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An analytical solution is developed for studying transient water wave-induced responses
inside an unsaturated poroelastic seabed of finite thickness. The soil skeleton and the pore
fluid are compressible and the constitutive relationship of the soil skeleton is described
by Hooke’s law. Assuming that the horizontal length scale of wave motion is much larger
than the seabed thickness, the leading-order analytical solutions for the seabed responses,
including pore fluid pressure and soil skeleton motion, are obtained. The present solutions
are suitable for general transient wave loading and for the shear modulus of the soil
skeleton being of the same order of magnitude as the effective bulk modulus of elasticity
of the pore fluid. The present theory is first validated by checking the solutions with the
experimental data for the pore pressure induced by periodic-wave loading. The present
analytical solutions are then used to investigate the seabed responses under transient waves,
including linear periodic wave, a solitary wave and a bore. The effects of the wave-induced
effective stresses on the bed failure potential are further analysed. The results show that
the shear failure potential and its duration are highly dependent on the soil properties, such
as saturation degree, shear modulus and permeability. Sensitivity analyses are presented.
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1. Introduction

When water waves propagate into coastal regions, dynamic pressures will be generated and
applied at the water–seabed interface, leading to variations in pore pressure and effective
stresses inside the seabed (Terzaghi 1943; Baumgarten & Kamrin 2019). Because of the
dynamic wave–seabed interaction, the seabed may become unstable. Phenomena such as
scour, liquefaction and shear failure could occur under different conditions (Yamamoto
1977; Sumer & Fredsøe 2002). The occurrence of seabed instability has great impact on
wave propagation, sediment transport and the safety of offshore structures (Jeng et al.
2013; Ragione et al. 2019; Tong et al. 2020).

Since the 1940s, a number of theories have been developed to investigate wave-induced
dynamic seabed responses (Sumer 2014). In general, these theories are based on two kinds
of physical conditions: either a rigid or a deformable seabed (Bear 1972). In the rigid
seabed models, the soil skeleton is non-deformable and the flow is governed by the Laplace
equation of the pore-pressure field if the compressibility of the pore fluid is further ignored
(i.e. Darcy’s flow model) (Putnam 1949; Liu 1973; Liu, Davis & Downing 1996; Body &
Ehrenmark 1998). Otherwise, if the pore fluid’s compressibility is significant, the diffusion
equation of the pressure governs the corresponding pore flow (Moshagen & Tørum 1975;
Tørum 2007). Although the seabed is likely to be highly saturated, the apparent bulk
modulus of elasticity of the pore fluid, K, decreases drastically if the pore water contains
a very small amount of air. For instance, K decreases by four orders of magnitude if the
degree of saturation, Sr, is reduced from 1 to 0.95 at atmospheric pressure (Yamamoto
et al. 1978).

When the soil deformation has considerable influence on the flows inside and over the
seabed (Wen & Liu 1995; Abdolali, Kadri & Kirby 2019), deformable medium models
are required (Biot 1941; Madsen 1978). The mechanical properties of the soil skeleton are
associated with several parameters, such as the grain size, degree of consolidation and
loading pattern. To consider the deformation of the soil, the strain–stress relationship must
be known. For a well-consolidated sandy bed, wave-induced soil deformation is relatively
small, and therefore Hooke’s law is widely used to describe the constitutive relationship
(Baumgarten & Kamrin 2019; Hsu, Chen & Tsai 2019), which has been confirmed by
field and laboratory measurements (Zen & Yamazaki 1991; Zhai et al. 2018; Qi et al.
2019). However, for a loose silty or clayey bed, elastoplastic models are more appropriate
(Rahman, Lo & Dafalias 2014; Meyer, Langford & White 2016; Zhao et al. 2020).

Within the framework of the poroelastic theory and the linear wave assumption,
analytical solutions for the displacements of the soil skeleton and pore pressure were first
obtained by Yamamoto et al. (1978), in which the soil was assumed to be homogeneous
and isotropic. Their solutions were applied to evaluate the shear failure potential inside
the sandy seabed under the North Sea design conditions (Yamamoto 1978). Madsen
(1978) derived similar analytical solutions for a hydraulically anisotropic seabed. Using
the derived solutions, the shear failure inside a saturated seabed was examined under a
storm condition. Note that the solutions of both Yamamoto et al. (1978) and Madsen
(1978) were obtained by assuming that the seabed thickness was infinite. Mei & Foda
(1981) obtained a one-dimensional exact solution for harmonic motion within a finite
poroelastic seabed, in which the physical features of the shear waves were clarified. Based
on these physical characteristics of the shear waves, a boundary layer theory was further
developed, in which the drainage effect was only considered inside the boundary layer. Hsu
& Jeng (1994) further derived analytical solutions for a seabed of finite thickness. Using
the finite-thickness solutions, Jeng (1997) investigated wave-induced seabed instability,
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Wave-induced responses in a poroelastic seabed

including liquefaction and shear failure, in front of a perfectly reflecting seawall. In
addition, new solutions were obtained by Jeng & Rahman (2000) and Ulker & Rahman
(2009) to consider the effects of inertia forces. The comparisons showed that inertia forces
may be more important in deeper water with larger thickness for a coarse sandy seabed
(Jeng & Rahman 2000).

All the analytical studies mentioned above were derived for simple harmonic waves.
However, transient waves such as solitary waves and bores can be observed in
coastal and ocean regions (Chanson 2009; Chan & Liu 2012; Pujara, Liu & Yeh
2015) and they can cause seabed failure (Packwood & Peregrine 1980; Liu, Park
& Lara 2007; Young, Xiao & Maddux 2010; Sumer et al. 2011; Jia et al. 2019;
Tehranirad, Kirby & Shi 2020), suggesting that transient wave-induced pore pressure
and effective stresses, and their effects on instability within a deformable seabed,
require attention as well. According to our literature survey, only a few studies
have been carried out on this topic (Young et al. 2009; Merxhani & Liang 2012;
Rivera-Rosario, Diamessis & Jenkins 2017; Rivera-Rosario et al. 2020) and they are
typically numerical approaches. Moreover, the assumptions employed in the governing
equations used in the numerical studies are not clearly stated, which demands further
attention.

In the present paper, we provide an analytical solution for pore pressure and soil effective
stresses within an unsaturated poroelastic seabed under transient waves, focusing on the
case where the thickness of the seabed is much smaller than the length scales of the water
wave and soil shear wave. The motions of the fluid and soil skeleton are described by
the consolidation theory, and the deformation of the soil skeleton obeys Hooke’s law.
With these assumptions, analytical solutions for the pore-pressure and soil responses
are obtained once the time history of the dynamic pressure along the water–seabed
interface is prescribed. Based on the present solutions, the dynamic and kinematic features
inside the seabed under a linear wave train, a solitary wave and a bore are studied. As
an application, the present theory is used for investigating the effects of wave-induced
dynamic responses on shear failure inside the seabed under periodic waves and transient
waves.

The remainder of this paper is organized as follows. After introducing the proper
scales, the governing equations for the motions of pore fluid and soil skeleton, and the
boundary conditions, are given in § 2. The analytical solutions for transient wave-induced
pore-pressure and soil responses are derived in § 3. In § 4, the results of the present theory
are checked with two laboratory experiments. Using the validated theory, the dynamic and
kinematic responses within an unsaturated poroelastic seabed induced by a linear wave
train, a solitary wave and a bore are investigated in § 5 The wave-induced shear failure
potential and its effects are investigated in § 6. Finally, concluding remarks are provided
in § 7.

2. Governing equations and boundary conditions

As shown in figure 1, transient water waves with characteristic amplitude a′
0, characteristic

wavelength l′0 and characteristic period T ′ propagate in water with constant depth h′ lying
over a seabed with thickness d′. Cartesian coordinates (x′, z′) are used on the vertical plane,
with the origin on the still-water level.

