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In this paper, we will use optimal mass transport combining with suitable transforms
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1. Introduction and main results

Functional and Geometric inequalities have many applications in geometry, the
theory of functions of a complex variable, the calculus of variations, embedding
theorems of function spaces, a priori estimates for solutions of differential equations,
and so on. They, together with their sharp constants and extremal functions, take a
crucial part in geometric analysis, partial differential equations and other branches
of modern mathematics.

Among those inequalities, the Caffarelli–Kohn–Nirenberg (CKN) inequalities are
one of the most important and interesting ones. They were first introduced in 1984
by Caffarelli, Kohn and Nirenberg in their celebrated work [14]:

Theorem A. There exists a positive constant C = C(N, r, p, q, γ, α, β) such that
for all u ∈ C∞

0 (RN ):

‖|x|γ u‖r � C ‖|x|α |∇u|‖a
p

∥∥∥|x|β u∥∥∥1−a

q
(1.1)

where

p, q � 1, r > 0, 0 � a � 1

1
p

+
α

N
,

1
q

+
β

N
,

1
r

+
γ

N
> 0 where
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γ = aσ + (1 − a)β

1
r

+
γ

N
= a

(
1
p

+
α− 1
N

)
+ (1 − a)

(
1
q

+
β

N

)
,

and

0 � α− σ if a > 0 and

α− σ � 1 if a > 0 and
1
p

+
α− 1
N

=
1
r

+
γ

N
.

If we perform the following change of exponents as in [45]:

α = −μ
p
, β = −θ

q
, γ = −s

r
,

then we obtain the following equivalent form:

(∫
RN

|u|r dx
|x|s

)1/r

� C

(∫
RN

|∇u|p dx
|x|μ

)a/p
(∫

RN

|u|q dx

|x|θ
)(1−a)/q

(CKN)

where

a =
[(N − θ)r − (N − s)q]p

[(N − θ)p− (N − μ− p)q]r
.

It is worth noting that many well-known and important inequalities such
as Gagliardo–Nirenberg inequalities, Sobolev inequalities, Hardy–Sobolev (HS)
inequalities, Nash’s inequalities, and so on, are just the special cases of the CKN
inequalities. For example, when s = μ = θ = 0 and a = 1, we recover the well-known
Sobolev inequality:(∫

RN

|u|p∗
dx

)1/p∗

� S(N, p)
(∫

RN

|∇u|p dx
)1/p

(1.2)

where p∗ = ((Np)/(N − p)). This inequality has important applications in many
areas of mathematics and there is a vast literature. For p = 1, it has been known
that the Sobolev inequality is equivalent to the classical Euclidean isoperimetric
inequality. When p > 1, the best constant S(N, p) was found in the works of Aubin
[5] and Talenti [43] using rather classical tools such as Schwarz rearrangement,
and solution of a particular one-dimensional problem, the Bliss inequality. The
case p = 2 was investigated more deeply by Beckner in [7] due to its conformal
invariance.

When a = 1, μ = 0, 0 � s � p < N and r = p∗(s) = ((N − s)/(N − p))p, the
CKN inequality becomes the HS inequality that is the interpolation of the Sobolev
inequality and the Hardy inequality:(∫

RN

|u|p∗(s) dx
|x|s

)1/p∗(s)

� HS(N, p, s)
(∫

RN

|∇u|p dx
)1/p

. (1.3)

In this situation, in [34] Lieb applied the symmetrization arguments to study (1.3)
in the case p = 2 and gave the best constants and explicit optimizers. The study of
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the best constantHS(N, p, s) and extremal functions for the inequalities (1.3) in the
general range goes back at least to Ghoussoub and Yuan in [29]: The maximizers
for the HS inequality when 0 � s < p < N are the functions

uc,λ(x) = c
(
λ+ |x|((p−s)/(p−1))

)−((N−p)/(p−s))

for some c �= 0, λ > 0. (1.4)

Actually, uc,λ (after rescaling) is the only positive radial solutions of

−div
(
|∇u|p−2 ∇u

)
=
up∗(s)−1

|x|s on R
N .

When a = 1 and 0 < μ, s < N , the CKN inequalities do not contain the
interpolation term. There are great efforts to investigate the sharp constants,
existence/nonexistence and symmetry/symmetry breaking of extremizers in this
situation, especially, when p = 2. See [16,17,44], among others. For instance, in
[17], Chou and Chu considered the case p = 2 and μ/2 � s/r � μ/2 + 1 and pro-
vided the best constants and explicit optimizers. In [44], Wang and Willem studied
the compactness of all maximizing sequences up to dilations in the spirit of Lions
[35–38]. In [16], Catrina and Wang investigated the class of p = 2 and μ < 0 and
established the attainability/unattainability and symmetry breaking of extremal
functions. Caldiroli and Musina studied the symmetry breaking of extremals for
the CKN inequalities in a non-Hilbertian setting in [15]. In a recent paper [23],
Dolbeault, Esteban and Loss studied the characterization of the optimal symmetry
breaking region in HS inequalities with p = 2. As a consequence, maximizers and
best constants are calculated in the symmetry region. Their result solves a long-
standing conjecture on the optimal symmetry range. We also mention here that the
situation is different when s = p, namely, the Hardy inequality. The best constant,
in this case, is HS(N, p, p) = ((p)/(N − p)) and is never achieved. Hence, it is nat-
ural to study the improved Hardy inequalities where we can try to add missing
terms to the right-hand side of the Hardy inequalities, see [1,11,12,25,26,41],
just to name a few.

In the case 0 < a < 1 and s = θ = μ = 0, we obtain the non-weighted CKN
inequality, namely the Gagliardo–Nirenberg inequality. This inequality has been
studied at length by many authors, see for example, [9,16,21,22,30], to men-
tion just a few. Especially, for very particular classes, the best constant and the
maximizers for the Gagliardo–Nirenberg inequality are provided explicitly by Del
Pino and Dolbeault in [19,20]. Indeed, in the special class r = p((q − 1)/(p− 1)),
Del Pino and Dolbeault proved that the maximizers for the Gagliardo–Nirenberg
inequality have the form γ(1 + δ|x− x|p/p−1)−((p−1)/(q−p)) while in the case
q = p((r − 1)/(p− 1)), the optimizers are γ(1 − δ|x− x|p/p−1)−((p−1)/(r−p))

+ , for
some γ ∈ R, δ > 0 and x ∈ R

N . See also [2,3] where Agueh gave a proof by studying
a p-Laplacian type equation and by transforming the unknown of the equation via
some change of functions. We also cite [18] where Cordero–Erausquin, Nazaret, and
Villani set up a beautiful link between optimal transportation and certain Sobolev
inequalities and Gagliardo–Nirenberg inequalities.
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Now, let C : R
N → R

+ be even, strictly convex function. We suppose that C is
q- homogeneous, that is there exists q > 1 such that

C(λx) = λqC(x) ∀λ � 0, ∀x ∈ R
N .

Then C∗, the Legendre transform of C, defined by

C∗(x) = sup
y
{〈x, y〉 − C(y)},

is even, strictly convex function and is p-homogeneous with p = q/q − 1. The fol-
lowing result has been proved by Agueh–Ghoussoub–Kang [4] (see also Chapter 13
in the book [28]):

Theorem B. Let F : [0,∞) → R be a differentiable function on (0,∞) with
F (0) = 0 and x �−→ xNF (x−N ) convex and nonincreasing, and set GF (x) = (1 −
N)F (x) +NxF ′(x) Let ψ : [0,∞) → R. be a differentiable function chosen in such
a way that

ψ (0) = 0 and
∣∣∣ψ1/p(F ′ ◦ ψ)′

∣∣∣ = 1.

