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Non-amenability of B(E) has been surprisingly difficult to prove for the classical
Banach spaces, but is now known for E = �p and E = Lp for all 1 � p < ∞.
However, the arguments are rather indirect: the proof for L1 goes via
non-amenability of �∞(K(�1)) and a transference principle developed by Daws and
Runde (Studia Math., 2010).

In this note, we provide a short proof that B(L1) and some of its subalgebras are
non-amenable, which completely bypasses all of this machinery. Our approach is
based on classical properties of the ideal of representable operators on L1, and shows
that B(L1) is not even approximately amenable.
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1. Introduction

Throughout this paper: all algebras are associative and taken over the field C, but
they need not have identity elements.

The Wedderburn structure theorem implies, with hindsight, that a finite-
dimensional algebra with homological dimension zero is isomorphic to a sum of full
matrix algebras. Amenability for Banach algebras, introduced in B. E. Johnson’s
seminal work [12], may be thought of as a weakened version of having homolog-
ical dimension zero, and the two notions coincide for finite-dimensional Banach
algebras. In particular, finite sums of full matrix algebras are amenable, while the
algebra of 2 × 2 upper triangular matrices is not.

It is therefore natural to ask for which infinite-dimensional Banach spaces E
the algebra B(E) is amenable. It was soon recognized that for most E the answer
should be negative, but that proving this for specific natural E could be very hard.
While the Hilbertian case was known to follow very indirectly from deep results
on C∗-algebras, no progress was made on the other classical Banach spaces until
C. J. Read’s breakthrough result that B(�1) is non-amenable [16]. His proof was
simplified by G. Pisier [15], and N. Ozawa subsequently provided a unified proof
of non-amenability of B(�1), B(�2) and B(c0) [14]. Further historical details can be
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found in V. Runde’s survey article [19], or in the introduction of his companion
paper [18].

The paper [18] contains the strongest general results thus far on non-amenability
of B(E); among other things, it establishes the non-amenability of B(�p) and B(Lp)
for all p ∈ (1,∞). A key ingredient in the proof is the following ‘transference
principle’ developed by M. Daws and V. Runde in [5]:

– if F is a Banach space, amenability of B(�p(F )) implies amenability of
�∞(K(�p(F )));

– if E is an infinite-dimensional Lp-space in the sense of J. Lindenstrauss and
A. Pe�lczyński, then amenability of �∞(K(E)) implies amenability of �∞(K(X))
for every Lp-space X.

Although the case of L1 was not resolved in [18], the transference principle remains
valid for p = 1 (see [5, theorems 1.2 and 4.3]), and so amenability of B(L1) ∼=
B(�1(L1)) would imply amenability of �∞(K(�1)). Therefore, it suffices to prove
that the latter algebra is non-amenable, and this was recently demonstrated in
the PhD thesis of E. Aldabbas [2]; as in [18], crucial use is made of a technical
innovation from [14], which was itself inspired by the arguments of [16]. At the
time of writing, the proof from [2] has not been published.

Thus, although non-amenability of B(L1) is now known, the existing proof is both
indirect (going via �∞(K(�1))) and technically complicated (relying on ‘Ozawa’s
lemma’ as formulated in [18]). The purpose of this note is to show that non-
amenability of B(L1) can be proved very quickly by studying a particular closed
ideal R � B(L1), without any need for the transference principle or the ideas in [14].
Our method actually proves slightly more: if A ⊆ B(L1) is a closed subalgebra that
contains R, then A is not even approximately amenable in the sense of [8, 9].

The ideal R occurs very naturally in the study of operators on L1, and is related to
a factorization result of D. R. Lewis and C. Stegall. Thus, our approach has a rather
different flavour from the combinatorial arguments in [16] and [14], and we hope
that this alternative perspective could be useful for studying the non-amenability
problem for B(E) on other Banach lattices.

2. Background and preliminaries

2.1. Notation and other conventions

Most of our conventions for notation and terminology are either standard in the
literature or clear from context. However, to make our paper more accessible, we
have endeavoured to provide precise references for various ‘well-known’ or ‘standard’
facts about Banach spaces.

