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DISCRETE CHOICE AND COMPLEX
DYNAMICS IN DETERMINISTIC
OPTIMIZATION PROBLEMS

TAKASHI KAMIHIGASHI
RIEB, Kobe University

This paper shows that complex dynamics arises naturally in deterministic discrete choice
problems. In particular, it shows that if the objective function of a maximization problem
can be written as a function of a sequence of discrete variables, and if the (maximized)
value function is strictly increasing in an exogenous variable, then for almost all values of
the exogenous variable, any optimal path exhibits aperiodic dynamics. This result is
applied to a maximization problem with indivisible durable goods, as well as to a Ramsey
model with an indivisible consumption good. In each model, it is shown that optimal
dynamics is almost always complex. These results are illustrated with various numerical
examples.
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1. INTRODUCTION

Discrete choice problems abound in economic decision-making. Most manufac-
tured products, real estate, and works of art are indivisible. Choices regarding
education, occupation, marriage, etc. are discrete in nature. It is not surprising that
over the past decades, dynamic discrete choice models have gained considerable
popularity in empirical studies [e.g, Keane and Wolpin (2009); Aguirregabiria and
Mira (2010)].

In sharp contrast to the popularity of these models, there have been very few
developments regarding deterministic, dynamic discrete choice problems since
Kamihigashi (2000a, 2000b).1 The purpose of this paper is to reinforce the point
made in our earlier work that complex dynamics arises rather naturally in de-
terministic discrete choice models.2 In particular, we show that if the objective
function of a maximization problem can be expressed as a function of a sequence of
endogenous discrete variables, and if the value function (or maximized value of the
objective function) is strictly increasing in an exogenous variable, then for almost
all values of the exogenous variable, any optimal path exhibits aperiodic dynamics.

This result generalizes the similar result shown in Kamihigashi (2000b) for a
life-cycle model with an indivisible consumption good. Another similar result was
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shown in Kamihigashi (2000a) for an optimization problem with indivisible labor.
Whereas these previous results were shown for specific models, the result shown
in this paper is extremely general and can be applied to a wide range of economic
problems. For example, we apply it to an optimization problem with indivisible
durable goods as well as to a Ramsey model with an indivisible consumption
good, and show that in these models, optimal paths almost always exhibit complex
dynamics. These results are illustrated with various numerical examples.

This paper is related to two branches of the literature on the optimal dynamics
of deterministic models. First, because discrete choice problems can be regarded
as models with nonconvexities, this paper adds to the literature on the discrete-
time dynamics of optimal growth with nonconvexities, which was initiated by the
seminal paper of Dechert and Nishimura (1983).3 Second, this paper is also related
to the literature on the possibility of chaos in optimal growth models with low
discounting [e.g., Nishimura and Yano (1995); Nishimura et al. (1994)], because
our result shows that the optimal dynamics of a discrete choice model can be
complex for any discount factor.4

The rest of the paper is organized as follows. Section 2 establishes our general
result. Section 3 illustrates this result with a model with an indivisible consumption
good as well as one with indivisible durable goods. Section 4 studies a Ramsey
model with an indivisible consumption good.

2. THE GENERAL RESULT

Let n ∈ N. Let λ(A) denote the Lebesgue measure of the (Lebesgue) measurable
set A ⊂ R, and λn(B) the Lebesgue measure of the measurable set B ⊂ Rn. For
j = 1, . . . , n, let Ij be an interval in R with nonempty interior. Each Ij need not
be closed and need not be bounded. Let X = ∏n

j=1 Ij . Let K be a nowhere dense
(thus countable) subset of Rm with m ∈ N. Define K∞ to be the set of sequences
in K: K∞ = {{ct }∞t=0 : ∀t ∈ Z+, ct ∈ K}. Let C be a correspondence from X to
K∞; i.e., ∀x ∈ X,C(x) ⊂ K∞. Define D = ∪x∈XC(x). Let w : D → R. We
assume the following.

Assumption 1. For each x ∈ X, maxc∈C(x) w(c) exists in R.