The seabed is modelled as an unsaturated poroelastic medium, which is characterized
by its shear modulus G, density ρs, permeability ks and porosity n. Following Mei & Foda
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Seabed
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z′

Z′

a′
0

η′(x′,t′)

Figure 1. Sketch of a transient wave propagating over a seabed of finite thickness.

(1981), the dynamic responses inside the seabed are scaled as follows:

x = x′

l′0
, Z = 1

d′ (z
′ + d′ + h′), t = t′

T ′ ,

(κ1uf ,wf ) = 1
κ1γC′ (u

′
f ,w′

f ), (κ1us,ws) = 1
κ1γC′ (u

′
s,w′

s),

p = 1
ρf ga′

0
p′, τ ij = 1

ρf ga′
0
τ ′

ij, εij = 1
γ

ε′
ij.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

Here, ρf is the density of the pore fluid, g represents the acceleration of gravity, C′ =
l′0/T

′ is the characteristic wave celerity, and (uf , us) and (wf ,ws) denote the dimensionless
velocity components in the x- and z-directions, where the subscripts f and s denote the pore
fluid and soil skeleton, respectively. In (2.1), γ = ρf ga′

0/G is a dimensionless parameter
characterizing the soil deformation, and

κ1 = d′/l′0 (2.2)

represents the vertical to horizontal length ratio. Moreover, p is the wave-induced pore
pressure, τ ij denotes the stress tensor and εij represents the strain tensor. Tension is
considered as positive for the analysis. The scales of the pore fluid and soil skeleton
velocity are inferred from Hooke’s law.

2.1. Governing equations
Based on the consolidation theory, the continuity equation for the soil skeleton can be
expressed as (Yamamoto et al. 1978; see Appendix A herein)

κ2
2

κ2
1

∂2p
∂Z2 − ∂ws

∂Z
+ κ2

1

(
κ2

2

κ2
1

∂2p
∂x2 − ∂us

∂x

)
= n

G
K
∂p
∂t
, (2.3)

where κ2 is a dimensionless parameter, being defined as

κ2 = 1
l′0

√
GT ′ks

ρf vf
, (2.4)
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Wave-induced responses in a poroelastic seabed

with vf denoting the kinematic viscosity of the pore fluid. As suggested by Verruit (1969),
the apparent bulk modulus of elasticity of the pore fluid, K, depends on the degree of
saturation, Sr, as

1
K

= 1
Kw

+ 1 − Sr

p′
abs

, (2.5)

where Kw is the bulk modulus of elasticity of pure water and p′
abs is the absolute pore-water

pressure.
The leading-order equilibrium equations for the mixture of the pore fluid and soil

skeleton are (e.g. Jeng 2003)

κ1
∂τxx

∂x
+ ∂τzx

∂Z
− κ1

∂p
∂x

= 0 (2.6)

in the horizontal direction, and

κ1
∂τxz

∂x
+ ∂τzz

∂Z
− ∂p
∂Z

= 0 (2.7)

in the vertical direction. Based on Hooke’s law, the effective stresses are related to the
strains as (e.g. Mei & Foda 1981)

∂τxx

∂t
= 2

[
∂εxx

∂t
+ ν

1 − 2ν

(
∂εxx

∂t
+ ∂εzz

∂t

)]
, (2.8)

∂τzx

∂t
= ∂τxz

∂t
= ∂εxz

∂t
= ∂εzx

∂t
, (2.9)

∂τzz

∂t
= 2

[
∂εzz

∂t
+ ν

1 − 2ν

(
∂εxx

∂t
+ ∂εzz

∂t

)]
, (2.10)

where ν is Poisson’s ratio of the soil skeleton, and the dimensionless strain tensor can be
determined by the linear geometric equation as

{
∂εij

∂t

}
= ∂

∂t

(
εxx εzx

εxz εzz

)
=

⎛
⎜⎝ κ2

1
∂us

∂x
κ1
∂us

∂Z
+ κ1

∂ws

∂x

κ1
∂us

∂Z
+ κ1

∂ws

∂x
∂ws

∂Z

⎞
⎟⎠ . (2.11)

The above constitutive law for wave-induced soil skeleton responses inside a sandy seabed
has been confirmed by both field observation data and laboratory measurements (Zen &
Yamazaki 1991; Qi et al. 2019).

In addition, Darcy’s law for the poroelastic seabed can be expressed as

∂p
∂x

= −n
κ2

1

κ2
2
(uf − us), (2.12)

∂p
∂Z

= −n
κ2

1

κ2
2
(wf − ws). (2.13)
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2.2. Dimensionless boundary conditions
At the bottom of the seabed, no-slip and no-flux boundary conditions are required (Mei &
Foda 1981; Hsu & Jeng 1994). Thus

us = ws = 0,
∂p
∂Z

= 0, at Z = 0. (2.14a,b)

Along the water–seabed interface, the vertical effective stress vanishes, i.e.

τzz = 0, at Z = 1, (2.15)

and the shear stress also vanishes,

τzx = 0, at Z = 1. (2.16)

Finally, the dynamic water pressure must be continuous, namely,

p = pb, at Z = 1, (2.17)

where pb is the dimensionless dynamic water pressure at the water–seabed interface, which
is the sole driving force of the seabed responses.

3. Analytical solutions inside a shallow unsaturated poroelastic seabed

In coastal regions, the thickness of the seabed varies over a wide range (Jeng 2003). In this
paper, we are interested in the condition where d′ is of the order of magnitude of O(10 m).
For transient long waves, such as solitary waves or bores, the wavelength, l′0, can be of
the order of magnitude of O(102 m) or even longer, and therefore O(κ2

1 ) � 1. For wind
waves with typical period of O(10 s), the wavelength is also of the order of magnitude of
O(102 m), and therefore the previous inequality is satisfied as well. For instance, under the
North Sea design condition with d′ = 25 m and l′0 = 324 m (Yamamoto 1978), one has
κ2

1 = 6 × 10−3.
For a sandy seabed, the permeability ks varies from 10−12 to 10−9 m2 (Body &

Ehrenmark 1998), indicating that κ2 can be of the same order of magnitude as the seabed
thickness. As a rough estimate, consider typical sandy seabed conditions: G = 107 Pa,
ks = 10−10 m2 and d′ = 10 m. Then one has κ2

2/κ
2
1 = O(1) with T ′ = 10 s, and κ2

2/κ
2
1 =

O(10) with T ′ = 100 s, suggesting that

O(κ2
2 ) ∼ O(κ2

1 ) � 1, (3.1)

where l′0 = gT ′2/(2π) and vf = 10−6 m2 s−1 are used for estimation. Finally, in this study,
we shall focus on an unsaturated seabed, and under this condition G/K is usually much
larger than κ2

1 . For example, consider the seabed with typical shear modulus of 107 Pa
under a 10 m water column, then G/K = O(1) when Sr = 0.99–0.95.

3.1. Analytical solution for pore pressure
Based on the approximations mentioned above, the governing equation for the pore
pressure, (2.3), can be further simplified to

∂ws

∂Z
+ n

G
K
∂p
∂t

= κ2
2

κ2
1

∂2p
∂Z2 , 0 ≤ Z ≤ 1. (3.2)

The combination of (2.9) and (2.11) shows that τxz is of the order of O(κ1). Therefore,
applying the boundary condition (2.15), equation (2.7) can be simplified to the
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one-dimensional principle of effective stress, namely τzz − p = −pb. In addition, applying
the approximation (3.1) in the constitutive law (2.10) and the geometric equation (2.11), we
obtain

∂ws

∂Z
= 1 − 2ν

2 − 2ν
∂( p − pb)

∂t
, 0 ≤ Z ≤ 1. (3.3)

Finally, substituting the equation above into (3.2) yields

α2
(
∂p
∂t

− β
∂pb

∂t

)
= ∂2p
∂Z2 , 0 ≤ Z ≤ 1, (3.4)

in which α and β are constants, defined by

α = κ1

√
ν̃ + G̃
κ2

, β = ν̃

ν̃ + G̃
, with ν̃ = 1 − 2ν

2 − 2ν
, G̃ = n

G
K
. (3.5a,b)

Equation (3.4) is a non-homogeneous one-dimensional diffusion equation, and 1/α
measures the diffusion depth of the wave-induced pore pressure. If the soil skeleton
is assumed to be rigid, i.e. G → ∞, then β → 0 and 1/α → √

ksKT ′/(nρf vf )/d′.
Consequently, (3.4) reduces to the one-dimensional diffusion equation used in Liu et al.
(2007).