The term ‘operator’ is synonymous with ‘bounded linear map’ although we shall
sometimes refer to ‘bounded operators’ just for emphasis. For a Banach space E,
B(E) denotes the algebra of bounded operators on E, while K(E) denotes the
algebra of compact operators on E.

The projective tensor product of Banach spaces E and F is denoted by E ⊗̂ F .
For our purposes, it can be characterized as by the following universal property:
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whenever E, F and G are Banach spaces and β : E × F → G is a bounded bilinear
map, there is a unique bounded linear map f : E ⊗̂ F → G that satisfies f(x ⊗ y) =
β(x, y) for all x ∈ E and y ∈ F . Moreover, ‖f‖ = ‖β‖. Note also that for any x ∈ E
and y ∈ F we have ‖x ⊗ y‖E⊗̂F = ‖x‖‖y‖.

Given a measure space (Ω, Σ, μ), we abbreviate Lp(Ω, Σ, μ) to Lp(Ω). In the case
of [0, 1] with the Borel σ-algebra and Lebesgue measure, we simply write Lp; in the
case of N with the discrete σ-algebra and counting measure, we simply write �p. If
A is a Borel subset of [0, 1], then |A| denotes its Lebesgue measure.

The background we need concerning Banach-space valued integration can be
found in any source that defines the Bochner integral over a finite measure space.
By a slight abuse of terminology, we say that a function from [0, 1] to a Banach
space X is strongly measurable if it is strongly measurable with respect to the Borel
σ-algebra of [0, 1].

2.2. Amenable Banach algebras

Since this paper is intended for a general rather than a specialist audience, we
use this section to record some basic definitions and examples from the literature
on amenability of Banach algebras, in order to supply some context for the main
result.

The following definition of amenability is not the original one given by B. E.
Johnson in [12], but is a standard equivalent formulation that is often more useful
or more suggestive.

Definition 2.1. Let A be a Banach algebra and define π : A ⊗̂ A → A by π(a ⊗
b) = ab. An approximate diagonal for A is a net (dα) in A ⊗̂ A such that, for each
a ∈ A, we have

‖a · dα − dα · a‖A⊗̂A → 0 and ‖aπ(dα) − a‖A → 0 as α → ∞.

If the net (dα) is bounded then we call it a bounded approximate diagonal. A Banach
algebra possessing a bounded approximate diagonal is said to be amenable.

Note that if A is finite-dimensional and amenable, taking a cluster point of the
net (dα) yields an element Δ ∈ A ⊗ A such that π(Δ) = 1A and a · Δ = Δ · a. In
(non-Banach) homological algebra such a Δ is known as a separating idempotent for
A and serves as an explicit witness that A has homological dimension zero.

It is well known that finite-dimensional matrix algebras Mn(C) ≡ B(Cn) have
homological dimension-zero, and that an explicit separating idempotent for Mn(C)
is

Δ =
1
n

n∑
i,j=1

Eij ⊗ Eji .

By an averaging argument, Δ can be written as an absolutely convex combination
of tensors of the form x ⊗ x−1 where x is a signed permutation matrix. For details
see the proof of [7, proposition 3.2]. It follows that if A = B(�n

p ) for any 1 � p � ∞,
‖Δ‖A⊗̂A = 1. From this, a routine exhaustion argument allows one to construct an
explicit bounded approximate diagonal for K(�p) when 1 � p < ∞ and K(c0).
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Using a more abstract version of this idea, the paper [7] developed a condition
on a given Banach space E, called Property (A), which is sufficient for amenability
of K(E). Property (A) is studied in detail in that paper; while it is not known
to hold for all Lp-spaces, it does hold for all Lp(μ)-spaces (1 � p � ∞) and their
preduals (see [7, theorem 4.7] and [7, theorem 4.3]).

