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Abstract
Microrobots with their promising applications are attracting a lot of attention currently. A microrobot with a tri-
angular mechanism was previously proposed by scientists to overcome the motion limitations in a low-Reynolds
number flow; however, the control of this swimmer for performing desired manoeuvres has not been studied yet.
Here, we have proposed some strategies for controlling its position. Considering the constraints on arm lengths,
we proposed an optimal controller based on quadratic programming. The simulation results demonstrate that the
proposed optimal controller can steer the microrobot along the desired trajectory as well as minimize fluctuations
of the actuators length.

Nomenclature
a Sphere radius (μm)
Ui j Distance between centers of sphere i and sphere j, i, j = 1, 2, 3. (μm)
μ Fluid viscosity (kg.m−1.s−1)
v Fluid velocity (m. s−1)
p Fluid pressure (Pa)
fj, vi Force acting on sphere i (N), velocity of sphere i (m. s−1)
Hi j Hydrodynamic Oseen tensor (m. s−1.N−1)
ri, ri j Position vector of sphere center i (μm), position vector of sphere center i relative

to sphere center j (μm)
I Identity matrix (-)
xi, yi, zi x, y, and z positions of sphere i in three-dimensional Cartesian coordinate system

(μm)
θ Angle between arm connecting spheres 1 and 2 and x axis (radians)
(x1)d, (y1)d Desired x and y positions of sphere 1 (μm)
(θ)d Desired θ (radians)
kp1, kp2, kp3 Proportional control coefficients (s−1)
�t Simulation time step (s)
J Optimization objective function
L Lagrange function

1. Introduction
New advances in science and technology have opened the fields of microrobotics and microsystems
for research. As a result, microrobots have become of great importance, with a variety of applications
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in different fields [1]. Some of the most important and significant of these applications can be found
in the field of medicine, where microrobots can help in advancing modern and revolutionary medical
techniques [2]. Inspired from nature, different mechanisms have been proposed for microrobots [3].

Microrobots play an important role in efforts toward developing targeted drug delivery methods. The
small scale of microrobotic swimmers enables them to carry and deliver doses of high concentration
drug in a small target region, minimalizing the side effects on other organs [4,5]. In addition, small
scale means that microrobots can potentially be used for various noninvasive surgical procedures and
material removal within the body [3]. Microsystems can also be used for probing regions of the body
for assessing patients’ health and searching for tumors within the body [6]. Artificial fertilization using
microrobots has also been proposed. In this case, swimming microrobots are usually used for carrying
sperm cells and driving them inside the egg cell for insemination [7].

Much work has been conducted on the underlying physics of swimming microorganisms and
the modeling of their motion [8]. The physics governing micro swimmer motion is the same for
artificial and biological swimmers, and many microrobotic designs are drawn from inspirations
from nature. Therefore, methods developed for modeling biological microswimmers can also be
used for modeling the motion of artificial microswimmers. Furthermore, designs for the swimming
mechanisms of microrobots can be based on biological swimming mechanisms in microorganisms,
and artificial microswimmers are usually inspired by natural swimmers [9,10]. Similarly, mate-
rials and methods have been proposed to imitate biological swimming mechanisms in artificial
microswimmers [11].

Bacteria are among the most common microorganisms that have inspired models for microrobots.
Based on their motion, helical microrobots have been proposed and analyzed which use a rotating heli-
cal flagellum as a means of propulsion [12,13]. The models based on bacterium motion have also been
expanded to consider the motion of microswimmers consisting of two or more flagella [14,15]. A mech-
anism has also been proposed that consists of two parallel flagella rotating around one axis [16]. In this
mechanism, the rotation of the outer flagellum mainly produces propulsion, while the inner flagellum is
responsible for controlling forward velocity.