Introducing the intermediate variable P , given by

P = p − βpb, (3.6)

in (3.4), the boundary-value problem for p can be expressed in terms of P as

α2 ∂P
∂t

= ∂2P
∂Z2 , 0 ≤ Z ≤ 1, (3.7)

with the following boundary conditions:

∂P
∂Z

= 0, at Z = 0, (3.8)

P = (1 − β)pb, at Z = 1. (3.9)

Assuming that the pressure field begins from a quiescent state, the initial two-point
boundary-value problem (3.7), (3.8) and (3.9) can be solved by the Laplace transformation
method, and the analytical solution can be readily expressed as

P = (1 − β)pb + 2(1 − β)

∫ t

0

∂pb

∂ϑ

[ ∞∑
�=1

G�(t − ϑ)

a�
cos(a�Z)

]
dϑ, (3.10)

in which a� are constants given by (2�− 1)π/2, and G�(t − ϑ) is defined as

G�(t − ϑ) = (−1)� exp[−a2
�(t − ϑ)/α2]. (3.11)

According to (3.6), the solution of p can be straightforwardly written as

p = pb + 2(1 − β)

∫ t

0

∂pb

∂ϑ

[ ∞∑
�=1

G�(t − ϑ)

a�
cos(a�Z)

]
dϑ. (3.12)
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For later use, the leading-order solutions for the wave-induced pore-pressure gradients
in the horizontal and vertical directions are obtained as

∂p
∂x

= ∂pb

∂x
+ 2(1 − β)

∫ t

0

∂2pb

∂x∂ϑ

[ ∞∑
�=1

G�(t − ϑ)

a�
cos(a�Z)

]
dϑ (3.13)

and
∂p
∂Z

= −2(1 − β)

∫ t

0

∂pb

∂ϑ

[ ∞∑
�=1

G�(t − ϑ) sin(a�Z)

]
dϑ, (3.14)

respectively.

3.2. Analytical solutions for soil skeleton responses
Combining (3.2) with (3.3) to eliminate ∂p/∂t yields

∂ws

∂Z
= ν̃

α2
∂2p
∂Z2 − βG̃

∂pb

∂t
, 0 ≤ Z ≤ 1. (3.15)

Thus, the vertical velocity component of the soil skeleton can be obtained by integration
as

ws = −(1 − β)
2ν̃
α2

∫ t

0

∂pb

∂ϑ

[ ∞∑
�=1

G�(t − ϑ) sin(a�Z)

]
dϑ − βG̃

∂pb

∂t
Z. (3.16)

Substituting the solutions of p and ws into (2.13), the vertical velocity component of the
pore fluid can be expressed as

wf = (1 − β)(1 − nβ)
nβ

2ν̃
α2

∫ t

0

∂pb

∂ϑ

[ ∞∑
�=1

G�(t − ϑ) sin(a�Z)

]
dϑ − βG̃

∂pb

∂t
Z. (3.17)

According to the one-dimensional principle of effective stress, τzz − p = −pb, the
wave-induced vertical effective stress can be obtained as

τzz = 2(1 − β)

∫ t

0

∂pb

∂ϑ

[ ∞∑
�=1

G�(t − ϑ)

a�
cos(a�Z)

]
dϑ. (3.18)

Based on (2.8), (2.9) and (2.11), the horizontal effective stress and the shear stress can
be simplified as

∂τxx

∂t
= 2ν

1 − 2ν
∂ws

∂Z
,

∂τzx

∂t
= κ1

∂us

∂Z
+ κ1

∂ws

∂x
. (3.19a,b)

The combination of (3.19a,b) and (2.10) indicates that τxx is proportional to τzz, namely,

τxx = ν

1 − ν
τzz = 2(1 − 2ν̃)(1 − β)

∫ t

0

∂pb

∂ϑ

[ ∞∑
�=1

G�(t − ϑ)

a�
cos(a�Z)

]
dϑ. (3.20)

Substituting (3.20) and (3.12) into (2.6) and employing the boundary condition (2.16),
the shear stress can be calculated by integration as

τzx = τxz = 4κ1ν̃(1 − β)

∫ t

0

∂2pb

∂x∂ϑ

[ ∞∑
�=1

G�(t − ϑ)

a�

F�(Z)
a�

]
dϑ − κ1(1 − Z)

∂pb

∂x
,

(3.21)
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in which F�(Z) is defined as

F�(Z) = (−1)� + sin(a�Z). (3.22)

The solutions show that τxx is of the same order of magnitude as τzz, which is of the order
of unity, and τzx is of the order of κ1, indicating that the shear stress is relatively weak for
the case of a shallow seabed.

Combining (3.16) and (3.21) with (3.19a,b), the vertical gradient of horizontal velocity
component of the soil skeleton is determined as

∂us

∂Z
=
{
(1 + βG̃)Z − 1 + 4ν̃(1 − β)

∞∑
�=1

[
G�(0)

a�

F�(Z)
a�

]}
∂2pb

∂x∂t

− (1 − β)
2ν̃
α2

∫ t

0

∂2pb

∂x∂ϑ

{ ∞∑
�=1

G�(t − ϑ)[(−1)� + F�(Z)]

}
dϑ. (3.23)

Thus, from the above equation, the horizontal velocity component of the soil skeleton can
be calculated by integration as

us =
{

1
2
(1 + βG̃)Z2 − Z + 4ν̃(1 − β)

∞∑
�=1

[
G�(0)

a�

A�(Z)
a�

]}
∂2pb

∂x∂t

− (1 − β)
2ν̃
α2

∫ t

0

∂2pb

∂x∂ϑ

{ ∞∑
�=1

G�(t − ϑ)[(−1)�Z + A�(Z)]

}
dϑ, (3.24)

where A�(Z) is defined by

A�(Z) =
∫ Z

0
F�(σ ) dσ = (−1)�Z + 1 − cos(a�Z)

a�
. (3.25)

Finally, according to the horizontal momentum equation for the pore fluid, (2.12), the
horizontal velocity component uf is determined as

uf =
{

1
2
(1 + βG̃)Z2 − Z + 4ν̃(1 − β)

∞∑
�=1

[
G�(0)

a�

A�(Z)
a�

]}
∂2pb

∂x∂t

− (1 − β)
2ν̃
α2

∫ t

0

∂2pb

∂x∂ϑ

{ ∞∑
�=1

G�(t − ϑ)[(−1)�Z + A�(Z)]

}
dϑ

− 1
nβ

ν̃

α2

{
∂pb

∂x
+ 2(1 − β)

∫ t

0

∂2pb

∂x∂ϑ

[ ∞∑
�=1

G�(t − ϑ)

a�
cos(a�Z)

]
dϑ

}
. (3.26)

4. Comparisons between analytical solutions and experimental data

On the basis of (3.12)–(3.14), the pore pressure and its gradients, induced by transient
or periodic waves, can be calculated if the dynamic water pressure at the water–seabed
interface is prescribed. In this section, the analytical solutions of pore pressure are
first compared with laboratory experiments, including the one-dimensional water–soil
column experiments reported by Liu & Jeng (2013) and Liu et al. (2015), and the
periodic wave–seabed interaction experiments reported by Anderson et al. (2017). The
experimental conditions are listed in table 1.
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Liu & Jeng Liu et al. Anderson et al.
(2013) (2015) (2017)

