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Abstract
Children learn high phonological neighbourhood density words more easily than low
phonological neighbourhood density words (Storkel, 2004). However, the strength of
this effect relative to alternative predictors of word acquisition is unclear. We addressed
this issue using communicative inventory data from 300 British English-speaking
children aged 12 to 25 months. Using Bayesian regression, we modelled word
understanding and production as a function of: (i) phonological neighbourhood
density, (ii) frequency, (iii) length, (iv) babiness, (v) concreteness, (vi) valence, (vii)
arousal, and (viii) dominance. Phonological neighbourhood density predicted word
production but not word comprehension, and this effect was stronger in younger children.
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A variable that has received considerable attention in studies of early vocabulary
development is phonological neighbourhood density, commonly defined as the
number of words in a given corpus that can be formed by the addition, substitution,
or elimination of a single phoneme in a target word (e.g., cat neighbours catch, mat,
and at; Luce & Pisoni, 1998; e.g., Storkel, 2004; Storkel & Lee, 2011; Stokes, 2010,
2014; Stokes, Kern, & Dos Santos, 2012; Takac, Knott, & Stokes, 2017). Work in this
direction suggests that words with high phonological neighbourhood density – i.e.,
words that sound similar to many other words in the target language – may be learned
developmentally earlier, and on fewer experimental exposures, than words that are
phonologically similar to few other words. Prominent causal accounts of this effect
maintain that high neighbourhood density words contain regularly occurring sounds
that are held in memory more accurately during short-term processing (e.g., the at in
cat, mat, and catch; Gathercole, Frankish, Pickering, & Peaker, 1999), and that this
supports the formation of highly detailed long-term word memory traces (Hoover,
Storkel, & Hogan, 2010; Metsala & Walley, 1998; Sosa & Stoel-Gammon, 2012; Storkel,
2004; Walley, Metsala, & Garlock, 2003).
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Previous studies reporting high neighbourhood density advantages in early word
learning have, however, considered neighbourhood density alongside only a small
number of alternative predictor variables, most notably word frequency, length, and
phonotactic probability (i.e., the positional probabilities of adjacent phonemic
segments) (e.g., Storkel, 2004; Stokes, 2014). This is unsatisfactory because properties
that appear to facilitate word acquisition in relative isolation may prove to have only
a limited impact when considered alongside a more representative range of
explanatory variables. For instance, Braginsky, Yurovsky, Marchman, and Frank
(2018) report that word valence and word arousal, semantic features identified by
Moors et al. (2013) as important determinants of word acquisition, have a relatively
limited effect when modelled as part of a more representative set of predictors.

The work of Braginsky and colleagues (Braginsky, Yurovsky, Marchman, & Frank,
2016; Braginsky et al., 2018) – an important impetus for the current study – predicted
age of acquisition for words using word frequency, word length, and a range of
semantic variables (including valence and arousal) that are fully defined below. In doing
so, these authors have provided the most comprehensive survey to date of features
linked to effects in early word learning. Braginsky et al. (2016, 2018) acknowledge,
however, that their explanatory models of early word learning are incomplete, with a
substantial proportion of variance left unexplained (estimated at R2 = 71% in Braginsky
et al., 2016). The purpose of the current study is to build on Braginsky and colleagues’
work by asking: When adopting a similar multi-predictor methodology, how much does
word sound matter in early word learning? The variable of primary interest in this
study is phonological neighbourhood density, which, as outlined above, has been widely
studied in child language research. Research Question 1 asks:

What is the strength of association between phonological neighbourhood density
and word understanding and word production when neighbourhood density is
modelled alongside a representative inventory of predictor variables?

Following previous analyses by Braginsky et al. (2016, 2018), the current study also
examines developmental changes in the importance of phonological neighbourhood
density and control variables as predictors of word understanding and production.
Research Question 2 asks:

Do phonological neighbourhood density and other predictors interact with age to
affect word understanding and word production?