As mentioned in the introduction, the expectation is that for most E the Banach
algebra B(E) is in some sense too large to be amenable. However, S. A. Argyros
and R. Haydon constructed in [1] an infinite-dimensional space X such that every
bounded operator on X is a compact perturbation of a multiple of the identity,
solving one of the major foundational problems of the subject. The nature of their
construction also ensures that X∗ is isomorphic to �1; thus X has Property (A), and
so K(X) is amenable. Since unitizations of amenable Banach algebras are amenable,
it follows that B(X) = CI + K(X) is amenable [1, proposition 10.6].

2.3. Preliminary results needed for our paper

The second condition in the definition of a (bounded) approximate diagonal says
that the net (π(dα)) is a (bounded) right approximate identity for A. There is a cor-
responding notion of a (bounded) left approximate identity. Crucially, amenability
of a Banach algebra not only ensures bounded left and right approximate identities
in the algebra itself, but also in some of its closed ideals. The following lemma
follows from standard results in the theory of amenable Banach algebras and their
bimodules. For instance, it is an immediate corollary of [3, theorem 3.7].

Lemma 2.2. Let A be an amenable Banach algebra and let J be a closed, 2-sided
ideal in A which has a bounded right approximate identity. Then J has a bounded
left approximate identity.

From this we immediately deduce the following result.

Corollary 2.3 (An obstruction to amenability). Let A be a Banach algebra and
J a closed 2-sided ideal. Suppose that

• J has a bounded right approximate identity;

• there exists x0 ∈ J such that x0 /∈ Jx0.

Then A is not amenable.

In the next section, we will introduce a particular closed ideal in B(L1) and show
that it satisfies both conditions in corollary 2.3.

3. The key ideal in B(L1)

Given a Banach space E, an operator T : L1 → E is said to be representable if there
exists a bounded, strongly measurable function hT : [0, 1] → E such that

T (f) =
∫ 1

0

f(s)hT (s) ds for all f ∈ L1
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where the right-hand side is interpreted as an E-valued Bochner integral. (In
some sources, such as [17], the terminology ‘differentiable’ is used instead of
‘representable’.)

Note that if such an hT exists, we have ‖T‖ � ‖hT ‖∞ by basic properties of the
Bochner integral; one can show that equality holds, although this is not needed for
the present paper.

We denote by R the set of all representable operators from L1 to itself. It follows
easily from the definitions that R is a closed left ideal in B(L1). Therefore, to show
that it is also a right ideal, it suffices to prove that TS ∈ R for all T ∈ R and all
S ∈ B(L1). This is not obvious from the definition, but is an immediate consequence
of the next result which is due to D. R. Lewis and C. Stegall.

Theorem 3.1 (Lewis–Stegall). Let E be a Banach space and let T ∈ B(L1, E).
Then T is representable if and only if it factors (boundedly) through �1.

For a direct and relatively self-contained proof, which only needs the basic
properties of strongly measurable E-valued functions, see [4, Appendix C, § 4].
(Alternative sources are [17, theorem A3], [6, Chapter III, theorem 1.8] or [20,
proposition 5.36].)

Remark 3.2. The original paper [13] does not make use of the perspective of
Bochner integrals and vector-valued Lp-spaces. Indeed, while theorem 3.1 was
known at the time to follow from the techniques in [13], the result itself is never
explicitly stated there, although some version of it appears en passant in the proof
of [13, theorem 1]. C.f. the remarks in [17, Appendix A].

The first part of the next result is well known to Banach space theorists, although
we are not aware of a reference.

Proposition 3.3. There exists T0 ∈ R \ K(L1) such that ST0 ∈ K(L1) for all
S ∈ R. In particular, R does not have any left approximate identity (bounded or
otherwise).

Proof. Let S ∈ R. By the Lewis–Stegall theorem, S factors through �1, and hence it
maps weakly convergent sequences to norm convergent sequences (since �1 has the
Schur property). By the Eberlein–Šmulian theorem, it follows that S maps relatively
weakly compact subsets of L1 to totally bounded subsets of L1. Moreover, every
weakly compact operator on L1 is representable (see e.g. [4, §C5], [6, Chapter III,
lemma 2.9] or [20, proposition 5.40]). It therefore suffices to choose any T0 ∈ B(L1)
which is weakly compact but not compact. �

There are various indirect ways to show the existence of weakly compact non-
compact operators on L1. We describe one easy and explicit construction for the
reader’s convenience.