If Ω is an open, bounded and convex subset of R
N , we consider the following two

extremal problems:

D∞ = sup
{
−

∫
Ω

[F (ρ) + Cρ]dx; ρ ∈ Pa(Ω)

=
{
ρ : Ω → R; ρ � 0 and

∫
Ω

ρ(x)dx = 1
}}

and

P∞ = inf
{∫

Ω

[C∗(−∇f) −GF ◦ ψ(f)]dx; f ∈ C∞
0 (Ω),

∫
Ω

ψ(f) = 1
}

Then, we have D∞ � P∞. Also, if there exists f that satisfies

−(F ′ ◦ ψ)′
(
f
)∇f(x) = ∇C(x) a.e.

then D∞ = P∞, D∞ is attained at f , and P∞ is attained at ρ = ψ(f). Moreover,
f solves {

div(∇C∗(−∇f)) − (GF ◦ ψ)′(f) = λψ′(f) in Ω

∇C∗(−∇f) · ν = 0 on ∂Ω

for some λ ∈ R, and ρ is a stationary solution of⎧⎨
⎩
∂ρ

∂t
= div(ρ∇(F ′(ρ) + C)) in (0.∞) × Ω

ρ∇(F ′(ρ) + C) · ν = 0 on (0.∞) × ∂Ω.

It is worth noting that theorem B can be used to derive the duality associated
with the Sobolev inequality and the Gagliardo–Nirenberg inequalities [18], as well
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as the duality between ground state solutions of some semilinear equations and the
stationary solutions of Fokker–Planck equations [28].

The Sobolev inequalities with monomial weights have been also studied inten-
sively recently. For instance, in [6], the authors used the stereographic pro-
jection combining with the Curvature-Dimension condition to prove the fol-
lowing Sobolev inequality with monomial weight: for a � 0, N + a > 2, there
exists S(N, a) > 0 such that for all smooth, compactly supported function f
on R

N−1 × R+ :[∫
RN−1

∫
R+

|u(x)|((2(N+a))/(N+a−2))
xa

Ndx

]((N+a−2)/((2N+a)))

� S(N, a)

[∫
RN−1

∫
R+

|∇u(x)|2 xa
Ndx

]1/2

.

The best constant S(N, a) was also calculated explicitly in [6]. In [42], V.H.
Nguyen employed the mass transport approach to re-prove and extend the above
result. Moreover, he also studied the best constants and extremal functions for
the Gagliardo–Nirenberg inequalities and logarithmic Sobolev inequalities with the
weight xa

N and with the arbitrary norm. In [13], Cabré and Ros-Oton used the
Alexandroff-Bakelman-Pucci method to investigate the isoperimetric inequalities
with monomial weights and then applied a version of the weighted Schwarz rear-
rangement to establish the Sobolev, Morrey and Trudinger inequalities. Optimal
Trudinger–Moser inequalities and Hardy inequalities were also studied recently in
[31,32].

1.1. Main results

In this paper, we will derive some general results about the weighted CKN
inequalities. First, we consider the following class of the CKN inequalities:

1 < p � p+ μ < N, θ =
Nμ

N − p
< N, (1.5)

a =
[(N − θ)r − (N − θ)s]p

[(N − θ)p− (N − μ− p)s]r
=

[Nr −Ns]p
[Np− (N − p)s]r

.

Denote Dp,s
μ,θ(R

N ) the completion of the space of smooth compactly supported
functions with the norm(∫

RN

pC∗(∇u) dx
C(x)μ/q

)1/p

+
(∫

RN

|u|s dx
C(x)θ/q

)1/s

,

and set

CKN(N,μ, p, s, r) = sup
u∈Dp,s

μ,θ(RN )

(∫
RN |u|r dx

C(x)θ/q

)1/r

(∫
RN pC∗(∇u) dx

C(x)μ/q

)a/p (∫
RN |u|s dx

C(x)θ/q

)1−a/s
.

Then, we will prove that
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Theorem 1.1. Assume (1.5).

1/ If r = p((s− 1)/(p− 1)) and p < r < ((Np))/(N − p)), then CKN
(N,μ, p, s, r) is achieved by maximizers of the form

V0(x) = γ′
(
1 + δ′C(x)((N−p−μ)/(N−p))

)−((p−1)/(s−p))

for some γ′ ∈ R, δ′ > 0.

2/ If 1 < s = p((r − 1)/(p− 1)) < p and r > 2 − ((1)/(p)), CKN(N,μ, p, s, r) is
achieved by maximizers of the form

V0(x) = γ′(1− δ′C(x)((N−p−μ)/(N−p)))−((p−1)/(r−p))
+ for some γ′ ∈ R, δ′>0.

Remark 1.1. Theorem 1.1 was first set up under the regular Euclidean norm in
[33]. In the same paper, the authors also proved the similar result for arbitrary
norm on R

N .

We also consider the following class of the weighted CKN inequalities on
Ω = R

N−1 × R+ :

1 < p � p+ μ < N + b, θ =
(N + b)μ
N + b− p

< N + b, (1.6)

a =
p(N + b)[r − s]

r[p(N + b) − s(N + b− p)]
, b � 0.

Let ω(x) = xb
N on Ω, denote Dp,s

μ,θ(Ω, ω) the completion of the space of smooth
compactly supported functions with the norm

(∫
Ω

pC∗(∇u)ω dx
C(x)μ/q

)1/p

+
(∫

Ω

|u|sω dx
C(x)θ/q

)1/s

,

and set

CKN(N,μ, p, s, r, b) = sup
u∈Dp,s

μ,θ(Ω,ω)

×
(∫

Ω
|u|rω((dx)/(C(x)θ/q))

)1/r

(∫
Ω
pC∗(∇u)ω((dx)/(C(x)μ/q))

)a/p (∫
Ω
|u|sω((dx)/(C(x)θ/q))

)1−a/s
.

Then, we will also prove that

Theorem 1.2. Assume (1.6).

1/ If p < r = p((s− 1)/(p− 1)) < (((N + b)p)/(N + b− p)) and, then CKN
(N,μ, p, s, r, b) is achieved by maximizers of the form

V0(x) = γ′(1 + δ′C(x)((N+b−p−μ)/(N+b−p)))−((p−1)/(s−p))

for some γ′ ∈ R, δ′ > 0.
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2/ If 1 < s = p((r − 1)/(p− 1)) < p and r > 2 − ((1)/(p)), CKN(N,μ, p, s, r, b)
is achieved by maximizers of the form

V0(x) = γ′(1 − δ′C(x)((N+b−p−μ)/(N+b−p)))−((p−1)/(r−p))
+ (1.7)

for some γ′ ∈ R, δ′ > 0. (1.8)

In the special case where C(·) = 1/q| · |q, C∗(·) = 1/p| · |p where | · | is the
standard Euclidean norm on R

N , we get the following result as a consequence:

Theorem 1.3. Assume (1.6).

1/ If p < r = p((s− 1)/(p− 1)) < (((N + b)p)/(N + b− p)) and, then CKN
(N,μ, p, s, r, b) is achieved by maximizers of the form

V0(x) = γ′
(
1 + δ′|x|q((N+b−p−μ)/(N+b−p))

)−((p−1)/(s−p))

for some γ′ ∈ R, δ′ > 0.

2/ If 1 < s = p((r − 1)/(p− 1)) < p and r > 2 − 1/p, CKN(N,μ, p, s, r, b) is
achieved by maximizers of the form

V0(x) = γ′
(
1 − δ′|x|q((N+b−p−μ)/(N+b−p))

)−((p−1)/(r−p))

+

for some γ′ ∈ R, δ′ > 0.

