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Abstract

We consider a Cramér-Lundberg insurance risk process with the added feature of
reinsurance. If an arriving claim finds the reserve below a certain threshold y, or if
it would bring the reserve below that level, then a reinsurer pays part of the claim.
Using fluctuation theory and the theory of scale functions of spectrally negative Lévy
processes, we derive expressions for the Laplace transform of the time to ruin and of the
joint distribution of the deficit at ruin and the surplus before ruin. We specify these results
in much more detail for the threshold set-up in the case of proportional reinsurance.
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1. Introduction

Let X (¢) be the surplus at time ¢ of the classical Cramér—Lundberg risk process,

N,
X(t)=u+ct—Y Z. (1.1)
i=1

In this model the company earns premium at a fixed rate c, the claim arrival process {N;: t > 0}
is a Poisson process at rate A, {Z;: i = 1,2, ...} are the successive claim amounts indexed
by their appearance and are independent and identically distributed (i.i.d.) positive random
variables, and u = X (0).

In such amodelitis of interest to study the distribution of the time to ruin, the joint distribution
of the time to ruin, the deficit at ruin, and the surplus before ruin. For a comprehensive overview
of the state of the art of the classsical Cramér-Lundberg model, see Asmussen and Albrecher
(2010).

In the last decade the classical Cramér-Lundberg model in (1.1) was modified to capture
dividend payments to shareholders. Under the threshold dividend policy, dividends atrate ¢ < ¢
are paid whenever the reserve is above a threshold . This process has a ‘bend’ at y: itis called
arefracted Lévy risk process; see Dickson and Drekic (2006), Gerber and Shiu (2006), Lin and
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Pavlova (2006) and Zhang et al. (2006). Wan (2007) considered the more general model where
the compound Poisson risk model is perturbed by a Brownian motion.

Kyprianou and Loeffen (2010) considered such a state-dependent premium rate model for
the general spectrally negative Lévy risk process. They used fluctuation theory and the theory
of scale functions for spectrally negative Lévy processes to obtain the Laplace transform of the
exit time, of the time to ruin, and of the joint probability for the surplus before and at ruin.
Loeffen (2015) has recently presented more elegant analysis to obtain the results of this earlier
paper with Kyprianou.

In order to reduce risk, the insurer insures part of the risk: the insurer pays a premium to the
reinsurer who then pays a part of each claim. Motivated by the threshold dividend policy, we
consider the reinsurance threshold policy: the insurer pays a constant premium to the reinsurer
and the reinsurer pays part of the claim that falls below a threshold y .

We apply Loeffen’s (2015) methods to obtain quantities of interest for the reinsurance
model. Assume that the company has a reinsurance contract which we now describe via some
function I (x), where 1(0) = 0, I(x) < x, and I (x) is nondecreasing in x. The reinsurance
pays part of the claim when the claim is below a given threshold y. Let I (x, y) denote the part
that the insurer pays for a claim of size x occurring when the reserve level is y. The reinsurer
pays x — I(x, y), where I(x, y) is given by

X ify>y, x<y-—y,
Ix,y)=3y—-y+IGx-Q~-y) ify>y,x>y—vy,
I(x) ify <vy.

Examples for I (x) are I (x) = min(a, x) for a given constant @, and I (x) = ax,0 < a < 1.

Throughout we will not specify the reserve level y in I(x, y) but it will be clear from the
context. We consider the following risk process. The premium rate, the claim arrival process
and the claim amounts are as for (1.1). When an arrival of a claim of size x finds the reserve
below y, the insurer pays only 7(x). When a claim of size x finds the reserve at level y > y
and x > y — y, the insurer pays y — y + I (x — (y — y)), i.e. he/she pays only that part of the
claim that falls below y. Denote the reserve level at time ¢ under this policy by U (¢) or U;.

In a companion paper (Boxma et al. (2016)) we analyze a risk process with state-dependent
premium rate and state-dependent claim payments assuming a barrier dividend policy. Under
this policy all the premium income is paid as dividends when the reserve level exceeds a
barrier b. In that paper we applied different tools to find the distribution of the deficit at ruin
and the amount of dividends until ruin. In the present paper we consider a special case of
state-dependent claim payments and consider the expected discounted time to ruin and the joint
distribution of the deficit at ruin and the reserve just before ruin.

The paper is organized as follows. In Section 2 we introduce some notation and a few
identities related to exit times of spectrally negative Lévy processes; these play a crucial role
in the remainder of the paper. In Section 3 we present expressions for the Laplace transform
of the exit time from an upper barrier, the time to ruin and the joint probability for the surplus
before and at ruin for general 7 (x). In Section 4 these results are specified in much more detail
for the case of proportional reinsurance, i.e. I (x) = ax.

2. Notation

Above level y the process U behaves as a risk process X1, with premium rate ¢ and i.i.d.
claims distributed as Z; with distribution Fj, arriving according to a Poisson process at rate A.
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Below the level y, U behaves as a risk process X(, with premium rate ¢ and i.i.d. claims
distributed as Zp with distribution Fp, arriving according to a Poisson process at rate A, where
Fo(x) =P (Z1) = x).

When the process U > y it evolves as X and when U < y it evolves as Xo.