For x ∈ X, define

v(x) = max
c∈C(x)

w(c), (1)

C∗(x) = argmax
c∈C(x)

w(c). (2)

We use the following definitions: a function g : Rn → R is strictly increasing if
g(x) < g(y) whenever x < y;5 a sequence {zt }∞t=0 (in K or Rn) is periodic if there
exists i ∈ N such that ∀t ∈ Z+, zt+i = zt ; a sequence {yt } is eventually periodic
if there exists a periodic sequence {zt } such that ∃T ∈ Z+,∀t ≥ T , yt = zt ; a
sequence {yt } is asymptotically periodic if there exists a periodic sequence {zt }
such that ‖yt − zt‖ → 0 as t ↑ ∞, where ‖ · ‖ is any equivalent norm; and
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a sequence {yt } is asymptotically aperiodic if it is not asymptotically periodic.
Because K is nowhere dense, a sequence in K is asymptotically aperiodic if and
only if it is not eventually periodic.

We are ready to state the main result of this paper:

THEOREM 1. Suppose that v : X → R is strictly increasing.6 Then for
almost all x ∈ X (with respect to Lebesgue measure), any sequence {ct } ∈ C∗(x)

is asymptotically aperiodic. In particular, there exists a measurable set Z ⊂ X

such that (a) λn(Z) = 0 and (b) for each x ∈ X \ Z, any sequence {ct } ∈ C∗(x)

is asymptotically aperiodic.

Proof. See Appendix A.

This result considerably generalizes Kamihigashi (2000b, Theorem 2). The
proof of Theorem 1 shows that the set of eventually periodic sequences in K

is countable. The assumption that v is strictly increasing ensures that for each
{ct } ∈ K∞, the set of x ∈ X with v(x) = w({ct }) has measure zero. Because the
set of eventually periodic sequences in K is countable, it follows that the set of
x ∈ X with v(x) = w({ct }) for some eventually periodic sequence {ct } ∈ K∞ has
measure zero.

The only role of the value function in the proof is to ensure that for each
{ct } ∈ K∞, the set of x ∈ X with v(x) = w({ct }) has measure zero. Thus the
conclusions of Theorem 1 hold for an arbitrary correspondence C∗ from X to K∞

such that for each {ct } ∈ K∞, the set of x ∈ X with {ct } ∈ C∗(x) has measure
zero. If C∗ is given by (2), this can be ensured by assuming that each level set of
v has measure zero:

COROLLARY 1. Suppose that v : X → R is measurable. Suppose further
that

∀a ∈ R, λn({x ∈ X : v(x) = a}) = 0. (3)

Then the conclusions of Theorem 1 hold.

Proof. See Appendix A.

3. EXAMPLES

3.1. Rational vs. Irrational Numbers

To better understand Theorem 1, consider the following rather trivial maximization
problem:

max
{ct }∞t=0

∞∑
t=0

10−t ct , (4)

s.t.
∞∑
t=0

10−t ct ≤ x, (5)

∀t ∈ Z+, ct ∈ {0, 1, 2, . . . , 9}. (6)
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We assume that x ∈ X ≡ [0, 10]. It is immediate from (6) that the value function
v(x) for this problem satisfies v(x) ≤ x. Because x has a decimal representation
x = c0.c1c2c3 . . . satisfying (6) with equality, we also have v(x) ≥ x. Hence
v(x) = x, and C∗(x) can be identified with the decimal representations of x.
Clearly v is strictly increasing, so that Theorem 1 applies.

Recall that a real number has an eventually periodic decimal representation if
and only if it is rational. Let Z be the set of rational numbers in X. Because Z is
countable, we have λ(Z) = 0. If x ∈ X \ Z, then x is irrational, and the decimal
representation of x is asymptotically aperiodic. It follows that Z has properties (a)
and (b) in Theorem 1.