Here

CKN(N,μ, p, s, r, b) = sup
u∈Dp,s

μ,θ(Ω,ω)

×
(∫

Ω
|u|rxb

N ((dx)/(|x|θ)))1/r

(∫
Ω
|∇u|pxb

N ((dx)/(|x|μ)a/p (∫
Ω
|u|sxb

N ((dx)/(|x|θ)))1−a/s
.

It is surprising that although the weights in the above theorems are not radial, the
optimizers are. It is also worth mentioning that in [13], Cabré and Ros-Oton pointed
out an interesting fact that the monomial weights are not radially symmetric but
still Euclidean balls centred at the origin solve the monomial weighted isoperimetric
problems.

Our paper is organized as follows: Preliminaries and some helpful lemmata will
be provided in § 2. In § 3, we will establish the Gagliardo–Nirenberg and Caffarelli–
Kohn Nirenberg inequalities and present the proof of Theorem 1.1. The Gagliardo–
Nirenberg and Caffarelli–Kohn Nirenberg inequalities with monomial weight xb

N

and the proof of Theorem 1.2 will be studied in § 4. Finally, inequalities with general
monomial weights will be stated in § 5.
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2. Preliminaries and some useful lemmata

Let C : R
N → R

+ be even, strictly convex function. We suppose that C is q-
homogeneous, that is, there exists q > 1 such that

C(λx) = λqC(x) ∀λ � 0, ∀x ∈ R
N . (2.1)

Then C∗, the Legendre transform of C, defined by

C∗(x) = sup
y
{〈x, y〉 − C(y)},

is even, strictly convex function and is p−homogeneous with p = q/q − 1.
We have that 〈X,Y 〉 � C∗(X) + C(Y ) for all X,Y . Hence 〈X,Y 〉 � λpC∗(X) +

λ−qC(Y ) for all λ > 0, X,Y. Minimizing the right-hand side with respect to λ gives
the Cauchy–Schwarz inequality

X · Y � [qC(Y )]1/q[pC∗(X)]1/p.

By Young’s inequality, we have

X · Y � [qC(Y )]1/q[pC∗(X)]1/p � C∗(x) + C(y).

Hence, we also have

[pC∗(X)]1/p = sup
Y

X · Y
[qC(Y )]1/q

.

In other words,

C∗(X) = sup
Y

|X · Y |p
p[qC(Y )]p/q

We will assume that for all x ∈ R
N , there exists a unique vector x∗ such that

x · x∗ = qC (x) and C∗ (x∗) = (q − 1)C (x) =
q

p
C (x) .

In other words, for all x ∈ R
N , there exists a unique vector x∗ such that the equality

in the Cauchy–Schwarz inequality happens.
Noting that from (2.1), we get that C(·) is differentiable a.e. We will assume that

the gradient of C(·) at x ∈ R
N is the unique vector x∗.

Example 2.1. The functions that we have in mind are C(x) = 1/q|x|q and C∗(x) =
1/p|x|p with | · | is the regular Euclidean norm on R

N . Another example is the pair
C(x) = 1/q‖x‖q and C∗(x) = 1/p‖x‖p

∗, where ‖ · ‖ is an arbitrary norm on R
N and

‖X‖∗ = sup
‖Y ‖�1

X · Y.

The following lemma was observed recently in [24,33]. For the completeness, we
will provide the proof here.
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Lemma 2.1. We have

|x · ∇u(x)| = [qC(x)]1/q[pC∗(∇u)]1/p for a.e. x ∈ R
N ,

if and only if u is C-radial, that is, u(x) = u(y) when C(x) = C(y).

Proof. If u is C-radial, then recalling that ∇(C(·))(x) = x∗, we have

∂u

∂xj
(x) = u′(C(x))x∗j .

Hence,

C∗(∇u) = C∗(u′(C(x))x∗) = |u′(C(x))|pC∗(x∗) = |u′(C(x))|p q
p
C(x)

and

[qC(x)]1/q[pC∗(∇u)]1/p = [qC(x)]1/q[|u′(C(x))|pqC(x)]1/p = |u′(C(x))|qC(x).

Also,

|x · ∇u(x)| =

∣∣∣∣∣∣
N∑

j=1

xj
∂u

∂xj
(x)

∣∣∣∣∣∣ = |u′ (‖x‖)|
∣∣∣∣∣∣

N∑
j=1

xjx
∗
j

∣∣∣∣∣∣ = |u′(‖x‖)| qC(x).

Now, if for all x ∈ R
N :

|x · ∇u(x)| = [qC(x)]1/q[pC∗(∇u)]1/p,

then ∇u(x) has the same direction with x∗. That is we can find a function f(x)
such that ∇u(x) = f(x)x∗. Now let a and b be two points on the C-sphere with
radius r > 0. That is C(a) = C(b) = r. We connect a and b by a piecewise smooth
curve r(t) on the sphere, that is, C(r(t)) = r and C(r(0)) = a, C(r(1)) = b. Then
we have

∇u(r(t)) = f(r(t))(r(t))∗.

Using that fact that C(r(t)) = r for all t, we get

(r(t))∗ · ∇r(t) = 0.

Hence ∫ 1

0

∇u(r(t)) · ∇r(t)dt =
∫ 1

0

f(r(t))(r(t))∗ · ∇r(t)dt = 0.

In other words,

u(b) − u(a) = u(C(r(1))) − u(C(r(0))) = 0.

�
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Let d > 0. We now consider the quasi-conformal mapping type of transform LN,d :
R

N → R
N :

LN,d(x) = C(x)dx.

The Jacobian matrix of this function LN,d is

JLN,d
= C(x)d

IN +A

where

A =

⎛
⎜⎜⎜⎝
dC(x)d−1x1x

∗
1 dC(x)d−1x1x

∗
2 . . . dC(x)d−1x1x

∗
N

dC(x)d−1x2x
∗
1 dC(x)d−1x2x

∗
2 . . . dC(x)d−1x2x

∗
N

...
...

. . .
...

dC(x)d−1xNx
∗
1 dC(x)d−1xNx2 . . . dC(x)d−1xNx

∗
N .

⎞
⎟⎟⎟⎠

It is obvious that rank(A) = 1 and

tr(A) = dC(x)d−1x · x∗ = dqC(x)d

Hence, its characteristic polynomial is

det(λIN −A) = λN − dqC(x)dλN−1.

Choosing λ = −C(x)d, we get

det(JLN,d
) = (−1)N det(−C(x)d

IN −A) = (1 + dq)C(x)Nd.

Hence, we have

det(JLN,d
) = (1 + dq)C(x)Nd. (2.2)

We now define mappings DN,d,p with p > 1 by

DN,d,pu(x) :=
(

1
1 + dq

)((p−1)/(p))

u(LN,d(x)) =
(

1
1 + dq

)((p−1)/(p))

u(C(x)dx).

(2.3)
We also define D−1

N,d,p

D−1
N,d,pu = v if u = DN,d,pv.

Then, in [33], the following result has been established:

Lemma 2.2. (1) For continuous function f , we have

∫
RN

f((((1)/(1 + dq)))((p−1)/(p))u(x))
C(x)t

dx = (1 + dq)
∫

RN

f(DN,d,pu(x))
C(x)t(dq+1)−Nd

dx.

In particular, we obtain that u ∈ Ls(((dx)/(C(x)t))) if and only if DN,d,pu ∈
Ls(((dx)/(C(x)t(dq+1)−Nd))).
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(2) For smooth functions u :

∫
RN

C∗(∇DN,d,pu(x))
C(x)(qd+1)μ+pd−Nd

dx �
∫

RN

C∗(∇u(y))
C(y)μ

dy.

