
J. Plasma Physics (2002), vol. 67, parts 2&3, pp. 139–147. � 2002 Cambridge University Press

DOI: 10.1017/S0022377801001362 Printed in the United Kingdom

139

Stability of force-free magnetic fields versus
magnetic pitch
Y. Q. H U and L. L I

Department of Earth and Space Sciences, University of Science and Technology of China,
Hefei 230026, China

(Received 8 January 2001 and in revised form 20 May 2001)

Abstract. Starting from the one-dimensional energy integral and related stability
theorems given by Newcomb [Ann. Phys (NY) 10, 232 (1960)] for a linear pinch
system, this paper analyses the stability of one-dimensional force-free magnetic
fields in cylindrical coordinates (r, θ, z). It is found that the stability of the force-
free field is closely related to the radial distribution of the pitch of the field lines:
h(r) = 2πrBz/Bθ. The following three types of force-free fields are proved to be
unstable: (i) force-free fields with a uniform pitch; (ii) force-free fields with a pitch
that increases in magnitude with r in the neighbourhood of r = 0 (d|h|/dr > 0);
and (iii) force-free fields for which (dh/dr)r=0 = 0, Bθ ∝ rm in the neighbourhood
of r = 0, and (h d2h/dr2)r=0 > −128π2/(2m + 4)2. On the other hand, the stability
does not have a definite relation to the maximum of the force-free factor α defined
by ∇× B = αB. Examples will be given to illustrate that force-free fields with an
infinite force-free factor at the boundary are stable, whereas those with a force-free
factor that is finite and smaller than the lowest eigenvalue of linear force-free field
solutions in the domain of interest are unstable. The latter disproves the sufficient
criterion for stability of nonlinear force-free magnetic fields given by Krüger [J.
Plasma Phys. 15, 15 (1976)] that a nonlinear force-free field is stable if the maximum
absolute value of the force-free factor is smaller than the lowest eigenvalue of linear
force-free field solutions in the domain of interest.

1. Introduction
In solar active regions, the magnetic pressure is much larger than the gas pressure,
so the force-free magnetic field, defined by (∇ × B) × B = 0 and ∇ · B = 0, or,
equivalently,

∇× B = α(r)B, B ·∇α = 0, (1)

serves as a good approximation (Low 1982). Here α(r) is the force-free factor, and
it is a constant for a linear force-free field and a function of r for a nonlinear one.
A force-free field should be stable when it is to be used to interpret quiet magnetic
structures in active regions. On the other hand, instabilities caused by the temporal
evolution of force-free fields have often been invoked to explain various explosive
phenomena. Therefore, stability analysis is important in the application of force-
free fields to both quiet magnetic structures and explosive phenomena in active
regions.
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A useful approach to the stability problem of magnetostatic equilibria is Bern-
stein’s energy principle (Bernstein et al. 1958). According to this principle, a suf-
ficient and necessary condition for the stability of a system is that its perturbed
potential energy, given by a so-called energy integral, is positive for every per-
turbation displacement ξ satisfying appropriate boundary conditions. This energy
principle is also applicable to force-free fields. Based on it, Krüger (1976a) proved
that a sufficient and necessary condition for stability of a linear force-free field in a
finite domain is that the absolute value of the force-free factor is smaller than the
lowest eigenvalue of linear force-free field solutions in the domain. Such a conclu-
sion might lead to the following inference: the magnitude of the force-free factor
should also bear on the stability of a nonlinear force-free field. As a matter of fact,
Krüger did give a sufficient criterion for stability of nonlinear force-free fields in
the same paper: the maximum absolute value of the force-free factor is smaller than
the lowest eigenvalue associated with the domain of interest, but the proof was not
valid.

For one-dimensional magnetostatic equilibria in cylindrical coordinates, New-
comb (1960) derived a one-dimensional form of Bernstein’s energy integral, and
presented several stability criteria. Hu (2000) applied Newcomb’s energy integral
and related stability criteria to the analysis of stability of one-dimensional force-
free fields in cylindrical coordinates, and proved that the force-free field with a
singular current-density surface given by Low (1993) is stable. The force-free factor
of this field approaches infinity at the singular current-density surface. Another
force-free field given by Gold and Hoyle (1960) was then proved by Hu (2001) to
be unstable, and it has a finite force-free factor everywhere and serves as a disproof
to the sufficient criterion of stability for nonlinear force-free fields addressed by
Krüger (1976a).

Based on the work by Newcomb (1960) and Hu (2000, 2001), this paper will
make a further analysis of the stability of nonlinear force-free fields with emphasis
on the relationship between the stability of a nonlinear force-free field and the
radial distribution of the pitch of the field lines.

