewer is shown snapshots of the dynamic drawing taken at
key times in the esthetic experience, such as the measured
peaks of A and V, and asked to provide retrospective com-
ments. Alternatively, these comments might be collected at
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the time the apprehension or violation occurs in the dynamic
drawing, via a think aloud protocol, but this may interfere
with the esthetic experience.

Experiment 3 is similar to experiment 2 except it collects
data related to pleasure rather than tension. The sliding scale
is used to measure when the viewer feels they have suc-
ceeded in forming expectations or explanations. Afterward
the viewer is shown snapshots of the dynamic drawing taken
at key times in the esthetic experience, such as the mea-
sured peaks of E and E’, and asked to provide retrospective
comments. These comments are especially valuable in cor-
relating the explanations measured in experiment 3 with the
violations measured in experiment 2, because an explana-
tion may come some time after the violation.

Hypothesis 1 is that pleasure and tension are more than
just simple inverses of one another, because pleasure arises
from avoiding tension at £ as well as from resolving ten-
sion at £’ and because all tension is not necessarily resolved
as pleasure at E’. This is different from a measure like IR
that only considers the equivalent of £ and hence implicitly
assumes £’ = V = —E. Hypothesis 2 is that the peaks of A
and V in experiment 2, which are the theorized causes of
tension in experiment 1, will in fact correspond to the indi-
cated peaks of tension in experiment 1. Experiment 2 could
also help establish the relative magnitudes of the weighting
factors W, and Wy, that determine how A and V combine to
cause tension. Hypothesis 3 is that the peaks of £ and E’ in
experiment 3, which are the theorized causes of pleasure in
experiment 1, will in fact correspond to the indicated peaks
of pleasure in experiment 1. Experiment 3 could also help
establish the relative magnitudes of Goldilocks factors G
and G’ that determine how E and E’' combine to cause
pleasure. In particular, a strong test of the theory is that
G < G’ (see Section 3.2).

4.3. Applicability of EVE’

With respect to applicability, the question is whether the
Atoms of EVE' can be applied in engineering and design
practice. The answer here is speculative, because the focus
of this article is on the theory itself and because the theory
has yet to be validated (see earlier). Nevertheless, I believe
that a basic theory of esthetic experience can have wide-
spread impact on the design of systems for information
applications, which involve processing and presenting infor-
mation to people engaged in activities ranging from game
play to business to warfare.

Recent research in the emergent discipline of affective
computing (Picard, 2000) has been concerned with devel-
oping systems that can recognize the emotional states of
their users, which might then allow systems to adapt to the
wants and needs of their users. However, still lacking are
formal theories of how a media experience gives rise to
emotional states in the first place, and such theories are
needed if systems are to know how to adapt themselves to
what they are sensing. Other research in the more estab-
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lished disciplines of human factors and human—computer
interaction have also been concerned with optimizing the
engagement of humans with systems. However, computa-
tionally speaking, the focus of these efforts has been on
usability from an ergonomic perspective rather than like-
ability from an esthetic perspective.

A specific application of EVE’ is in the field of computer
game systems (see Salen & Zimmerman, 2004), which are
a popular form of entertainment and a practical means of
training people in various occupations. To be a good game,
a game must be engaging and yet existing theories of fun
(Koster, 2005) are lacking specificity and testability. More
formal models and measures, like the Atoms of EVE’, are
needed to advance the science and practice of game design
in particular and information engineering in general. In short,
machine systems must be engaging to their human users if
they are to be much fun or much use, and effective engage-
ment is largely a matter of esthetic agreement between the
human and the machine.

As an immediate application to design practice, perhaps
the most significant contribution of EVE'’ is that it com-
bines information theory and Bayesian theory to model trade-
offs between (and within) E and E’ in esthetic experiences.
Specific measures of E and E’, which lead to pleasure, along
with related measures of A and V, which lead to tension, are
formalized and integrated as the Atoms of EVE’ and illus-
trated in the form of Goldilocks functions. These contribu-
tions make the theory both testable and usable.

Ultimately the Atoms of EVE’ might help foster esthetic
agreements between artificially intelligent designers who
produce styles and naturally intelligent consumers who per-
ceive styles, making machines more like humans and mak-
ing humans like more machines.
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