Physical parameters Case I Case II 2-D case

Water depth h′ (m) 5.2 5.2 1.0
Wave period T ′ (s) 9.0 9.0 7.0
Wave amplitude a′

0 (m) 0.62 1.75 0.375
Wave length l′0 (m) 61.7 61.7 26
Soil depth d′ (m) 1.8 1.8 0.18
Soil porosity n 0.425 0.425 0.40
Poisson’s ratio ν 0.3 0.3 0.35
Saturation degree Sr 0.975 0.996 0.982
Permeability coefficient ks (m2) 1.8 × 10−11 1.8 × 10−11 2.85 × 10−10

Bulk modulus of elasticity
of pore fluid K (Pa) 2.05 × 106 1.27 × 107 5.4 × 105

Shear modulus of the seabed G (Pa) 6.0 × 106 2.5 × 108 8.0 × 106

Dimensionless parameter κ2
1 8.5 × 10−4 8.5 × 10−4 4.8 × 10−5

Dimensionless parameter κ2
2 2.6 × 10−4 1.1 × 10−2 2.4 × 10−2

Table 1. Summary of physical conditions in the water–soil column experiments and wave–seabed interaction
experiments.

4.1. One-dimensional water–soil column experiment
In the present section, we compare the analytical solution with the experimental data
reported in Liu & Jeng (2013) (case I) and Liu et al. (2015) (case II), in which experiments
were conducted in a vertical cylinder containing a 0.2 m column of water above a 1.8 m
soil layer. Air pressure was applied on the water surface, comprising static and sinusoidal
dynamic loads. The static load was equivalent to the static weight of a 5 m water column
and the dynamic load corresponded to the dynamic water pressure induced by water waves,
whose characteristics are listed in table 1. In the table, the wavelength is equivalent to that
of a linear wave with period of 9 s in 5.2 m water depth. The soil used in the experiments
was fine sand with a mean grain diameter, d50, of 0.157 mm. The pore pressure along the
vertical direction was measured by 10 pore-pressure transducers.

In both cases, the soil shear moduli are not directly measured. However, since the sand
is loosely deposited in case I and is very similar to the loose sand used in Zhai et al. (2018),
we adopt the same shear modulus value as 6 × 106 Pa. In case II, the experimental data
are obtained after 3000 cycles of wave loading, suggesting that the sand bed is in a densely
packed state. Therefore, the shear modulus is assumed to be 2.5 × 108 Pa, which is of the
same order of magnitude as the shear modulus reported by Yamamoto et al. (1978) for
dense sand. The dimensionless parameters shown in table 1 indicate that the assumptions
invoked in the present study are well satisfied.

Figure 2 shows the vertical profiles of the maximum wave-induced pore pressure in
the seabed. For comparison, the analytical results by Liu et al. (2007), which assumes
G � K, are displayed as well. The present solutions agree well with the experimental data
in both cases. The difference between the measurements and solutions may be caused by
the higher-order solutions. On the other hand, the Liu et al. (2007) solutions agree well
only with the experimental data in case II, which is densely packed sand. Therefore, soil
deformation plays an important role and should be considered when the shear modulus of
soil, G, is close to the apparent bulk modulus of elasticity of the pore fluid, K.
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Figure 2. Vertical profiles of the maximum wave-induced pore pressure in case I of Liu & Jeng (2013) and
case II of Liu et al. (2015). Circles, experimental results; solid lines, the present solution at leading order; and
dashed lines, the previous solution without considering the deformation of the soil skeleton (Liu et al. 2007).
Physical parameters are given in table 1.

4.2. Periodic wave–seabed interaction experiments
Anderson et al. (2017) conducted a set of experiments in the large wave flume at Oregon
State University (the O.H. Hinsdale Wave Research Laboratory). The wave flume is
104 m long, 3.7 m wide and 4.6 m deep (Mieras et al. 2017). A barred beach profile
was constructed based on the field surveys during the Duck94 experiments, as shown
in figure 3(a). The main portion of the barred beach profile comprised concrete slabs.
However, at the crest of the bar profile, a pit with 3.66 m × 3.66 m horizontal cross-section
was filled with 0.18 m thick sediment. At the centre of the pit, a deeper chamber
with a 1.20 m × 1.20 m cross-section and 0.43 m depth was installed to accommodate
instruments. The still-water depths at the wavemaker and over the sandbar were 2.448 m
and 1 m, respectively. To collect pore pressures, seven pore-pressure transducers were
mounted in a T-shaped moulding with 2 cm spacing (centre-to-centre). The horizontal
row has five transducers (P1–P5) and the vertical column adds two transducers (P6 and
P7), as shown in figure 3(b–d). The pressure gradients at P3 are estimated by employing
the finite-difference formulae using the measured pressures in the proximity.

The experimental wave conditions and the seabed soil properties are summarized in
table 1. The wavelength is determined by the wave steepness given in Anderson et al.
(2017), and the permeability of the soil is calculated by using the Kozeny–Carman
equation (Bear 1972),

ks = d2
50n3

180(1 − n)2
. (3.1)

In the experiments, d50 is measured to be 0.17 mm. The porosity of the seabed and the
density of the soil particles are not provided in Anderson et al. (2017). Here, we use the
same values as those recommended in Kim et al. (2019).

Although the dynamic water pressure at the water–seabed interface was not directly
measured in Anderson et al. (2017), it can be inferred from the time histories of
the phase-averaged free-surface elevation, η′, measured at the edge of the sand pit.
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Figure 3. Experimental set-up and instrument layout in Anderson et al. (2017): (a) beach profile and sand
pit; (b) illustration of the instrument configuration (including the acoustic Doppler velocimeters (ADVs), the
conductivity concentration profilers (CCPs) and the pore-pressure transducer array (PPTA)), looking towards
the beach; (c) the spanwise view of the PPTA and CCP in the sandy bed; and (d) the onshore view of sensor
proximities.

For shallow-water waves (i.e. h′/l′0 = 0.046), the pressure along the water–seabed
interface, p′

b, can be approximated as ρf gη′. Moreover, the horizontal pressure gradient
on the water–seabed interface, ∂pb/∂x, can be related to its time derivative, ∂pb/∂t. The
degree of saturation is assumed to be 0.982, and the shear modulus, G, is set to be
8 × 106 Pa, which is the same as the measured value in Zhai et al. (2018) for a soil sample
with a mean grain diameter of 0.15 mm, similar to the experiments of Anderson et al.
(2017). These values are also listed in table 1.

In figure 4, the present theoretical results for the time histories of free-surface elevation
at the offshore edge of the sandbar, the wave-induced horizontal pore-pressure gradient
and the vertical pressure gradient at P3 are plotted against the laboratory measurements.
The experimental data are represented by the phase-averaged value over 10 wave cycles
and the error bar with one standard deviation. Since the dynamic pressure on the water–soil
interface is linearly proportional to the free-surface elevation, figure 4(a) can be viewed
as the time history of the dynamic pressure on the water–soil interface. Therefore, the
horizontal pressure gradient is almost zero under the wave crest as shown in figure 4(b); a
slight phase lag is observed because measurement is 0.9 cm below the water–soil interface.
Overall, the agreement between the theoretical results and measurements is very good.
Some differences in the pressure gradients occur during the receding phase of the water
level. As reported by Anderson et al. (2017), the closest wave gauge to the sandy bed
instruments was located at the offshore edge of the sandbar, 1.82 m from the pore-pressure
transducers, and therefore the disagreement may be caused by the difference between
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Figure 4. Time histories of (a) free-surface elevation at the offshore edge of the sandbar, (b) wave-induced
pore-pressure gradient in the horizontal direction at 0.9 cm below the water–seabed interface, and
(c) wave-induced pore-pressure gradient in the vertical direction. Grey dots, phase-averaged experimental
results; error bars, standard deviation; black line, the present solutions with the physical parameters listed
in table 1.

the waveform of the free surface at the offshore edge of the sandbar and that over the
instruments.

