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The reshocked turbulent Richtmyer–Meshkov (RM) mixing of two media is the most
representative problem of more general and complex turbulent mixing induced by
interfacial instabilities, broadly occurring in both nature and engineering applications.
An accurate prediction of its evolving of spatial structure and mixing width (MW)
is of fundamental importance. However, satisfactory prediction with the large-eddy
simulation (LES) has not yet been achieved, even for the most important MW.
In this paper, we innovatively solve this problem by combining the idea of the
constrained large-eddy simulation (CLES), which succeeded previously only in classical
single-medium turbulence, and our recently developed Reynolds averaged Navier–Stokes
(RANS) model, which realized a satisfactory prediction of MW. Specifically, in our
currently developed CLES model, with the aid of Reynolds decomposition, the unclosed
subgrid scale (SGS) LES model is decomposed into two parts, i.e. the averaged and
the fluctuating. The averaged part is dominated and modelled by the counterpart of our
recently developed RANS model to accurately predict the MW, while the fluctuating part
is modelled with the classical Smagorinsky model. Consequently, besides successfully
capturing the three-dimensional large-scale structure of turbulence and the evolution of
the (normalized) mixed mass, our newly proposed CLES also predicts a satisfactory MW
with a very coarse grid. To the best of our knowledge, this is the first time that the LES
can yield such a comparable result with experiment.
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1. Introduction

When a shock wave passes the interface of two fluids, the irregular perturbations
presented at the interface will first develop into and then transition into turbulence by the
induced Richtmyer–Meshkov (RM) (Richtmyer 1954; Meshkov 1969) instability and the
subsequent Rayleigh–Taylor (RT) (Rayleigh 1884; Taylor 1950) and Kelvin–Helmholtz
(KH) (von Helmholtz 1868; Kelvin 1871) instabilities. During this process, the shock
wave may repeatedly reflect back and reshock the mixing zone, significantly accelerating
the turbulent mixing of the two fluids. This whole process is called reshocked turbulent
RM mixing. Since this mixing involves the three classical interfacial instabilities, i.e. RT,
RM and KH instabilities, it is generally regarded as the most representative problem of
more general and complex turbulent mixing, which broadly occurs both in nature (e.g.
supernova explosions (Remington et al. 2000)) and engineering applications (e.g. inertial
confinement fusion (ICF) (Lindl, McCrory & Campbell 1992)). The systematic reviews of
turbulent mixing induced by hydrodynamic instabilities are given by Zhou (2017a,b) and
Zhou et al. (2019).

To describe mixing, one must quantify the evolution of the global mixing width (MW),
the (normalized) mixed mass (Zhou, Cabot & Thornber 2016) and the large-scale structure
among the mixing zone. To quantify their detailed evolution, in the past several decades,
some direct numerical simulations (DNS) and large-eddy simulations (LES) have been
conducted. However, considering that the computational cost of DNS is too expensive to
be affordable in the foreseeable future, LES becomes the unique viable method with the
ability of simultaneously capturing the structure and the MW. As for LES, the interactions
between large-scale and subgrid-scale (SGS) are modelled, with LES resolving the
large-scale structure. However, a satisfactory prediction of the reshocked RM mixing with
LES has not yet been achieved. Specifically, whether regarding the implicit LES (ILES)
conducted by Schilling & Latini (2010) and Grinstein, Gowardhan & Wachtor (2011), or
the explicit LES conducted by Ukai et al. (2009) with SGS kinetic energy model, or Hill,
Pantano & Pullin (2006) with the stretched vortex model, previous LES always overpredict
the MW – the most important quantity for describing the turbulent mixing.

