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Large volumes of data collected by the Automatic Identification System (AIS) provide opportu-
nities for studying both single vessel motion behaviours and collective mobility patterns on the
sea. Understanding these behaviours or patterns is of great importance to maritime situational
awareness applications. In this paper, we leveraged AIS trajectories to discover vessel spatio-
temporal co-occurrence patterns, which distinguish vessel behaviours simultaneously in terms
of space, time and other dimensions (such as ship type, speed, width etc.). To this end, avail-
able AIS data were processed to generate spatio-temporal matrices and spatio-temporal tensors
(i.e., multidimensional arrays). We then imposed a sparse bilinear decomposition on the matri-
ces and a sparse multi-linear decomposition on the tensors. Experimental results on a real-world
dataset demonstrated the effectiveness of this methodology, with which we show the existence
of connection among regions, time, and vessel attributes.
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1. INTRODUCTION. The increasing pervasiveness of the Automated Identification
System (AIS) is leading to the collection of large spatio-temporal datasets and to the
opportunity of discovering usable information about the navigational characteristics and
the mobility patterns of vessels. This fosters novel applications and services in the mar-
itime field. This can provide a tool that may help us understand how this knowledge relates
to vessels, such as vessel performance, vessel navigation safety, and spatio-temporal pat-
terns that characterise the trajectories vessels follow during their daily activity. However,
due to the increasing data volume and the possibility of data errors and missing data, auto-
matically discovering useful knowledge from such large AIS datasets is a challenge. As
discussed in work by Breithaupt et al. (2017), there are approximately 25 × 109 individual
AIS records from the United States (US) over a three-year period (2010–2012). In addition,
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Harati-Mokhtari et al. (2007) pointed out that real AIS data are not always reliable and in
many cases, contain incorrect individual records or missing fields.

Despite these challenges, recently various types of knowledge have been extracted from
AIS data by researchers (sometimes contextualised with data from other domains, e.g.,
environmental data). Several studies have aimed at discovering patterns of ship naviga-
tion safety, near misses (Van Westrenen and Ellerbroek, 2017; Zhang et al., 2016) and
accident investigation (Wang et al., 2013; Goerlandt et al., 2017). To obtain informa-
tion about ship collision avoidance, Hansen et al. (2013), Wang and Chin (2016) and
Goerlandt et al. (2017) discussed ship safety domains in open waters, confined waters,
and ice convoy operations respectively. Moreover, ship performance, such as manoeu-
vring and speed estimation, has been studied by Rong and Mou (2013) and Montewka
et al. (2015). Another type of knowledge that can be obtained from AIS data are ves-
sel spatio-temporal patterns. Spatio-temporal patterns that show the cumulative behaviour
of a group of moving objects and are useful to help understand mobility-related phe-
nomena (Giannotti et al., 2007). In this paper, we focus on the problem of mining
vessel spatio-temporal patterns, and some recent works on this topic are summarised
below.

The many existing techniques for vessel spatio-temporal knowledge discovery can be
classified as follows. They include parametric or nonparametric statistical methods, includ-
ing Bayesian networks (Johansson and Falkman, 2007; Lane et al., 2010; Mascaro et al.,
2014), Gaussian processes (Laxhammar, 2008; Will et al., 2011), Kernel density estima-
tor (Ristic et al., 2008; Laxhammar et al., 2009), and others. Laxhammar and Falkman
(2010) proposed a vessel trajectory anomaly detection model based on a conformal predic-
tion method. Aarsæther and Moan (2009), Willems et al. (2009) and Pan et al. (2012) used
visualisation models or image processing techniques to statistically learn vessel motion pat-
terns. Other methods include neural networks (Rhodes et al., 2007), support vector machine
methods (Li et al., 2006; Oliva, 2012), Kalman filters (Laws et al., 2011), clustering-based
techniques (Tun et al., 2007; Ristic et al., 2008; Goerlandt and Kujala, 2011; Pallotta et al.,
2013) and hybrid models. Clustering-based techniques try to group the feature vectors of
objects to find clusters, such as vessel clusters and trajectory clusters. Our work is interested
in unsupervised detection of co-clusters that simultaneously group rows and columns in a
data matrix, or find heterogeneous components in a higher-order tensor. Some works used
hybrid models that unite two or more types of methods. For example, Chen et al. (2015)
proposed a quantitative approach for delineating principal fairways of ship passages, which
utilises clustering, kernel density estimation and a statistical inference model.