The equality occurs if and only if u is C-radially symmetric.

We now will set up the similar results on half-spaces R
N−1 × R+ with weight

xb
N , b � 0 :

Lemma 2.3. Let b � 0.

(1) For continuous function f , we have

∫
RN−1×R+

f((((1)/(1 + dq)))p−1/pu(x))
C(x)t

xb
Ndx

= (1 + dq)
∫

RN−1×R+

f(DN,d,pu(x))
C(x)t(dq+1)−(N+b)d

xb
Ndx.

In particular, we obtain that u ∈ Ls(((xb
Ndx)/(C(x)t))) if and only if

DN,d,pu ∈ Ls(((xb
Ndx)/(C(x)t(dq+1)−(N+b)d))).

(2) For smooth functions u :

∫
RN−1×R+

C∗(∇DN,d,pu(x))
C(x)(qd+1)μ+pd−(N+b)d

xb
Ndx �

∫
RN−1×R+

C∗(∇u(y))
C(y)μ

yb
Ndy.

The equality occurs if and only if u is C-radially symmetric.

Proof. (1) We will first show

∫
RN−1×R+

f(DN,d,pu(x))
C(x)t(dq+1)−(N+b)d

xb
Ndx

=
1

1 + dq

∫
RN−1×R+

f((1/1 + dq)p−1/pu(y))
C(y)t

yb
Ndy.

Using change of variables yi = C(x)dxi, i = 1, 2, . . . , N , we have

dy = det(JLN,d
)dx = (1 + dq)C(x)Nddx,

and

dx =
1

(1 + dq)
dy

C(y)((Nd)/(dq+1))
.
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Hence

∫
RN−1×R+

f(DN,d,pu(x))
C(x)t(dq+1)−(N+b)d

xb
Ndx

=
∫

RN−1×R+

f((((1)/(1 + dq)))((p−1)/(p))u(C(x)dx))
C(x)t(dq+1)−Nd

C(x)bdxb
Ndx

=
1

1 + dq

∫
RN−1×R+

f(((1)/(1 + dq))((p−1)/(p))u(y))
C(y)((t(dq+1)−Nd)/(dq+1))

yb
N

dy
C(y)((Nd)/(dq+1))

=
1

1 + dq

∫
RN−1×R+

f(((1)/(1 + dq))((p−1)/(p))u(y))
C(y)t

yb
Ndy.

(2) Now we begin to consider the gradient of DN,d,pu. After calculations, we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂DN,d,pu

∂x1
(x)

∂DN,d,pu

∂x2
(x)

...
∂DN,d,pu

∂xN
(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ∇DN,d,pu(x) =
(

1
1 + dq

)p−1/p

∇(u(C(x)dx))

=
(

1
1 + dq

)p−1/p

JT
LN,d

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u

∂x1
(C(x)dx)

∂u

∂x2
(C(x)dx)

...
∂u

∂xN
(C(x)dx)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence we have

∂u(C(x)dx)
∂xi

=
(
C (x)d ∂u

∂xi
(C(x)dx) +Ai

)
,

for i = 1, 2, . . . N , where

Ai :=
N∑

j=1

dC(x)d−1x∗i xj
∂u

∂xj
(C(x)dx).

C∗(X) = sup
|X · Y |p

p[qC(Y )]p/q
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Hence, we obtain

C∗(∇DN,d,pu(x))

= C∗
((

1
1 + dq

)p−1/p

∇(u(C(x)dx))

)
=

(
1

1 + dq

)p−1

C∗ (∇(u(C(x)dx))
)

=
(

1
1 + dq

)p−1

sup
y

{(∇(u(C(x)dx)) · y)p

p[qC(y)]p/q

}

=
(

1
1 + dq

)p−1

sup
y

⎧⎨
⎩

[∑N
i=1

[
C(x)d((∂u)/(∂xi))(C(x)dx)yi +Aiyi

]]p

p[qC(y)]p/q

⎫⎬
⎭ .

The first term is easy to compute:

I1 =
N∑

i=1

C(x)d ∂u

∂xi
(C(x)dx)yi

= C(x)d∇u(C(x)dx) · y
� C(x)d[qC(y)]1/q[pC∗(∇u(C(x)dx))]1/p

Applying the Cauchy–Schwarz inequality

X · Y � [qC(Y )]1/q[pC∗(X)]1/p,

we can estimate the second term:

I2 =
N∑

i=1

Aiyi

=
N∑

i=1

N∑
j=1

dC(x)d−1x∗i xj
∂u

∂xj
(C(x)dx)yi

= dC(x)d−1
N∑

i=1

x∗i yi

N∑
j=1

xj
∂u

∂xj
(C(x)dx)

� dC(x)d−1 |x∗ · y| ∣∣x · ∇u(C(x)dx)
∣∣

� dC(x)d−1[qC(y)]1/q[pC∗(x∗)]1/p[qC(x)]1/q[pC∗(∇u(C(x)dx))]1/p

� dC(x)d−1[qC(y)]1/q[qC(x)]1/p[qC(x)]1/q[pC∗(∇u(C(x)dx))]1/p

� qdC(x)d[qC(y)]1/q[pC∗(∇u(C(x)dx))]1/p
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Therefore,

sup
y

⎧⎨
⎩

[∑N
i=1

[
C(x)d((∂u)/(∂xi))(C(x)dx)yi +Aiyi

]]p

p [qC(y)]p/q

⎫⎬
⎭

� sup
y

{
[(1 + qd)]pC(x)pd[qC(y)]p/qpC∗(∇u(C(x)dx))

p[qC(y)]p/q

}

= [(1 + qd)]pC(x)pdC∗(∇u(C(x)dx)).

In conclusion, we get

C∗(∇DN,d,pu(x)) � (1 + qd)C(x)pdC∗(∇u(C(x)dx)).

Using the change of variables again, we get∫
RN

C∗(∇u(y))
C(y)μ

yb
Ndy =

∫
RN−1×R+

C∗(∇u(C(x)dx))
C(C(x)dx)μ

(1 + dq)C(x)(N+b)dxb
Ndx

�
∫

RN−1×R+

C∗(∇DN,d,pu(x))
C(x)(qd+1)μC(x)pd

C(x)(N+b)dxb
Ndx

=
∫

RN−1×R+

C∗(∇DN,d,pu(x))
C(x)(qd+1)μ+pd−(N+b)d

xb
Ndx.

Finally, it is easy to check that the equalities hold if and only if the equal-
ity in the Cauchy–Schwarz inequality occurs. It means that u is C-radially
symmetric. �

Now, let μ and ν be two Borel probability measures on R
N such that μ is abso-

lutely continuous with respect to Lebesgue measure. Then by the results of Brenier
[10] and McCann [39], there exists a convex function ϕ such that∫

b(y)dν(y) =
∫
b(∇ϕ(x))dμ(x)

for every bounded or positive, Borel function b. Moreover, ∇ϕ is uniquely deter-
mined dμ almost everywhere. If μ and ν are absolutely continuous with densities
F and G, then ∫

b(y)G(y)dy =
∫
b(∇ϕ(x))F (x)dx

for every bounded or positive, Borel function b. If ϕ is of class C2, then ϕ solves
the Monge–Ampère equation

F (x) = G(∇ϕ(x)) det(D2ϕ(x)). (2.4)

Actually, by a result of McCann in [40], without further assumptions on F and G
beyond integrability, (2.4) holds F (x)dx a.e. Then, we have the following lemma
in [42]:
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Lemma 2.4. Let b � 0, 1 �= γ � 1 − 1/N + b and ω(x) = xb
N ∀x ∈ Ω. Let F and G

be two nonnegative functions on Ω = R
N−1 × (0,∞) with

∫
Ω
Fωdx =

∫
Ω
Gωdx = 1,

and such that F γ is C1 on Ω and F, G are compactly supported on Ω. Then if ∇ϕ
is the Brenier map pushing Fωdx toward to Gωdx, then we have

1
1 − γ

∫
Ω

Gγωdx � 1 − (N + b)(1 − γ)
1 − γ

∫
Ω

F γωdx−
∫

Ω

∇F γ · ∇ϕωdx.