Method

This study was pre-registered with the Open Science Framework on 16 September 2018.
A pre-registration protocol, R code, and all data required to re-run the analyses are
available via the associated project page <https://osf.io/zfy2p/>.

Dependent variables

We used communicative development inventory (CDI) data to examine phonological
neighbourhood density effects in early word learning. The common format of a
communicative development inventory is a wordlist plus checkboxes with fixed
response options. For instance, the word cat may be listed as one of many words,
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each with two response options: ‘understands’ and ‘produces’. During administration,
caregivers may check the first box if the target child is able to understand the word
cat, and check the second box if the target child is able to produce the word cat. The
dependent variables used in the current study were ‘understands’ and ‘produces’
responses to 418 words from the Oxford Communicative Development Inventory,
accessed via the Stanford Wordbank project (Frank, Braginsky, Yurovsky, &
Marchman, 2017; Hamilton, Plunkett, & Schafer, 2000). Following previous work by
Braginsky and colleagues, we restricted our analysis to cross-sectional responses. This
data, collected by Floccia (2017) over a five-year period at Plymouth University,
contains responses from caregivers of 300 British English-speaking children (n = 140
female) between the ages of 12 and 25 months (M = 18.61 months).

Parental report data are subject to reasonable validity concerns, with respondents
potentially over- or under-reporting the linguistic knowledge of target children, and
such biases potentially affecting modelling results (see Bennetts, Mensah, Westrupp,
Hackworth, & Reilly, 2016, for review). One anonymous reviewer commented that
parental report comprehension data may be particularly noisy. However, the cost of
administering communicative inventories is low, meaning – as Braginsky et al. (2018)
note – that sample sizes are often large enough to reduce the impact of noise at the
individual respondent level. The advantages of parental report data are that they
provide insight into the linguistic knowledge of the child as realised in a naturalistic
setting during talk with familiar people; they assess a number of words way in excess
of the typical stimulus count in an experimental design; and they provide an index
of words both understood and produced, allowing researchers to assess how different
lexical characteristics affect these different aspects of early word learning.

Independent variables

Braginsky et al. (2016, 2018) present an inventory of independent variables previously
assessed with respect to their association with word acquisition. The authors’ approach
follows Goodman, Dale, and Li (2008) in appropriating predictor data from multiple
sources. We broadly adopted Braginsky et al.’s (2016, 2018) inventory of predictor
variables, although we made changes to certain data sources (see Table 1) and
excluded predictors related to sentence complexity, such as a word’s mean length of
utterance or utterance position frequency, in order to home in on lexical effects. We
then built on Braginsky et al.’s inventory by incorporating ambient language
phonological neighbourhood density. Predictors, associated data sources, and
example words are shown in Table 1.

The log child-directed speech frequency of each word was calculated from caregiver
utterances in the Manchester corpus, which is hosted within the CHILDES database
(MacWhinney, 2000; Theakston et al., 2001). This corpus includes transcripts from 12
typically developing English-speaking children (age range 1;8.22–2;0.25 at study onset)
and their caregivers, who were recorded in free play for one hour, twice every three
weeks for one year. Collectively these transcripts comprised 1,454,060 child-directed
word tokens and 12,734 child-directed word types. Phoneme counts for each CDI word
were retrieved from the English Lexicon Project (Balota et al., 2007), with diphthongs
and affricates counted as single phonemes. The English Lexicon Project provides lexical
characteristic data for 40,481 words, including behavioural measures (response times and
accuracy) from 1,200 subjects. Other commonly used measures of word length,
including number of orthographic letters, syllables, or morphemes, are closely correlated,