Another concept we consider is the “area of interest”. Several works (Vespe et al., 2008;
George et al., 2011; Liu and Chen, 2014) subdivide the area of interest into spatial grids
whose cells are characterised by the motion properties of the crossing vessels. However,
in our work, the regions obtained are manually partitioned according to the water shape
and fairways of vessels. The reasons are firstly, that an a priori selection of the optimal
cell size is needed, and when increasing the scale, the computational burden of the grid-
based approach grows rapidly. Secondly, the manual partition approach takes advantage
of available experts’ knowledge effectively, so that grids on the land can be merged and
some obvious functional regions can be pointed out. Moreover, in the work by Liu and
Chen (2014), tensor CANDECOM/PARAFAC(CP) decomposition was utilised to analyse
three mode characteristics of the data, which are location, vessel and time. They exploited
the Link prediction technique based on tensor factorisation to recover vessel tracks in a
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specified area. The steps of tensor construction and decomposition are somewhat like our
work, but they concern the location, vessel and time factor matrices rather than co-clusters,
and without imposing sparsity to these factors.

So far, to the best of our knowledge, there is no attempt to deeply explore relationships
among space, time, and other vessel attributes simultaneously in the maritime domain.
In this paper, we fill this gap by mining vessel spatio-temporal co-occurrence patterns,
referred to as co-clusters, from a large set of vessel trajectories. We aim to discover groups
of regions and time-slices (or more than these two dimensions) that consistently behave in
a coordinated way, suggesting the existence of potentially hidden connections among these
dimensions. To this end, a non-negative bilinear matrix decomposition with sparse latent
factors is utilised for matrices and non-negative Canonical Polyadic (CP) decomposition
with sparse latent factors is utilised for tensors. The benefit of imposing sparsity and non-
negativity is two-fold (Papalexakis et al., 2013). First, it can reduce noise and is good for
co-cluster selection. Second, when increasing the number of fitted co-clusters, new co-
clusters are added without affecting those previously extracted. Thus, the uniqueness of the
CP decomposition can be ensured.

The rest of this paper is structured as follows. Section 2 provides preliminaries of this
paper and presents a co-clustering model. Section 3 presents a framework of AIS data pro-
cessing. In Section 4, numerical calculation results are presented, and based on that, some
discussions and explanations are given. The conclusions and possible future extensions of
this research are discussed in Section 5.

2. PRELIMINARIES AND CO-CLUSTERING MODEL.
2.1. Preliminaries. This study focuses on AIS-derived trajectories; thus, some

definitions are made based on what would be useful in analyses of such trajec-
tories. Moreover, the definitions also provide the background and objective of this
paper.

Definition 1 (Trajectory): A vessel trajectory Tr is a trace generated by a moving vessel
on the water area during a specified period, usually represented by a set of discrete points,
ordered by timestamps. Each point p in Tr is a triplet consisting of a geospatial coor-
dinate set and a timestamp, Tr = {<lon1, lat1, t1>, <lon2, lat2, t2>, . . . , <lonN , latN , tN >}.
Because the dataset is from AIS, more information can be added to these trajectory points,
including vessel identity, course/speed over ground, ship type, ship length, ship width, and
ship status.

Definition 2 (Voyage): Since the global trajectory of a vessel may have a lot of stops
and voyages, Tr is split into several Voyages according to these stops, which represent the
starts or ends of Voyages, i.e., Voyage is the subset of the trajectory, Trj = ∪i Voyageji, and
Voyagejr ∩ Voyagejs = Ø, where r =/ s.

Definition 3 (Region): We partition the area of interest into regions Re = {r1, r2, . . . , rM }
according to the water shape and fairways of vessels, instead of using uniform grids. Then
each point p of Voyages is labelled by the region it belongs to. These regions are the
minimal unit of space in the following study.