Since the degree of saturation and the shear modulus are not directly measured in
the experiments, the sensitivity of these two parameters to the wave-induced pressure
gradients is further examined. The order of magnitude of G is set in the range of 104 to
107 Pa and the degree of saturation is set to 0.98, so that K = 4.9 × 105 Pa. Figure 5 shows
the calculated horizontal and vertical pressure gradients at 0.9 cm below the water–seabed
interface. The differences between the solutions using shear modulus values of 106 and
107 Pa, respectively, are very small, because the soil is relatively dense, i.e. G > K, and
the soil deformation is minor in both cases. However, when the shear modulus is further
reduced, 1 − β, which controls the amplitude of the vertical pressure gradient, decreases
quickly, and α2, which measures the diffusion time scale of the pressure, increases
significantly. As a result, the vertical pressure gradient decreases rapidly and the phase
lag also increases. Finally, according to Liu et al. (2007), the degree of saturation in
soil has a significant influence on the pore-pressure response. To demonstrate this feature,
wave-induced pressure gradients at 0.9 cm below the interface are plotted for Sr = 0.97,
0.98 and 0.99 in figure 6. Since P3 is close to the water–seabed interface, its horizontal
pressure gradient is close to ∂pb/∂x and not very sensitive to the change of saturation
degree. However, the vertical pressure gradient increases rapidly with decreasing Sr, but
the phases almost remain the same, since 1 − β increases and α2 changes are small.
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Figure 5. Time histories of wave-induced pressure gradients at 0.9 cm below the water–seabed interface:
(a) the horizontal gradient and (b) the vertical gradient. Green line, G = 1 × 104 Pa; blue line, G = 1 × 105 Pa;
red line, G = 1 × 106 Pa; and black line, G = 1 × 107 Pa. The other parameters used for calculation are listed
in table 1.

t
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Figure 6. Time histories of wave-induced pressure gradients at 0.9 cm below the water–seabed interface:
(a) the horizontal gradient and (b) the vertical gradient. Black line, Sr = 0.99; red line, Sr = 0.98; and blue
line, Sr = 0.97. The other parameters used for calculation are listed in table 1.

5. Transient wave-induced soil responses within the seabed

In this section, the present analytical solutions are used to study the dynamic responses
inside an unsaturated seabed under different transient wave loadings, including linear
periodic waves, solitary waves and bores. The results are obtained by assigning
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Figure 7. Time histories of the linear periodic-wave-induced dimensionless pore pressure within an
unsaturated poroelastic seabed at three different elevations: (a) Z = 1 on the seabed–water interface, (b) Z =
0.5 at mid-depth of the seabed, and (c) Z = 0 on the seabed bottom. Black solid lines, the present solution
(3.12); and red dashed lines, the solution of Liu et al. (2007) for rigid soil skeleton. The following parameters
are used for calculation: n = 0.45, ν = 0.33, G = K = 2 × 107 Pa, ks = 1 × 10−10 m2, ρf = 1 × 103 kg m−3,
vf = 1 × 10−6 m2 s−1, d′ = 10 m, h′ = 30 m, T ′ = 15 s and a′

0/h
′ = 0.1.

d′ = 10 m, ks = 1 × 10−10 m2, G = K = 2 × 107 Pa, ν = 0.33 and n = 0.45. Such a
shallow medium sandy seabed is observed in the coastal region of Fujian, China (Wang &
Yang 2019).

5.1. Linear periodic-wave-induced pore-pressure and soil responses
The analytical solutions for the pore pressure and its gradients induced by sinusoidal
dynamic loads have been validated with experimental data in the previous section. Here we
provide a general and broader discussion for linear periodic-wave-induced soil responses
under typical wind wave conditions: h′ = 30 m, T ′ = 15 s and a′

0/h
′ = 0.1. Based on

the dispersion relationship of linear waves, l′0 = 234 m, accordingly κ2
1 = 1.8 × 10−3 and

κ2
2 = 5.5 × 10−4. In figure 7, the time histories of pressure p are plotted at three different

elevations, Z = 1.0, 0.5 and 0, respectively.
For convenience and consistency, a moving coordinate is used in the analysis hereinafter.

In figure 7, ϕ is a moving coordinate defined by ϕ = x − t. To understand the effects
of soil deformation on the pore-pressure response, the rigid skeleton solutions of Liu
et al. (2007) are shown in the figure as well. Since the pressure field begins from the
quiescent state, it takes some time to reach the quasi-steady state. As shown in figure 7, the
wave-induced pore pressure damps with increasing soil depth, and a phase lag in the arrival
of the maximum pore pressure between Z = 1 and Z = 0.5 is apparent. Since the diffusion
depth of the pore pressure measured by 1/α is 0.65, the vertical pressure gradient (or the
drainage velocity) is small beneath the diffusion region, and the soil behaves like an elastic
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Figure 8. Contours of pore pressure and effective stresses inside a seabed: (a) the time history of the linear
wave-induced dynamic water pressure at the water–seabed interface; (b) contours of the pore pressure p;
(c) contours of the horizontal effective stress τxx; (d) contours of the vertical effective stress τzz; and (e) contours
of the shear stress τxz. The physical parameters used in the calculation are given in the caption of figure 7.

solid (Mei & Foda 1981). Therefore, p approaches βpb (β = 0.36) at the seabed bottom
according to (3.4), and the phase lag in the arrival of the maximum pore pressure decreases
to zero at Z = 0. However, without consideration of soil deformation, β decreases to zero,
and therefore the amplitudes of the pore pressure in the seabed are smaller. In addition,
the phase lags are longer and simply increase with increasing soil depth, since it always
takes a longer time for the pressure to diffuse into a deeper location inside a rigid porous
seabed.

Figure 8 shows the contours of the linear periodic-wave-induced pore pressure and
effective stresses inside the seabed. The effective stresses vanish at the water–seabed
interface as required by the boundary conditions, and the amplitudes of the effective
stresses increase with increasing soil depth. The effective horizontal normal stress, τxx,
and shear stress, τxz, are smaller than the effective vertical normal stress, τzz. Under the
wave crest, the pressure reaches a maximum value at the water–seabed interface and damps
with increasing soil depth, resulting in a negative vertical pressure gradient. Owing to
this negative pressure gradient, the soil skeleton is compressed, and therefore a negative
effective vertical normal stress (compression) is generated within the seabed. As the crest
passes, the wave-induced pore pressure at the interface decreases on the interface and
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Figure 9. Time histories of linear wave-induced dimensionless velocity components at three different
elevations, (a,b) Z = 1, (c,d) Z = 0.5 and (e, f ) Z = 0, within an unsaturated poroelastic seabed. Black solid
lines, the pore fluid velocity components; blue solid lines, the soil skeleton velocity components;red solid lines,
the velocity difference of the pore fluid and soil skeleton calculated by the present solutions; and red dashed
lines, the velocity difference of the pore fluid and soil skeleton calculated by Liu et al. (2007) for a rigid soil
skeleton. The physical parameters used in the calculation are given in the caption of figure 7.

increases within the seabed. Consequently, the vertical pressure gradient increases and
changes sign before the arrival of the wave trough. Therefore, a positive effective vertical
normal stress (tension) is generated inside the seabed under the trough. The tendency of
the effective horizontal effective stress is the same as that of the effective vertical normal
stress, since τxx ∝ τzz in a shallow seabed according to (3.20). In addition, the shear stress,
τxz, is positive in the ascending phase and negative in the receding phase. Lastly, the linear
wave-induced pore pressure and effective stresses are symmetric.