In this paper, we solve the aforementioned problem by combining the advantages of
the LES in predicting large-scale structure and our recently developed Reynolds averaged
Naiver–Stokes (RANS) model in predicting the MW (Xiao et al 2020a; Xiao, Zhang &
Tian 2020b). This new method is named as the constrained large-eddy simulation (CLES).
The idea of CLES was based on Kraichnan (1985) and proposed by Chen et al. (2012) to
solve the overprediction of mean velocity profile in the LES of wall-bounded turbulence,
which is caused by the limitation of grid resource near the wall. Similarly, the limitation
also leads to the overprediction of the MW. However, the CLES has not been previously
used in multi-media flows, such as our currently investigated reshocked RM mixing. In
this paper, we will develop a CLES model for multi-media turbulence by constraining
the SGS model of LES with our recently developed RANS model. Specifically, referring
to the well-known Reynolds decomposition, the unclosed SGS terms of LES equations
are divided into the dominant averaging part and the fluctuating part. The averaging
part is carefully modelled with the counterpart of our recently developed RANS model
by requiring that the Reynolds averaged LES equations take the same form as that of
RANS equations, following the original idea of CLES for single-media turbulence. The
fluctuating part is modelled with the classical Smagorinsky model.

As we know, in multi-media turbulence, the evolution of MW is determined by the
additional species equations. It is our natural choice to model the SGS model terms of
species equations by our recently developed RANS model, as it has already achieved
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a satisfactory prediction of MW (Xiao et al. 2020a). To validate our newly proposed
CLES model, the widely compared reshocked RM mixing experiment by Vetter &
Sturtevant (1995) is simulated. The results show that, besides the successful capture of
three-dimensional large-scale structure of turbulent mixing, the CLES also produces a
satisfactory MW with very coarse grid. To the best of our knowledge, this is the first time
that LES gives such a comparable result with experiment.

The outline of this article is shown as below: § 1 introduces the background of this paper.
Section 2 gives the details of CLES. Section 3 describes the details of the reshocked RM
mixing and the numerical implementation. Section 4 compares the results of our CLES
with both the experiment and the RANS results. Section 5 gives a brief conclusion and
discusses our future work.

2. Constrained large-eddy simulation

2.1. LES equations
For a multi-species flow system, the LES equations ignore the molecular viscosity and can
be written as (Hill et al. 2006)

∂ρ̄

∂t
+ ∂ρ̄ũj

∂xj
= 0, (2.1)

∂ρ̄ũi

∂t
+ ∂(ρ̄ũiũj + p̄δij)

∂xj
=
∂τLES

ij

∂xj
, (2.2)

∂ρ̄Ẽ
∂t

+ ∂(ρ̄Ẽ + p̄)ũj

∂xj
=
∂τLES

ij ũi

∂xj
+
∂Qh,LES

j

∂xj
, (2.3)

∂ρ̄ψ̃i

∂t
+ ∂(ρ̄ψ̃iũj)

∂xj
=
∂Qψi,LES

j

∂xj
, (2.4)

where f̄ is the resolved part of a arbitrary variable f and f̃ ≡ ρf /ρ̄ is the Favre filtering; δij
is the Kronecker delta. The density, velocity in i-direction, temperature and pressure are
denoted as ρ, ui, T and p, respectively. The total energy per unit volume is E ≡ e + uiui/2,
where e is internal energy per unit mass and ψi is the mass fraction of species i. In this
paper, only two species are taken into account, and the equation of state for ideal gases is
used.

The subgrid terms appearing in (2.1)–(2.4) are defined as follows:

τLES
ij ≡ −ρ̄(ũiuj − ũiũj), (2.5)

Qh,LES
j ≡ −ρ̄(h̃uj − h̃ũj), (2.6)

Qψi,LES
j ≡ −ρ̄(ψ̃iuj − ψ̃iũj), (2.7)

where h ≡ e + p/ρ is enthalpy.

2.2. RANS equations
The RANS equations based on the K-L model are as follows (Xiao et al. 2020b):

∂〈ρ〉
∂t

+ ∂〈ρ〉{uj}
∂xj

= 0, (2.8)
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Cc Cp CA CB CD Cμ CL Nh Nk NL Nψ

1/3 2/3 11.2 0.76 0.2 1.19 0.19 0.35 0.43 0.04 0.35

Table 1. The model coefficients in K-L RANS model from Xiao et al. (2020a).