Definition 4 (Transition): A Voyage may cross a set of regions, causing transitions
Trans = {<r1, t1>, <r2, t2>, . . . , <rn, tn>}, here ri, and ti (i = 1, 2, . . . , n) denote the i-th
region and the i-th time-slice respectively, and ti > ti−1. If a ship leaves ri at time ti and
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Figure 1. Explanation of the spatio-temporal co-occurrence pattern (2D). Three matrices found here
represent three different variation patterns of indicators. C1, rows: r1 and r3, columns: [t9, t20]; C2, rows:
r1, r3 and r4, columns: [t10, t12]; C3, rows: r4 and r5, columns: [t0, t4] ∪ [t24, t32].

arrives rj at time tj , then a leaving Trans occurs at time ti for ri, and an arriving Trans
occurs at time tj for ri.

Problem Definition: Given an AIS dataset S = {p1, p2, . . . , pN }, its time range T is par-
titioned uniformly by Γ intervals T = {[t0, t1], [t1, t2], . . . , [tΓ −1, tΓ ]}. We project S onto
regions Re, formulating a Spatio-Temporal Matrix SPMM×Γ , where row stands for region
and column stands for time interval. An entry <m, [tτ−1, tτ ]> in SPMM×Γ is associated
with an indicator; it can be the amount of leaving Trans, arriving Trans, or total Voyages
in each region during each time interval. Then we detect the spatio-temporal co-occurrence
pattern P = {C1, C2, . . . , CK }, where Ck is a Ik × Jk matrix, and 1 < Ik < M , 1 < Jk < Γ ,
denoting a pattern that reflects the indicator shares a similar variation in these Ik regions
during these Jk time intervals. Figure 1 shows an example to explain the Two-Dimensional
(2D) spatio-temporal co-occurrence pattern, where the SPM has five regions and with a
time duration [t0, t32]. In the right part of Figure 1, P = {C1, C2, C3}, and C1 is a matrix
including regions r1, r3 and time-slices t9 − t20. We know that the indicators (e.g. num-
ber of Voyages) of r1 and r3 are changing consistently in [t9, t20], shown in the left part of
Figure 1 (dashed red rectangle).

The problem could be extended to third or higher-order cases because AIS data are
indexed by three or more variables. Without loss of generality, we use a third-order tensor
to store data, in which T and Re are still dimensions. An extra dimension U is added to the
matrix SPM, for instance, the ship type, formulating a spatio-temporal tensor SPT�×L×M ,
whose (τ , l, m)-th element SPT(τ , l, m) is the amount of Voyages (or leaving Trans and
arriving Trans) in ship category ul in region rm during time interval [tτ−1, tτ ]. Thus,
the spatio-temporal co-occurrence pattern P discovered from SPT is a set of third-order
data arrays {C1, C2, · · · , CK }. An example illustrating the third-order problem definition
is presented in Figure 2. Note that Ck(τ , l, m) =/ SPT(τ , l, m), while Ck holds some indices
from SPT.

Combining the second and higher-order cases to detect spatio-temporal co-occurrence
pattern P, we define the following three criteria. Criterion 1 limits the scope of this paper,
namely, we explore spatio-temporal knowledge from AIS data; criterion 2 shows that we
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Figure 2. Explanation of the spatio-temporal co-occurrence pattern (3D). This example is to find
groups of regions, time-slices and ship types (e.g. Ck), to discover whether the number of Voyages (the
indicator) with certain ship types change similarly, both in certain regions and in certain time-slices.

focus on selecting indices of each dimension but not entries of SPM or SPT; criterion 3
shows consecutive variables must be partitioned into different categories.

(1) Data matrix SPM or tensor SPT must have T and Re dimensions.
(2) Indices of Ck or Ck are subsets from that of SPM or SPT.
(3) For third and higher-order tensors, extra dimensions (T and Re excluded) must be

partitioned into different categories.