Example 3.4. Fix a partition of (0, 1] into countably many subsets with strictly
positive measure (e.g. intervals (2−n, 21−n] for n ∈ N) and let P : L1 → �1 be the
associated conditional expectation. Let ι1,2 : �1 → �2 be the canonical embedding;
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and fix an injection j : �2 → L1 with closed range (for instance, using Rademacher
functions). Then T0 := jι1,2P is non-compact, since P is an open mapping, ι1,2 is
non-compact and j is bounded below. On the other hand, T0 is weakly compact
since it factors through �2. Note also that by Pitt’s theorem we get a direct proof
that ST0 ∈ K(L1) for all S : L1 → �1, without requiring the Lewis–Stegall theorem
or the fact that weakly compact operators on L1 are representable.

W. B. Johnson has informed the author that in forthcoming work with N. C.
Phillips and G. Schechtman, they show that for 1 � p < ∞ the only closed ideal
in B(Lp) with a bounded left approximate identity is K(Lp). In the same work,
they also establish the following result, which is the key ingredient needed for the
present paper.

Proposition 3.5 (Johnson–Phillips–Schechtman). R has a bounded right approxi-
mate identity. Moreover, we can choose this net to consist of norm-one idempotents.

Since the work of Johnson–Phillips–Schechtman is still unpublished at time of
writing, we include a self-contained proof of proposition 3.5. The argument origi-
nally shown to the author by W. B. Johnson used ideas from [13] and some auxiliary
results on K(L1). Our approach uses the perspective of vector-valued L∞-spaces,
and is based on a suggestion of M. Daws (personal communication).

Lemma 3.6. Let E be a Banach space and let h : [0, 1] → E be strongly measur-
able. For any ε > 0, there is a (strongly) measurable hε : [0, 1] → E whose range is
countable and which satisfies ‖h − hε‖∞ � ε.

We omit the proof of this lemma, which is a variation on the usual argument
for scalar-valued functions. It is usually found in the literature as part of the proof
of the Pettis measurability criterion (see e.g. [4, theorem B11] or the proof of [20,
proposition 2.15]). For an explicit reference with a full proof, see [11, lemma 2.1.4].

Proof of proposition 3.5. Let R0 be the set of operators L1 → L1 that are repre-
sented by bounded and countably-valued measurable functions [0, 1] → L1. Then
R0 is a left ideal in B(L1) and by lemma 3.6 it is dense in R. Hence, by a 3-epsilon
argument, it suffices to prove that R0 has a bounded right approximate identity
consisting of norm-one idempotents.

Given a partition of [0, 1] as a countable disjoint union of measurable subsets,
[0, 1] =

⊔∞
n=1 An, define a corresponding conditional expectation P : L1 → L1 by

the formula

P (f)(t) =
1

|An|
∫

An

f if t ∈ An, (∗)

with the convention that if |An| = 0 we interpret |An|−1
∫

An
f as zero. Then P is

a norm-one idempotent in B(L1), which belongs to R0 since P is represented by
hP :=

∑∞
n=1 |An|−11An

.
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If h : [0, 1] → L1 is constant on each An, with h(An) = {cn} say, then the operator
T ∈ R0 represented by h satisfies

TP (f) =
∞∑

n=1

∫
An

h · (Pf) =
∞∑

n=1

cn

∫
An

Pf =
∞∑

n=1

cn

∫
An

f = T (f) (f ∈ L1);

that is, TP = T . Now, given T1, . . . , Tm ∈ R0, represented by bounded functions
h1, . . . , hm : [0, 1] → L1 respectively, note that there is a countable partition [0, 1] =⊔∞

n=1 An such that each hj is constant on each An. Defining P by the formula (∗),
the previous calculation now gives TjP = Tj for all j = 1, . . . , m.