In addition, models based on microorganisms other than bacteria, such as ciliates, have been pro-
posed [17,18]. Difficulties in fabricating structures at microscale have also led some researchers to
propose micro-bio-robots, which are propelled using microorganisms [19,20]. All of the aforemen-
tioned models require an understanding of the basics of swimming motion at microscale where the
Reynolds number is small. Purcell [21] showed that microswimmer motion creates low-Reynolds num-
ber flow, which can be described using the linear, time-independent Stokes equation. He demonstrated
that microswimmers cannot move using a reciprocal mechanism and must employ nonreciprocal means
of applying force on the fluid. (This behavior is known as the scallop theorem [21].) Based on this theo-
rem, several microswimmers have been proposed during recent years [22–26]. To name but a few, Rizvi
et al. [24] introduced a triangular three-bead microswimmer where three identical springs connect the
beads. A triangular mechanism for planar motion has been proposed by Ebrahimian et al. [25]. Khalesi
et al. [26] have proposed an innovative magnetic microswimmer. Esfandbod et al. [27] introduced a
three-dimensional microswimmer capable of high maneuverability.

Although a significant progress has been made in the design and dynamic modeling of microswim-
mers, development of control strategies for such microrobots has not been addressed in a satisfactory
manner. Here, we aim to design some control strategies for the microswimmer proposed by Ebrahimian
et al. [25], which can be extended to other similar microswimmers too. The microswimmer proposed by
Ebrahimian et al. has been referred to as the low-Reynolds number predator and consists of three spheres
of radius a = 1 μm, attached together by three arms in a triangular formation. This mechanism is illus-
trated in Fig. 1. Ebrahimian et al. have also proposed a cycle of strokes, which results in translational
and rotational motion.

The dynamics of these models have been fully analyzed and simulated using the linear equations gov-
erning low-Reynolds number flows. However, in most cases, controlling the motion of these swimmers
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Figure 1. Triangular microswimmer proposed by Ebrahimian et al. [25].

has not been considered by the researchers that have proposed these models, because the motivation for
coming up with these models and analyzing them has usually been to analyze and simulate the motion
of biological microswimmers and better understand their movement.

In this paper, we have used the triangular model proposed by Ebrahimian et al. as a model for a
swimming microrobot which is tasked with successfully tracking down a desired path. In doing so, we
have also bridged a gap in research by proposing a number of strategies for controlling the motion of this
swimmer. The proposed control schemes are a simple nonoptimal controller, an optimal controller with-
out considering constraints on the robot arm length, an optimal controller considering the constraints
on arm lengths. The control parameters are the swimmer’s arm lengths, and the objective of the control
strategies is to ensure that microrobot is able to track its desired path. In this case, the microrobot and
the ideal path can also be viewed in a predator-prey paradigm, where the predator (microrobot) needs to
track down and hunt its prey (ideal path). Efficiency and minimization of energy consumption and path
tracking with arm length constraints have been key factors in proposing novel techniques for optimal
control of the predator’s position.

This paper has been organized in the following order: first, in Section 2, the dynamical equations of
the predator have been obtained. Next, at the end of Section 2, the dynamical motion of the predator
has been simulated according to the strokes proposed in [25]. After the results of dynamical simulation
have been verified with [25], the motion of the swimming predator has been controlled under various
control strategies. First, in Section 3, the motion of one sphere and orientation angle of one arm has been
controlled to follow the desired path of a prey. Then, in Section 4, optimal control and path tracking of
one sphere has been analyzed. After that, in Section 5, optimal control of one sphere along with arm
length constraints has been discussed. Ultimately, results and simulations from various control strategies
have been discussed and compared.

2. Governing Equations
The small scale of microswimmers results in a low-Reynolds flow regime. As a result, the Navier–Stokes
equations reduce to the linear, time-independent Stokes equation. Therefore, fluid flow resulting from a
swimming microrobot is governed by the Stokes and continuity equations [23]. For an incompressible
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Newtonian fluid, the equations are as follows [28]:

∇ · v = 0, −∇p + μ∇2 v = 0, (1)

where v denotes the fluid velocity vector, p is the fluid pressure, and μ is the fluid viscosity. In modeling
the microrobot, dynamic interactions between the arms and the fluid are neglected, mainly because of
their relative slenderness. Therefore, Eq. (1) need to be solved subject to no-slip conditions relative to
the spheres and v = 0 at infinity. It is also assumed that forces acting on each sphere pass through its
center.