There are many combinations of variables to form data arrays, such as the region-speed
matrix, time-width-speed tensor, and course-speed-ship type-length tensor. Of course, if
we impose the above mentioned method on these data arrays, we can also find some rela-
tionships between different dimensions. However, exploring data arrays without T and Re
dimensions is beyond the scope of this paper. For convenience, we use region-time matrix
and region-time-ship type tensors as representatives in the following study.

2.2. Co-clustering Model. Approaches such as Principal Component Analysis
(PCA), Non-negative Matrix Factorisation (NMF) and ordinary CP decomposition are
alternatives for solving our problem. However, the results of PCA are too noisy to choose
indices, and the new vectors produced are hard to explain. NMF also has noisy results, and
its decomposition is non-unique. As to the ordinary CP decomposition, this is discussed in
Equation (3) below.

Co-clustering selects rows and columns simultaneously in a matrix, while it groups
along multiple modes in higher-order tensors. Various co-clustering formulations have been
proposed. In this paper we use the version that imposes non-negativity and sparsity on the
latent factors of matrix bilinear decomposition and tensor CP decomposition (Papalexakis
et al., 2013), by which co-clusters can be equivalently added one by one, in an additive
way. Moreover, the selection of rows and columns becomes easy because of the reduction
of noise.
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Figure 3. CP decomposition of a third-order tensor.

Mathematically, the co-clustering scheme for matrices (non-negative sparse bilinear
decomposition) can be stated as the minimisation of the following loss function:

min
A≥0,B≥0

||X − ABT||2F + λ
∑

i,k

|A(i, k)| + λ
∑

j ,k

|B(j , k)| (1)

where X is the original I × J data matrix; A and B are factor matrices with size I × K
and J × K respectively; K denotes the number of co-clusters extracted and λ is a sparsity
controlling parameter. We rewrite the factor matrices with vectors and the problem can then
be formulated as:

min
{ak≥0,bk≥0}K

k=1

||X −
K∑

k=1

akbT
k ||2F + λ

∑

k

||ak||1 + λ
∑

k

||bk||1 (2)

where akbT
k is a rank-1 matrix, and denotes a co-cluster, with some rows and columns made

up of zeros. The �1 norm part in Equation (2) is used as a sparsity enforcing surrogate to
penalise the number of non-zero elements of ak and bk.

The co-clustering model is extended to third and higher-order cases. Here, we con-
sider third-order tensors. Note that the CP decomposition factorises a tensor into a sum of
component rank-1 tensors (as shown in Figure 3):

X ≈
F∑

f =1

af ◦ bf ◦ cf (3)

where X ∈ RI×J×N is the original data tensor, F is the number of components and the
symbol “◦” represents the vector outer product. However, af , bf and cf are noisy here,
so that it is hard to select the co-cluster from af ◦ bf ◦ cf . Explanation of the components
becomes difficult for the possible negative elements in the factors. Moreover, the unique-
ness of ordinary CP decomposition is a problem. These problems can be solved by using the
non-negative CP decomposition with sparse latent factors, which is formulated as follows:

min
{ak≥0,bk≥0,ck≥0}K

k=1

||X −
K∑

k=1

ak ◦ bk ◦ ck||2F + λ
∑

k

||ak||1 + λ
∑

k

||bk||1 + λ
∑

k

||ck||1 (4)

where K corresponds to the number of extracted co-clusters; ak, bk and ck are columns
of factor matrices A ∈ RI×K , B ∈ RJ×K and C ∈ RN×K respectively; ak ◦ bk ◦ ck is an
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I × J × N rank-1 third-order array, denoting a co-cluster, in which some rows, columns
and fibres are made up of zeros. The function of the �1 norm part in Equation (4) is as the
same as that in Equation (2).

Papalexakis et al. (2013) discussed the impact of choice of λ and K . We use the higher-
order co-clustering algorithm and its second-order analogue proposed by them to solve
Equations (4) and (2).

3. DATA PROCESSING FRAMEWORK. In real situations, raw AIS data are not
expected to be utilised directly, but they must be processed into suitable forms. In this
paper, we present a processing framework for AIS data, shown in Table 1. The details are
as follows.

