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Assume that, when , the inequality a ≤ b ≤ c

ha + hb + hc ≤ 9r + ar ( a
c

−
c
a)2

holds.
Let  and , where  (to satisfy the triangle

inequality). Then, using  and so on, the inequality is

equivalent to

a = b = 1 c = x 1 ≤ x < 2
ha

r
=

a + b + c
a

3 +
2
x

+ 2 (x + 1) ≤ 9 + α (x − 2 +
1
x )

⇔ (2 − α) (x +
1
x ) ≤ 2 (2 − α)

⇔ (2 − α)
(x − 1)2

x
≤ 0.

Since this is true for all , we have , and so 2 is the best
possible constant.

1 ≤ x < 2 α ≥ 2
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106.29 An improvement on the Garfunkel-Bankoff inequality*

In a triangle , the semi-perimeter, circumradius and inradius are
denoted by ,  and  respectively. In [1] Garfunkel proposed the following
inequality as an open problem

ABC
s R r

tan2 A
2

+ tan2 B
2

+ tan2 C
2

≥ 2 − 8 sin
A
2

sin
B
2

sin
C
2

. (1)

This was first proved by Bankoff in [2], and is known as the Garfunkel-
Bankoff inequality. It has received considerable attention from researchers
in the field of geometrical inequalities and has motivated a number of papers
providing various generalisations and analogue, such as [3] and the
references in it.

In this Note, we give a sharpened version of (1), which appears as a
corollary to a theorem. The proof of the theorem relies on

s2 ≤ 2R2 + 10Rr − r2 + 2 (R − 2r) R (R − 2r), (2)
which is described in [4, 5.10] as ‘the fundamental inequality of a triangle’.
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Theorem

s2 ≤
4R3 (4R + r)2

16R3 − 8R2r + Rr2 − 2r3
. (3)

Equality holds if, and only if, the triangle is equilateral.

Proof
By (2) it is sufficient to prove

2R2 + 10Rr − r2 + 2(R − 2r) R(R − r) ≤
4R3(4R + r)2

16R3 − 8R2r + Rr2 − 2r3
. (4)

Putting , we have , and (4) is equivalent tot = r
R 0 < t ≤ 1

2

2 + 10t − t2 + 2 (1 − 2t) 1 − 2t ≤
4 (4 + t)2

16 − 8t + t2 − 2t3
.

This is true since

[4 (4 + t)2 − (2 + 10t − t2) (16 − 8t + t2 − 2t3)]2

− [2 (1 − 2t) 1 − 2t (16 − 8t + t2 − 2t3)]2

= 4t10 + 44t9 + 177t8 + 364t7 + 504t6 + 144t5 − 768t4 + 256t3

= t3 (t3 + 4t2 + 8t + 16) (4 + t)2 (1 − 2t)2 ≥ 0,
which is obviously true for .0 < t ≤ 1

2

Corollary

tan2 A
2

+ tan2 B
2

+ tan2 C
2

≥ 2 − 8 sin
A
2

sin
B
2

sin
C
2

+
1

4R ( r
R)2

(R − 2r). (5)

Proof: Using the well-known identities

sin
A
2

sin
B
2

sin
C
2

=
r

4R
and

tan2 A
2

+ tan2 B
2

+ tan2 C
2

=
(4R + r)2

s2
− 2

this is equivalent to (3).
By Euler's inequality , (5) is stronger than (1), and equivalent if,

and only if, the triangle is equilateral.
R ≥ 2r

In [5], M. Lukarevski and D. S. Marinescu gave a refinement of Kooi’s
inequality

s2 ≤
R (4R + r)2

2 (2R − r)
−

r2 (R − 2r)
4R

. (6)

We point out that (5) is stronger than (6), since  andR ≥ 2r
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R (4R + r)2

2 (2R − r)
−

r2 (R − 2r)
4R

−
4R3 (4R + r)2

16R3 − 8R2r + Rr2 − 2r3

=
r3 (R − 2r) (48R3 − 8R2r + 5Rr2 − 2r3)
4R (2R − r) (16R3 − 8R2r + Rr2 − 2r3) ≥ 0.
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106.30 Threshold functions and the birthday paradox

Our goal is to illustrate the idea of a threshold function in the context of
the birthday paradox. We do this by exploring the asymptotics of binomial
coefficients.

To begin, we consider the limit definition of the exponential function. It
is well known that  for any real constant . But what

happens when  grows with ? For what functions  is it the case
that  behaves asymptotically like ? More generally, given a
function , what adjustment factor  is needed so that ,
where we write  to denote that ?

lim
n → ∞

(1 + x
n)n = ex x

x n x = x (n)
(1 + x

n)n ex

x An (x) (1 + x
n)n ∼ An(x)ex

f (n) ∼ g (n) lim
n → ∞

f (n) / g (n) = 1

For fixed  and , by taking logs and using the Taylor expansion for
, we have

x n
ln (1 + z)

(1 +
x
n)n

= exp ⎡⎢⎣n ln (1 +
x
n)⎤⎥⎦

= exp ⎡⎢⎣n (x
n

−
x2

2n2
+

x3

3n3
−  … )⎤⎥⎦ , if 0 ≤ x < n,
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