1262 Jones and Brandt

https://doi.org/10.1017/S0305000919000473 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000919000473


and may therefore provide similar results (e.g., as in Lewis & Frank, 2016). We selected the
phoneme-based measure of word length given the central interest in the phoneme as a unit
of representation in the current analysis (i.e., as the basis of similarity neighbourhoods).
Multiple data sources were accessed to retrieve adult ratings for babiness, concreteness,
valence, arousal, and dominance. Babiness refers to the relevance of a word to babies
and infants; concreteness refers to word tangibility versus abstractness; valence refers to
associations with happiness or sadness; arousal to degree of excitability; and dominance
to whether the word invokes notions of being controlled or submissive, or being in
control or strong. Note that this last variable, dominance, was not included in prior
studies by Braginsky et al. (2016, 2018). We include this variable here because it has
been associated with age-related interactions in previous studies, with early learned
words having relatively high dominance ratings (Brysbaert et al., 2014). Finally,
plus-minus-one phoneme phonological neighbourhood densities for each Oxford CDI
word were retrieved from the English Lexicon Project (Balota et al., 2007). We should
acknowledge that there are a number of alternative measures of word-level phonological
similarity. For instance, similarity may be calculated across only word onsets, or by
taking the average edit distance between the target word and that word’s twenty nearest
neighbours (i.e., PLD20; Suárez, Tan, Yap, & Goh, 2011). We selected the un-weighted
plus-minus-one phoneme measure of phonological neighbourhood density excluding
homophones because this is the most commonly used criterion in the developmental
literature, plausibly due to the long-term dominance of this measure in adult word
recognition and production studies (e.g., Storkel, 2004; Storkel & Lee, 2011; Stokes, 2010,

Table 1. Independent variables, data sources, and minimum and maximum value examples from the
Oxford CDI data

Variable Source
Oxford CDI
examples

Child-directed speech frequency,
calculated from the Manchester
corpus in CHILDES

Theakston, Lieven, Pine, &
Rowland (2001);
MacWhinney (2000)

Min: broom
Max: you

Length, in phonemes Balota et al. (2007) Min: eye
Max:
cockadoodledoo

Adult babiness rating: [1] ‘not associated
with babies’ to [10] ‘associated with
babies’

Perry, Perlman, & Lupyan
(2015)

Min: donkey
Max: baby

Concreteness rating: [1] ‘abstract’ to [5]
‘concrete’

Brysbaert, Warriner, &
Kuperman (2014)

Min: how
Max: apple

Valence rating: [1] ‘unhappy’ to [9]
‘happy’

Warriner, Kuperman, &
Brysbaert (2013)

Min: sad
Max: happy

Arousal rating: [1] ‘calm’ to [9] ‘exciting’ Warriner, Kuperman, &
Brysbaert (2013)

Min: asleep
Max: naughty

Dominance rating: [1] ‘controlled’ to [9]
‘in control’

Warriner, Kuperman, &
Brysbaert (2013)

Min: cry
Max: smile

Phonological neighbourhood density,
calculated using a ± 1 phoneme
criterion from the English Lexicon
Project data

Balota et al. (2007) Min: aeroplane
Max: moo
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2014; Stokes et al., 2012; Takac et al., 2017). Importantly, this consistency allows us to directly
re-evaluate the existing developmental literature reporting high neighbourhood density
word learning advantages in the context of a big data, multiple-predictor analysis. Given
the strong correlation between different measures of word-level phonological similarity
(Suárez et al., 2011), we would expect the results reported below to hold across
alternative measures.

It is also important to acknowledge word sound variables other than phonological
neighbourhood density. Given our central interest in neighbourhood density effects,
we omitted alternative measures including phonological variability (i.e., the degree to
which productions of a single word by a single speaker vary) and phonotactic
probability, which was omitted because high correlation with neighbourhood density
would have caused multicollinearity (Storkel & Lee, 2011; see ‘Missing data and
multicollinearity’ below for further discussion of this issue). It is likely, however, that
experimenting with alternative word sound variables within a similar multi-predictor
framework will improve current understanding of the factors that facilitate early
word learning. Readers are therefore invited to use our data to experiment with
different configurations of predictor variables, for instance by including alternative
measures of neighbourhood density (e.g., PLD20) or variables such as phonotactic
probability (the data repository can be found at <https://osf.io/zfy2p/>).