We extract vessel dynamic information and static information over a designated area and
a designated period from a large AIS database. Available dynamic information contains
MMSI (Maritime Mobile Service Identity), longitude, latitude, speed, status, course and
UTC time (Coordinated Universal Time). The available static information contains MMSI,
ship name, ship type, ship length, ship width and draught.

Next, we associate dynamic fields with static fields by MMSIs. However, data errors
and missing fields are inevitable. Some records sharing a common MMSI have different
ship name and ship type, and in this case we only keep the dynamic information. Data
with erroneous MMSIs such as “1”, “6” and “99” are eliminated since a lot of vessels
use these MMSIs. Some records have the same MMSI and ship name, but different ship
type, length and width. We then consider two types of situations: can ship types can be
aggregated or not? Illustrating that with an example, if the identifiers used to report ship
type of these records are “70”, “72”, and “74”, then all these records will be classified as
“cargo”; however, if the identifiers are “60”, “50” and “82”, corresponding to “passenger”,
“pilot” and a type of “tanker” respectively, we only keep the dynamic fields. As a result, all
ship types will be aggregated into L categories, coded from 1 to L.

Next is the trajectory processing. As basic spatio-temporal statistics from raw AIS data
are not well suited to supporting the discovery and analysis of vessel movement patterns,
the AIS data are processed into individual vessel trajectories according to MMSI. All the
samples of the same MMSI over the entire period are chained together in increasing tem-
poral order into a global trajectory. However, the global trajectory of a vessel may contain
numerous stops and voyages. The global trajectory is then split into several Voyages, by
using cut-off thresholds. If the time interval between two points of a Voyage is larger than α

and during that interval the movement range is less than β, a stop occurs. The first point is
deemed as the end of a Voyage and the second is deemed as the start of another. In addition,
to deal with missing data, Linear interpolation is utilised to complement points of Voyages.
For each Voyage, if the distance between two points is larger than γ , then

Interpolation_num =
Missing_dis
Voyage_dis

∗ Voyage_points_num (5)

where Interpolation_num and Voyage_points_num denote the number of points needed to
be interpolated and the number of points of the Voyage. While missing_dis and Voyage_dis
stand for the distance need to be interpolated and the total distance of the Voyage. This
interpolation ensures that each region a Voyage passes through can be detected. However,
using Linear interpolation may cause some problems, which must be further studied. For
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Table 1. AIS data processing framework.

Step 1: Extract vessel dynamic information and static information over a designated area and a designated
period from the AIS database;

Step 2: For each record of dynamic information, connect it with a record of static information by MMSI;
handle data errors and missing fields; aggregate all ship types into L categories;

Step 3: For each vessel, generate a Tr; for each Tr, split it into several Voyages by using a temporal cut-off
threshold α and a spatial cut-off threshold β; for each Voyage, interpolate points by using a spatial
threshold γ ;

Step 4: Partition the area of interest into M regions; label all samples according to the region it belongs to;
Step 5: Construct data arrays.

instance, if there are “outlier” points, there will be a line interpolated between the correct
and the outlier points, which may lead to some further errors in the analysis. Also, when
a vessel sails around an island but there is a gap in the data, the interpolation may fix the
points over a land area.

The next step is map segmentation and data mapping. The map of the concerned area
is manually partitioned into M regions. Then we convert the map to a binary image. It
is easy to recognise the borderlines since their pixels are in a colour that is not used to
show the region pixels. Next is the Connected Component Labelling (CCL) step (Shapiro
and Stockman, 2001), which finds individual regions by clustering non-borderline pixels.
Finally, since each pixel has a region label and spatial coordinates, the AIS data mapped to
these pixels can be given region labels.

Following these steps, we construct the SPM and SPT defined in Section 2.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS. To verify the feasibility of our
method and to discover knowledge about hidden connections among space, time, and vessel
attributes, real case studies that include a second-order test and a third-order test were
carried out. The calculation was processed in the MATLAB R2013b 64-bit program on a
PC with Intel Core i7–4790 CPU at 3·60 GHz, 16-GB RAM equipped with Windows 7.

4.1. Dataset and Data Processing Results. We utilised a real-world AIS dataset with
respect to Shanghai port, with data from military vessels removed. Table 2 shows details
of the AIS data samples after eliminating data with erroneous MMSIs.