3. Gagliardo–Nirenberg inequalities and CKN inequalities

Now, for α � 0, we define

Uα,p(x) = (σα,p + (α− 1)qC(x))((1)/(1−α))
+

where σα,p is chosen such that ‖Uα,p‖αp = 1. We will first prove that

Theorem 3.1. Let N � 2, p > 1 and 0 < α �= 1 be such that α(N − p) � N . Let f
and g be such that ‖g‖αp = 1 and ‖f‖αp = 1. Then, for all μ > 0,

αp

(α− 1)[αp− (α− 1)]

∫
|g|α(p−1)+1 − μq

q

∫
qC(y)|g(y)|αpdy

� 1
pμp

∫
pC∗(∇f) +

αp−N(α− 1)
(α− 1)[αp− (α− 1)]

∫
|f |α(p−1)+1.

When μ = q1/q, then the equality happens if f = g = Uα,p. As a consequence, we
have that for α > 1 :

[∫
C∗(∇f)

]a/p [∫ |f |α(p−1)+1
] 1−a

α(p−1)+1

‖f‖αp

�
[∫
C∗(∇Uα,p)

]a/p [∫ |Uα,p|α(p−1)+1
] 1−a

α(p−1)+1

‖Uα,p‖αp
,

with

a =
N(α− 1)

α[Np− (αp+ 1 − α)(N − p)]
.

Also, for α < 1 :

[∫
C∗(∇f)

]a/p ‖f‖1−a
αp[∫ |f |α(p−1)+1

]((1)/(α(p−1)+1))
�

[∫
C∗(∇Uα,p)

]a/p ‖Uα,p‖1−a
αp[∫ |Uα,p|α(p−1)+1

]((1/α(p−1)+1))
,

with

a =
N(1 − α)

(αp+ 1 − α)[N − α(N − p)]
.
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Proof. Applying Theorem B with

ρ = |g|αp, F (x) =
αp

1 − α
x((α(p−1)+1)/(αp)), ψ(x) =

(
1

αp− (α− 1)

)αp

|x|αp,

c(·) = [αp− (α− 1)]μqC(·), c∗(·) =
1

[αp− (α− 1)]p/qμp
C∗(·),

we get

−
∫

Ω

[F (ρ) + cρ]dx �
∫

Ω

[c∗(−∇f) −GF ◦ ψ(f)]dx.

We will now check that x �−→ xNF (x−N ) is convex and nonincreasing. Indeed,

l(x) = xNF (x−N ) = xN αp

1 − α
x−N((α(p−1)+1)/(αp))

=
αp

1 − α
xNα−1/αp,

so

l′(x) =
αp

1 − α
N
α− 1
αp

xN((α−1)/(αp))−1 = −NxN((α−1)/(αp))−1 < 0 for x ∈ (0,∞),

l′′(x) = −N
(
N
α− 1
αp

− 1
)
xN((α−1)/(αp))−2

= N

(
αp+N −Nα

αp

)
xN((α−1)/(αp))−2 > 0

for x ∈ (0,∞) if α(N − p) � N.

Hence

αp

α− 1

∫
Ω

|g|α(p−1)+1 − [αp− (α− 1)]μq

∫
Ω

C(y)|g(y)|αpdy

� [αp− (α− 1)]
μp[αp− (α− 1)]p

∫
Ω

C∗(−∇([αp− (α− 1)]f))

− αp−N(α− 1)
(1 − α)[αp− (α− 1)]αp−(α−1)

∫
|[αp− (α− 1)]f |α(p−1)+1.

Equivalently,

αp

(α− 1)[αp− (α− 1)]

∫
|g|α(p−1)+1 − μq

q

∫
qC(y)|g(y)|αpdy

� 1
pμp

∫
pC∗(∇f) +

αp−N(α− 1)
(α− 1)[αp− (α− 1)]

∫
|f |α(p−1)+1.
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Moreover, it can be checked, using theorem B or by direct calculation, that when
μ = q1/q, then

sup
‖g‖αp=1

{
αp

(α− 1)[αp− (α− 1)]

∫
|g|α(p−1)+1 −

∫
qC(y)|g(y)|αpdy

}

= inf
‖f‖αp=1

{
1

pqp/q

∫
pC∗(∇f) +

αp−N(α− 1)
(α− 1)[αp− (α− 1)]

∫
|f |α(p−1)+1

}

and Uα,p is the optimizer in both variational problems.
For α > 1, we have that for all f : ‖f‖αp = 1 :

1
pqp/q

∫
pC∗(∇f) +

αp−N(α− 1)
(α− 1)[αp− (α− 1)]

∫
|f |α(p−1)+1

� αp

(α− 1)[αp− (α− 1)]

∫
|Uα,p|α(p−1)+1 −

∫
qC(y)|Uα,p(y)|αpdy := M.

The equality happens when f = Uα,p. This means that for all f :

1
pqp/q

∫
pC∗

(
∇ f

‖f‖αp

)
+

αp−N(α− 1)
(α− 1)[αp− (α− 1)]

∫ ∣∣∣∣ f

‖f‖αp

∣∣∣∣
α(p−1)+1

� M

that is,

1
pqp/q

∫
pC∗(∇f)
‖f‖p

αp
+

αp−N(α− 1)
(α− 1)[αp− (α− 1)]

∫ |f |α(p−1)+1

‖f‖α(p−1)+1
αp

� M

and so for λ > 0 :

λpλN/α 1
pqp/q

∫
pC∗(∇f)
‖f‖p

αp
+

αp−N(α− 1)
(α− 1)[αp− (α− 1)]

λ((N [α(p−1)+1])/(αp))

λN∫ |f |α(p−1)+1

‖f‖α(p−1)+1
αp

� M.

Now, if we optimize with respect to λ > 0, we get that for the optimal choice of
λ = λopt :[∫

C∗(∇f)
]a/p [∫ |f |α(p−1)+1

]((1−a)/(α(p−1)+1))

‖f‖αp

�
[∫
C∗(∇Uα,p,λopt

)
]a/p [∫ |Uα,p,λopt

|α(p−1)+1
]((1−a)/(α(p−1)+1))

‖Uα,p,λopt
‖αp

=

[∫
C∗(∇Uα,p)

]a/p [∫ |Uα,p|α(p−1)+1
]((1−a)/(α(p−1)+1))

‖Uα,p‖αp
,

where Uα,p,λopt
= Uα,p(λoptx). Here we get by direct calculation from the scaling

invariance argument that

a =
N(α− 1)

α[Np− (αp+ 1 − α)(N − p)]
.
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Similarly, when α < 1, we obtain

[∫
C∗(∇f)

]a/p ‖f‖1−a
αp[∫ |f |α(p−1)+1

]((1)/(α(p−1)+1))
�

[∫
C∗(∇Uα,p)

]a/p ‖Uα,p‖1−a
αp[∫ |Uα,p|α(p−1)+1

]((1)/(α(p−1)+1))
,

with

a =
N(1 − α)

(αp+ 1 − α)[N − α(N − p)]
.