Fori =0,1ands > 0, let F;(s) = E[e™*%] and

Yi(s) = B[eX D] = s — A + AFi(s).

Then define ®;(v) = sup{y > 0: ¥;(y) = v}.

Definition 2.1. For a given spectrally negative Lévy process X, with Laplace exponent v, and
g > 0, there is a unique g-scale function associated with X, W@ R — [0, o) such that
W@ (x) = 0 for x < 0, and on (0, 00), W@ is the unique continuous function with Laplace
transform over Re(8) > 0,

/OO e PWD(x)dx = 2.1

1
0 vB)—q
Denote W© by W. Consider the spectrally negative Lévy risk processes X;, with g-scale
function Wi(q), i =0, 1. For b > 0, introduce the first passage times of X;,

T, = inf{t > 0: X;() = b} and 7, =inf{r > 0: X;(1) < al.

i
For the process U, define the first passage times
K,jL =inf{t > 0: U; > b} and «, =inf{r > 0: U; < a}.
Denote by P, and E, the conditional probability and expectation given X (0) = x. In the
sequel we apply the following identities from Kyprianou (2006, Chapter 8).
Theorem 2.1. Let X be a spectrally negative Lévy process.

(i) Forq > 0andx < b,
W@ (x)

Wb (2.2)

n
Ex[e_qrh 1{7b+<70_}] =
(i) Forq = 0,b > 0,and0 <x < b,

WD x)WD (b — y)
W@ (b)

o
/ e P (X, edy, t < r}j’ ATy ) dt = ( —WDx — y))dy.
0

2.3)

3. The Laplace transform of the time to ruin for general I (x)

To derive the Laplace transform of the time to ruin, we first find some other quantities. Let
b >y and B C R. For0 < x < b, define

o0
V@D (x,y,b,B) = / e P (U; € B, t < ky Ak dt,
t=0

SO V(‘f)(x, y, b, B) is the discounted time that the process U; spends in B, given Uy = x.
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Proposition 3.1. (i) For y <x < b, V(’I)(x, y, b, B) is equal to

(@) (@)
Wi (x =)W (b —y)
/ ( 1 1 _ Wl(q)(x — 9 )dy
yeBNly,b]

Wi (b —y)
b—y WD — YWD B -y —
+/‘ / < x )/(3) b=y y)_Wl(q)(x—y—y)>)xdFl(9)dy
y=0 Jo>y W] b — Y)
@ (@)
Wy =10 —y)Wy ' (v — 2)
* U ( ) D oty =16 =) = Z)) ¢
z€BN[0,y) Wy (v)

Wy — 16 —y))
ASEN)

VD, y, b, B):|. 3.1

(i) ForO0 <x <y, V(‘f)(x, y, b, B) is equal to

(@) @ (@)
Wo? ()W (v — W
/ ( () Yo r—y W (x — y)) dy + ?_)(X)V(cno,, v.b, B). (3.2)
yeBN[0,y) W (v) Wo" ()

Proof. () Fory <x < b, V(‘”(x, y, b, B) is equal to

0
/ e_qt/ Pry(X1(t) edy —y, t <T oA rfrb_y)dt (3.3)
t=0 yeBN[y,b] ' |
() b
+ / e_qt/ / P y(X1(@®) edy—y, t <1y A 'L'l-i_biy))\. dFi(@)dr (3.4)
1=0 y=y Jozy—y ’ ’
o0 g
X |:/ f eiqA]P(y_](g_(y_y)))(X()(S) edz, s < 7"0_,0 A ‘L'J:y) ds 3.5)
s=0 JzeBN[0,y)

T
+ By 16--yn € 10 A o DV Oy y. b, B)]. (3.6)

Above y, U(t) behaves as X1 (f): equation (3.3) describes the discounted time that U (or X1)
spends in B N [y, b] before it down-crosses the level y.

Equation (3.4) describes the discounted time that U (t) exceeds y until it down-crosses y
before hitting . It is the same as the discounted time that X; — y exceeds O before hitting
b—vy.

Below y, U evolves as X¢. Thus, (3.5) is the expected discounted time that X isin BN[0, y)
givenitstartedaty — I(6 — (y — y)).

Thus, (3.4) multiplied by (3.5) is the discounted time that U spends in B N [0, y) from
the moment it down-crosses y until it exits [0, y). Similarly, (3.4) multiplied by (3.6) is the
expected discounted time that U spends in B from the moment the process first hits y after the
first down-crossing of the level y.

Using the scale function as in (2.3), and with Wi(q) (x) the scale function associated with X;
fori =0, 1, we obtain (3.1).
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(i) For 0 < x < y, similar arguments to (i) show that V@ (x, y, b, B) is equal to

o
e"“/ Py(Xo(r) edy, 1;,_,— ..+ ) dt
/t:O JeBA0.y) X {r<75 0170, }
o0
+f e—qff Py (Xo(t) edy, 1y _+ .- DdtV@(y,y,b,B). (3.7
1=0 yel0,y) Oy =00

Applying (2.2) and (2.3) we obtain (3.2).
To find V@ (y, y, b, B) put x = y in (3.1) and solve the equation that results. O

Next we obtain
o0
V@ (x, y, B) = / e I"P. (U, € B, t < Ky )dt = lim V(q)(x, y,b, B).
=0 b— 00
For a Lévy process X (t) with Lévy exponent i and adapted to a o-field ¥, let
M,(B) = ePXO—y (B
be the Wald martingale associated with X. For real § > 0, define the measure P8 for 4 € F;
by
PP (A) = E[eM P 1,).