The relation between each sphere’s velocity and the forces acting on each sphere can be presented as
follows [25]:

vi =
3∑

j=1

Hi jfj, (2)

where vi is the velocity of sphere i, fj is the force acting on sphere j, and Hi j is the symmetric Oseen
tensor, which depends on the geometry of the system. For a system of linked spherical swimmers, Hi j

can be written as follows [29]:

Hi j =
⎧⎨
⎩

1
6πμa

I, if i = j
1

8πμ|rij| (I + ri jri j

|ri j|2 ), if i �= j
(3)

where ri j = ri − rj, and ri is the position vector of sphere i. Here I is the identity matrix of size 3.
Along with Eq. (3), the microswimmer’s motion is also subject to the conservation of linear and angular
momentum [25]:

3∑
i=1

fi = 0,
3∑

i=1

ri × fi = 0. (4)

The set of equations in (2) and (4) forms the dynamic equations of the swimming predator.

2.1 Derivation of Oseen tensor
In order to use Eq. (2), we derive the explicit form of the hydrodynamic Oseen tensor presented in
relation (3). The center of each sphere is presented in a three-dimensional Cartesian coordinate system,
where xi, yi, and zi represent the coordinates of sphere i. The relative distances are shown in the following
order:

zi j = zi − zj, yi j = yi − yj, xi j = xi − xj, (5)

ri j = ri − rj =
⎡
⎣xi j

yi j

zi j

⎤
⎦ ,

∣∣ri j

∣∣=√
xi j

2 + yi j
2 + zi j

2. (6)

Accordingly, for i �= j, Hi j can be obtained in the following order:

Hi j = 1

8πμ
∣∣ri j

∣∣
(

I + ri jri j∣∣ri j

∣∣2
)

= 1

8πμ
∣∣ri j

∣∣

⎛
⎜⎜⎜⎜⎜⎜⎝
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦+

⎡
⎣ xi j

2 xi jyi j xi jzi j

yi jxi j yi j
2 yi jzi j

zi jxi j zi jyi j zi j
2

⎤
⎦

xi j
2 + yi j

2 + zi j
2

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)
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In the case where i = j:

Hi j = 1

6πμa
I = 1

6πμa

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ . (8)

In the case where a microswimmer’s motion is two-dimensional, Eqs. (7) and (8) can be simplified
for two-dimensional motion:

Hii = 1

6πμa

[
1 0
0 1

]
, Hi j =

[
2xi j

2 + yi j
2 xi jyi j

yi jxi j xi j
2 + 2yi j

2

]

8πμ
(
xi j

2 + yi j
2
) 3

2

(9)

Eq. (9) yields the Oseen tensor for a two-dimensional, three-sphere microsystem.

2.2 Derivation of the Governing Equations of Motion
The explicit form of the low-Reynolds predator’s equations of motion can be obtained by expanding
Eqs. (2) and (4) in terms of the hydrodynamic Oseen tensor in (9). First, Eq. (2) needs to be expanded.
To this end, distances between spheres i and j are represented by Ui j, and forces exerted on sphere i are

shown by
(

fxi

fyi

)
. The position of each sphere center is represented according to Eqs. (5) and (6).