�

Remark 3.1. Using the ideas in [19,20], when α→ 1, we can obtain the general
optimal Lp-Euclidean logarithmic Sobolev inequality that was studied in [27].

We will now provide the proof for Theorem 1.1:

Proof of Theorem 1.1. Set

GN(N, p, s, r) = sup
u∈Dp,s

0,0 (RN )

(∫
RN |u|rdx)1/r

(∫
RN pC∗(∇u)dx)a/p (∫

RN |u|sdx)1−a/s
.

1/ When r = p((s− 1)/(p− 1)) and θ = ((Nμ)/(N − p)), we have from theorem 3.1
that GN(N, p, s, r) is achieved by maximizers of the form

U0(x) = γ(1 + δC(x))−((p−1))/(s−p)) for some γ ∈ R, δ > 0.

Now, set V0 = D−1
N,d,pU0 with d = 1/q((μ)/(N − p− μ)). Then we will show that V0

is a maximizer of CKN(N,μ, p, s, r). Indeed, by lemma 2.2, we get∫
RN

C∗(∇u(y))
C(y)μ/q

dy �
∫

RN

C∗(∇DN,d,pu(x))dx

(
1

1 + dq

)s((p−1)/(p)) ∫
RN

|u|s dx
C(x)θ/q

= (1 + dq)
∫

RN

|DN,d,pu(x)|sdx

(
1

1 + dq

)r((p−1)/(p)) ∫
RN

|u|r dx
C(x)θ/q

= (1 + dq)
∫

RN

|DN,d,pu(x)|rdx

∫
RN

C∗(∇V0(y))
C(y)μ/q

dy =
∫

RN

C∗(∇U0(x))dx

(
1

1 + dq

)s((p−1)/(p)) ∫
RN

|V0|s dx
C(x)θ/q

= (1 + dq)
∫

RN

|U0(x)|sdx

(
1

1 + dq

)r((p−1)/(p)) ∫
RN

|V0|r dx
C(x)θ/q

= (1 + dq)
∫

RN

|U0(x)|rdx.
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Hence,

(∫
RN |u|r((dx)/(C(x)θ/q))

)1/r

(∫
RN pC∗(∇u)((dx)/(C(x)μ/q))

)a/p (∫
RN |u|s((dx)/(C(x)θ/q))

)((1−a)/(s))

�
(

(1 + dq)(1+rp−1/p)1/r

(1 + dq)(1+s((p−1)/(p)))((1−a)/(s))

)

×
(∫

RN |DN,d,pu|rdx
)1/r

(∫
RN pC∗(∇DN,d,pu)dx

)a/p (∫
RN |DN,d,pu|sdx

)((1−a)/(s))

�
(

(1 + dq)(1+r((p−1)/(p)))1/r

(1 + dq)(1+s((p−1)/(p)))((1−a)/(s))

)

×
(∫

RN |U0|rdx
)1/r

(∫
RN pC∗(∇U0)dx

)a/p (∫
RN |U0|sdx

)((1−a)/(s))

=

(∫
RN |V0|r((dx)/(C(x)θ/q))

)1/r

(∫
RN pC∗(∇V0)((dx)/(C(x)μ/q))

)a/p (∫
RN |V0|s((dx)/(C(x)θ/q))

)((1−a)/(s))
.

Hence, we could conclude that CKN(N,μ, p, s, r) can be attained by optimizers of
the form

V0 = D−1
N,d,pU0 = γ′(1 + δ′C(x)((1)/(qd+1)))−((p−1)/(s−p)) for some γ′ ∈ R, δ′ > 0

Simiarly, when θ = ((Nμ)/(N − p)), if s = p((r − 1)/(p− 1)) and r > 2 − 1/p,
CKN(N,μ, p, q, r) is achieved by maximizers of the form

V0(x) = γ′(1 − δ′C(x)((1)/(qd+1)))−((p−1)/(r−p))
+ for some γ′ ∈ R, δ′ > 0.

�

4. Sobolev inequality, Gagliardo–Nirenberg inequalities and CKN
inequalities with weight ω(x) = xb

N on R
N−1 × R+

Let Ω = R
N−1 × (0,∞), b � 0 with 1 < p < N + b. We introduce the function

Vp,b(x) = (σp,b + qC(x))−((N+b−p)/(p))
+ ,

where σp,b is chosen such that

∫
Ω

Vp,b(x)p∗
bω(x)dx = 1, p∗b =

(N + b)p
N + b− p

.

We will prove the following weighted Sobolev inequality:
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Theorem 4.1. Let b � 0 with 1 < p < N + b. Let f and g be such that∫
Ω
|f |p∗

bωdx =
∫
Ω
|g|p∗

bωdx = 1, then∫
Ω
|g|p∗

b (1−((1)/(N+b)))ω(x)dx[∫
Ω
qC(y)|g(y)|p∗

bω(y)dy
]1/q

� p(N + b− 1)
(N + b)(N + b− p)

[∫
Ω

pC∗(∇f)ωdx
]1/p

. (4.1)

The equality occurs when f = g = Vp,b.
As consequences, we obtain

1/

sup∫
Ω |g|p∗

b ωdx=1

∫
Ω
|g|p∗

b (1−((1)/(N+b)))ω(x)dx[∫
Ω
qC(y)|g(y)|p∗

bω(y)dy
]1/q

= inf∫
Ω |f |p∗

b ωdx=1

p(N + b− 1)
(N + b)(N + b− p)

[∫
Ω

pC∗(∇f)ωdx
]1/p

.

2/ [∫
Ω
pC∗(∇f)ωdx

]1/p

[∫
Ω
|f |p∗

bωdx
]1/p∗

b

�
[∫

Ω
pC∗(∇Vp,b)ωdx

]1/p

[∫
Ω
|Vp,b|p∗

bωdx
]((1)/(p∗

b ))
=

1
S(N, b, p)

.

Proof. By standard arguments, we can assume that f , g are nonnegative, compactly
supported on Ω and f is in C1(Ω). Using lemma 2.4 with F = |f |p∗

b , G = |g|p∗
b and

γ = 1 − 1/N + b, we get

1
1 − γ

∫
Ω

Gγωdx � 1 − (N + b)(1 − γ)
1 − γ

∫
Ω

F γωdx−
∫

Ω

∇F γ · ∇ϕωdx.

That is,

(N + b)
∫

Ω

|g|p∗
b (1−((1)/(N+b)))ωdx � −p(N + b− 1)

N + b− p

∫
Ω

|f |((p∗
b )/(q))∇f · ∇ϕωdx.

By the Cauchy–Schwarz inequality, we get∫
Ω

|g|p∗
b (1−((1)/(N+b)))ωdx

� p(N + b− 1)
(N + b)(N + b− p)

[∫
Ω

qC(|f |((p∗
b )/(q))∇ϕ)ωdx

]1/q [∫
Ω

pC∗(∇f)ωdx
]1/p

=
p(N + b− 1)

(N + b)(N + b− p)

[∫
Ω

q|f |p∗
bC(∇ϕ)ωdx

]1/q [∫
Ω

pC∗(∇f)ωdx
]1/p

.