Ship types were divided into 15 categories, as listed in Table 3. After processing, 4,868
ships in the dataset had ship types, and the type numbers of the rest were set to 0. The
temporal cut-off threshold α and spatial cut-off threshold β for trajectory splitting were set
to 5 hours and 50 kilometres respectively, and the Linear interpolation threshold γ was
also set to 50 kilometres. After trajectory processing, we obtained 12,011 different Voyages
and 1,208,109 data records. Moreover, the map was segmented into 32 regions and time
duration was partitioned into 72 slices, meaning each lasted for 2 hours. Figures 4 and 5
show the results of data processing.

4.2. Second-order Case. The statistical results of the region-time matrices are shown
in Figure 6. The amount of leaving Trans, arriving Trans, and total Voyages in each region
in each time interval were counted respectively. When checking these original matrices, we
can see some regions have large flows while others have little. However, it is difficult to
find useful patterns intuitively because the data are noisy.
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Table 2. Details of AIS data samples.

Area studied Time duration Data volume Ships Voyages

Longitude: 121·105◦ ∼ 122·5◦E From: 2011·10·26 00:00:00 1,190,856 6,526 12,011
Latitude: 30·61◦ ∼ 31·885◦N To: 2011·10·31 23:59:59

Table 3. Ship category taxonomy.

Code Ship type Code Ship type

0 For data without ship type 8 Passenger
1 Cargo 9 Tug or Pilot
2 Dredger or Underwater Operations 10 Pleasure or Sailing
3 Fishing 11 Port Tender
4 High Speed 12 Tanker
5 Law Enforcement or Local 13 Towing
6 Navigation Aid 14 Unspecified
7 Others 15 Wing-in Ground

We use the leaving SPM and the Voyages SPM as examples. Co-clusters extracted from
these SPMs are illustrated in Figures 7 and 8. The co-clusters can be fitted in an additive
way, and the result is not sensitive to the parameter K in Equation (2), so we extracted
the first nine co-clusters in this paper. The parameter λ is self-adaptive in the second-order
algorithm. Moreover, to discover some possible patterns on the time mode, we normalised
the rows of the leaving SPM before calculation. By doing this, the variation of values
through the time mode can be captured. Similarly, the columns in the Voyages SPM were
normalised to find possible patterns in the region mode. The value of each entry in a co-
cluster reflects the proportion of leaving Trans or Voyages that was assigned to this co-
cluster, which can also be explained as “the degree of belonging” to this co-cluster, and
was scaled to 0-1 for each co-cluster to show more clearly in pictures.

In Figure 7, co-cluster 1 contains most regions and time-slices, reflecting that the leav-
ing behaviour of vessels in most of regions in the area of interest share a common type of
time rule, while co-clusters 2–9 represent other time regularities. Comparing co-cluster 1
in Figure 7 with the original leaving SPM in Figure 6, we find that in co-cluster 1 noise is
reduced and data are fluctuating periodically along the rows. Values of co-cluster 1 are then
depicted in Figure 9, in which the numbers on the horizontal axis are transferred to Shang-
hai local time (Beijing time, 8 hours earlier than UTC time). We can see approximately
six peaks from 0800 on 26 October to 0800 on 1 November, each peak appears at about
1000 ∼ 1400 while valleys appear at about 0200 ∼ 0600. Note that this periodic pattern
cannot be found directly from the original matrix.

Next, we validated the discovered periodic pattern in Figure 9 using kernel density esti-
mation. The density maps of region 18 over a one day period are illustrated in Figure 10,
showing that the vessel volume changes along with time and this phenomenon accords with
people’s daily lives.

In Figure 8, each co-cluster captures a fluctuation pattern on the region dimension for
each time-slice. Here, we also interpret the pattern of co-cluster 1 as it contains the majority
of regions and time-slices. Values of co-cluster 1 extracted from the Voyages SPM are
illustrated in Figure 11. We can clearly see that in almost all time-slices, the values of each
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Figure 4. The AIS samples and the result of map segmentation.