Missing data and multicollinearity

The percentage of missing data ranged from 0% to 22.73% across predictor variables
(see ‘Appendix A’ for rates of missing data, predictor correlations, and variance
inflation factors). We imputed missing values using predictive mean matching via the
mice (multivariate imputation by chained equations) package in R (Buuren &
Groothuis-Oudshoorn, 2010; R Core Team, 2016). All predictors were then centred
and scaled into comparable units (i.e., M = 0, SD = 1).

Figure A1 in ‘Appendix A’ shows substantial correlations between word length and
phonological neighbourhood density (r = –0.66), as well as between word valence and
dominance (r = 0.61), and concreteness and frequency (r = –0.51). Multicollinearity risk
was assessed by fitting a multivariate binomial multiple regression model and
computing variance inflation factors (VIFs) using the lme4 and car packages in R
(Bates, Maechler, Bolker, & Walker, 2015; Fox & Weisberg, 2011). Estimates suggested
multicollinearity risk was low across predictors, with a maximum value of VIF = 1.93 for
the word length variable. We also conducted a post-hoc sensitivity analysis, in which we
removed the word length variable and refitted the Bayesian regression model introduced
fully below (see ‘Model fitting’). Word length was selected for removal in this analysis
because of its relatively high VIF and correlation with neighbourhood density, which
was the primary independent variable of interest. We found no substantial difference in
estimates from the model including word length and the model excluding word length,
in terms of the direction or magnitude of the estimates, or the size of the estimate
errors. This can be confirmed by recalling the model summaries using the R code
associated with this project, available from <https://osf.io/zfy2p/>.

Model fitting

We used the brms package (Bürkner, 2017) to fit a Bayesian multivariate multiple
binomial regression model. The model specified two outcome variables;
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(i) understands and (ii) produces, as reported in the 418-item communicative inventory
data from 300 children. Outcomes were configured as the proportion of children at each
month of age (i.e., 12 to 25 months; a 14-month range) who were able to understand or
produce each item. Therefore there were 14 × 418 = 5852 rows of data. Word
understanding and production were predicted by the independent variables listed in
Table 1 both as main effects and in interaction with the age of the target child at the
time of communicative inventory completion. We specified a random slope for age
for each word, a binomial family likelihood, and a weakly informative prior across
beta parameters. This model fitted successfully, with a sufficient number of effective
samples, stationery and well-mixing chains, no rhats above 1.1, and credible posterior
predictive checks. These analytics can be confirmed by recalling the model summary
in the R code associated with this project at <https://osf.io/zfy2p/>.

Results

Model summaries are shown in ‘Appendix B’. Main effects can be seen in Figure 1,
where the estimated strength of association between each predictor and outcome
variable is visualised as a probability distribution. A distribution with mass below
zero indicates a negative association between variables; a distribution with mass
above zero indicates a positive association between variables; and a probability
distribution centred on zero suggests no relationship between variables.

Words that children both understood and produced typically occurred at high
frequency in the corpus of child-directed speech (e.g., you, it, and that). While many
children understood relatively long words (e.g., cock-a-doodle-do, pushchair, and
television), they tended to produce words with relatively few phonemes (e.g., no, yes,
hi, bye, and ball). Words children both understood and produced scored highly on
adult ratings of babiness (e.g., bottle, milk, and blanket) and concreteness (e.g., doll,
ball, and fish). The direction of effects for word valence, arousal, and dominance
differed by outcome measure. Positive valence (e.g., happy, hug, and love) and
positive arousal (e.g., chase, naughty, and spider) were negatively associated with
understanding but positively associated with production. In contrast, high dominance
(e.g., smile, happy, help) was positively associated with word understanding and
negatively associated with production. Finally, and with central importance to the
current study, the estimate probability mass for phonological neighbourhood density
(PND) was centred on zero for understanding, but positive for word production.
This suggests that, when we have already taken into account a word’s frequency,
length, babiness, concreteness, valence, arousal, and dominance, additionally knowing
that word’s phonological neighbourhood density does little to improve the prediction
of early word understanding, but does improve the prediction of early word
production. The children assessed were more likely to produce words that were
phonologically similar to many other words in the language to which they were
exposed (e.g., toe, show, shoe, bee, and key).