3.2. Indivisible Consumption Goods

Consider the maximization problem

max
{ct ,st ,xt+1}∞t=0

∞∑
t=0

βtu(ct ), (7)

s.t. ∀t ∈ Z+, ct + st = xt , (8)

xt+1 = Rst + y, (9)

xt+1 ≥ 0, (10)

ct ∈ {0, δ, 2δ, 3δ, . . .}, (11)

x0 = x ≥ 0 given, (12)

where u : R+ → R is the utility function, which is assumed to be strictly
increasing; β ∈ (0, 1) is the discount factor; ct is the consumption of the indivisible
good in period t ; xt is wealth at the beginning of period t ; st is saving in period
t ; and R > 1 and y ≥ 0 are the gross interest rate and income in each period,
respectively. Constraint (12) means that the consumption good can be purchased
only in multiples of δ. As δ ↓ 0, this problem approaches the standard problem
with ct ≥ 0 instead of (11).7

In this model the consumption good is indivisible, whereas wealth is perfectly
divisible. It is necessary for wealth to be a continuous variable as long as the gross
interest rate R is an arbitrary real number strictly greater than one. In most cases
it seems reasonable to assume that wealth is more divisible than goods, and our
setup represents the extreme case in which wealth is perfectly divisible.

We say that a three dimensional sequence {ct , st , xt+1} is a feasible path from
x if it satisfies (8)–(12), and an optimal path from x if it solves the maximization
problem (7)–(12); a sequence {ct } is a feasible consumption path from x if there
exist sequences {st } and {xt+1} such that {ct , st , xt+1} is feasible from x. Optimal
consumption paths, feasible wealth paths, and optimal wealth paths are defined
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similarly. We say that x ≥ 0 is a steady state if the wealth path {xt+1} with xt = x

for all t ∈ N is optimal from x.
Under regularity conditions, an optimal path from x exists and the value function

v(x) is finite for all x ≥ 0. We assume these properties in what follows.
To see that v is strictly increasing, let 0 ≤ x < x ′, and let {ct , st , xt+1} be an

optimal path from x. Note that {ct } is feasible also from x ′. Thus v(x) ≤ v(x ′).
Let {c′

t , s
′
t , x

′
t+1} be the feasible path from x ′ with {c′

t } = {ct }. It follows from (8)
and (9) that

∀t ∈ Z+, x ′
t − xt = Rt(x − x ′). (13)

Because R > 1, we have x ′
t − xt > δ for sufficiently large t , which implies that it

is feasible to increase c′
s for some large s without decreasing any c′

t with t �= s. It
follows that v is strictly increasing. Now by Theorem 1, for almost all x ≥ 0, any
optimal consumption path from x is asymptotically aperiodic. This implies that
the corresponding wealth path is also asymptotically aperiodic.8

The preceding result is shown in Kamihigashi (2000b), where it is also shown
that for β sufficiently small, the (optimal) policy function for wealth takes the
form of a random number generator. The bottom plot in Figure 1a illustrates a
policy function for wealth that takes the form of a linear congruential generator.9

Recall, however, that Theorem 1 does not require β to be small. The bottom plot in
Figure 1b shows a policy function for wealth with β = 0.7. In this case, although
there is an overall tendency for wealth to decline toward zero, it keeps fluctuating
near zero, which is not a steady state. Figure 2 illustrates optimal wealth paths in
the two cases in Figure 1.

The assumption that R > 1 plays two important roles here. First, it is crucial to
showing that v is strictly increasing; recall (13). Second, it implies that any steady
state is locally unstable. This is particularly clear in Figure 1a. Indeed, whenever
the policy function for wealth crosses the 45◦ line, it does so from below. This is
because we have xt+1 = R(xt + y − ct ) by (8) and (9), and the policy function for
wealth is continuous only where the policy function for consumption is constant,
which implies that the slope of the former is R > 1 wherever it is continuous.

If R < 1, then v is never strictly increasing. This is illustrated in Figure 3a,
which shows a piecewise constant value function. If R < 1, wealth shrinks to zero
even if nothing is consumed. Thus consumption, being discrete, can take place
only finitely many times. Hence any compact interval can be divided into finitely
many subintervals according to optimal consumption paths. It is also interesting
to observe that consumption is clearly not a monotone function of wealth in
Figure 3a.