Figure 9 displays the time histories of dimensionless velocity components of the pore
fluid, (3.17) and (3.26), and the soil skeleton, (3.16) and (3.24), at three different elevations,
Z = 1.0, 0.5 and 0, in which the left column shows the horizontal velocity components
and the right column shows the vertical velocity components. For clarity, detailed vertical
profiles of the velocity components at four different phases during the third wave period
are also plotted in figure 10.

Since the shear modulus of the soil, G, equals the effective bulk modulus of elasticity
of the pore fluid, K, under the present soil properties, the amplitudes of the velocity
components of the soil skeleton at Z = 1.0 and Z = 0.5 are no longer negligible, compared
with those of the pore fluid. At the bottom of the seabed, Z = 0, the velocity components of
the soil skeleton vanish, determined by the boundary conditions. The horizontal velocity
component of the pore fluid is negative under the crest and positive under the trough.
The horizontal velocity component of the soil skeleton shows similar features; however, it
reverses its direction before the horizontal velocity component of the the pore fluid changes
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Figure 10. Vertical profiles of the dimensionless velocity components of the pore fluid, the soil skeleton and
the seepage flow at four different phases: (a) the time history of the dynamic water pressure at the water–seabed
interface; (b–e) the vertical profiles of the horizontal velocity components at ϕ1 = −0.75, ϕ2 = −0.50,
ϕ3 = −0.25 and ϕ4 = 0, respectively; and ( f –i) the vertical profiles of the vertical velocity components at
ϕ1 = −0.75, ϕ2 = −0.50, ϕ3 = −0.25 and ϕ4 = 0, respectively. Black solid lines, the pore fluid velocity
components; blue solid lines, the soil skeleton velocity components; red solid lines, the differences of the
pore fluid and soil skeleton velocities calculated by the present solutions; and red dashed lines, the difference
of the pore fluid and soil skeleton velocities calculated by Liu et al. (2007). The physical parameters used in
the calculation are given in the caption of figure 7.

its sign. In the vertical direction, the vertical velocity components for the pore fluid and
soil skeleton are positive in the receding phase and negative in the ascending phase, and
the vertical velocity component of the soil skeleton also changes its direction before that
of the pore fluid.

In addition, the vertical profiles of the velocity components are symmetric with respect
to the wave crest and the wave trough, as shown in figure 10. The relative velocities
between the pore fluid velocity and the soil skeleton velocity are compared in this figure
as well. Recall that the soil skeleton in Liu et al. (2007) is rigid, and therefore the relative
velocities and the seepage flow velocities calculated in Liu et al. (2007) are identical.
The results show that the relative horizontal velocities are relatively small except near the
bottom of the seabed, compared with the horizontal velocities of the pore fluid and soil
skeleton. At the seabed bottom, the horizontal velocity component of the soil skeleton
will be zero as required by the boundary condition, and therefore the relative horizontal
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velocity component is the same as the horizontal velocity component of the pore fluid.
As can be seen from figure 10, both the amplitudes and phases of the relative velocity
components in the present solution and the solution of Liu et al. (2007) are different inside
the seabed. This can be attributed to the fact that the pressure calculated from these two
theories are different within the seabed (see figure 7), and ∇p ∝ uf − us, (2.12) and (2.13),
is true from both theories.

In the poroelastic seabed model, the discharge volume of pore fluid, n∂wf /∂Z, is equal
to the total compression volume of the soil skeleton, ∂ws/∂Z, and the pore fluid, G̃∂p/∂t,
based on (3.2) and (2.13). Under the present wave conditions and soil properties, the
wave-induced vertical normal effective stress reaches up to 0.72 at the seabed bottom (see
figure 8), and therefore, according to (2.10) and (2.11), the compression volume of the soil
skeleton is considerable, compared with that of the pore fluid. However, in the rigid seabed
model, the compression volume of the soil skeleton is assumed to be zero (Liu et al. 2007).
Consequently, the various fluid velocities calculated from both theories are significantly
different.

5.2. Solitary-wave-induced pore-pressure and soil responses
It is well known that the effective wavelength and wave period of a solitary wave can be
expressed as (e.g. Dean & Dalrymple 1991)

l′0 = h′
√

4h′

3a′
0

and T ′ = l′0√
gh′ , (5.1a,b)

respectively, which have been used as the horizontal length scale and the time scale
for the present problem. Recall that a′

0 is the solitary-wave height and h′ is the water
depth. Correspondingly, the dimensionless dynamic water pressure at the water–seabed
interface approximated by normalized free-surface elevation can be written as (Packwood
& Peregrine 1980; Knowles & Yeh 2018)

pb = sech2(x − Ct), (5.2)

where C is the dimensionless wave celerity, defined as C =
√

1 + a′
0/h

′, and a′
0/h

′

measures the wave nonlinearity. Substituting the above expressions into (3.12),
(3.16)–(3.18), (3.20), (3.21), (3.24) and (3.26), respectively, the dynamic responses
inside the seabed are obtained. To illustrate various physical features, the solitary-wave
conditions are set to be h′ = 30 m and a′

0/h
′ = 0.2 as an example.

In figure 11, the time histories of the wave-induced pore pressure are plotted at three
different elevations in the seabed, Z = 1.0, 0.5 and 0, respectively. For a solitary wave, the
moving coordinate, ϕ = x − Ct, is used. The solitary-wave loading at the water–seabed
interface (Z = 1) is symmetric with respect to the wave crest (ϕ = 0). However, the
profiles become asymmetric at the mid-depth (Z = 0.5) and the bottom of the seabed
(Z = 0), since the soil responses have a memory of the history of the spatial variation of
the wave loading. There are also phase lags in the arrival of the maximum pore pressure.
In addition, the width of the asymmetric pressure distribution becomes wider towards the
bottom of the seabed. The width is defined as the time interval within which the pore
pressure is larger than 1 % of the maximum pressure amplitude. Without considering the
deformation of the soil skeleton, the phase lags are longer inside the seabed as well.

Figure 12 shows the contours of the solitary-wave-induced pore pressure and effective
stresses within the seabed. As shown in the figure, the amplitudes of the effective stresses
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Figure 11. Time histories of the solitary-wave-induced dimensionless pore pressure within an unsaturated
poroelastic seabed at three different elevations: (a) Z = 1 on the seabed–water interface; (b) Z = 0.5 at
mid-depth of the seabed; and (c) Z = 0 on the seabed bottom. Black solid lines, the present solution (3.12); and
red dashed lines, the solution of Liu et al. (2007) for a rigid soil skeleton. The following parameters are used
for calculation: α = 2.79, β = 0.36, κ1 = 3.33κ2 and ν̃ = 0.25. These correspond to the physical conditions:
n = 0.45, ν = 0.33, G = K = 2 × 107 Pa, ks = 1 × 10−10 m2, ρf = 1 × 103 kg m−3, vf = 1 × 10−6 m2 s−1,
d′ = 10 m, h′ = 30 m and a′

0/h
′ = 0.2.

also increase with increasing soil depth. In the acceleration phase, the pressure inside the
seabed damps with increasing soil depth, and therefore the soil is also compressed by the
wave-induced pressure. After the wave crest, the dynamic water pressure at the interface
decreases; however, due to the phase lag, the pressure within the seabed continues to
increase. As a result, the pressure gradient changes sign from negative to positive, and
a positive effective vertical normal stress is generated inside the seabed. Correspondingly,
the effective shear stress changes sign in the opposite manner. Since the wave-induced
pressure is relatively small at the seabed bottom, compared with the dynamic water
pressure at the interface, the positive vertical pressure gradient in the deceleration phase
is weak, and it takes a relatively long time to dissipate the wave-induced pressure and
effective normal stresses.