2. The energy integral
For one-dimensional magnetostatic equilibria in cylindrical coordinates (r, θ, z),
Newcomb (1960) transformed the energy integral into the following form:

W =
π

2

∫ R

0
dr

[
f

(
dξ

dr

)2

+ gξ2

]
, (2)

where

f =
r(krBz +mBθ)2

k2r2 +m2 , (3)

g =
2k2r2

k2r2 +m2

dp

dr
+
k2r2 +m2 − 1
r(k2r2 +m2)

(krBz +mBθ)2

+
2k2r

(k2r2 +m2)2 (k2r2B2
z −m2B2

θ), (4)

Bz and Bθ are the magnetic field components, p is the gas pressure, R is the radius
of the cylinder domain for the equilibrium, ξ is the amplitude of the r component
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of the perturbation displacement whose phase factor is exp(imθ + ikz), m is an
integer, and k is a real number. An equilibrium is stable if and only if W > 0
for arbitrary m, k, and ξ that satisfies ξ(r = R) = 0. Starting from the energy
integral, Newcomb proved that the most unstable mode is either m = 0, k → 0 or
m = 1, −∞ < k < ∞. Let us now restate some derivations by Hu (2000) in order
to obtain the energy integral. For force-free magnetic fields, dp/dr = 0, so that for
the mode of m = 0, k → 0, one has

f = rB2
z > 0, g =

B2
z

r
> 0;

W is always positive. Therefore, only the mode m = 1 (−∞ < k < ∞) needs to be
examined. Taking m = 1 and dp/dr = 0, (2) and (3) become

f =
r(krBz +Bθ)2

1 + k2r2 , (5)

g =
k2r(krBz +Bθ)2

1 + k2r2 +
2k2r(k2r2B2

z −B2
θ)

(1 + k2r2)2 . (6)

These two equations were derived by Hu (2000). The restatement is complete.
The pitch of field lines is defined by

h(r) =
2πrBz
Bθ

, (7)

which represents the distance travelled by a field line along the z direction while it
revolves one cycle around the cylindrical axis. Inserting (7) into (5) and (6) gives

f =
rB2

θ(1 + kh/2π)2

1 + k2r2 , (8)

g =
k2rB2

θ(1 + kh/2π)2

1 + k2r2 +
2k2rB2

θ

(1 + k2r2)2

[(
kh

2π

)2

− 1

]
. (9)

3. Stability versus the pitch
As can be seen from (8) and (9), f and the first term of g are positive-definite,
whereas the sign of the second term of g is indefinite and depends on h, implying
the importance of the radial distribution of the pitch on the stability of the force-
free field. For a force-free field with uniform pitch, one may consider the most
unstable mode of

k =
2π(δ − 1)

h
, 0 < δ� 1, (10)

and (8) and (9) become

f =
rB2

θδ
2

1 + k2r2 , (11)

g =
k2rB2

θ(3 + k2r2)δ2

(1 + k2r2)2 − 4k2rB2
θδ

(1 + k2r2)2 . (12)

Only the second term of g is of the first order in δ, being dominant and definitely
negative, and thus one can always find a certain positive number δ � 1 so as to
make the energy integral (2) negative regardless of the value of R. We then have
the following theorem.
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Theorem 1. All force-free fields with uniform pitch are unstable.

Based on a similar derivation, Hu (2001) proved that the force-free field

Bz =
a

a2 + r2 , Bθ =
r

a2 + r2 (13)

given by Gold and Hoyle (1960) is unstable. This field has a pitch h = 2πa and
belongs to a force-free one with uniform pitch, so that it is unstable according to
Theorem 1.

For the general case where h is a function of r, one may always find a neighbour-
hood of r = 0 in which h varies monotonically with r. In this neighbourhood, one
may find k = kc in such a way that

kch(rc)
2π

+ 1 = 0, or kc = − 2π
h(rc)

, (14)

and rc serves as the unique regular singular point in the neighbourhood. According
to Theorem 3 of Newcomb (1960), a necessary condition for stability of the system
is that the energy integral in the subinterval (0, rc) is non-negative. From (2), (8),
(9) and (14), the energy integral in this subinterval reads

Wc =
π

2

∫ xc

0

xB2
θ

1 + x2

(
h

hc
− 1
)2(

dξ

dx

)2

dx

+
π

2

∫ xc

0

[
xB2

θ

1 + x2

(
h

hc
− 1
)2

+
2xB2

θ

(1 + x2)2

(
h2

h2
c

− 1
)]