Let W((q)) denote the scale function associated with X under P, Apply Kyprianou (2006,
Chapter 8.2) or Kuznetsov et al. (2013, Equation (53)) to obtain

W (x) = D Wi gy (x) = @ BYP(X(00) 20),  (38)

Vo g (O0+)

where X (¢) = infs<; X (s). Under the measure P,?(q), X drifts to oo.

Proposition 3.2. (i) Forx >y, V@ (x, y, B) is equal to
/ (Wl(q)(x et @0=y) _ Wl(‘l)(x —y)dy
yeBN[y,00)

o
+ / / (Wf‘”(x — y)e MO0 Wiy y))x dFy(0) dy
y=y JO=y—y

5 [/ (Wé”(y—l(ew—y))Wé”(y—z)
zeBN[0,y) Wéq)()/)

— WPy —1O+y —y) - z)>dz

N Wy —160+y —y)

o V@(y,y, B)]. (3.9)
W, ()

(ii) For0 < x <y, V@(x,y, B) is equal to

(9) (q) (9)
W, 4 — W,
/ ( 0 % y)—Wéq)(x—y>)dy+—?)(X)V@(y,y,B). (3.10)
yeBNI0,y) W (v) Wo" ()
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(iii) Then V@ (y, y, B) is equal to

(@) -1
o0 ‘ WP — 10 +7y -
(1—/ / WD )= @0 4 ) Yo (q() y =) dy)
y=y Jozy—y Wo ' (v)
y <f W 01 @01)gy
yeBN(y, 0]

o0
+U / WP (0)e=®1 @05 dF (6) dy (3.11)
y=y JO>y—y

(@) ()
W, -1 — )W, —
X/ < o (v —1O+y—y)Wy (y —2) (3.12)
zeBN(0,y]

We' ()

Wy (y =10 +y —y) - z))dzD.

Proof. (1) and (ii) Applying (3.8) to X shows that, for y <y < b,
Wl(q)(b —y) edn(q)(bfy)pzb_l(yq)(zl (00) > 0)

L — T — e P1@O) a5h 5 00, (3.13)
W b —y)  ePr@C-nE T (X, (c0) = 0)

Thus, taking the limit as b — oo in (3.1) leads to (3.9). Similarly, taking the limit in (3.2) leads
to (3.10).

(iii) We obtain V@ (y, y, B) by substituting x = y in (3.9) . O

To obtain the Laplace transform of the time to ruin, we introduce &,, a random variable
exponentially distributed on Ry with mean 1/¢q. Then the Laplace transform of the time to ruin
is given by ~

E, (e~ 1{K0—<Oo}) =P8 >Kp) =1—-Pr(& <x;)

o0
=1 —q/ e 1P, (U, € [0, 00)) dt
0

=1-qVDx,y,I0,00)).

Consider next the Gerber—Shiu penalty function; this is a nonnegative function of the deficit
at ruin |U s | and the surplus just before ruin UK(; . For h, a nonnegative function, define

m(x,q) = Ec[e™ 0 h(U- , U DI

Proposition 3.3. We have

Y
m(x. q) =/ VO, y,dy) [ 2h(r. 0 — y)dFo(®)
y=0 0>y

oo

+ [ vouyay Ah(. 10 = (5 = v) = ) dF10).
y=y IO-(-y)>y

Proof. The discounted time in (y, y + dy) is V(x, y,dy). When y < y ruin occurs when

the downwards jump 6 exceeds y, in which case the deficit at ruin is 6 — y. When the surplus

just before ruin is above y, ruin occurs when the part that the insurer pays 7(60 — (y — v))

exceeds y. Since I (x) < x, (0 — (y — y)) > y implies that & > y. In this case the deficit is

1O0—-0G=-y)—-v. 0
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4. Results for the I (x) = ax case

In this section we consider the case that /(x) = ax, 0 < o < 1. We obtain simpler
expressions, especially for (3.1)—(3.11), obtaining expressions involving only one integral
instead of two. We apply a fundamental identity introduced by Loeffen (2015). Throughout
we use an index 1 for quantities related to the risk process X1 (¢) with premium rate ¢ and claim
distribution Fi, and an index O for quantities related to the risk process Xo(¢) with premium
rate ¢ and claim distribution Fy, where Fy(x) = F1(x /).

Let - ; be the generator of X ; for j = 0, 1. Let /4 be a locally bounded function satisfying
the smoothness and boundedness conditions (i), (ii), and (iv) of Definition 1 in Loeffen (2015),

Ajh(x) =ch”(x)+ /Oo[h(x —0) —h(x)]LdF;(9), 4.1
0

where h’_ denotes the left derivative of . Also, when I (x) = ax, F 1(s) = I?o(s /o), thus

Vi(s) = B[] = w(f) -~ Z0-a). 4.2)
o o

This section is organized as follows. In Section 4.1 we apply Loeffen’s (2015) result and
establish in Proposition 4.1 a key identity which is applied in the remainder of the section. In
Section 4.2 we obtain an expression for the discounted time that U, € B before exiting [0, b],
where B C R. In Sections 4.3 and 4.4 we obtain expressions for the potential measure for U.
Section 4.5 presents the Laplace transform of the time to ruin, and in Section 4.6 we derive the
ruin probability. In Section 4.7 we present an expression for the Gerber—Shiu penalty function
and the joint probability of the surplus before and at ruin.