As discussed earlier, Theorem 1 applies as long as R > 1. This, however,
does not mean that optimal dynamics is almost always complex. For example,
if y = 0, the maximization problem here is an AK model, and endogenous
growth is possible depending on the parameter values. Such a case is illustrated in
Figure 3b,10 where both consumption and wealth grow unboundedly and
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FIGURE 1. Value functions and policy functions for consumption and wealth.

monotonically provided that initial wealth is strictly greater than the nonzero
steady state, which is around 15.11

It is easy to see that the analysis can be extended to models with many
consumption goods. For example, suppose that ct consists of m goods, i.e.,
ct = (c1

t , c
2
t , . . . , c

m
t ), and that the price of good i is given by pi . We can then

replace (8) and (11) with
m∑

i=1

pici
t + st = xt , (14)
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FIGURE 2. Optimal wealth paths.

∀i ∈ {1, . . . , m}, ci
t ∈ {0, δi, 2δi, 3δi, . . .}, (15)

where δi > 0 for each i. Constraint (15) means that good i can be purchased only
in multiples of δi . Even in this setting, Theorem 1 applies in exactly the same way.

3.3. Indivisible Durable Goods

The analysis of the previous section can also be extended to models with indivisible
durable goods. To be specific, consider the maximization problem

max
{ct ,kt ,st ,xt+1}∞t=0

∞∑
t=0

βtu(kt ), (16)

s.t. ∀t ∈ Z+, kt = (1 − γ )kt−1 + ct , (17)

ct + st = xt , (18)

xt+1 = Rst + y, (19)

ct ∈ {0, δ, 2δ, 3δ, . . .}, (20)

x0 = x ≥ 0, k−1 = k ≥ 0 given, (21)

where kt is the stock of durable goods at the end of period t , and γ ∈ (0, 1]
is the depreciation rate of durable goods. We assume that the utility function
u : R+ → R is strictly increasing. The definitions and assumptions for the other
variables and parameters are as in the previous section.

Note from (17) that kt can be written as a function of {ct } and k = k−1:

kt =
t∑

i=0

(1 − γ )ict−i + (1 − γ )t+1k. (22)

Hence the objective function can be expressed as a function of {ct } and k. There-
fore, with k fixed, the maximization problem here takes the form of the right-hand
side of (1).
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FIGURE 3. Value functions and policy functions for consumption and wealth.

Let v(x, k) be the corresponding value function. Then the argument of the
previous section shows that v(x, k) is strictly increasing in x. Thus by Theorem 1,
with k fixed, for almost all x ≥ 0, any optimal consumption path from x is
asymptotically aperiodic.

Although v(x, k) is also strictly increasing in k, Theorem 1 cannot be used
to show the same result in terms of k. This is because the theorem requires the
objective function to be expressed entirely as a function of {ct }. In the current
setting the objective function always depends on k, so that the problem does not
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reduce to the right-hand side of (1) (with x fixed). To see why this is important,
suppose that u(kt ) = kt . In this case, if {ct } is optimal from k, then it is also
optimal from any k′ ≥ 0 because the objective function is additively separable
in {ct } and k; recall (22). If {ct } happens to be eventually periodic, then this
means that there is an eventually periodic optimal consumption path from any
k′ ≥ 0.

4. A RAMSEY MODEL WITH LINEAR UTILITY

As we mentioned in Section 3.2, an asymptotically aperiodic sequence can grow
unboundedly and monotonically. In standard neoclassical (or Ramsey) models,
however, unbounded growth is ruled out by technology constraints. For example,
consider the maximization problem

max
{ct ,xt+1}∞t=0

∞∑
t=0

βtct , (23)

s.t. ∀t ∈ Z+, ct + xt+1 = f (xt ), (24)

ct ∈ Hδ ≡
{{0, δ, 2δ, 3δ, . . .} if δ > 0,

R+ if δ = 0,
(25)

xt+1 ≥ 0, (26)

x0 = x ≥ 0 given, (27)

where xt is the capital stock at the beginning of period t , and f : R+ → R+ is the
production function, which is assumed to be differentiable on R++, continuous,
strictly increasing, and strictly concave, and to satisfy

f (0) = 0, lim
x↓0

βf ′(x) > 1, lim
x↑∞

f ′(x) < 1. (28)

The last inequality rules out unbounded growth from any initial capital stock.
Let x > 0 be the maximum sustainable capital stock, which is given by f (x) = x.
Note that any feasible capital path from x ∈ X ≡ [0, x] stays in X forever. From
here on we restrict ourselves to capital paths in X (though this is not necessary).