∂〈ρ〉{uj}
∂t

+ ∂(〈ρ〉{ui}{uj} + {p}δij)

∂xj
=
∂τRANS

ij

∂xj
, (2.9)

∂〈ρ〉{E}
∂t

+ ∂{uj}(〈ρ〉{E} + {p})
∂xj

=
∂τRANS

ij {ui}
∂xj

+
∂Qh,RANS

j

∂xj
, (2.10)

∂〈ρ〉{ψi}
∂t

+ ∂〈ρ〉{ψi}{uj}
∂xj

=
∂Qψi,RANS

j

∂xj
, (2.11)

∂〈ρ〉Kf

∂t
+ ∂〈ρ〉Kf {uj}

∂xj
= τRANS

ij
∂{ui}
∂xj

+ ∂

∂xj

(
μRANS

Nk

∂Kf

∂xj

)
+ SKf , (2.12)

∂〈ρ〉L
∂t

+ ∂〈ρ〉L{uj}
∂xj

= ∂

∂xj

(
μRANS

NL

∂L
∂xj

)
+ CLρ

√
2Kf + CCρL

∂{uj}
∂xj

, (2.13)

where Kf is the turbulent kinetic energy (TKE) and L is the turbulent length scale. Here,
〈 f 〉 and { f } ≡ 〈ρf 〉/〈ρ〉 denote the Reynolds and Favre average of an arbitrary variable
f , respectively. The Reynolds average stresses τRANS

ij , Reynolds heat flux Qh,RANS
j and the

Reynolds species flux Qψi,RANS
j are defined as

τRANS
ij ≡ −〈ρ〉({uiuj} − {ui}{uj}), (2.14)

Qh,RANS
j ≡ −〈ρ〉 ({huj} − {h}{uj}

)
, (2.15)

Qψi,RANS
j ≡ −〈ρ〉 ({ψiuj} − {ψi}{uj}

)
. (2.16)

These unclosed terms are modelled as

τRANS
ij = 2μRANS

(
{Sij} − 1

3
{Skk}δij

)
− Cp〈ρ〉Kf δij, (2.17)

Qh,RANS
j = μRANS

Nh

∂{h}
∂xj

+ μRANS

Nk

∂Kf

∂xj
, (2.18)

Qψi,RANS
j = μRANS

Nψ

∂{ψi}
∂xj

, (2.19)

where μRANS ≡ Cμ〈ρ〉L√
2Kf is the turbulent viscosity, Sij ≡ (∂ui/∂xj + ∂uj/∂xi)/2

is the strain-rate tensor, SKf ≡ 〈ρ〉√2Kf (CBALigi − 2CDKf /L) is the source term of
the TKE equation, ALi ≡ CAL(∂〈ρ〉/∂xi)/〈ρ〉 is the local Atwood number and gi ≡
−1/〈ρ〉(∂〈p〉/∂xi) is the acceleration. The 11 model coefficients are given in table 1.
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2.3. CLES models
In the current method, (2.1)–(2.4) are solved by CLES. The most important thing in CLES
is the modelling of unclosed SGS model terms FLES, where F can be τij,Qh or Qψ . To
close these terms, Reynolds decomposition is applied to the unclosed FLES to establish a
link between RANS and LES equations. Specifically, the unclosed SGS terms are divided
into the dominant averaging part and the fluctuating part as

FLES = 〈FLES〉 + F ′LES. (2.20)

We discuss how to model these two terms in §§ 2.3.1 and 2.3.2, respectively.

2.3.1. Modelling for the dominant average term
Following the original idea of CLES in single-media turbulence, in this paper we use the
RANS model to constrain this dominant average term. Specifically, the main principle to
model this term requires that the Reynolds averaged LES equations take the same form as
that of RANS equations. For the currently investigated problem, the turbulent multi-media
mixing are controlled by the additional species equations (2.4). Here we take (2.4) as an
example to show how to derive 〈Qψi,LES

j 〉.
First of all, the Reynolds averaged (2.4) is

∂〈ρψi〉
∂t

+ ∂〈ρ̄ψ̃iũj〉
∂xj

=
∂〈Qψi,LES

j 〉
∂xj

. (2.21)

Furthermore, we assume that the flow is ergodic. This assumption implies 〈 f̄ 〉 is in fact
the same as 〈 f 〉, which means

〈 f 〉 = 〈 f̄ 〉. (2.22)