4.1. A key identity

The following key identity is a consequence of Loeffen’s (2015) Theorem 2 (see also
Equation (19) in that paper).

Proposition 4.1. When I (x) = ax, for x € [y, b),

Edfe WP @Xi () + =) 1 e ]

W(q) _
= WP (ax +y(1—a)) — #Wéw(ab (0 —a)
Wy b—-v)
b , @, _
- ot)c/ W @y + y(1 - a))[w Wb - y)
Y qu -y

- WP - y)} dy.
Proof. By Loeffen’s (2015) Theorem 2 with o = 0,

E.(e™7r Wé")(axl(rl}) +d—-a)y) 1{1;y<r1+,7})

W](q) (.X _ V)

(9)
W (ab + y (1 — a))
“71((1)(17 _ y)

= W (@x +y(1 —a) -
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W% -y +q)

(q)
Wb — y)
Wb —y)

b
+/ (A1 — W (ay + (1 — a)y)[
Y

W (x — y)}dy.
‘We now show that
/
(A1 — QW @y + (1 = @)y) = —c(1 — )W (@y + y (1 — a)). 43)
By (4.1), the left-hand side above is equal to
(ch(q)/(oc —
o (y+yd—a)
o0
- / [Ws" (@(y = 0) + y(L — ) dFi(0) = A+ )Wo' (ay + y(1 — o)l (4.4)
0

Equation (4.4) is defined for y > —y (1 — «) /. To prove (4.3) we take Laplace transforms of
both sides of (4.3) and show that they are equal; we find

* —sy @)’ L s i-a)y < Jay (@)
/ e Wy (ay +y(1 —a))dy = —e7V 7 0‘/ e "YWy (2) dz
—y(l—a)/a o 7=0
1 1
o ¢ a(ols/a) —q)

where the first equality above comes from using integration by parts and in the second equality
we apply (2.1) and the identity Wéq)(O) = 1/c (Kyprianou (2006, Lemma 8.6)). Similarly,

by (2.1),
> @ (1-a)/ !
e W (ay +y(1 —a))dy =YV ——— — (4.6)
/_ya_a)/a 0 a(o(s /o) = q)
Integration by parts and change of variables now yields
o (0.¢]
[ e [ WPt -0+ (- @) dRe)

—y(l—a)/a 0=0

o Z
= aeSY(-0)/a / e / W (a(z — 6)) dF1(0)
z=0 6=0

)\' o0 o0
— _exy(l—a)/a / e—S9 dFl(e)/ e—‘YZ/lXWg‘I)(Z) dZ
o 6=0 z=0
AFi(s)

a(Po(s/a) —q)

AFp(s/a)
a(ols/a) —q)
In the last line we applied (2.1) and used Zyp = o Z;. From (4.4)—(4.7) we conclude that the
Laplace transform of (A — q)W(gq)(ozx + y(1 —)) is equal to

_ 1 cs —c(1 —a) 1 s
sy(—a)/a| 1 4 = 1— :| = [—— —]
¢ [ et Yt — a ¢ T et —a)
Thus, (4.5) yields (4.3). U

— esy(l—ot)/a

— ori-a/a @.7)
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For x > y, define

x ’
W9 (x, 2) = Wéq><ax—z+y(1—a)>+<1—oz)c/ W~ W @y —z 4y (1—a)) dy,
Y

4.8)
and, for x < y, define
wl (x,2) = Wy (x — 2). 4.9)
Then, fory < x < b,
g1}, @ W0 =p)
Ex[e Ly Wo(ax + (1 —a)y) l{ffy“ﬁ;}] =w,’(x,0) — Wwa (b,0). (4.10)
| _

4.2, Exit time for U
e
Lety < b. Define p(x, y.b,q) := Ex(e™® 1+ _ ) | Up = x).

Proposition 4.2. When I (x) = ax,
(Q) (x 0)
wéﬁ) (b,0)

Proof. Let y < x < b. Either b is reached before y or the process down-crosses y before
reaching b. Then X (7, ) is the state of X after down-crossing y. Since the insurer pays
aly — Xi(z y)) (1nstead of (y — X1(r| J/))) the state of the process U after undershooting y
is

p(x,y.b,q) = (4.11)

y —aly = Xi(r ) = aXi(r ) + (1 —a)y.
Hence, the discounted time until reaching b before ruin is equal to the sum of the discounted time
to reach y before ruin, and the discounted time to reach b before ruin starting at y. Applying
the strong Markov property at y and using (2.2) and (4.8), p(x, vy, b, q) is equal to