Therefore, if we order the set of countable partitions of [0, 1] by refinement, we
obtain a net of norm-one idempotents in R0, each having the form (∗), which serves
as a right approximate identity for R0. �

Combining proposition 3.3 and proposition 3.5, we see that R satisfies the con-
ditions of corollary 2.3, and therefore B(L1) is not amenable. In fact, the corollary
rules out amenability for every closed subalgebra A ⊆ B(L1) that contains R.

It is notable that for proposition 3.3, the key feature of R was that every T ∈ R
factors through �1, while for proposition 3.5 it seems vital to have the description
in terms of representability by strongly measurable functions on [0, 1].

Remark 3.7. In this section, we chose to work with R and its properties because it
is an ideal with intrinsic interest, regardless of the application to non-amenability.
One can bypass explicit mention of R and extract a slightly more direct proof
that B(L1) is non-amenable, by combining specific properties of the operator T0 in
Example 3.4 with calculations in appendix A. However, this direct approach still
seems to require the result that every operator L1 → �1 is representable (the ‘easy
direction’ of the Lewis–Stegall theorem), and so we do not include the details here.

4. Related examples and variations

Corollary 2.3 can be applied to prove non-amenability of B(E) for some other
Banach spaces E, provided we make a left-right switch. Since a Banach algebra
A is amenable if and only if the opposite algebra Aop is, lemma 2.2 remains true
when the words ‘left’ or ‘right’ are interchanged. Therefore, if a Banach algebra
A possesses a closed ideal J that has a bounded left approximate identity but no
bounded right appproximate idenity, A cannot be amenable.

Example 4.1. Let E be a Banach space and let A(E) denote the algebra of approx-
imable operators on E; this is a closed ideal in B(E). By results of N. Grønbæk and
G. A. Willis, A(E) has a bounded left approximate identity if and only if E has the
bounded approximation property, but has a bounded right approximate identity
if and only if E∗ has the bounded approximation property (see [10, theorems 2.4
and 3.3]).

Hence, by our previous remarks, if E has the bounded approximation property
and E∗ does not, then B(E) is non-amenable. This applies for instance when E =
�2 ⊗̂ �2.
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It is natural to wonder if the techniques in this paper can be adapted to give
an alternative proof of the non-amenability of B(�1). In this context, note that by
[5, theorem 1.2], amenability of B(�1) would imply amenability of �∞(B(�1)) and
hence amenability of any ultrapower B(�1)U ; such an ultrapower can be represented
as an algebra of operators on some abstract L-space E, and if we can find an
operator on E analogous to the operator T0 in Example 3.4 then it may be possible
to run similar arguments to the ones in this paper. We leave this as a problem for
possible future investigation.

We briefly comment on approximate amenability, although this was not the main
focus of the present work. Given a Banach algebra A, let A# denote its forced
unitization. We say that A is approximately amenable if A# has an approximate
diagonal. This is not the original definition from [8]; strictly speaking, what we
have just defined is ‘approximate contractibility’ of A, but the two concepts were
shown to coincide in [9, theorem 2.1]. By [8, corollary 2.4], one has an analogue of
lemma 2.2:

if A is approximately amenable and J is a closed ideal in A possessing a bounded
right approximate identity, then J has a left approximate identity (not necessarily
bounded).

For an outline of a direct proof, see the appendix. From this result, we see that
corollary 2.3 remains valid if we weaken the hypothesis from amenability to approx-
imate amenability. Hence, by the results of § 3, every closed subalgebra of B(L1)
which contains R fails to be aproximately amenable.
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Appendix A. A direct proof of lemma 2.2

For sake of brevity, we justified the claim in lemma 2.2 by appealing to more general
results in [3]. Specifically, we were invoking the following standard result:

if A is an amenable Banach algebra and J � A is a closed ideal that is weakly
complemented in A as a Banach space, then J has a bounded approximate
identity.

This result implies lemma 2.2 because in any Banach algebra (regardless of
amenability), a closed ideal with a bounded left-or-right approximate identity is
weakly complemented.
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The proof of the general result is somewhat abstract: one starts with a bounded
linear projection from A∗ onto J⊥, and then uses amenability to average this pro-
jection to an A-bimodule map, from which one extracts a left identity for J∗∗

equipped with the first Arens product. It is therefore instructive to have a more
direct proof of lemma 2.2, since this sheds more light on possible refinements of
corollary 2.3. We provide details below, since we have not seen such a proof written
down explicitly. No novelty is claimed for the following arguments.