Merging Eqs. (2) and (9) results in the following matrix equation:

ẋ = Gf. (10)
Here, ẋ = [ẋ1 ẏ1 ẋ2 ẏ2 ẋ3 ẏ3]T and f = [fx1 fy1 fx2 fy2 fx3 fy3]T. G is a 6 × 6 matrix

which depends on the relative position of each sphere’s center:

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
6πμa

0 2x12
2+y12

2

8πμU12
3

x12y12
8πμU12

3
2x13

2+y13
2

8πμU31
3

x13y13
8πμU31

3

0 1
6πμa

y12x12
8πμU12

3
x12

2+2y12
2

8πμU12
3

y13x13
8πμU31

3
x13

2+2y13
2

8πμU31
3

2x12
2+y12

2

8πμU12
3

x12y12
8πμU12

3
1

6πμa
0 2x23

2+y23
2

8πμU23
3

x23y23
8πμU23

3

y12x12
8πμU12

3
x12

2+2y12
2

8πμU12
3 0 1

6πμa
y23x23

8πμU23
3

x23
2+2y23

2

8πμU23
3

2x13
2+y13

2

8πμU31
3

x13y13
8πμU31

3
2x23

2+y23
2

8πμU23
3

x23y23
8πμU23

3
1

6πμa
0

y13x13
8πμU31

3
x13

2+2y13
2

8πμU31
3

y23x23
8πμU23

3
x23

2+2y23
2

8πμU23
3 0 1

6πμa

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Eq. (10) can alternatively be written as

f = G−1ẋ. (12)
The motion of this microswimmer is controlled by changing the length of each arm using prismatic

actuators. Therefore, we are interested in writing the force vector in terms of a combination of velocity
and time derivatives of the length of each arm. This can be achieved by deriving the relation between
the following two sets of variables:

ẋ = Dż, (13)

where ż = [
ẋ1 ẏ1 θ̇12 U̇12 U̇23 U̇31

]T
. Matrix D in relation (13) can be determined by obtain-

ing time derivatives of geometric relations presented in Fig. 2. Using relationship between spheres
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Figure 2. Position vector of each sphere center in x-y coordinate and angle θ.

coordinates and after some mathematical manipulation, we can obtain:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẏ1

ẋ2

ẏ2

ẋ3

ẏ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

E11 E12 E13 E14 E15 E16

E21 E22 E23 E24 E25 E26

1 0 −y31 0 0 x31
U31

0 1 x31 0 0 y31
U31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẏ1

θ̇

U̇12

U̇23

U̇31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Dż, (14)

where E = A−1BC, A =
[

x12 y12

x23 y23

]
, B =

[
x12 y12 0 0 −U12 0
0 0 x23 y23 0 U23

]
, and

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
1 0 −y31 0 0 x31

U31

0 1 x31 0 0 y31
U31

0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. Here Ei j are the elements of matrix E. Hence, Eq. (12) can

be written in the following form:

f = G−1ẋ = Mż, (15)

where M = G−1D. Now using Eqs. (4) and (15) we can obtain:

[M1 M2 M3]T[ẋ1 ẏ1 θ̇ U̇12 U̇23 U̇31]T = 0, (16)

where M1 = [
1 0 1 0 1 0

]
M, M2 = [

0 1 0 1 0 1
]

M, and M3 = [−y1 x1 − y2 x2 − y3

x3] M. Relation (16), which consists of three equations and six variables, describes the dynamic prop-
erties of the microrobot. It can be used alongside Eq. (13) to determine the position of each sphere’s
center.

2.3 Dynamic simulation and validation
If at each point in time, the length of each arm is known, Eq. (16) yields a system of three equations
and three variables, which can be solved in each time step. Here, we have simulated an ordered motion
consisting of six steps and two cycles. In the first cycle, each arm shrinks from L to L∗ = (1 − ε) L, with
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Figure 3. The order by which each arm shrinks and then returns to its original configuration [25].

Figure 4. Displacement and rotation for L = 10a as a function of ε. The marks on the plot represent
data obtained by Ebrahimian et al. in [25].

a constant rate. In the next cycle, each arm, in turn, returns to its initial length with the same rate. In the
end, the swimmer has returned to its initial configuration. The order of steps is presented in Fig. 3.

After these six steps, the predator experiences a net center of mass displacement along with a net
rotation. The displacement and rotation after a full cycle have been presented in Fig. 4, as a function
of ε.