Figure 2 shows interactions between each predictor and participant age, which
ranged between 12 and 25 months. A positive interaction estimate indicates that the
value of the predictor became more positive as age increased (e.g., a slope estimate
increase from 0.01 to 0.03 between 12 and 25 months). A negative interaction
estimate indicates that the value of the predictor became more negative as age
increased (e.g., a slope estimate decrease from 0.01 to –0.01 between 12 and
25 months). An interaction estimate centred on zero suggests no change in the value
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of the predictor with age. Note that the interpretation of interaction effects depends on
the direction (or sign) of the main effect. For instance, if the sign of the main effect is
positive, a positive interaction with age indicates a strengthening of this effect (e.g., an
increase from 0.01 to 0.03). However, if the sign of the main effect is negative, a positive
interaction with age may indicate a weakening of this negative effect (i.e., a negative
effect approaching zero as age increases; e.g., from –0.03 to 0).

High input frequency became a less important determinant of word understanding
across development. However, children became increasingly able to produce the words
they were exposed to most frequently (e.g., you, it, and that). Older children were able to
understand and produce words comprising more phonemes than younger children (e.g.,
cock-a-doodle-do, pushchair, and television). High relevance to the lives of babies and
infants became a less important predictor of word understanding and production

Figure 1. Estimate probability masses for each predictor variable in the inventory, split by understands and
produces outcomes. The central vertical line is the estimate mean, the shaded region is the 50% probability
interval, and the distribution tails cover the 99% probability region. Positive values indicate that learned
words were, on average, high in the associated variable. Negative values indicate that learned words were,
on average, low in the associated variable. PND indicates phonological neighbourhood density.

Figure 2. Predictor-age interaction effect probability masses by outcome. The central vertical line is the
estimate mean, the shaded region is the 50% probability interval, and the distribution tails cover the 99%
probability region. Positive values indicate that the value of the predictor became more positive as age
increased from 12 to 25 months. Negative values indicate that the value of the predictor became more
negative between 12 and 25 months. PND indicates phonological neighbourhood density.
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between 12 and 25 months, with older children acquiring low relevance words such as
broom, scissors, and write. The association between concreteness and understanding
weakened with age, as children learned abstract words such as how, later, and bad.
But the association between concreteness and production increased over
development, with words such as knee, bird, and comb becoming part of the
children’s productive vocabularies. Negative trends were seen for both valence and
(marginally) arousal across development, with older children more likely to
understand and produce words such as sad, sick, and hurt (low valence), and asleep,
tea, and blanket (low arousal). Dominance became more positively associated with
understanding and less negatively associated with production (i.e., the production
estimate approached zero; see Figure 1). That is, older children were more likely to
understand and produce words with associations of being in control (e.g., smile,
happy, help, eat, and say).

For both understands and produces outcomes, the phonological neighbourhood
density (PND) estimate was marginally negative, suggesting that phonological
similarity to other words in the language to which children are exposed became a
weaker determinant of word understanding and production across development.
Estimates suggest that, at around 12 months, children are more likely to produce
words that sound similar to other words they hear (e.g., toe, show, shoe, bee, and
key), but that by 25 months they are able to both understand and produce words
comprising less frequent sound sequences (e.g., breakfast, telephone, toothbrush, and
trousers).