Let FIN(J) denote the set of finite subsets of J . Our bounded left approxi-
mate identity will be indexed by FIN(J) × (0,∞), given the following partial order:
(F, ε) � (F ′, ε′) if F ⊆ F ′ and ε � ε′. Thus, fix some F ∈ FIN(J) and ε > 0; it suf-
fices to find v ∈ J such that maxx∈F ‖x − vx‖ < ε, and such that ‖v‖ is bounded
above by a constant independent of F and ε.

The hypotheses of lemma 2.2 ensure that for some constant C > 0, A has an
approximate diagonal bounded in norm by C and J has a right approximate identity
bounded in norm by C. Let δ > 0 which will be chosen with hindsight to depend
on C and ε. Perturbing the bounded approximate diagonal slightly, we obtain Δ ∈
A ⊗ A with ‖Δ‖A⊗̂A � C + 1 and

‖x · Δ − Δ · x‖A⊗̂A � δ and ‖x − xπ(Δ)‖ � δ for all x ∈ F . (A.1)

By definition of the projective tensor norm, we can assume that Δ =
∑m

i=1 ai ⊗ bi

where
∑m

i=1 ‖ai‖‖bi‖ � C + 1. Since {xai : x ∈ F, 1 � i � m} is a finite subset of J ,
there exists some f ∈ J with ‖f‖ � C and

‖xai − xaif‖ � δ‖ai‖ for all x ∈ F and all 1 � i � m. (A.2)

We put v :=
∑m

i=1 aifbi ∈ J , which satisfies ‖v‖ � ‖Δ‖A⊗̂A‖f‖ � C2. For each
x ∈ F ,

‖x − vx‖ � ‖x − xπ(Δ)‖ + ‖xπ(Δ) − xv‖ + ‖xv − vx‖ . (A.3)

The first term on the right-hand side is bounded above by δ. The second term is
bounded above by∥∥∥∥∥x

m∑
i=1

aibi − x

m∑
i=1

aifbi

∥∥∥∥∥ �
m∑

i=1

‖xaibi − xaifbi‖ �
∑
i=1

δ‖ai‖‖bi‖ � δ(C + 1).

(A.4)
To control the third term in (A.3), note that the map θ : A ⊗̂ A → B(A) defined
by θ(a ⊗ b)(z) = azb is contractive. Therefore, since xv = θ(x · Δ)(f) and vx = θ
(Δ · x)(f),

‖xv − vx‖ = ‖θ(x · Δ − Δ · x)(f)‖ � ‖x · Δ − Δ · x‖A⊗̂A‖f‖ � δC. (A.5)

Hence, ‖x − vx‖ � 2(C + 1)δ; provided that we chose δ to ensure 2(C + 1)δ � ε,
we have obtained the desired v = vF,ε. This completes the proof of lemma 2.2. �

We briefly indicate how one can adapt this argument to prove the ‘approximately
amenable version’ of lemma 2.2 that was stated in § 4. First, note that if J is a
closed ideal in A, then it remains a closed ideal in the unitization A�; therefore,
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by replacing A with A� if necessary, we may assume that A has an approximate
diagonal. Assume as before that J has a right approximate identity bounded in
norm by some constant C > 0.

We now repeat the arguments above: approximate amenability ensures that we
may choose Δ ∈ A ⊗ A satisfying (A.1) and (A.5), although we have no control
on the norm of Δ itself. Nevertheless, writing Δ =

∑m
i=1 ai ⊗ bi, we may choose

an f ∈ J with ‖f‖ � C such that v :=
∑m

i=1 aifbi satisfies ‖xπ(Δ) − xv‖ � δ for
all x ∈ F . Hence, using (A.3), we have ‖x − vx‖ � (C + 2)δ for all x ∈ F , which is
enough to obtain a left approximate identity (vF,ε) for J .
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