ξ2 dx, (15)

where x = |kc|r, xc = |kc|rc, and hc = h(rc). Introduce the following perturbation
displacement in the subinterval:

ξ =

{
1 (0 6 x 6 xc − ε),
(xc − x)/ε (xc − ε 6 x 6 xc),

(16)

and thus

dξ

dx
=

{
0, (0 6 x 6 xc − ε),
−1/ε, (xc − ε 6 x 6 xc),

(17)

where ε � xc. Considering that in the vicinity of xc, h/hc ≈ 1 + h′c(x − xc)/hc
(where h′c = h′(xc) and the prime denotes the derivative of the first order), the first
term on the right-hand side of (15) becomes

π

2

∫ xc

xc−ε

xB2
θh
′2
c (x− xc)2

(1 + x2)h2
cε

2 dx ≈ πxcB
2
θch
′2
c ε

6(1 + x2
c)h2

c

,

which vanishes as ε→ 0. As a result, (15) is reduced to

Wc =
π

2

∫ xc

0

[
xB2

θ

1 + x2

(
h

hc
− 1
)2

+
2xB2

θ

(1 + x2)2

(
h2

h2
c

− 1
)]

dx. (18)

Therefore, if Wc < 0, the nonlinear force-free field as a whole is unstable. Since
Wc(xc = 0) = 0, one must have Wc < 0 when W ′c < 0 in the neighbourhood of
x = 0, and in this case the force-free field is unstable. It may be derived from (18)
that

W ′c(xc) =
π

2

∫ xc

0

[
2xB2

θ

1 + x2

(
1− h

hc

)
hh′c
h2
c

− 4xB2
θ

(1 + x2)2

h2h′c
h3
c

]
dx. (19)
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In the following, we assume that xc is a small quantity and only keep the major
term in W ′(xc). The ratio between the first and second terms in the integrand is
(h − hc)(1 + x2)/2h, which is of the order of xc, so that the second is the major
term. Consequently, for sufficiently small xc,W ′c must have a sign opposite to that
of hch′c or simply |hc|′, leading to the following sufficient condition for instability
of the force-free field:

d|h(r)|
dr

> 0 (0 < r� 1); (20)

namely, all force-free fields with a pitch whose magnitude increases with r in the
neighbourhood of r = 0 are unstable. The criterion (20) may be cast into a more
convenient form for application. When (d|h(r)|/dr)r=0 > 0, (20) is certainly satisfied.
On the other hand, if the derivatives of h with respect to r of up to the (n − 1)th
order vanish at r = 0 but the derivative of |h| of the nth order is positive, (20) also
holds. Therefore, in place of the criterion (20), we have

Theorem 2. A sufficient condition for instability of force-free fields is that

(
d|h|
dr

)
r=0

> 0, (21a)

or (
dmh

drm

)
r=0

= 0, (m = 1, 2, . . . , n− 1);
(
dn|h|
drn

)
r=0

> 0. (21b)

In what follows, the application of Theorem 2 will be illustrated by three exam-
ples, expressed by

Bθ =
r

(1 + r2)ν
Bz =

[1 + 2(1− ν)r2]1/2

(2ν − 1)1/2(1 + r2)ν
( 1

2 < ν < 1), (22)

Bθ = (rV )1/2e−r/2, Bz = [B2
z0 + V (2− r)e−r]1/2 (V > 0), (23)

Bθ = rV 1/2e−r/2, Bz = [B2
z0 + V (2 + 2r − r2)e−r]1/2 (V > 0). (24)

These examples are adapted from the three magnetostatic equilibria given by Cargill
et al. (1986). The force-free factor α (= (1/rBz) d(rBθ)/dr) and the pitch for each
field is

α =
2(2ν − 1)1/2[1 + (1− ν)r2]
(1 + r2)[1 + 2(1− ν)r2]1/2

,

h =
2π[1 + 2(1− ν)r2]1/2

(2ν − 1)1/2
;

 (22a)

α =
(3− r)(V/r)1/2e−r/2

2[B2
z0 + V (2− r)e−r]1/2

,

h = 2π
( r
V

)1/2
er/2[B2

z0 + V (2− r)e−r]1/2;

 (23a)

α =
(4− r)V 1/2e−r/2

2[B2
z0 + V (2 + 2r − r2)e−r]1/2

,

h = 2πV −1/2er/2[B2
z0 + V (2 + 2r − r2)e−r]1/2.