Based on this relation, (2.21) becomes

∂〈ρψi〉
∂t

= −∂〈ρ̄ψ̃iũj〉
∂xj

+
∂〈Qψi,LES

j 〉
∂xj

. (2.23)

From the RANS equation for species (2.11), we have

∂〈ρψi〉
∂t

= −∂〈ρ〉{ψi}{uj}
∂xj

+
∂Qψi,RANS

j

∂xj
. (2.24)

According to CLES principles, the Reynolds averaged LES equations must take the same
form as that of RANS equations. From (2.23) and (2.24) we can easily derive the following
constraint relation involving 〈Qψi,LES

j 〉 as

〈ρ̄ψ̃iũj〉 − 〈Qψi,LES
j 〉 = 〈ρ〉{ψi}{uj} − Qψi,RANS

j . (2.25)

Further, based on the definitions of Favre filtering and Favre averaging, an arbitrary
quantity f satisfies the following relation (Jiang et al. 2013):

{ f } ≡ 〈ρf 〉
〈ρ〉 = 〈ρ̄f 〉

〈ρ̄〉 = 〈ρ̄ f̃ 〉
〈ρ̄〉 ≡ { f̃ }. (2.26)
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Then, (2.25) is rewritten as

〈Qψi,LES
j 〉 = Qψi,RANS

j + 〈ρ̄〉
(
{ψ̃iũj} − {ψ̃i}{ũj}

)
, (2.27)

which gives the specific model expression for 〈Qψi,LES
j 〉. From this expression, we can see

that 〈Qψi,LES
j 〉 is only determined by the counterpart of the RANS model and the filtered

fields of LES.
Similarly, the Reynolds averaged 〈τLES

ij 〉 and 〈Qh,LES
j 〉 are modelled as (Jiang et al. 2013)

〈τLES
ij 〉 = τRANS

ij + 〈ρ̄〉 ({ũiũj} − {ũi}{ũj}
)
, (2.28)

〈Qh,LES
j 〉 = Qh,RANS

j + 〈ρ̄〉
(
{h̃ũj} − {h̃}{ũj}

)
. (2.29)

2.3.2. Modelling for the fluctuating term
According to the definition of Reynolds decomposition, the fluctuating parts of SGS
models do not contribute to the evolution of the averaged field, and it only affects the
evolution of spatial structure. Therefore, we use the traditional SGS models to close the
fluctuating term. Specifically, the symbol FLES in (2.20) is calculated with the classical
Smagorinsky eddy-viscosity model (Garnier, Adams & Sagaut 2009) given below:

τLES
ij = 2μLES

(
S̃ij − 1

3
S̃kkδij

)
− 2

3
CI ρ̄Δ̄

2|S̃|2δij, (2.30)

Qh,LES
j = μLES

PrLES
∂ h̃
∂xj

(2.31)

with
μLES = C2

Sρ̄Δ̄
2|S̃|, (2.32)

where CS = 0.18, CI = 0.0066 and PrLES = 0.6 are model coefficients, μLES is the
subgrid viscosity, Δ̄ is the cutoff scale, and |S̃| is the magnitude of S̃ij. As for the additional
species of multi-media mixing, based on the gradient diffusion hypothesis, the traditional
SGS species flux Qψi,LES

j is introduced as

Qψi,LES
j = μLES

NLES
ψ

∂ψ̃i

∂xj
, (2.33)

where NLES
ψ is a parameter and equal to 0.35 in this research.

Collecting all the results, we have

τ ′LES
ij = 2μLES

(
S̃ij − 1

3
S̃kkδij

)
− 2

3
CI ρ̄Δ̄

2|S̃|2δij

−〈2μLES
(

S̃ij − 1
3

S̃kkδij

)
− 2

3
CI ρ̄Δ̄

2|S̃|2δij〉, (2.34)

Q′h,LES
j = μLES

PrLES
∂ h̃
∂xj

−
〈
μLES

PrLES
∂ h̃
∂xj

〉
, (2.35)

Q′ψi,LES
j = μLES

NLES
ψ

∂ψ̃i

∂xj
−

〈
μLES

NLES
ψ

∂ψ̃i

∂xj

〉
. (2.36)
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3. Numerical verification