—qt;. (q) —
Wl(q)(x — ) Ey[e™ "1 Wy? (OtX(TL),) + (1 —a)y) 1{r1jy<r,fb}]

pP.v.b,q)
Wi ® - y) W ()
WP —y)  wd @0 - WP —y) /WP - y)wd »,0)
=—2 @ p(y.v.b,q).
Wl (b—)/) WO (V)
4.12)
We now find p(y, y, b, q) by substituting x = y in (4.12) and applying (4.10), i.e.
(¢)
W7 (0)
pPy.v.b,q) = (q)l—
Wb —y)
(@) (q) (9) b (@) b 0
we' (v, 0) — (W (0)/ W, (b — y))wa' (b, 0)

@ p(y.y.b,q). (4.13)
Wy (v)

Since w'? (y, 0) = Wéq)(y), we obtain

wo? ) wl (.0
we (6.0)  w(b,0)
Substituting (4.14) in (4.12) we obtain (4.11) for the y < x < b case.

p(y,v.b,q) = 4.14)
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For 0 < x < vy, the strong Markov property with (2.2) and (4.14) yields

(9) (9) )
W, (x) Wy (x) we (x,0)
POy bg) = — i p(yy b)) = — = — e (415)
Wy () wy (b,0)  wy' (b, 0)
i.e. (4.11) again holds. O

43. V9 (x,y,b, B)

Recall (see Proposition 3.1) the discounted time the process is in B before exiting (0, b),
o0
V@ (x, y,b, B) = / e 'P,(U; € B, t < Ky A K;) dr.
0

Proposition 4.3. When I(x) = ax,

we” (x, 0) W@ @
V@(x,y,b, B)=/ (T Wi (b —y) = wy! (x—y))dy
yeBnly.b) \wy!’ (b, 0)
(q)
Wy (x,0)
+ f (i‘q)—wé”(b, ) = wl (x, y)) dy.  (4.16)
€BN(0.y) \wy' (b, 0)
Proof. Consider first the y < x < b case. By (2.3), V@ (x, y, b, B) is equal to
(q)
W7 (x —y)
/ (l(q)—wl“”(b - =W - y)) dy (.17)
yeBNly. ) \W (b — y)

(q) -
gt Wy (@Xi(z )+ —a)y))

e (RN W

yeBN(0,y] Ly =7Lb qu (V)

~ Wy @X1(r) + (1 —a)y — y)):| dy (4.18)

E, [e*QIl.y 1{71__V<Tl-fb} WSQ) (X (Tl_,y) +y( —a))] (q)
+ @ V¥ (y,y,b, B). (4.19)
Wo (¥)

On the right-hand side above, (4.17) is the discounted time spent in B N [y, b) until exit from
[y, b), and (4.18) is the discounted time spent in B N (0, y) until exit from (0, ). Since the
process starts at x > y it first enters (0, y) at rl and then falls to aXl(rl Y+ —w)y)
(partial coverage by the reinsurer prevents fall to X (rl )). Thus, (4.18) follows from (2.3).
Substituting (4.10) in (4.18) and (4.19) shows that V(‘f)(x y, b, B) is equal to

(q)
W (x —y)
f (1—Wfq)(b 0 - WP - y>>dy
yeBN[y,b)

(4) 0 W(fi) _ W (q) b (@) b’o
+/ ( (x,0) = (W7 (x ();))/ (b= y)Nwa' ( )Wé‘”(y _y)
€BN(0.y] Wo' ()
@,
- (wéq)(x, ) — —Wl( )(x 2@, y)>> dy (4.20)
RS
(q) (q) (q) _ (q)
we (x,0) = (W7 (x —y)/W V(b — y)wa (b, O)V(q)(y’ v.b. B, @21

W ()
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Substituting x = y and recalling that wff)(y, y) = Wéq)(y —y) for0 <y < y, shows that

V(q)(y, y, b, B) is equal to

W (y)

(@)
@ Wy (¥)
w (b—y)dY+/ —
we (b, 0) JyeBniy,n :

(@ (9)
wyl’ (b, y) — Wy (y — y)}dy.
yeBN(0,y] I:w&q)(b, 0) * 0

(4.22)

Substituting (4.22) in (4.21) yields (4.16) for y < x < b.
For x < y we find, by substituting (4.22) in (3.2), that V9 (x, y, b, B) is equal to

Wéq)(x)

oV Pw.y.0.B)
Wy (¥)

(q)

wi? (x)

/ [%,—)wg‘”w — ) = We' (x - y)]dy +
veBnio.) LW? (y)

(q)

W (x)

= / [—?q) WPy —y) = WeP (x — y)}dy
yeBN[0,y) L W™ (y)

(@) (@)

Wy ) [ Wy (v)

@ [ W f Wi b — ) dy
Wo" (¥) Lwg'" (b, 0) JyeBnly.b)

(@)
Wo' (v)
+f (—Wé‘”(y ~ D+ =L, y>) dy]
yeBN[0,y] wy' (b, 0)

(@)
W
— MO @k - WO — ) | dy
(@) o 0
yeBN[0,y) Lwy'’ (b, 0)
(@)

Wy (x)
— W (b — y)dy. (4.23)
wg! (b, 0) JyeBniy.b)