 (24a)
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For these fields, we have h > 0 and(
dh

dr

)
r=0

= 0,
(
d2h

dr2

)
r=0

=
4π(1− ν)

(2ν − 1)1/2
> 0, (22b)

(
dh

dr

)
r=0

=
[
π(B2

z0 + 2V )1/2

(rV )1/2

]
r→0
→ +∞, (23b)

(
dh

dr

)
r=0

=
π(B2

z0 + 2V )1/2

V 1/2
> 0, (24b)

respectively. Accordingly, either (21a) or (21b) is satisfied for these fields, and thus
they are all unstable based on Theorem 2. Among them, the force-free field (22) has
an α decreasing monotonically with r and taking a maximum of 2(2ν − 1)1/2 at r
= 0, whereas the force-free field (24) has a finite α everywhere for B2

z0 > 6V e−4. If
Krüger’s sufficient criterion were correct, the two force-free fields would be judged
to be stable in a domain of such a radius R that the maximum face-free factor is
smaller than the lowest eigenvalue 3.176/R derived by Krüger (1976b). However,
they are unstable for any domain according to the analysis made above.

For force-free fields that do not satisfy the criterion (21), it is assumed that(
dh

dr

)
r=0

= 0,
(
h
d2h

dr2

)
r=0
6= 0, (Bθ)r�1 ≈ B0r

m, (25)

where B0 and m are constants, and m should be positive for physically acceptable
force-free field solutions. The first two conditions imply that the pitch takes a non-
vanishing extremum at r = 0. In this situation, one may find k = k0 so that

k0h(0)
2π

+ 1 = 0, or k0 = − 2π
h(0)

. (26)

With the use of (8), (9) and (26), the energy integral (2) may be cast into the form

W0 =
π

2

∫ x0

0

xB2
θ

1 + x2

(
h

h0
− 1
)2(

dξ

dx

)2

dx

+
π

2

∫ x0

0

[
xB2

θ

1 + x2

(
h

h0
− 1
)2

+
2xB2

θ

(1 + x2)2

(
h2

h2
0
− 1
)]

ξ2 dx, (27)

where x = |k0|r, x0 = |k0|R, and h0 = h(0). In the following analysis, we assume
x0� 1, namely, our focus is placed on the behaviour of the force-free field in a small
neighbourhood of r = 0. Within this neighbourhood, we have from (25) that

h(r) ≈ h0 + 1
2h
′′
0x

2, Bθ ≈ B0

( |h0|x
2π

)m
, (28)

where h′′0 = (d2h/dx2)x=0. Inserting (28) into (27) leads to

W0 =
πB2

0 |h0|2m
2(2π)2m

∫ x0

0

x2m+5h′′20

4(1 + x2)h2
0

(
dξ

dx

)2

dx

+
πB2

0 |h0|2m
2(2π)2m

∫ x0

0

[
x2m+5h′′20

4(1 + x2)h2
0

+
x2m+3h′′0

(1 + x2)2h0

(
2 +

h′′0x
2

2h0

)]
ξ2 dx,
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which, if only the major terms are reserved, is reduced to

W0 =
πB2

0 |h0|2(m−1)h′′20

8(2π)2m

∫ x0

0

[
x2m+5

(
dξ

dx

)2

+
8h0

h′′0
x2m+3ξ2

]
dx. (29)

The Euler–Lagrange equation for the energy integral (29) reads

d

dx

(
x2m+5 dξ

dx

)
− 8h0

h′′0
x2m+3ξ = 0. (30)

The solutions are multiples of x−n, where n is the root of the quadratic algebraic
equation

n2 − (2m + 4)n− 8h0

h′′0
= 0. (31)

If

(2m + 4)2 +
32h0

h′′0
< 0, (32)

then n is complex, so that these solutions are oscillatory in the neighbourhood of
r = 0. According to the analysis made by Newcomb (1960), a certain perturbation
displacement ξ can be found so as to make the energy integral (29) negative, and
thus the system is unstable. Therefore, (32) serves as a sufficient criterion for insta-
bility of force-free fields. Since r = |h0|x/2π, so that h′′0 = h2

0(d2h/dr2)r=0/4π2, this
criterion may be rewritten in the form(

h
d2h

dr2

)
r=0

> − 128π2

(2m + 4)2 , (33)

and then we come to the following theorem.

Theorem 3. A force-free field satisfying the condition (25) and the criterion (33) is
unstable.

As the criterion tells us, even if the pitch of a force-free field decreases in magni-
tude with r in the neighbourhood of r = 0 so as to fail to meet the criterion (20),
the force-free field remains unstable when the rate of decrease is so small that the
criterion (33) is satisfied. In case that the criterion (33) is not satisfied, one has to
start with the energy integral (2) and (8) and (9) in general, and to assess stability
based on relevant theorems given by Newcomb (1960).