To validate our dynamic model, results from Ebrahimian et al. have also been illustrated in
Fig. 4, which demonstrates that the results that have been obtained and presented in this paper are com-
pletely coincident with results from [25]. In the proceeding sections, we will present control strategies
for controlling the motion of the low-Reynolds predator.
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3. Predator Position and Heading Control
In this section, our aim is to determine the control inputs in a way that the microswimmer’s position
and orientation track the desired trajectories. Eq. (16) consists of three equations and six variables. The
lengths of each arm are the variables used to control the predator’s motion. Consequently, one control
strategy can involve controlling three variables such as x1, y1, and θ , where these variables, respectively,
are the first sphere x and y positions and the first arm orientation. In this case, the first sphere is essentially
the predator and must be able to successfully hunt down the prey. These three variables are controlled
to follow desired paths x1d, y1d, and θd using proportional control with feed forward terms. x1d and y1d

are the prey’s x and y positions:

ẋ1 = ẋ1d − kp1 (x1 − x1d) = c1, (17)

ẏ1 = ẏ1d − kp2 (y1 − y1d) = c2, (18)

θ̇ = θ̇d − kp3 (θ − θd) = c3. (19)

As a result, ẋ1, ẏ1, and θ̇ are determined in each time step, and Eq. (16) can be merged with Eqs. (17)
to (19) to produce the following system of equations:⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

M1 (1,1) M1 (1,2) M1 (1,3) M1 (1,4) M1 (1,5) M1 (1,6)

M2 (1,1) M2 (1,2) M2 (1,3) M2 (1,4) M2 (1,5) M2 (1,6)

M3 (1,1) M3 (1,2) M3 (1,3) M3 (1,4) M3 (1,5) M3 (1,6)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẏ1

θ̇

U̇12

U̇23

U̇31

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c1

c2

c3

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (20a)

Here, we have a system of six equations and six unknowns, which can be solved in each time step.
Solving for U̇12, U̇23, and U̇31 yields:

W

⎡
⎣ U̇12

U̇23

U̇31

⎤
⎦= Q

⎡
⎣ ẋ1d − kp1 (x1 − x1d)

ẏ1d − kp2 (y1 − y1d)

θ̇d − kp3 (θ − θd)

⎤
⎦ (20b)

W =
⎡
⎣M1 (1,4) M1 (1,5) M1 (1,6)

M2 (1,4) M2 (1,5) M2 (1,6)

M3 (1,4) M3 (1,5) M3 (1,6)

⎤
⎦ , Q = −

⎡
⎣M1 (1,1) M1 (1,2) M1 (1,3)

M2 (1,1) M2 (1,2) M2 (1,3)

M3 (1,1) M3 (1,2) M3 (1,3)

⎤
⎦

The schematic of the employed control method and the details of controller block are shown in
Fig. 5.

After variables ẋ1, ẏ1, θ̇, U̇12, U̇23, and U̇31 are determined from, the velocity of each sphere (variables
ẋ1, ẏ1, ẋ2, ẏ2, ẋ3, and ẏ3) can be determined using Eq. (13). Integrating the velocity of each sphere in each
time step, results in the position vector of the next time step:[

x1 y1 x2 y2 x3 y3

]
k+1

= [
x1 y1 x2 y2 x3 y3

]
k
+ �t

[
ẋ1 ẏ1 ẋ2 ẏ2 ẋ3 ẏ3

]
k

(21)

For simulation, a time step of �t = 0.01s has been considered, which leads to convergent results over
a simulation time span of 10 s. The following desired paths have been considered:

x1d = (−2 − 0.6t) (μm) , (22)

y1d = (−3.75 − 5.85e−o.1tcos 0.7t
)
(μm) , (23)
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Figure 5. Block diagram of the control system (a), controller block details (b).

θd = π

6
(rad) , (24)

Control coefficients kp1 and kp2 are set equal to 1, kp3 is set at 0.5, initial values for x1, y1, and θ are
assumed to be zero, and the initial arm lengths are 10 μm. The results are presented in the following
figures.