Since wéq)(x, 7) = Wéq)(x —z) forx < y, (cf. (4.9)), we obtain a similar expression to (4.16),

completing the proof. (]
4.4. Limit results for b - oo
In this subsection we obtain (cf. before (3.8))

o0

V@D(x,y, B) = bli)n;o V@(x,y, b, B) =E, |:/t e 9 Ly,eB. 1<i;) dti|. (4.24)

=0

Proposition 4.4. When I (x) = ax, forall x >0, V@ (x, y, dy) is equal to the sum

(q)
|: Wo (X, 0) o (q)y

(9)
C(l _ O{)A - qu ('x - y)i| l{ye[y’oo)} dy

(@) 00
Wy (x,0 _ ’
+ [— = f e M@y <az—y+y(1—a))dz—wg,q><x,y)] Lyeio ) dy.
=y
(4.25)

where ~
A= / e 1 @YW gy + (1 — o)) dy. (4.26)
Y
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Proof. Setting x = b in (4.8) shows that w(q) (b, z) is equal to
(q) b (q) @)
Wy (ab—z+y(1 —a)) +c(1 - a)/ Wb — )W (ay —z+y(1 —a))dy. (4.27)
Y
Implicit in (3.8) is the definition W(¢4)) (x) = e~ @YW @ (x). Now applying (3.8) to (4.27)

shows that

wi (b, z)  eP@Cb-tr(=Dyig (@b —z+ y (1 — )
W (b) e®1 @b W(g, (4 (D)

b—
+c(l—a) /b V1D IWg,g) (b — y)
eP1 @D W(g,(g)) (b)

(4.28)

@' _ _
Wy (ay —z+y(1 —a))dy.
(4.29)

Because Xo(1) > X1(1), Yo(s) > ¥1(s), and ®g(q) < P1(g). By Kuznetsov et al. (2013,
Section 3.1), W(a(4))(+00) = 1/1///(<I>(q)). Thus,

lP0@=P1@ _, () g b - 00

and the limit as b — oo of the expression in (4.28) is 0. The limit of (4.29) is :

/7
Sy Wb = ) We? (ay — 2+ y(1 — a))dy

x @)
N / e PO W (ay — 24 y(1 —a))dy asbhb — cc. (4.30)
v

By (3.13) and (4.26)~(4.30),

Wby Wby [ul®.0 @

D = @ ) as b — oo, 4.31)
we! (b, 0) W, ? () W)  cd-—oA
and
w b, y) _w b —y) [wdb,0)
wd’ (0,00 wPw®) 1 WP
f;o e—P1(@)y Wéqy(ay —z4+ vy —a))dy
— I as b — oo. (4.32)

Letting b — 00 in (4.16), from (4.31) and (4.32), it follows that V@) (x, y, B) is equal to

(q)
/ [Me@(q)y _ Wl(q)(x — y)]d)’
veBnly.oo) Le(l —a)A

(q)(x 0) ® ( )
+/ [—/ “P @ @z — y + (1 — a)dz — wi(x, y)]
yeBN[0,y)
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Thus, (4.25) is proved for all x > 0:

(q)
we (X, 0) g, q)y @)
VO (x,y,dy) = [me DY = WP = ) | Lyety.oon dy (433)
(@)
[—w" (0 ™ 0@y @ gz — y 4y (1 —a))dz
A ),
—wi? (x, y)} Liyef0.y)} dy- u

4.5. The Laplace transform of the time to ruin

Proposition 4.5. When I(x) = ax, the Laplace transform of the time to ruin, Lx(q) =
E,[e"%%0 1{K6<OO}]’ depends on x >or< y as follows:

() forx >y, L£:(q) is equal to
ax+y(l—a) @
l+g /0 W," (y) dy

X
+ge(l - a)/ WO — WD @y +y(1 - a))dy
y=y

wi (x, 0) [° e~ P @YW @y + y (1 — ) dy
; (4.34)

—q
2 e @y W @y +y (1 - ) dy

(i) for x <y, L4(q) is equal to

(q) 0 —d1(q)yw (D
Wo''(x) e AW (ay +y(1 —a))dy Y
0@y 0 + W (x — 7) dz. (4.35)

—q q
A z=0

Proof. Let &(q) be an exponentially distributed random variable with parameter g. Then

La(q) = Eele™0 1o )] (4.36)
=P [E(q) > K, ]
=1 —P,[Us >0, s < &@q)]
o0
=1- q/o e " 1{w,e,00), 0<s <)} At
o0
=1 —q/ V@ (x,y,dy). (4.37)
y=0

In the last equality of (4.37) we applied (4.24). To find the last integral we have to integrate
(4.25) between 0 and oco. Observe that

Y @
/ / e 1@ D (a7 — y + y(1 — @) dzdy
y=0Jz=y
* —ow: [T @
= [ e [T W ez -y -y
=y y=0

o o
- / e P @ W D (az 4+ y(1 —a))dz — / e P @O W D (a(z — y))dz, (4.38)
=y z=y
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and
o0 e~ ®1@y poo
/ efq}l(q)zWéq)(a(z —y)dz = / ef(q)l(q)/a)zWéq)(z) dz
7=y o z=0
e—P1(@)y
a(Yo(Pi(g)/a) —q)
e~ P1(@)y