Let x∗ be the unique steady state of the model with δ = 0: i.e., βf ′(x∗) = 1.
For δ ≥ 0 and x ∈ X, define

F δ(x) = {y ≥ 0 : f (x) − y ∈ Hδ}. (29)

Let vδ : R+ → R+ be the value function of the maximization problem (23)–(27).
Because f is nonlinear, it is not as easy as in Section 3.2 to show that vδ

is strictly increasing. In fact, it is not strictly increasing when δ is sufficiently
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FIGURE 4. Value functions and policy functions for consumption and capital.

large. For example, if δ = x, we have vδ(x) = 0 for all x ∈ [0, x). We can thus
expect that vδ is not strictly increasing when δ is close to x. Figure 4a illustrates
such a case. Intuitively, if δ is close to x, an optimal capital path spends most of
its time near x, where the slope of the production function is strictly less than
one. This means that two optimal capital paths from similar initial capital stocks
tend to converge to each other and to have identical consumption paths. As δ

decreases, however, vδ starts appearing to be a strictly increasing function; see
Figure 4b.12
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FIGURE 5. Value functions and policy functions for consumption and capital.

If δ is small enough, an optimal capital path is expected to stay in a neighborhood
of x∗ in the long run, as in the model with δ = 0. Because f ′(x∗) = 1/β > 1, we
can expect that the argument based on the assumption that R > 1 in Section 3.2
can be used to show that vδ is strictly increasing. This is the idea of the next result.
Figure 5 shows that the value function appears to be strictly increasing when δ is
relatively small.

LEMMA 1. There exists δ > 0 such that for all δ ∈ (0, δ], vδ is strictly
increasing.
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FIGURE 6. Optimal capital paths.

Proof. See Appendix B.

The following result is immediate from Lemma 1 and Theorem 1.13

PROPOSITION 1. There exists δ > 0 such that for all δ ∈ (0, δ], for almost
all x ∈ X, any optimal consumption and capital paths from x are bounded and
asymptotically aperiodic.

It is interesting to observe that a decrease in δ does not necessarily have a
significant effect on vδ . Although decreasing δ from 97 to 60 has a large effect on
vδ (Figure 4), the effect is much less dramatic when δ is decreased from 60 to 20
(Figures 4b and 5a), and it appears to be almost negligible when δ is decreased
from 20 to 5 (Figure 5). On the other hand, a change in δ always has a comparable
impact on the optimal policy functions for consumption and capital, as can be seen
in Figures 4 and 5.

Figure 6 illustrates optimal capital paths in the four cases in Figures 4 and
5. Although the magnitude of fluctuations is directly related to δ, there ap-
pears to be no clear-cut relation between δ and the frequency of ups and
downs.
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FIGURE 7. Value functions and policy functions for consumption and capital.

Finally, the idea of Lemma 1 seems to work even if the utility function is
strictly concave. This point is illustrated with the policy functions for capital in
Figure 7, which suggest that even if the utility function is strictly concave, as long
as δ is sufficiently small, any optimal capital path eventually stays close to x∗,
where the slope of the production function is strictly greater than one. If this is the
case, vδ can be shown to be strictly increasing using the argument based on (13).
Figure 8 illustrates optimal capital paths in the cases in Figure 7. These paths
roughly remain in the δ/2-neighborhood of x∗ (=20.25).
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FIGURE 8. Optimal capital paths.

NOTES

1. See Aoki (1998), Verbrugge (2003), and Bischi et al. (2006) for examples of theoretical stochastic
models involving discrete choices.

2. In this paper, the term “complex” means “aperiodic and bounded.”
3. Their analysis was recently extended by Kamihigashi and Roy (2006, 2007) to models with

nonsmooth technologies.
4. See Kamihigashi (2000a) for discussion on ergodic chaos in a discrete choice model.
5. Here the inequality x < y means that xi ≤ yi for all i = 1, . . . , n, and there is at least one i

with xi < yi , where x = (x1, . . . , xn), etc.
6. Given our assumption on X, the value function v is also measurable by Chabrillac and Crouzeix

(1987, Theorem 4). The proof of Lemma A.1 shows that we need only assume that v is nondecreasing
and that there is at least one i such that v(x1, . . . , xn) is strictly increasing in xi .