Discussion

In this study, we estimated the strength of the association between phonological
neighbourhood density and word understanding and production when a wide range
of other determining factors, including word frequency, length, valence, concreteness,
babiness, arousal, and dominance, were taken into account. We also examined
whether the importance of phonological neighbourhood density as a predictor of
word understanding and production changed between the ages of 12 and 25 months.
Results broadly comparable with prior research were observed where predictor
inventories overlapped. Early learned words were, for instance, high in child-directed
speech frequency (for understanding and production), short in length (for
production only), and high in babiness rating (for understanding and production)
(Braginsky et al., 2016, 2018). Interaction effects also showed close parallels with
prior work. A word’s association with babies, for instance, was a more important
predictor of word understanding and production early in development than it was
late in development (Braginsky et al., 2016, 2018).

Our estimates suggest that phonological neighbourhood density is an important
predictor of early word production though not word understanding. In
understanding a word, the balance of importance across the predictors assessed
favoured high frequency of exposure, high concreteness, and high relevance to the
lives of babies and infants. A word with such characteristics but complex phonology
may be memorised imperfectly, which may be sufficient if the child is required to
recognise and respond to, though not necessary produce, such a word (e.g., “Eat
your breakfast!” “Do you want to rest in the pushchair?” “Where’s your
toothbrush?”). However, accurate production is impossible with imperfect
phonological memorisation. Therefore, with respect to word production there is an
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increase in the relative importance of high phonological neighbourhood density, and
concurrently shorter word length (in phonemes). That is, words enter the productive
lexicon more readily if their phonology is easy to remember, in terms of a low number
of phonemes that occur frequently in the language to which children are exposed.

Estimates for the interaction between neighbourhood density and age suggest that
phonological similarity to other words in the ambient language is a more important
predictor of word understanding and production early in development rather than late
in development. These results accord closely with those of prior studies reporting that
the importance of phonological neighbourhood density as a predictor of word
acquisition is greater in younger children and children with language delay, particularly
with respect to word production (e.g., Storkel, 2004; Storkel & Lee, 2011; Stokes, 2010,
2014; Stokes et al., 2012; Takac et al., 2017). It is plausible that this effect signals
increased competence in phonemic and word-level phonological representation.
Accurately representing phonologically anomalous words may be difficult in early
development given a relatively low frequency of exposure and limited production
practice. As a result, young children may tend implicitly towards acquiring new words
comprising familiar phonological patterns. Later in development, however, children are
better able to represent a wider range of sounds, making phonological neighbourhood
density a marginally less important predictor of whether or not a word is acquired.

A prominent explanatory account of the high neighbourhood density advantage is
that cognitive demand is low during the initial processing of a novel spoken word
comprising commonly occurring sounds, and that this enables the formation of
detailed long-term phonological word memories that are relatively robust to
forgetting and which provide detailed motor plans supporting accurate word
production (Gathercole et al., 1999; Hoover et al., 2010; Metsala & Walley, 1998;
Sosa & Stoel-Gammon, 2012; Storkel, 2004; Walley et al., 2003). A limitation of the
current study is that it is impossible to provide evidence for any causal account on
the basis of correlational data alone. In fact, it has proven difficult to test explanatory
accounts of the density advantage even in tightly controlled experiments, given, for
instance, multicollinearity between different word sound metrics such as
neighbourhood density and phonotactic probability. The early high-density word
learning advantage is, however, non-trivial, with a substantial literature documenting
memorisation advantages for phonologically distinctive (i.e., as opposed to similar, or
dense) stimuli (see Hunt & Worthen, 2006, for a review), and further work is
required to develop the causal account of this phenomenon. What the current study
shows is that any explanatory model of early vocabulary development, particularly of
early word production, must account for word sound features.
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Appendix A
Predictor correlations, rates of missing data, and variance inflation factors (VIFs)

Figure A1. Post-imputation Pearson correlations between predictors (pnd indicates phonological
neighbourhood density).
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Appendix B
Model summaries

Table A1. Rates of missing data and variance inflation factors for each predictor variable, calculated
(using the car and lme4 packages in R) from the model: glmer(cbind(understands, produces) ∼ length +
pnd + frequency + babiness + concreteness + valence + arousal + dominance + (1 | word), family = binomial).
Note that VIFs are shown for post-imputation values.