= (4.39)
c(I =a)®i(q)

where in the last equality we applied (4.2). Thus, by (4.25), (4.38), and (4.39),

e—P1(@)y

o0 o0
VO, y,dy) = w9, 0)— —/ WP (x — 7)dz
/y:o Q= e o (el —ayd ),

. w® (x. 0) f;o ef<1>|(q)yW(§q)(o;y +y( —a)dy
A

w‘g‘l)(L 0)e~®1@y

Y
- — @D (x, 7) dz. 4.40
®1(9)Ac(1 —a) /z_ow“ () dz (40

We check (i); let x > y. Substitute (4.8) for wéq) (x, z) in (4.40), which is simplified by adding
and subtracting féxHy(l_a) Wéq)(y) dy. This yields

wi (x,0) [ e P @YW (@y + y (1 — @) dy
A

o0
£x<q>=1—q[—/ Wi (x — 2)dz +
Y

Y@
—f Wol(@x —z 4+ y(1 —a))dz
z=0
YL@ Y@
—C(l—a)/ w? (x—y)/ Wy (ay—z+y(1—a))dzdy}
y=y z=0

ax+y(l—a) @ 00 @
=1—q|:—/(; W,y! (y)dy—/ W (x —2)dz
v

wi (x,0) [5° e~ P @YW @y + y (1 — @) dy
A

ax+y(l1—a) @ y @
+f W,! (y)dy—/ Wy (ax —z+y(1 —a))dz
0 z=0
YL@ Y@
e —a)/ W (x y)f W (wy — 2+ (1 —a))dzdy}
y=y z=0

ax+y(l—a) @ [e'e) @
:1+q[/0 qu(y)dy—i—[ W, (x — z)dz
Y

wi? (x, 0) [£° e~ P @YW @y + y (1 — ) dy
A

ax+y(l—a) @ y @
—/ W,! (y)dy—i—f Wy (ax —z+y(1 —a))dz
0 z=0
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X
+e(l —a) WP (x = W (@y + y(1 — ) dy
y=y

el —a) / W x = W @y — v) dy}
y=v

ax+y(l—a) @
=1+q/ Wy (v)dy
0

wi (x,0) 77 e M @YW (@y + y (1 - @))dy
A

+ge(l — a)/ W (x — Wy + y(1 —a))dy +gC(x), (4.41)
Y=y

—q

where
00 @ ax+y(l—a) @
G(x):/ wy? (x—z)dz—/o Wy (y) dy
Y

1
+/ Wéq)(ax—z—l—y(l—a))dz
z=0

—cl—a) [ WP - WP @b —y)dy.
y=¥

Now Wl(q) (v) = 0 for v < 0 so, for the first integral in C(x), we can write

@ Y L@
/ W (x—z)dz=/0 W () dy,
Y

and for the last two,

ax+y(l—a)

y
/ Wéq)(ax—z—i-y(l —oz))dzz/ Wéq)(y)dy,

z=0 y=a(x—y)
x x—y

W — Wy — ) dy = / WP (x —y — WP (ay) dy.

y=y
This enables us to write C(x) = g(x — y), where

X oax X
g(x) = fo W (y)dy — fo W (y)dy — (1 —a) / . W (x — W (ay) dy.
y=

For the Laplace transform fooo e *¥g(x) dx, we obtain
/OO Cex 1 1 c(l—a)/a
e gx)dx = — — .
0 s@ri(s) —q)  s@Wols/a) —q)  (Yols/a) —q)(i(s) — q)

Applying (4.2) we conclude that the last expression is equal to 0. Thus, g(x) = 0 and (4.34)
follows from (4.41).

(ii) For x < y, from (4.40) or directly from (4.25), it follows that £, (¢) is equal to

(q) 00 —®y(q)y (@
Wl (x) [7° e ®1@DyW P (ay + v (1 — a)) dy %
0 0
4 " q/ Wéq)(x —z)dz,
z=0

completing the proof. ]

-9
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4.6. Ruin probability

In this section we find explicitly the ruin probability @, := Py (k; < c0). We do this by
recalling the Laplace transform in Proposition 4.5 and appealing to monotone convergence:

T 1 _q,(7 B
oy = }ﬁ% Lx(q) = 111% E,[e™ %0 I{KO <00} |-
Proposition 4.6. Let I (x) = ax. When y{(0) < 0, the ruin probability @, = 1 for all x. When
Y1(0) > 0and B == ayr{(0)/[1 — c(1 — a)Wo(y)], we have

(1) ifx > y then

oy =1- (Wo(otx +y(d—a)+cd- Ot)/ Wi(x — y)Wolay +y (1 —Ot))dY)ﬁ;
g (4.42)

(i) ifx < y then
oy =1— Wo(x)B. (4.43)

Proof. (1) Irrespective of 1//{ (0), we obtain the ruin probability @, for x > y by evaluating
the limit of (4.34) as ¢ | 0. The limit of the last two terms in the first line of (4.34) is 0.
To evaluate the limit of the last expression in (4.34) observe that

wi? (x, 0) [5° e @YW @y + y (1 — ) dy

q
e 0@y Wi @y +y (1 — ) dy

o2 e 1@y Wéq)(y) dy — [ e ®1@)y/e Wéq)(y) dy
S22 et @ Wi @y + y (1 - ) dy
_ 0@ 0y L@ 1-0/0 /PO @/0) ~q) g J§ e P @x/aw i (y) dy
. [ et @y Wi (@y + y (1 - o)) dy
= w9 (x, 0~ Loi@ya-aye 9/8%1(q) —q J§ e O WD () dy
[ e @ W @y + y (1 —a)dy