7. Essentially the same model is studied in Kamihigashi (2000b). Here we offer additional insight
as well as outlining some of the basic arguments in Kamihigashi (2000b) to facilitate subsequent
discussion.

8. Note that given any feasible path {ct , st , xt+1}, if {xt } is asymptotically periodic, then {ct } must
be asymptotically periodic by (8) and (9). Hence if {ct } is asymptotically aperiodic, then {xt } must be
asymptotically aperiodic.

9. See Kamihigashi (2000b) for discussion on random number generators. Each numerical example
in this paper (except for Figure 3b) is obtained by solving the corresponding Bellman equation by
modified policy iteration with 100,000 equally spaced grid points (or states).

10. In the case of Figure 3, the value and policy functions are computed for x ∈ [0, 300] with
300,000 states, and these functions are plotted only for x ∈ [0, 100] to reduce the effect of truncation.

11. Because R > 1, the steady state here is locally unstable, as discussed previously.
12. A more detailed computation of the value functions in Figures 4a and 4b suggests that the former

is indeed piecewise constant whereas the latter is strictly increasing.
13. Recall also footnote 8. Proposition 1 does not follow from any argument in Kamihigashi (2000a,

2000b).
14. That is, 1{v(x) = a} = 1 if v(x) = a, and 1{v(x) = a} = 0 otherwise.
15. This result is adapted from Kamihigashi (2000b, Lemma 6). A similar argument is used in

Kamihigashi (2000a, Lemma 5.14).

REFERENCES

Aguirregabiria, Victor and Pedro Mira (2010) Dynamic discrete choice structural models: A survey.
Journal of Econometrics 156, 38–67.

https://doi.org/10.1017/S1365100511000678 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100511000678


66 TAKASHI KAMIHIGASHI

Aoki, Masanao (1998) Simple model of asymmetrical business cycles: Interactive dynamics of a large
number of agents with discrete choices. Macroeconomic Dynamics 2, 427–442.

Bischi, Gian-Italo, Mauro Gallegati, Laura Gardini, Roberto Leombruni, and Antonio Palestrini (2006)
Herd behavior and nonfundamental asset price fluctuations in financial markets. Macroeconomic
Dynamics 10, 502–528.

Chabrillac, Yves and J.-P. Crouzeix (1987) Continuity and differentiability properties of monotone
real functions of several variables. Mathematical Programming Study 30, 1–16.

Dechert, Davis W. and Kazuo Nishimura (1983) A complete characterization of optimal growth paths
in an aggregate model with a non-concave production function. Journal of Economic Theory 31,
332–354.

Dudley, R.M. (2002) Real Analysis and Probability. Cambridge: Cambridge University Press.
Kamihigashi, Takashi (2000a) Indivisible labor implies chaos. Economic Theory 15, 585–598.
Kamihigashi, Takashi (2000b) The policy function of a discrete-choice problem is a random number

generator. Japanese Economic Review 51, 51–71.
Kamihigashi, Takashi and Santanu Roy (2006) Dynamic optimization with a nonsmooth, nonconvex

technology: The case of a linear objective function. Economic Theory 29, 325–340.
Kamihigashi, Takashi and Santanu Roy (2007) A nonsmooth, nonconvex model of optimal growth.

Journal of Economic Theory 132, 435–460.
Keane, Michael P. and Kenneth I. Wolpin (2009) Empirical applications of discrete choice dynamic

programming models. Review of Economic Dynamics 12, 1–22.
Nishimura, Kazuo, Gerhard Sorger, and Makoto Yano (1994) Ergodic chaos in optimal growth models

with low discount rates. Economic Theory 4, 705–717.
Nishimura, Kazuo and Makoto Yano (1995) Non-linear dynamics and chaos in optimal growth: An

example. Econometrica 63, 981–1001.
Verbrugge, Randal (2003) Interactive-agent economies: An elucidative framework and survey of

results. Macroeconomic Dynamics 7, 424–472.