Figure 5. The samples with region labels (left) and the Voyages after trajectory processing (right).
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Figure 6. The region-time matrices. Left: the leaving SPM. Middle: the arriving SPM. Right: the Voyages
SPM. Different value of entry in a matrix is represented by a different colour.

Figure 7. Co-clusters 1-9 extracted from the leaving SPM by normalisation of the time mode.

region contained by this co-cluster maintain a steady level. This reflects the fact that the
proportions of Voyages of many regions in the area of interest do not change much by
time. Regions that have large flows always have large flows, and regions with small flows
always stay at a low flow level. In addition, we see regions 5, 10, 15, 18 and 32 have a
relatively larger proportion of Voyages, which are all main channels on the map. Figure 12
depicts flows derived from regions 5, 10 and 15, showing that flows always transit along
main channels. For instance, large flows derived from region 10 reach to regions 5, 8, 15
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Figure 8. Co-clusters 1-9 extracted from the VoyagesSPM by normalisation of the region mode.

Figure 9. Co-cluster 1 extracted from the leaving SPM, showing a periodic pattern on the time mode.
Time-slices were transferred to intervals of local time, and each line stands for a region.

and 18, with the former three located in the main channels of the Yangtze River, and the
latter located in the Huangpu River, which crosses downtown Shanghai. However, only
very small flows reach to other regions.
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Figure 10. Density maps of region 18. Left up: the region validated. Middle up: h10-12, d29. Right up:
h16-18, d29. Left down: from h22 to midnight, d29. Middle down: h2-4, d30. Right down: h6-8 d30.

Figure 11. Co-cluster 1 extracted from the Voyages SPM. Each line stands for a time-slice, and in almost all
time-slices, the values of each region contained by this co-cluster maintains a steady level.

Compared with co-cluster 1, the other co-clusters in Figure 8 have regions whose values
change by time. For example, co-cluster 8 in Figure 8 contains region 31, 32 and some
time-slices, in which the values of these two regions change by time in a coordinated way.
The reason found for this coordination was that they are neighbours located in the southeast
of the map. Note that regions 31 and 32 are also included in co-cluster 1, an interpretation of
this is that co-cluster 1 captures the non-varying part of values while co-cluster 8 captures
the variation shared by only regions 31 and 32.

4.3. Third-order Case. By normalisation of the ship type dimension before calcula-
tion, each co-cluster extracted from the ship type-region-time tensor denotes a pattern that
shows the distribution change of Voyages on the ship type mode (i.e. vessels with certain
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Figure 12. Flows from origins to destinations (red: origins; blue: destinations). Origins: region 5 (left), region
10 (middle), region 15 (right).

Figure 13. Co-clusters 1-8 extracted from the ship type-region-time tensor by normalisation of the ship type
mode. The indicator used to fill the entries of original tensor is the number of Voyages.

ship types exist in particular regions in particular time-slices). Like the second-order case,
the value of each entry in a co-cluster reflects the proportion of Voyages that was assigned
to this co-cluster, or its “degree of belonging” to this co-cluster.

Figure 13 shows co-clusters 1 to 8 extracted from the ship type-region-time tensor, and
Figure 14 presents the value of co-clusters on three modes, ship type, region and time. From
the ship type mode on the top panel in Figure 14, we see that all ship types in co-cluster 1
(blue line) have values lager than 0·2 (the significant threshold for ship types), meaning that
this co-cluster includes all ship types. However, values of ship types in other co-clusters
show more complex modes than that for co-cluster 1. Each co-cluster of 2 to 8 contains one
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Figure 14. Each mode of the decomposition of ship type-region-time tensor, with all 8 co-clusters plotted
overlying each other.

or more ship types, nearly all of which are different from one co-cluster to another (without
considering values less than 0·2). As to the region mode in Figure 14, we see some regions,
which have larger flows (e.g. region 5, 10, 15, 20), that are shared by different co-clusters.
In addition, all co-clusters are approximately continuous on the time mode, see Figure 13.
The values are approximately constant, denoting that time impact on these co-clusters is
not noteworthy. Detailed interpretations about these eight co-clusters are given below.