Let us now give three examples to illustrate the application of Theorem 3:

Bθ = J1(αr), Bz = J0(αr), (34)

Bθ = 1
4λ

2r, Bz = 1
4λ

2[2(r2
0 − r2)]1/2, (35)

Bθ = re−r
2
, Bz = [a + (0.5− r2)e−2r2

]1/2 (a > −0.5), (36)

where J0 and J1 are the Bessel functions of the zeroth and first order. Of these
examples, (34) represents a linear force-free field that has been proved to be sta-
ble in the domain of (0, 3.176/α) (Krüger 1976b), and (35) is a force-free field
with a singular current density surface proved to be stable in its definition do-
main of (0, r0) (Hu 2000). The force-free field (36) is taken from Hood and Priest
(1980). All these fields satisfy the condition (25), and have m = 1, so that the term
on the right-hand side of (33) becomes − 32

9 π
2(≈ −3.56π2). From (34), we have
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h0 = 4π/α, (d2h/dr2)r=0 = −πα, and h0(d2h/dr2)r=0 = −4π2, whereas the corre-
sponding values are 23/2πr0,−23/2π/r0, and −8π2 for (35). Both fields do not meet
the criterion (33), which is consistent with the conclusion that they are stable.

Let us turn to the force-free field expressed by (36). It has a force-free factor and
pitch given by

α =
2(1− r2)

[ae2r2 + 0.5− r2]1/2
, h = 2π(ae2r2

+ 0.5− r2)1/2. (36a)

The force-free field described by (36) is well defined over the whole space (0,∞) for
a > (2e2)−1; it is definable in a finite domain of radius rm otherwise, given by

a + (0.5− r2
m)e−2r2

m = 0.

rm is equal to 0 for a = −0.5 and to 1 as a approaches (2e2)−1. Besides, this field
with a < (2e2)−1 is a force-free field with a singular current-density surface that is
located at r = rm. From (36a), one may obtain

h0 = 2π(a + 0.5)1/2,

(
d2h

dr2

)
r=0

=
2π(2a− 1)
(a + 0.5)1/2

,

and then

h0

(
d2h

dr2

)
r=0

= 4π2(2a− 1). (36b)

Therefore, the force-free field (36) is judged to be unstable for a > 0.5 by Theorem
2, and for a > 1

18 further by Theorem 3. The field solutions with a ranging from
1
18 to 1

2 have a pitch that decreases in the neighbourhood of r = 0, and thus their
instability can only be judged by Theorem 3. When a 6 1

18 , the criterion (33) is
not satisfied, and the stability of the associated force-free field should be judged
from the energy integral (2), (8) and (9), and relevant theorems given by Newcomb
(1960), as mentioned above. By doing so, the force-free field (36) with a in the
range of (− 1

2 ,
1
18 ) was found to be stable. Thus, this field is another member of

the family of stable force-free fields with singular current-density surfaces. It is
interesting to notice that the force-free field (36) with a ranging from 1

18 ≈ 0.0556
to (2e2)−1 ≈ 0.0677 also has a singular current-density surface, but it is unstable.

4. Concluding remarks
On the basis of the hydrodynamic energy principle, we have discussed the stability
of one-dimensional, nonlinear force-free magnetic fields in cylindrical coordinates.
The radial distribution of the pitch is found to play an important role in the sta-
bility of these fields. All force-free fields with either a uniform pitch or a pitch that
increases in magnitude with the radial distance in the neighbourhood of the cylin-
drical axis are definitely unstable. If the first-order derivative of the pitch with
respect to r vanishes at r = 0 and the product between the pitch and its derivative
of the second order at r = 0 is excessively small in magnitude (i.e. the decrease of
the pitch magnitude in the neighbourhood of r = 0 is too slow), then the force-free
field is also unstable. These conclusions have been summarized in three theorems,
which provide us with useful criteria to assess instability of nonlinear force-free
fields. It is also demonstrated that the stability of the nonlinear force-free field
does not have a definite relation to the maximum force-free factor. A nonlinear
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force-free field may be stable even if its force-free factor approaches infinity in local
areas, whereas it may be unstable even if its maximum force-free factor is smaller
than that of a linear force-free field everywhere in the domain of interest where the
linear force-free field is stable. The former agrees with the conclusion reached by
Vekshtein (1989) that a large local force-free factor near the boundary is consistent
with the magnetohydrodynamic stability of a system. The latter disproves the suf-
ficient criterion for stability of nonlinear force-free magnetic fields given by Krüger
(1976a) that a nonlinear force-free field is stable if the maximum absolute value of
the force-free factor is smaller than the lowest eigenvalue of linear force-free field
solutions in the domain of interest.
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