APPENDIX A: PROOF OF THEOREM 1
LEMMA A.1. Suppose that v is strictly increasing. Then for any a ∈ R, we have

λn(Va) = 0, where Va = {x ∈ X : v(x) = a}.
Proof. Let a ∈ R. Without loss of generality, we extend the domain of v to the entire

Rn by defining v(x) = −∞ for x ∈ Rn \ X. Because a ∈ R, this extension does not affect
Va . We have

λn(Va) =
∫

1{v(x) = a}dλn(x) (A.1)

=
∫

· · ·
∫

1{v(x1, x2, . . . , xn) = a}dλ(x1) · · · dλ(xn), (A.2)

where 1{·} is the indicator function,14 and (A.2) holds by the Tonelli–Fubini theorem
[Dudley (2002, p. 139)]. Because v is strictly increasing, given (x2, . . . , xn) ∈ Rn−1, we
have 1{v(x1, x2, . . . , xn) = a} = 0 for almost all x1 ∈ R; thus

∫
1{v(x1, x2, . . . , xn) = a}dλ(x1) = 0. (A.3)

Substituting this into (A.2) yields the lemma.

LEMMA A.2. � ≡ {{ct } ∈ K∞ : {ct } is eventually periodic} is countable.15
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Proof. Let � = ∪i,j∈NKi × Kj . Define � : � → � as follows: for c ≡ {ct } ∈ �, let
ic be the smallest i ∈ N such that {ct }∞

t=i is periodic; let jc be the smallest j ∈ N such that
∀t ≥ ic, ct = ct+j ; and define

�({ct }) = ({ct }ic−1
t=0 , {ct }ic+jc−1

t=ic
) ∈ Kic × Kjc ⊂ �. (A.4)

Clearly � is one-to-one. Because the countable union of countable sets is countable, � is
countable. Therefore � is also countable.

To prove Theorem 1, suppose that v is strictly increasing. Define

A = {a ∈ R : ∃c ∈ � ∩ D, w(c) = a}. (A.5)

Because � is countable by Lemma A.2, A is also countable. Define

Z = ∪a∈AVa = {x ∈ X : v(x) ∈ A}. (A.6)

Because A is countable and the Va are disjoint,

λn(Z) =
∑
a∈A

λn(Va) = 0, (A.7)

where the second equality holds by Lemma A.1. Let x ∈ X \ Z and c ∈ C∗(x). We have
w(c) = v(x) �∈ A, which implies that c �∈ � by (A.5). Thus c is asymptotically aperiodic.
This establishes that Z has the desired properties.

To see Corollary 1, note that the second equality in (A.7) holds by (3). Thus the corollary
follows by the above argument.

APPENDIX B: PROOF OF LEMMA 1
Note that for δ ≥ 0 and x ∈ X, we have the Bellman equation

vδ(x) = max
y∈Fδ(x)

{f (x) − y + βvδ(y)} (B.1)

= f (x) + max
y∈Fδ(x)

{βvδ(y) − y}. (B.2)

Let Gδ be the optimal policy correspondence:

Gδ(x) = argmax
y∈Fδ(x)

{f (x) − y + βvδ(y)} = argmax
y∈Fδ(x)

{βvδ(y) − y}. (B.3)

LEMMA B.1. v0 : R+ → R+ is continuous and strictly concave. Furthermore, x∗ is
the unique solution to maxy≥0[βv0(y) − y]:

∀y ∈ R+ \ {x∗}, βv0(y) − y < βv0(x∗) − x∗. (B.4)

Proof. Standard arguments show that v0 is continuous and strictly concave. Let x0 ≥ x∗.
Then the capital path {xt+1} given by xt = x∗ for all t ∈ N is feasible and satisfies the Euler
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equation and the transversality condition:

1 = βf ′(xt+1), lim
t↑∞

βtf ′(xt+1)xt+1 = 0. (B.5)

By strict concavity, {xt+1} is the unique optimal capital path from x0; thus G0(x0) = {x∗},
i.e., x∗ = argmaxy∈[0,f (x0)]{βv0(y) − y}. Because v0 is strictly concave, βv0(y) − y is
strictly decreasing in y > f (x0) > x∗. Thus (B.4) holds.