Ship types of each co-cluster extracted from the ship type-region-time tensor are
described in Table 4. Regions of each co-cluster are shown on the maps in Figure 15, and
the significant threshold for regions is 0·1. Since the time dimension has little influence on
these co-clusters, we ignore it. By analysing regions and ship types of each co-cluster, we
can conclude the meaning hidden in each co-cluster as follows:

• Co-cluster 1: main channels. This co-cluster contains all ship types, and all regions
in it have heavy traffic, especially those located in the Yangtze and Huangpu Rivers.

• Co-cluster 2: port and entrance areas. Dredgers or underwater operation vessels
mainly exist in port areas and port entrances, to ensure large ships from the sea
can enter the port. Some tankers and navigation aids are also distributed in these
areas.

• Co-cluster 3: fishing zone. Only fishing vessels are included in this co-cluster, and
regions here are all far away from land.

• Co-cluster 4: areas with navigation aids. Navigation aids included by this co-cluster
mainly exist in region 10, which is a busy inner water port area.

• Co-cluster 5: deep water port. Yanghshan deep water port is in region 30, connecting
to downtown Shanghai with a channel. It is to be expected that there are many towing
ships.
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Table 4. Ship types of each co-cluster extracted from the ship type-region-time tensor. The values on ship type
mode are grouped to low, middle, and high levels.

Ship type
Co-cluster
number Low (0·2 ∼ 0·35) Middle (0·35 ∼ 0·5) High (0·5 ∼ 1)

1 Towing, Fishing. Dredger or
Underwater
Operations.

Cargo, High Speed, Law
Enforcement or Local, Navigation
Aid, Others, Passenger, Tug or
Pilot, Pleasure or Sailing, Port
Tender, Tanker, Unspecified,
Wing-in Ground.

2 Cargo, Navigation
Aid, Tug or Pilot.

Others. Dredger or Underwater Operations.

3 - - Fishing.
4 - - Navigation Aid.
5 High Speed. - Towing.
6 - - Tug or Pilot, Others.
7 - Tanker, Unspecified. Cargo.
8 Law Enforcement or

Local.
- Passenger, Pleasure or Sailing, Port

Tender.

Figure 15. Regions of each co-cluster extracted from the ship type-region-time tensor. The values on the
region mode are coloured red (0·5 ∼ 1), yellow (0·35 ∼ 0·5), green (0·2 ∼ 0·35) and blue (0·1 ∼ 0·2).

• Co-cluster 6: inner water ports. Tugs and pilot vessels are mainly contained by this
co-cluster, because all regions in this co-cluster have inner water ports.

• Co-cluster 7: active areas of cargo ships and tankers. In this co-cluster, areas which
cargo ships and tankers move across have a large range, from inner water to the open
sea.

• Co-cluster 8: entertainment area. The Huangpu River in Shanghai is a famous tourist
attraction, each day many cruise ships and passenger ships sail back and forth along
it. Since it is so busy, some port tenders, law enforcement vessels and local vessels
are also distributed in this region.
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5. CONCLUSION. Transforming massive amounts of AIS raw data into high-level
knowledge is of great importance to maritime situational awareness applications. In
this paper, we proposed a vessel spatio-temporal co-occurrence pattern to unveil vessel
spatio-temporal knowledge and utilised the co-clustering method to detect this from AIS
trajectories. Some definitions related to vessel trajectory and a suite of data processing
methods were introduced in this work. The vessel spatio-temporal co-occurrence pattern
provides insight into not only a single dimension (e.g. the relation between regions), but
also relationships among multiple dimensions. Experimental results show that we discov-
ered patterns in time and space modes from real AIS trajectories, as well as the function
of regions. We found and validated groups of regions and time-slices (or more than these
two dimensions) that consistently behave in a coordinated way, suggesting the existence of
connections among these dimensions.

Future work may include exploring the impact of choice of thresholds α, β and γ for
trajectory processing, exploring the construction of data arrays to find fleet activity patterns,
extending the time span to find long term patterns (e.g. weekly, monthly, and quarterly),
expanding the area of interest to find long-range patterns, and finding patterns from cross-
domain data sources.
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