3.1. Flow set-up
In this paper, we use the widely investigated experiment conducted by Vetter & Sturtevant
(1995) to validate the currently proposed CLES method. The computational domain is
[−0.2 m, 0.62 m] × [−0.1 m, 0.1 m] × [−0.1 m, 0.1 m] in the x-, y- and z-directions,
respectively. The left side containing the light fluid of air and the right side the heavy fluid
of SF6, separated by an irregular material interface (Tritschler et al. 2013, 2014) located at
x = 0.0 m, with the corresponding perturbed interface defined as follows:

xI( y, z) = a0| sin(πy/λ) sin(πz/λ)|

− 0.1a0

13∑
m=1

15∑
n=3

sin(mn)
2

sin
(mπ

5λ
y + tan(m)

)
sin

(mπ

5λ
z + tan(n)

)
, (3.1)

where a0 = 0.0025 m, λ = 0.02 m. The mixing is driven by a right-moving shock wave
initially located x = −0.05 m, with the corresponding non-dimensional speed of Mach
number Ma = 1.5. Therefore, the flow is initialized as follows. For the domain located at
the right side of the shock, the pressure, temperature and velocity are set as 23 000 Pa,
286 K and 0 m s−1, respectively. The remaining postshock domain is initialized according
to the Rankine–Hugoniot (RH) relations. The γ1 = 1.4 is the specific heat ratio of air.
Other thermodynamic parameters used in this simulation include the specific heat ratio of
SF6 (γ2 = 1.093), the molecular mass of air (M1 = 29.04 kg kmol−1), and the molecular
mass of SF6 (M2 = 146.07 kg kmol−1). Finally, the following boundary condition are
used. In the y–z plane, slip-wall boundary conditions are applied to the four sides. In
the x-direction, a non-reflecting boundary condition is imposed at the left end to avoid
the non-physical wave re-entering into the computational domain, while a wall boundary
condition is used at the right end to reflect the shock wave.

3.2. Numerical implementations
According to the logic of CLES presented above, both the LES equations and the RANS
equations are solved. First, the RANS equations (2.8)–(2.13) are solved in one-dimensional
uniform grids. Later, the LES equations (2.1)–(2.4) are solved in three-dimensional
uniform grids, with the RANS term FRANS appearing in (2.27)–(2.29) directly mapping
from that of RANS simulations. As for this mapping, due to the difference in the
distribution of grids along the x-direction of current RANS and LES simulations (see
next paragraph), the simplest linear interpolation from the RANS grid to the LES grid is
used in this paper. Both the LES equations and the RANS equations are solved by the same
code of Finite Difference for Compressible Fluid Dynamics (CFD2) developed by Zhang
et al. (2020a) since 2016.

The RANS equations are solved in fine grids, with grids of 1323 along the x-direction.
The convective terms are solved by combining the MUSCL5 scheme (Kim & Kim 2005)
and the HLLC Riemann solver (Toro, Spruce & Speares 1994). The turbulent diffusion
term is solved by a sixth-order centring difference scheme. The temporal term is advanced
by a third-order Runge–Kutta scheme, with fixed time step 	tRANS = 5 × 10−9 s.

The LES equations (2.1)–(2.4) are solved with a coarse grid of 410 × 101 × 101. The
convective terms are solved by combining the WENO5 scheme (Jiang & Shu 1996) and
the solver proposed by Rusanov (Toro 2013). The SGS terms are solved by a sixth-order
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0
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0.005 0.006

Figure 1. (a) Comparison of MW δMZ between current CLES (solid line), experiment by Vetter & Sturtevant
(1995) (squares), ILES by Schilling & Latini (2010) (dash line) and RANS model by Xiao et al. (2020a)
(dash-dot line). (b) Three-dimensional isosurface of ψ̃ at t = 0.01 s.

centring difference scheme. The time term is advanced by a third-order Runge–Kutta
scheme, with a fixed time step 	tLES = 5 × 10−7 s.