Predictor Missing (%) VIF

Frequency 5.5 1.50

Length 0 1.93

Babiness 22.73 1.08

Concreteness 4.55 1.52

Phonological neighbourhood density (PND) 3.35 1.83

Valence 18.18 1.79

Arousal 18.18 1.08

Dominance 18.18 1.63

Table B1. Model summary for the understands outcome, showing term, estimate, standard error (Std.
error), and lower and upper 95% confidence intervals (CI). CDS indicates child-directed speech. PND
indicates phonological neighbourhood density.

Term: Understands Estimate
Std.
error Lower 95% CI Upper 95% CI

Intercept –1.25 0.04 –1.32 –1.18

CDS frequency 0.12 0.04 0.05 0.21

PND 0 0.05 –0.1 0.09

Length (phonemes) 0.06 0.05 –0.03 0.15

Babiness 0.14 0.03 0.07 0.21

Concreteness 0.18 0.04 0.10 0.26

Valence –0.02 0.05 –0.11 0.06

Arousal –0.04 0.03 –0.11 0.02

Dominance 0.1 0.04 0.01 0.18

Age 0.11 0.02 0.08 0.15

Interactions

CDS frequency: Age –0.08 0.02 –0.13 –0.04

PND: Age –0.02 0.03 –0.07 0.03

Length (phonemes): Age 0.01 0.03 –0.04 0.06

Babiness: Age –0.06 0.02 –0.1 –0.03

(Continued )
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Table B1. (Continued.)

Term: Understands Estimate Std.
error

Lower 95% CI Upper 95% CI

Concreteness: Age –0.15 0.02 –0.20 –0.11

Valence: Age –0.03 0.02 –0.08 0.02

Arousal: Age –0.01 0.02 –0.05 0.02

Dominance: Age 0.01 0.02 –0.03 0.06

Standard deviations (SD) and correlations (Corr)

SD: Word intercept 0.67 0.02 0.62 0.71

SD: Age slope, word intercept 0.33 0.02 0.3 0.35

Corr: Age slope, word
intercept

–0.58 0.04 –0.66 –0.51

Table B2. Model summary for the produces outcome, showing term, estimate, standard error (Std.
error), and lower and upper 95% confidence intervals (CI). CDS indicates child-directed speech. PND
indicates phonological neighbourhood density.

Term: Produces Estimate
Std.
error Lower 95% CI Upper 95% CI

Intercept –2.21 0.06 –2.33 –2.09

CDS frequency 0.2 0.07 0.07 0.34

PND 0.13 0.08 –0.03 0.28

Length (phonemes) –0.07 0.08 –0.22 0.09

Babiness 0.17 0.06 0.06 0.28

Concreteness 0.42 0.07 0.29 0.56

Valence 0.09 0.07 –0.05 0.24

Arousal 0.06 0.06 –0.05 0.18

Dominance –0.08 0.07 –0.21 0.06

Age 1.43 0.02 1.39 1.46

Interactions

CDS frequency: Age 0.04 0.02 0.01 0.08

PND: Age –0.01 0.02 –0.05 0.03

Length (phonemes): Age 0.04 0.02 –0.01 0.08

Babiness: Age –0.04 0.01 –0.07 –0.01

Concreteness: Age 0.04 0.02 0.01 0.08

(Continued )
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Table B2. (Continued.)

Term: Produces Estimate Std.
error

Lower 95% CI Upper 95% CI

Valence: Age –0.02 0.02 –0.06 0.02

Arousal: Age –0.00 0.02 –0.03 0.03

Dominance: Age 0.03 0.02 –0.00 0.07

Standard deviations (SD) and correlations (Corr)

SD: Word intercept 1.11 0.04 1.03 1.20

SD: Age slope, word intercept 0.18 0.02 0.15 0.21

Corr: Age slope, word
intercept

–0.96 0.03 –1.00 –0.89
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