Hence, by the definition of mass transportation:∫
Ω

|g|p∗
b (1−((1/(N+b)))ωdx

� p(N + b− 1)
(N + b)(N + b− p)

[∫
Ω

qC(y)|g(y)|p∗
bω(y)dy

]1/q [∫
Ω

pC∗(∇f)ωdx
]1/p

.
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When f = g = Vp,b, ∇ϕ(x) = x. Also, in this case, by lemma 2.1, the equality in
the Cauchy–Schwarz inequality happens. Hence the equality in (4.1) occurs. Hence,
we also obtain the duality principle:

sup∫
Ω |g|p∗

b ωdx=1

∫
Ω
|g|p∗

b (1−((1)/(N+b)))ω(x)dx[∫
Ω
qC(y)|g(y)|p∗

bω(y)dy
]1/q

= inf∫
Ω |f |p∗

b ωdx=1

p(N + b− 1)
(N + b)(N + b− p)

[∫
Ω

pC∗(∇f)ωdx
]1/p

.

Next, if we proceed as in the proof of Theorem 3.1, we have the general weighted
Sobolev inequality:

[∫
Ω
pC∗(∇f)ωdx

]1/p

[∫
Ω
|f |p∗

bωdx
]((1)/(p∗

b ))
�

[∫
Ω
pC∗(∇Vp,b)ωdx

]1/p

[∫
Ω
|Vp,b|p∗

bωdx
]((1)/(p∗

b ))
.

�

Remark 4.1. Theorem 4.1 has been set up in [13] under the regular Euclidean
norm and was extended to the arbitrary norm in [42].

Now, let b � 0, p > 1, 0 < α �= 1, α(N + b− p) � N + b, and ω(x) = xb
N ∀x ∈ Ω.

Again, we introduce the function

Uα,p,b(x) = (σα,p,b + (α− 1)qC(x))1/1−α
+ ,

where σα,p,b is chosen such that

∫
Ω

Uα,p,b(x)αpω(x)dx = 1.

Then we will next show that

Theorem 4.2. Let b � 0, p > 1 and 0 < α �= 1 be such that α(N + b− p) � N + b.
Let f and g be such that

∫
Ω
|f |αpω(x)dx =

∫
Ω
|g|αpω(x)dx = 1. Then, for all μ > 0,

αp

(α− 1)[αp− (α− 1)]

∫
|g|α(p−1)+1ω − μq

q

∫
qC(y)|g(y)|αpωdy

� 1
pμp

∫
pC∗(∇f)ω +

αp− (N + b)(α− 1)
(α− 1)[αp− (α− 1)]

∫
|f |α(p−1)+1ω.

When μ = q1/q, then the equality happens if f = g = Uα,p,b. As a consequence
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1/ If α > 1, then

(∫
Ω
pC∗(∇f)ω(x)dx

)a/p [∫
Ω
|f |α(p−1)+1ω(x)dx

]((1−a)/(α(p−1)+1))

[∫
Ω
|f |αpω(x)dx

]1/αp

�
(∫

Ω
pC∗(∇Uα,p,b)ω(x)dx

)a/p [∫
Ω
|Uα,p,b|α(p−1)+1ω(x)dx

]((1−a)/(α(p−1)+1))

[∫
Ω
|Uα,p,b|αpω(x)dx

]1/αp

with

a =
(N + b)(α− 1)

α [(N + b)p− (αp+ 1 − α)(N + b− p)]
.

2/ For α < 1 :

(∫
Ω
pC∗(∇f)ω(x)dx

)a/p [∫
Ω
|f |αpω(x)dx

]1−a/αp

[∫
Ω
|f |α(p−1)+1ω(x)dx

]((1)/(α(p−1)+1))

�
(∫

Ω
pC∗(∇Uα,p,b)ω(x)dx

)a/p [∫
Ω
|Uα,p,b|αpω(x)dx

]((1−a)/(αp))

[∫
Ω
|Uα,p,b|α(p−1)+1ω(x)dx

]((1)/(α(p−1)+1))
,

with

a =
(N + b)(1 − α)

(αp+ 1 − α)[N + b− α(N + b− p)]
.

Proof. We can assume that f , g are nonnegative, compactly supported func-
tions on Ω, and f is C1(Ω). Let ∇ϕ be the Brenier map pushing |f |αpω(x)dx
forward to |g|αpω(x)dx. Using lemma 2.4 with F = |f |αp, G = |g|αp and γ =
((α(p− 1) + 1)/(αp)), we get

1
1 − ((α(p− 1) + 1)/(αp))

∫
Ω

|g|α(p−1)+1ωdx (4.2)

� 1 − (N + b) (1 − ((α(p− 1) + 1)/(αp)))
1 − ((α(p− 1) + 1)/(αp))

∫
Ω

|f |α(p−1)+1ωdx

−
∫

Ω

∇
(
|f |α(p−1)+1

)
· ∇ϕωdx.

Then, we get 1 �= γ � 1 − 1/N + b. Indeed

γ =
α(p− 1) + 1

αp
� 1 − 1

N + b

is equivalent to

α(N + b− p) � N + b.
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By the Cauchy–Schwarz inequality, we obtain

αp

α− 1

∫
Ω

|g|α(p−1)+1ωdx

� αp− (N + b)(α− 1)
α− 1

∫
Ω

|f |α(p−1)+1ωdx− (α(p− 1) + 1)

×
∫

Ω

|f |α(p−1)∇f · ∇ϕωdx

� αp− (N + b)(α− 1)
α− 1

∫
Ω

|f |α(p−1)+1ωdx (4.3)

+ (α(p− 1) + 1)
[

1
pμp

∫
Ω

pC∗(∇f)ω(x)dx+
μq

q

∫
Ω

qC(∇ϕ)|f |αpωdx
]

=
αp− (N + b)(α− 1)

α− 1

∫
Ω

|f |α(p−1)+1ωdx

+ (α(p− 1) + 1)
[

1
pμp

∫
Ω

pC∗(∇f)ω(x)dx+
μq

q

∫
Ω

qC(y)|g|αpωdx
]
.

Hence

αp

(α− 1)[αp− (α− 1)]

∫
|g|α(p−1)+1ω − μq

q

∫
qC(y)|g(y)|αpωdy

� 1
pμp

∫
pC∗(∇f)ω +

αp− (N + b)(α− 1)
(α− 1)[αp− (α− 1)]

∫
|f |α(p−1)+1ω.

When f = g = Uα,p,b, then ∇ϕ(x) = x. Then we can check that the equality of (4.2)
happens. Also, when f = g = Uα,p,b and μ = q1/q, since f = Uα,p,b is C-radial, by
lemma 2.1, we also have that the equality of (4.3) happens. Hence, in this case, we
get the following dual principle:

sup∫
Ω |g|αpω(x)dx=1

[
αp

(α− 1)[αp− (α− 1)]

∫
|g|α(p−1)+1ω −

∫
qC(y)|g(y)|αpωdy

]

= inf∫
Ω |f |αpω(x)dx=1

[
1

pqp/q

∫
pC∗(∇f)ω +

αp− (N + b)(α− 1)
(α− 1)[αp− (α− 1)]

∫
|f |α(p−1)+1ω

]
.

By the same method as in the proof of Theorem 3.1, from this dual principle, we
also obtain Statements 1/ and 2/. �

Remark 4.2. Again using the ideas in [19,20] and the techniques in [8,42], in
the limiting case α→ 1, we can obtain the following general optimal weighted Lp-
Euclidean logarithmic Sobolev inequality: Let p > 1, then for any f ∈W 1,p(Ω, ω)
such that

∫
Ω
|f |pωdx = 1, then

∫
Ω

|f |p ln(|f |p)ωdx � N + b

p
ln

[
LN,b

∫
Ω

pC∗(∇f)ωdx
]
,
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where the sharp constant LN,b can be computed from

∫
Ω

|f |p ln(|f |p)ωdx =
N + b

p
ln

[
LN,b

∫
Ω

pC∗(∇f)ωdx
]
,

with

f(x) = τe−qC(x), |τ |−p =
∫

Ω

e−pqC(x)ωdx.