Fig. 6 shows that the predator has been able to successfully hunt down its prey according to Eqs. (22),
(23), and (24), and the position and angle errors have reduced to zero. The x and y positions have settled
after almost 4 s, whereas the angle has taken almost 8 s to settle. This is due to the fact that the control
coefficient for angle θ has been set at half that of x1 and y1. According to Eqs. (22), (23), and (24), the
desired prey path for the predator lies on a curved line. This path, along with the predator’s path, has
been presented in Fig. 7, which shows their convergence.

The necessary arm length inputs have also been presented in Fig. 8. These results demonstrate that
the arm length connecting spheres 1 and 3 has increased to almost 30 μm. While these results satisfy
our control goals, it is desirable to decrease the amount and change of arm lengths in order to lower the
swimmer’s energy consumption. This can be achieved using optimal control strategies.

4. Optimal Control
An alternative control strategy is optimal control of the microswimmer position. Accordingly, variables
x1 and y1, which are the predator’s x and y positions, are controlled to follow reference paths (x1)d and
(y1)d, which are the prey’s x and y positions, according to Eqs. (17) and (18), while minimizing an
objective function J in each time step. Therefore, in each time step, variables θk+1, U12k+1 , U23k+1 , and
U31k+1 must be determined such that they minimize function J while satisfying dynamical equations in
relation (16). As a result, the Lagrange function to find minima of the objective function J, subject to
the equality constraints (16), is the following:

L = J + (γ1M1 + γ2M2 + γ3M3) ż. (25)

https://doi.org/10.1017/S0263574721000953 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000953


1266 Hossein Nejat Pishkenari and Matin Mohebalhojeh

(a) (b)

(c)

Figure 6. (a) Position of x1 and error as a function of time for control strategy involving control of
position and angle. (b) Position of y1 and error as a function of time for control strategy involving
control of position and angle. (c) Angle θ and error as a function of time for control strategy involving
control of position and angle.

Here parameters γi are the Lagrange multipliers. The equations for optimal control in each time step
are the following:

⎡
⎣M1

M2

M3

⎤
⎦
⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẏ1

θ̇

U̇12

U̇23

U̇31

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣M1

M2

M3

⎤
⎦
⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

y1

θ

U12

U23

U31

⎤
⎥⎥⎥⎥⎥⎥⎦

k+1

−

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

y1

θ

U12

U23

U31

⎤
⎥⎥⎥⎥⎥⎥⎦

k

⎞
⎟⎟⎟⎟⎟⎟⎠

�t
= 0, (26)

x1k+1 = x1k + �tc1, y1k+1 = y1k + �tc2, (27)

∂L

∂θk+1

= ∂L

∂U12k+1

= ∂L

∂U23k+1

= ∂L

∂U31k+1

= 0. (28)

Relations (26) to (28) consist of 9 equations that are used to find x1k+1 , y1k+1 , θk+1, U12k+1 , U23k+1 , U31k+1 ,
γ1, γ2, and γ3. After that, positions of other spheres of the microswimmer can be found according to
Eqs. (13) and (21).

https://doi.org/10.1017/S0263574721000953 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000953


Robotica 1267

Figure 7. The predator and prey paths for control strategy involving control of position and angle. The
position of the first sphere (predator) and the prey at t=0, 2, 5, and 10 s has also been illustrated.

Figure 8. Arm length between spheres as a function of time for control strategy involving control of
position and angle.
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Figure 9. Arm length between spheres as a function of time for optimal control strategy with objective
function J1.