Figure 13 further displays the time histories of dimensionless velocity components of the
pore fluid and the soil skeleton at three different elevations, Z = 1.0, 0.5 and 0. The vertical
profiles of the velocity components at five different phases are also plotted in figure 14.
In the seabed, the horizontal velocity component of the pore fluid reverses its direction,
first from positive to negative and then reverses it again from negative to positive after the
horizontal pressure gradient changes its sign. The horizontal soil skeleton velocity behaves
similarly, while its value is smaller in the acceleration phase and larger in the deceleration
phase. However, the vertical velocity components show different features. Both the vertical
velocity components of the pore fluid and soil skeleton simply reverse their directions from
positive to negative before the vertical pressure gradient changes its sign with increasing
ϕ. The relative velocities between the pore fluid velocity and the soil skeleton velocity are
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Figure 12. Contours of pore pressure and effective stresses inside a seabed: (a) the time history of the
solitary-wave-induced dynamic water pressure at the water–seabed interface; (b) contours of the pore pressure
p; (c) contours of the horizontal effective stress τxx; (d) contours of the vertical effective stress τzz; and
(e) contours of the shear stress τxz. The physical parameters used in the calculation are given in the caption
of figure 11.

compared in these figures as well. Owing to the wave-induced soil deformation within the
seabed, the difference between the present solution and the solution of (Liu et al. 2007) is
also obvious under a solitary wave.

5.3. Bore-induced pore-pressure and soil responses
According to Packwood & Peregrine (1980), the horizontal length scale and the time scale
for a bore can be represented by (5.1a,b) as well. Thus, the bore-induced dimensionless
dynamic water pressure at the water–seabed interface can be expressed as (Liu et al. 2007)

pb = 1
2 [1 − tanh(x − Ct)], (5.3)

where C is the dimensionless bore velocity. Substituting (5.3) into the leading-order
solutions for the pore pressure (3.12), the effective stresses (3.18), (3.20) and (3.21) and
the velocity components of the pore fluid and soil skeleton (3.16), (3.17), (3.24) and (3.26),
respectively, various features of seabed response under a bore can be obtained.

To quantify the results, the same set of physical parameters as employed in the previous
subsection is used herein. In figure 15, time histories of the dimensionless pore pressure
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Figure 13. Time histories of solitary-wave-induced dimensionless velocity components at three different
elevations, (a,b) Z = 1, (c,d) Z = 0.5 and (e, f ) Z = 0, within an unsaturated poroelastic seabed. Black solid
lines, the pore fluid velocity components; blue solid lines, the soil skeleton velocity components; red solid lines,
the velocity difference of the pore fluid and soil skeleton calculated by the present solutions; and red dashed
lines, the velocity difference of the pore fluid and soil skeleton calculated by Liu et al. (2007) for a rigid soil
skeleton. The physical parameters used in the calculation are given in the caption of figure 11.

at three elevations inside the seabed, Z = 1.0, 0.5 and 0, respectively, are displayed. The
moving coordinate, ϕ = x − Ct, is adopted for convenience. Under the present conditions,
the diffusion depth of the pore pressure, 1/α, is 0.36. Below the diffusion depth, the
vertical pressure gradient is small, and p → βpb. Therefore, the pore pressure at Z = 0.5
and Z = 0 starts to grow in parallel to the wave loading (see figure 15). Meanwhile, the
diffusion time scale, α2, decreases, when G → ∞. Thus, compared with the solution of
Liu et al. (2007), the present poroelastic solution starts to increase earlier and takes a
longer time to reach the maximum value.

The contours of the pore pressure and the effective stresses are displayed in figure 16.
The results also show that the normal effective stresses, τxx and τzz, have the same sign,
while the shear stress has the opposite sign. As compared to those under a solitary wave,
the bore-induced responses correspond to those during the acceleration phase of the
solitary wave.

In figure 17, time histories of the velocity components for the pore fluid and soil skeleton
at three different elevations are shown. The vertical profiles of these velocity components
in the seabed at five different phases, ϕ = −2,−1, 0, 1 and 2, are plotted in figure 18.
As shown in these figures, the horizontal velocity component for the pore fluid and soil
skeleton in the seabed reverses its direction from negative to positive as ϕ increases.
However, the vertical velocity component first decreases, then increases to zero. Relatively,
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Figure 14. Vertical profiles of the dimensionless velocity components of the pore fluid, the soil skeleton and
the seepage flow at five different phases: (a) the time history of the dynamic water pressure at the water–seabed
interface; (b–f ) the vertical profiles of the horizontal velocity components at ϕ1 = −2, ϕ2 = −1, ϕ3 = 0,
ϕ4 = 1 and ϕ5 = 2, respectively; and (g–k) the vertical profiles of the vertical velocity components at ϕ1 = −2,
ϕ2 = −1, ϕ3 = 0, ϕ4 = 1 and ϕ5 = 2, respectively. Black solid lines, the pore fluid velocity components; blue
solid lines, the soil skeleton velocity components; red solid lines, the differences of the pore fluid and soil
skeleton velocities calculated by the present solutions; and red dashed lines, the difference of the pore fluid
and soil skeleton velocities calculated by Liu et al. (2007). The physical parameters used in the calculation are
given in the caption of figure 11.

the vertical soil skeleton velocity components are small (see figure 17). The differences
of the velocities of the pore fluid and the soil skeleton are displayed in these figures as
well. Since the pore pressure speeds up to increase at first and then slows down to be
a constant (see figure 15), the horizontal relative velocity component first increases, and
then gradually decreases to zero inside the seabed. Correspondingly, the vertical relative
velocity component behaves in the opposite manner. At the seabed bottom, the vertical
relative velocity component is zero, as required by the condition of no vertical flow.

The comparisons of the present solution with the solution of Liu et al. (2007) show that
the soil skeleton deformation has some influence on the damping rate and the phase shift
of the seepage velocity under a bore. Under the bore front, the soil is compressed as shown
in figure 16. The vertical velocity component of the soil skeleton is negative and damps
with the increase of the soil depth, which prevents the fluid from flowing into the seabed.
Thus, the difference of the vertical relative velocities of these two solutions decreases with
increasing soil depth. The results also show that the difference of the relative velocities
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Figure 15. Time histories of the bore-induced dimensionless pore pressure at three different elevations inside
the seabed: (a) Z = 1, (b) Z = 0.5 and (c) Z = 0.Black solid lines, the present solution; and red dashed lines,
the solution of Liu et al. (2007). The physical parameters used in the calculation are given in the caption of
figure 11.

of the present solution and the solution of Liu et al. (2007) increases with increasing soil
depth in the horizontal direction.

6. Wave-induced shear failure potential inside the seabed

The wave-induced effective stresses can cause shear failure inside the seabed (Yamamoto
1977). Such kind of failure can produce horizontal movement of soil (Jeng 2003), which
is an important driver for morphological changes and sediment transport. In this section,
transient wave-induced shear failure potential inside the seabed is evaluated by the present
theory. Based on the Mohr–Coulomb criterion, shear failure occurs when the stress angle,
φ, in the seabed exceeds the internal friction angle of the soil, φc, namely (Yamamoto
1977)

φ ≥ φc, (6.1)

where φc depends on the soil type; for sand, φc is between 30◦ and 35◦ (Jeng 1997).
Therefore, φc = 31◦ is used for analysis in the rest of the paper. Based on Yamamoto
(1978), the stress angle, φ, can be expressed in terms of the wave-induced effective stresses,
i.e. (3.18), (3.20) and (3.21), as

φ = arcsin

⎛
⎝
√

[(−τz0/κ3 − τzz)− (−τx0/κ3 − τxx)]2 + 4τ 2
xz

(−τz0/κ3 − τzz)+ (−τx0/κ3 − τxx)

⎞
⎠ , (6.2)

in which τz0 and τx0 are the effective stresses at the quiescent state, and κ3 is the normalized
wave amplitude, i.e.