Because the definitions of feasibility and optimality depend on δ, we make the depen-
dence on δ explicit by saying that a path is δ-feasible, etc.

LEMMA B.2. For any δ > 0, we have

∀x ∈ X, vδ(x) ≥ v0(x) − δ/(1 − β). (B.6)

Proof. Let δ > 0 and x ∈ X. Let {ct } be a 0-optimal consumption path from x. For
t ∈ Z+, define cδ

t = max{c ∈ Hδ : c ≤ ct }. Then {cδ
t } is δ-feasible from x, and cδ

t ≥ ct − δ

for all t ∈ Z+. We have

vδ(x) ≥
∞∑
t=0

βtcδ
t ≥

∞∑
t=0

βt (ct − δ) = v0(x) − δ/(1 − β). (B.7)

Now (B.6) follows.

LEMMA B.3. For any x̂ > x∗, there exists δ > 0 such that

∀δ ∈ (0, δ], ∀x ∈ X, ∀y ∈ Gδ(x), y + δ < x̂. (B.8)

Proof. Suppose that the lemma is false. Then there exist x̂ > x∗, {δi}∞
i=1 ⊂ (0, x̂ − x∗)

with δi ↓ 0, {xi}∞
i=1 ⊂ X, and {yi}∞

i=1 ⊂ X such that

∀i ∈ N, yi ∈ Gδi (xi), yi + δi ≥ x̂. (B.9)

Taking a subsequence, we may assume that yi converges to some y∗ ∈ [x̂, x].
Let i ∈ N. Because v0 ≥ vδi , we have

βv0(yi) − yi ≥ βvδi (yi) − yi . (B.10)

Note from (B.9) that yi ≥ x̂ − δi > x∗. Thus {y ∈ F δi (xi) : y ≥ x∗} �= ∅. Define
ỹi = min{y ∈ F δi (xi) : y ≥ x∗} ∈ [x∗, x∗ + δi]; note that ỹi ≤ yi . We have

βvδi (yi) − yi ≥ βvδi (ỹi ) − ỹi ≥ β[v0(ỹi ) − δi/(1 − β)] − ỹi , (B.11)

where the second inequality uses Lemma B.2. It follows from (B.10) and (B.11) that

βv0(yi) − yi ≥ β[v0(ỹi ) − δi/(1 − β)] − ỹi . (B.12)

Because yi → y∗ ≥ x̂ and ỹi → x∗, letting i ↑ ∞ in (B.12) and recalling the continuity of
v0, we obtain

βv0(y∗) − y∗ ≥ βv0(x∗) − x∗, (B.13)

which contradicts Lemma B.1. This completes the proof.

For the rest of the proof, let x̂ > x∗ be such that f ′(x̂) > 1, and let δ > 0 satisfy (B.8).
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LEMMA B.4. Let δ ∈ (0, δ], x ∈ X, and x ′ > x. Let {ct } be a δ-optimal consumption
path from x. Then there exists a δ-feasible consumption path {c′

t } from x ′ such that

(i) ∀t ∈ Z+, c′
t ≥ ct ,

(ii) ∃t ∈ Z+, c′
t > ct . (B.14)

Proof. Define {x ′
t } recursively by x ′

t+1 = f (x ′
t ) − ct . Suppose that there exists no {c′

t }
satisfying (B.14). Then we must have

∀t ∈ Z+, x ′
t+1 < xt+1 + δ < x̂. (B.15)

The second inequality holds by (B.8). The first inequality holds because if x ′
s+1 ≥ xs+1 + δ

for some s ∈ Z+, then cs can be increased by δ without decreasing ct with t �= s. For t ∈ N,
by concavity of f and (B.15),

x ′
t+1 − xt+1 = f (x ′

t ) − f (xt ) ≥ f ′(x ′
t )(x

′
t − xt ) ≥ f ′(x̂)(x ′

t − xt ). (B.16)

Because f ′(x̂) > 1, it follows that x ′
t − xt → ∞, contradicting (B.15).

Lemma 1 now follows from Lemma B.4.
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