If the objective in each time step is to minimize fluctuations in the control efforts which are the
swimmer arm lengths, the following objective function should be used:

J1 = 1

2

[(
U12k+1 − U12k

)2 + (
U23k+1 − U23k

)2 + (
U31k+1 − U31k

)2
]

. (29)

If it is desired to minimize arm lengths in the next time step, the following objective function is
suitable:

J2 = 1

2

[(
U12k+1 − b

)2 + (
U23k+1 − b

)2 + (
U31k+1 − b

)2
]

. (30)

Reference arm length b should not be set too low; otherwise, the swimmer’s arm lengths might
decrease below 2 μm, resulting in collision between its spheres. Implementing J2 results in undesirable
shocks and impulses in the beginning of motion. In order to reduce the intensity of these shocks, a linear
combination of J1 and J2 is used instead:

J3 = J1 + αJ2 (31)

The constant α shoud be small in order to avoid large impulses.
The swimmer’s motion has been simulated for objective function J1 and the following prey paths (22)

and (23). Control coefficients kp1 and kp2 are set equal to 1, and initial values are similar to the previous
simulation. The results are presented in the following figures:

The x and y positions of the first sphere are the same as the previous simulation in Fig. 6(a) and (b).
Therefore, the predator has again been able to achieve the goal of tracking its prey, and both x and y
positions of the first sphere (predator) have settled by t = 4s. In this case, however, the changes in arm
lengths have decreased and the maximum arm length has been lowered by 5 μm, which can be seen in
Fig. 9. The predator and prey paths for this simulation are the same as the previous simulation presented
in Fig. 7.

The swimmer’s motion has also been simulated for objective function J3 and desired paths (22) and
(23). Control coefficients kp1 and kp2 are set equal to 1, and initial conditions are the same as the previous
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Figure 10. Arm length between spheres as a function of time for optimal control strategy with objective
function J3.

simulations. In Eq. (31), the constant α is set at 0.1, and reference arm length b is set at 7 μm. The results
are presented in the following figure:

As before, the predator, which is the swimmer’s first sphere, has been able to successfully hunt down
the prey. The x and y positions of the first sphere are similar to previous simulations. Figure 10 illustrates
the arm length inputs for the swimmer’s motion. In this case, the arm length between spheres 2 and 3
has decreased quickly near to 5 μm, while peak arm length has only slightly increased compared to
the previous simulation. The desired and actual paths for the predator and prey are similar to previous
simulations.

5. Optimal Control with Constraints on the Arm Lengths
The optimal control strategies presented thus far do not place any constraints on the variations in arm
lengths. In order to avoid spheres colliding with each other, or to limit the maximum increase of arm
lengths, constraints must be considered for the minimum and maximum admissible values of the arm
lengths. Controlling variables x1 and y1 to follow reference prey paths x1d and y1d, while minimizing
objective function J with arm length constraints in each time step, is possible with quadratic program-
ming. In order to use the quadratic programming technique, objective function J, system equations, and
constraint inequalities can be written in matrix formulation [30]:

min
1

2
xTHx + f Tx, S.t.Aeqx = beq, S.t.lb ≤ x ≤ ub. (32)

In Eq. (32), x represents the vector containing variables that need to be determined. The term
1
2
xTHx + f Tx is the quadratic objective or cost function which has been written in matrix formulation.

The goal of quadratic programming is to minimize the objective function with constraints Aeqx = beq and
lb ≤ x ≤ ub. The term Aeqx = beq is the equality constraints of the system written in matrix formulation,
and lb and ub are the lower and upper bounds of the variables.
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Here, we have presented the objective function for minimizing arm length change, J1, in matrix form.
J1 can be expanded in the following form:

J1 = 1

2

[
U12k+1

2 + U23k+1
2 + U31k+1

2
]− [

U12k+1 U12k + U23k+1 U23k + U31k+1 U31k

]
. (33)

In Eq. (33), constant terms have been eliminated in the expansion of J1. Therefore, x , H, and f are
in the following order:

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

y1

θ

U12

U23

U31

⎤
⎥⎥⎥⎥⎥⎥⎦

k+1

, H =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, f =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

−U12

−U23

−U31

⎤
⎥⎥⎥⎥⎥⎥⎦

. (34)

The dynamic equations for the system are Eqs. (16), (17), and (18), which if merged together, can be
written in the following form:

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

M1 (1,1) M1 (1,2) M1 (1,3) M1 (1,4) M1 (1,5) M1 (1,6)

M2 (1,1) M2 (1,2) M2 (1,3) M2 (1,4) M2 (1,5) M2 (1,6)