— g @ (x.0) L1 @y (-0
¢ a

(4.44)

where we have used (4.2) in the last line of (4.44). If ¥{(0) < O then ®;(0) > 0, the limit
of the last expression is 0 and thus the ruin probability is 1. If {(0) > 0 then ®(0) = 0, in
which case

%(0) 1

= ¥1(0) = — —c(l —a).
o

lim
g0 @ (q)

Next, consider the denominator in (4.44) where integration by parts yields
> @’
A= f e~ P1@YW? (ay + y(1 — ) dy (4.45)
Y

o
_ lgb.(q)y(lw)/a/ 1@/ @ () 4y
o

Y
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1 (o} ©
_ L oigya-oye [_ WD (e or@sa . 21 f e POV () gy

o
® y
B 1(61)/ e—d>1(q)y/aW(§q)(y)dy:|
a Jo

= Levora-aya —WD ()= tr@r/a ®1(g) 1
* « el —a)®(g)/a

) 14
_ S‘I) / e~ P1@y/a W(;q)(y) dy], (4.46)
0

where in the last equality we have applied (2.1) and (4.2). The limit of the denominator of

(444)yasqg | Ois
1 1
. (—WO(V) + m) (4.47)

Thus, when ©1(0) = 0, substituting (4.8) in (4.44), and applying (4.8) and (4.47), we conclude
that the ruin probability for x > y is as in (4.42).

(ii). Taking the limit of (4.35) as ¢ | 0 in the x < y case shows that the ruin probability is 1
when wl’ (0) < 0 and otherwise is given by (4.43). U

4.7. Gerber-Shiu penalty function
As in Proposition 3.3 let — U be the deficit at ruin and U - the surplus just before ruin.
We want to find for a nonnegatlve function h(x, y) the Gerber—Shlu penalty function

mx,q) = Ele™ 0 h(U . U= ) | Uo = x].

Proposition 4.7. When I(x) = ax, the Gerber—Shiu penalty function m(x, q) is equal to
y 'S}
f V@ (x,y,dy) / h(y, )X dFo(y +2)
y=0 z=0
o0 o0 +z
—i—/ V@ (x,y, dy)/ h(y, A dF] <y -y + v >
y=y z=0 o

Yy (q) 0 00
= / (_wa XC’ ) / e_q’l(q)SWéq)/(as —y+y(d—a)ds —w(x, y))
y s=y

=0

o0
y / h(y, 2% dFo(y +2) dy
Z

=0
00 (q) 00
0) ;
+f (Me Py _ y)) | rario -y + E 0 ay.
y \c(l—a)A = o
(4.48)

Proof. This is the same as for the more general Proposition 3.3, where now we substitute
from (4.25) for V@ (x, y, dy). O

As an application of the Gerber—Shiu penalty function, we derive the joint distribution of
the reserve just before ruin and the deficit at ruin when ¥{(0) > 0, i.e. when ®;(0) = 0. Take
sets C, D C (0, 00), and let h*(y, z) = 1(yec, zep)- Then to find ]P’X(UK(; e C, |U"5| e D),
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substitute ~* in (4.48) and take the limit as ¢ | 0. By (4.46), lim, o A is given by (4.47).
Similarly,

> 1—c(l —a)Woly —
tim [ e MO WD (@5~ y 4 (1 —a)ds = L= OWE =)
V0 Jy=y ac(l —a)

Let wy(x,y) = wé}” (x, y). Since ®;(0) = 0, substituting 2* in (4.48) and taking the limit
q | 0leads to

Py(U,. €C, |U|€D)

awy(x, 0) ) < v+ D)
/yecm(y,oo) (1 —c(1 —a)Wy(y) 1(x —y) ily—v " y

= e(l— a)Woly — y) )
o ’0 - o P H D d N
+/yegm<o‘y><w O oWy et JToly+ Dydy

where IT;(B) is'the Lévy measure of the set B; in the compound Poisson case I1;(B) =
MLF;(B) = AMP(Z' € B) when Z' has distribution F;,i =0, 1.

5. Conclusions

In this paper we studied a compound Poisson risk process in the case that claims are
‘refracted’, i.e. only a part of the claim is paid when the reserve is less than . We obtained
expressions for the Laplace transform of the exit time from an upper barrier, the time to ruin,
and the joint probability for the surplus before and at ruin, for a general function 7 (x) as defined
in the Introduction. We obtained relatively simple expressions for the special but important
case that /(x) = ax. In this case the results have the same flavour as for spectrally negative
refracted Lévy processes, where the premium income rate when the reserve exceeds y is «c;
Kyprianou and Loeffen (2010) studied this case.

We analyzed the model for the compound Poisson risk process; the same analysis holds for
the more general spectrally negative bounded variation Lévy risk process.

It would be worthwhile to consider more general reinsurance policies, for example 7 (x) =
min(a, x), where a is a positive constant.
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