4. Results

4.1. Mixing zone width
As the MW is the most representative quantity to characterize mixing, it is investigated
and compared to validate the currently proposed CLES. For comparison with experiment,
the cutoff MW δMZ , defined with the concentration of species truncated at 1 % and 99 %
(Schilling & Latini 2010), is used in this paper. Figure 1(a) compares the evolutions of δMZ
among the experiment, the RANS model (Xiao et al. 2020a), the previous ILES (Schilling
& Latini 2010) and the current CLES. First, a distinct difference between the previous
ILES and the experiment is observed. In contrast, this difference is greatly mended in the
current CLES method. The CLES method significantly constrains the averaged species
field and does not overpredict δMZ . Consequently, a good agreement between current
CLES and experiment is observed, validating the effectiveness of the current CLES
method. In addition, we can also see that δMZ from the CLES is similar to the result from
the RANS model as expected. To the best of our knowledge, this is the first time that LES
can give such a comparable result with Vetter & Sturtevant’s experiment.

4.2. Mixing zone structure
As mention before, compared with the model, the most important advantage of the LES is
that it can capture the three-dimensional large-scale structure. As for mixing, the evolution
of structure is very important in understanding some critical mixing mechanisms. These
mechanisms include the early growth of structure (i.e. bubbles and spikes at the two
edges), and the later merging of the neighbouring structure during the stage of self-similar
turbulent mixing. In figure 1(b), we plot the three-dimensional iso-surface of ψ̃ at t =
0.010 s. From these figures, we can see that the large-scale structures are well resolved in
the current CLES methods.
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Figure 2. The evolution of (a) mixed mass and (b) normalized mixed mass calculated from CLES.

4.3. Mixed mass
Another important quantity to characterize the evolution of mixing layers is the mixed
mass. The normalized mixed mass proposed by Zhou et al. (2016) measures the efficiency
of the mixed mass. The definitions of the mixed mass M and the normalized mixed mass
Ψ are given by

M ≡
∫

4ρ̄ψ̃1ψ̃2 dV, Ψ ≡

∫
ρ̄ψ̃1ψ̃2 dV∫

〈ρ̄〉〈ψ̃1〉〈ψ̃2〉 dV
. (4.1a,b)

Compared with other traditional mixedness parameters, the normalized mixed mass is
able to provide more consistent result for both RT instability and RM instability flows. We
plot the evolution of mixed mass and normalized mixed mass calculated from CLES in
figures 2(a) and 2(b), respectively. The evolution of the mixed mass M is similar to that
of the MW in figure 1(a). This similar behaviour also exists in RT instability (Zhou et al.
2016; Zhang et al. 2020b). The normalized mixed mass converges to a constant when the
flow is fully developed.

5. Conclusion and discussion

Accurately predicting the evolution of spatial structure and MW of reshocked RM mixing
is of fundamental importance. Currently, the most viable method is LES. However,
satisfactory LES prediction has not been previously achieved. To achieve this prediction,
in this paper, we successfully extend the CLES from single-medium turbulence to
multi-media turbulence. Specifically, based on the Reynolds decomposition, the unclosed
SGS terms of LES are decomposed into the averaging part and fluctuating part. The
former dominates the evolution of the mean fields, while the latter affects the evolution of
structure. Therefore, to accurately predict the mean fields, the averaging part is modelled
by requiring that the Reynolds averaged LES equation takes the same form as that of
the RANS equation, which is the main idea of CLES. The fluctuating part is modelled
with the traditional SGS model. Consequently, the mean field calculated by the CLES
model predominantly depends on the RANS model, while the spatial structure and
the (normalized) mixed mass predominantly depend on the traditional SGS model. To
guarantee an accurate prediction, the most accurate K-L model given by Xiao et al. (2020a)
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is used in the RANS model, while the classical Smagorinsky model is used for the
SGS model. In a word, the CLES model provides a way to combine the RANS model
and the traditional SGS model.

With a very coarse grid, the current CLES successfully captures the MW growth of
reshocked RM mixing, as well as the evolution of three-dimensional large-scale spatial
structure and the (normalized) mixed mass. To the best of our knowledge, this is the
first time that LES is able to give such a comparable result with Vetter & Sturtevant’s
benchmark experimental results for reshocked RM mixing. The CLES provided a new
way to simulate multi-media turbulence. In the future, we plan to extend this method to
more challenging problems that have not been well predicted with traditional SGS models,
e.g. mixing problems with converging and complex geometries.
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