M3 (1,1) M3 (1,2) M3 (1,3) M3 (1,4) M3 (1,5) M3 (1,6)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẏ1

θ̇

U̇12

U̇23

U̇31

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

c1

c2

0
0
0

⎤
⎥⎥⎥⎥⎦ (35)

Eq. (35) can be rewritten as the following expression:

R
[
x1 y1 θ U12 U23 U31

]
k+1

T = R
[

x1 y1 θ U12 U23 U31

]
k

T + �t
[

c1 c2 0 0 0
]T

, (36)

where R =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

M1 (1) M1 (2) M1 (3) M1 (4) M1 (5) M1 (6)

M2 (1) M2 (2) M2 (3) M2 (4) M2 (5) M2 (6)

M3 (1) M3 (2) M3 (3) M3 (4) M3 (5) M3 (6)

⎤
⎥⎥⎥⎥⎦ . As a result, Aeq and beq are the

following:

Aeq = R, beq = R
[

x1 y1 θ U12 U23 U31

]
k

T + �t
[

c1 c2 0 0 0
]T

. (37)

For simulation, the constraints for arm lengths are set between 8 and 25 μm. Therefore, the upper
and lower bounds in (32) are the following:

lb = [−∞ − ∞ − ∞ 8 8 8
]T

, ub = [+∞ + ∞ + ∞ 25 25 25
]T

. (38)

After x1k+1 , y1k+1 , θk+1, U12k+1 , U23k+1 , and U31k+1 are determined in each time step from quadratic
programming, the position vector of sphere centers, in the next time step, is determined using Eq. (13).

The swimmer’s motion has been simulated for objective function J1 and desired paths (22) and (23),
with constraints according to (38). Control coefficients Kp1 and Kp2 are set equal to 1, and initial con-
ditions are the same as the previous simulations. The results are presented in the Fig. 11. This figure
presents arm length variations for this simulation. The results from Fig. 11 show that arm lengths have
remained within their defined boundaries. However, as a result, overall arm length change has slightly
increased, which, in turn, means more energy consumption. The predator and prey paths are similar to
previous simulations.

The results from various proposed methods have been compared in Table I. According to this table,
the last control strategy, optimal control with constraints on the arm lengths, not only minimizes the
microswimmer length changes but also maintains the arms lengths in the desired interval.
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Table I. The average of objective function J1, average of objective function J3 for the first second of
motion, maximum arm length, minimum arm length, angle control ability, constraints on arm lengths,
and settling time, for various simulations

Average J3 Maximum Minimum Constraint on
(from t = 0s arm arm Angle arm

Average J1 to t = 1s) length length control lengths
Position and
Heading
Control

0.0026 μm2 10.7 μm2 29.8 μm 5.9 μm Yes No

Objective
Function J1

0.0012 μm2 4.6 μm2 26.0 μm 7.4 μm No No

Objective
Function J3

0.0021 μm2 4.2 μm2 26.0 μm 4.8 μm No No

Length
Constraints

0.0014 μm2 4.6 μm2 25.0 μm 8.0 μm No Yes

Figure 11. Arm length between spheres as a function of time for optimal control strategy with objective
function J1 along with arm length constraints.

6. Conclusion
In this paper, the dynamics and control of a triangular swimming microrobot were examined. Because
of swimming at low Reynolds-number flow, the inertia forces are significantly smaller than viscous
ones, and subsequently, Stokes equations are governed on the microrobot motion. After derivation of
the dynamic equations governing on the motion, the position and orientation angle of the microswim-
mer were controlled to track desired time trajectories using proportional control with feed forward terms.
The simulation results show that by changing its arm lengths, the robot was able to successfully track
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the desired trajectories. In order to reduce energy consumption and decrease arm length changes, opti-
mal control was also proposed. In the end, optimal control of microswimmer, with constraints on arm
lengths, was proposed. The results demonstrated that each arm length had remained within the permitted
boundary and the desired trajectory had also been followed.
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