Now, we are ready to prove Theorem 1.2:

Proof of Theorem 1.2. Define

GN(N, p, s, r, b) = sup
u∈Dp,s

0,0 (Ω,ω)

(∫
Ω
|u|rωdx

)1/r

(∫
Ω
pC∗(∇u)ωdx

)a/p (∫
Ω
|u|sωdx

)1−a/s
.

1/When r = p((s− 1)/(p− 1)) and θ = ((Nμ)/(N − p)), we have from Theorem 3.1
that GN(N, p, s, r, b) is achieved by maximizers of the form

U0(x) = γ(1 + δC(x))−((p−1)/(s−p)) for some γ ∈ R, δ > 0.

Now, set V0 = D−1
N,d,pU0 with d = 1/q((μ)/(N + b− p− μ)). Then we will show that

V0 is a maximizer of CKN(N,μ, p, s, r, b). Indeed, by lemma 2.3, we get

∫
Ω

C∗(∇u(y))
C(y)μ/q

ω(y)dy �
∫

Ω

C∗(∇DN,d,pu(x))ω(x)dx

(
1

1 + dq

)s((p−1)/(p)) ∫
Ω

|u|s ω(x)dx
C(x)θ/q

= (1 + dq)
∫

Ω

|DN,d,pu(x)|sω(x)dx

(
1

1 + dq

)r((p−1)/(p)) ∫
Ω

|u|r ω(x)dx
C(x)θ/q

= (1 + dq)
∫

Ω

|DN,d,pu(x)|rω(x)dx

∫
Ω

C∗(∇V0(y))
C(y)μ/q

ω(y)dy =
∫

Ω

C∗(∇U0(x))ω(x)dx

(
1

1 + dq

)s((p−1)/(p)) ∫
Ω

|V0|s ω(x)dx
C(x)θ/q

= (1 + dq)
∫

Ω

|U0(x)|sω(x)dx

(
1

1 + dq

)r((p−1)/(p)) ∫
Ω

|V0|r ω(x)dx
C(x)θ/q

= (1 + dq)
∫

Ω

|U0(x)|rω(x)dx.
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Hence,

(∫
Ω
|u|r((ω(x)dx)/(C(x)θ/q))

)1/r

(∫
Ω
pC∗(∇u)((ω(x)dx)/(C(x)μ/q))

)a/p (∫
Ω
|u|s((ω(x)dx)/(C(x)θ/q))

)1−a/s

�
(

(1 + dq)(1+r((p−1)/(p)))1/r

(1 + dq)(1+s((p−1)/(p)))((1−a)/(s))

)

×
(∫

Ω
|DN,d,pu|rω(x)dx

)1/r

(∫
Ω
pC∗(∇DN,d,pu)ω(x)dx

)a/p (∫
Ω
|DN,d,pu|sω(x)dx

)1−a/s

�
(

(1 + dq)(1+r((p−1)/(p)))1/r

(1 + dq)(1+s((p−1)/(p)))((1−a)/(s))

)

×
(∫

Ω
|U0|rω(x)dx

)1/r

(∫
Ω
pC∗(∇U0)ω(x)dx

)a/p (∫
Ω
|U0|sω(x)dx

)1−a/s

=

(∫
Ω
|V0|r((ω(x)dx)/(C(x)θ/q))

)1/r

(∫
Ω
pC∗(∇V0)((ω(x)dx)/(C(x)μ/q))

)a/p (∫
Ω
|V0|s((ω(x)dx)/(C(x)θ/q))

)1−a/s
.

Hence, we could conclude that CKN(N,μ, p, s, r, b) can be attained by optimizers
of the form

V0 = D−1
N,d,pU0 = γ′

(
1 + δ′C(x)1/qd+1

)−((p−1)/(s−p))

for some γ′ ∈ R, δ′ > 0

Simiarly, when θ = (N + b)μ/N + b− p, if s = p((r − 1)/(p− 1)) and r > 2 − 1/p,
CKN(N,μ, p, q, r, b) is achieved by maximizers of the form

V0(x) = γ′(1 − δ′C(x)1/qd+1)−((p−1)/(r−p))
+ for some γ′ ∈ R, δ′ > 0.

�

5. CKN inequalities with weight ω(x) = xA1
1 · · · xAN

N

Let ω(x) = xA1
1 · · ·xAN

N with A1 � 0,. . . , AN � 0. Set

A = A1 + · · · +AN

R
N
∗ =

{
(x1, . . . , xN ) ∈ R

N : xi > 0 whenever Ai > 0
}
.

Let

1 < p � p+ μ < N +A, θ =
(N +A)μ
N +A− p

< N +A, (5.1)

a =
p(N +A)[r − s]

r[p(N +A) − s(N +A− p)]
,
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and set

CKN(N, μ, p, s, r, ω) =

sup
u∈Dp,s

μ,θ(RN∗ ,ω)

(∫
RN∗

|u|rω((dx)/(C(x)θ/q))
)1/r

(∫
RN∗

pC∗(∇u)ω((dx)/(C(x)μ/q))
)a/p (∫

RN∗
|u|sω((dx)/(C(x)θ/q))

)1−a/s
.

Then we can set up the following result

Theorem 5.1. Assume (5.1). 1/ If p < r = p((s− 1)/(p− 1)) < (((N +A)p)/
(N +A− p)) and, then CKN(N,μ, p, s, r, ω) is achieved by maximizers of the form

V0(x)= γ′(1 + δ′C(x)((N+A−p−μ)/(N+A−p)))−((p−1)/(s−p)) for some γ′ ∈R, δ′> 0.

2/ If 1 < s = p((r − 1)/(p− 1)) < p and r > 2 − ((1)/(p)), CKN(N,μ, p, s, r, ω) is
achieved by maximizers of the form

V0(x) = γ′(1 − δ′C(x)((N+A−p−μ)/(N+A−p)))−((p−1)/(r−p))
+ for some γ′ ∈ R, δ′ > 0.

We will need the following lemmata:

Lemma 5.1. Let 1 �= γ � 1 − 1/N +A. Let F and G be two nonnegative functions
on R

N
∗ with

∫
RN∗

Fωdx =
∫

RN∗
Gωdx = 1, and such that F γ is C1 on R

N
∗ and F,

G are compactly supported on RN∗ . Then if ∇ϕ is the Brenier map pushing Fωdx
toward to Gωdx, then we have

1
1 − γ

∫
RN∗

Gγωdx � 1 − (N +A)(1 − γ)
1 − γ

∫
RN∗

F γωdx−
∫

RN∗

∇F γ · ∇ϕωdx.

Lemma 5.2. (1) For continuous function f , we have∫
RN∗

f((((1)/(1 + dq)))((p−1)/(p))u(x))
C(x)t

ωdx

= (1 + dq)
∫

RN∗

f(DN,d,pu(x))
C(x)t(dq+1)−(N+A)d

ωdx.

In particular, we obtain that u ∈ Ls(((ωdx)/(C(x)t))) if and only if DN,d,pu ∈
Ls(((ωdx)/(C(x)t(dq+1)−(N+A)d))).

(2) For smooth functions u :∫
RN∗

C∗(∇DN,d,pu(x))
C(x)(qd+1)μ+pd−(N+A)d

ωdx �
∫

RN∗

C∗(∇u(y))
C(y)μ

ωdy.

The equality occurs if and only if u is C-radially symmetric.

The proof of Lemma 5.1 could be found in [42] while using the same approach as
in the proof of Lemma 2.3, we can derive lemma 5.2. Now the proof of Theorem 5.1
is similar to that of theorem 1.2 and will be omitted.
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