κ3 = a′
0/d

′. (6.3)
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Figure 16. Contours of the pore pressure and effective stresses under a bore: (a) the time history of the dynamic
water pressure at the water–seabed interface; (b) contours of the pore pressure p; (c) contours of the horizontal
effective stress τxx; (d) contours of the vertical effective stress τzz; and (e) contours of the shear stress τxz. The
physical parameters used in the calculation are given in the caption of figure 11.

Since the pressure field begins from the quiescent state, the soil is assumed to be
consolidated under the buoyant weight, and therefore τz0 and τx0 normalized by ρf gd′
can be estimated by (Madsen 1978; Yamamoto 1978)

τz0 = 1
1 − 2ν̃

τx0 = −(1 − n)(ψ − 1)(1 − Z), (6.4)

in which ψ denotes the density ratio between soil particles and pore fluid. In this paper
ψ = 2.63 is used for analysis.

Based on (3.20) and (6.4), equation (6.2) can be further expressed as

φ = arcsin

⎛
⎝
√
ν̃2(τz0/κ3 + τzz)2 + τ 2

xz

(1 − ν̃)(−τz0/κ3 − τzz)

⎞
⎠ . (6.5)

The equation above indicates that, at the quiescent state, the stress angle inside the
seabed is a constant, i.e. φ = arcsin(ν̃/(1 − ν̃)). An an example, consider the following
wave conditions and soil properties: h′ = 40 m, T ′ = 12.5 s, a′

0 = 2.5 m, d′ = 20 m,
ks = 2.04 × 10−11 m2, G = 107 Pa, K = 1.9 × 107 Pa (Sr = 0.98), n = 0.3, v = 0.33
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Figure 17. Time histories of the bore-induced dimensionless velocity components for the pore fluid and soil
skeleton at three different elevations: (a,b) Z = 1, (c,d) Z = 0.5 and (e, f ) Z = 0. Black solid lines, the pore
fluid velocity components; blue solid lines, the soil skeleton velocity components; red solid lines, the relative
velocity between pore fluid and soil skeleton calculated by the present solutions; and red dashed lines, the
relative velocity between pore fluid and soil skeleton calculated by Liu et al. (2007). The physical parameters
used in the calculation are given in the caption of figure 11.

and ψ = 2.4. Under these conditions, the maximum stress angle is 53◦ and is located
at the water–seabed interface. The normalized shear failure depth is 0.03, with φc = 32◦,
which agrees well with the numerical results calculated by Lin & Li (2001).

6.1. Transient wave-induced shear failure potential in the seabed
Using the experimental conditions listed in table 1, the stress angle inside the seabed
given by Anderson et al. (2017) can be calculated and is shown in figure 19. The stress
angle increases during the acceleration phase and has larger values near the bottom of
the seabed. The maximum stress angle in the entire wave cycle, φmax, is 29.8◦, which
is smaller than the internal friction angle of the prescribed soil properties (φc = 30.1◦),
suggesting that shear failure is unlikely to occur inside the seabed for this experimental
set-up.

Under the linear wave conditions and soil properties presented in § 5, the stress angles
within the seabed are calculated from (6.5). Figure 20 shows the contour map of the
stress angle during the second and third wave periods. Owing to the wave-induced
effective stresses, the stress angles inside the seabed increase in both the deceleration and
acceleration phases. Since the wave-induced effective vertical normal stress is positive
(tension) in the deceleration phase and negative (compression) in the acceleration phase
(see figure 8), the effective weight of the soil decreases in the deceleration phase and
increases in the acceleration phase. Recall that the wave-induced effective shear stress

938 A36-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

18
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.184


Wave-induced responses in a poroelastic seabed

–3 –2 –1 0 1 2 3
–0.50

0

0.50

1.00

1.50

–0.2 0 0.2
0

0.25

0.50

0.75

1.00

–0.2 0 0.2 –0.2 0 0.2 –0.2 0 0.2 –0.2 0 0.2

–0.4 0 0.4
0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

–0.4 0 0.4 –0.4 0 0.4 –0.4 0 0.4 –0.4 0 0.4

ϕ

ϕ1 ϕ2
ϕ3

ϕ4 ϕ5

wf , ws

Z

Z

pb

wf , ws wf , ws wf , ws wf , ws

uf , us uf , us uf , us uf , us uf , us

(a)

(b) (c) (d) (e) ( f )

(g) (h) (i) (j) (k)

Figure 18. Vertical profiles of the dimensionless velocity components of the pore fluid and the soil skeleton in
the seabed at five different phases: (a) the time history of the dynamic water pressure at the water–seabed
interface; (b–f ) the vertical profiles of the horizontal velocity components at ϕ1 = −2, ϕ2 = −1, ϕ3 = 0,
ϕ4 = 1 and ϕ5 = 2, respectively; and (g–k) the vertical profiles of the vertical velocity components at ϕ1 = −2,
ϕ2 = −1, ϕ3 = 0, ϕ4 = 1 and ϕ5 = 2, respectively. Black solid lines, the pore fluid velocity components; blue
solid lines, the soil skeleton velocity components; red solid lines, the relative velocity between pore fluid and
soil skeleton calculated by the present solutions; and red dashed lines, the relative velocity between pore fluid
and soil skeleton calculated by Liu et al. (2007). The physical parameters used in the calculation are given in
the caption of figure 11.

is symmetric, and therefore the stress angle increases more in the deceleration phase.
The results show that the maximum stress angle under the linear wave is 31.6◦, which
is around the critical value, 31◦. As shown in figure 20, shear failure may occur near
the water–seabed interface in the deceleration phase, which is consistent with Ren et al.
(2020).

Combining the wave-induced effective stresses calculated in § 5 with the effective
stresses at the quiescent state, the stress angle under the solitary wave can be obtained,
which is shown in figure 21(b). The stress angle decreases towards the bottom of the soil
bed and reaches its maximum in the deceleration phase at the water–seabed interface.
Under the present solitary-wave conditions (i.e. a′

0/h
′ = 0.2 and h′ = 30 m) and soil

properties, the maximum stress angle is estimated as 20.7◦, and it is not large enough
to cause shear failure, which is φc = 31◦. However, if a′

0/h
′ increases to 0.4, as discussed

in Packwood & Peregrine (1980) with the same seabed properties, the maximum of φ
increases drastically to 90◦. Clearly, the criterion of (6.1) will be satisfied. Figure 22
shows the contour map of the stress angle for this large solitary wave. The results indicate
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Figure 19. (a) Time history of the phase-averaged dynamic water pressure at the water–seabed interface
measured by Anderson et al. (2017). (b) The contour map of the stress angle inside the seabed. The stress
angle achieves its maximum, 29.8◦, at the seabed bottom when t = 0.525. The physical parameters are given
in table 1.
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Figure 20. (a) The time history of the dynamic water pressure at the water–seabed interface under a linear
wave with T ′ = 15 s, h′ = 30 m and a′

0/h
′ = 0.10. (b) The colour map of the stress angle inside the seabed

during linear wave propagation. The stress angle achieves the maximum, 31.6◦, at the water–seabed interface
in the deceleration phase, and the red line indicates the contour of φ = φc. The physical parameters used in the
calculation are given in the caption of figure 7.

that the shear failure depth reaches up to 20 % of the seabed thickness. Recall that
solitary-wave-induced effective vertical normal stress is also negative (compression) in
the acceleration phase and positive (tension) in the deceleration phase, and therefore shear
failure is more likely to occur in the deceleration phase. As suggested by Yamamoto (1978),
the total effective stresses will vanish, and the sand will be liquefied, when the stress
angle reaches 90◦. As shown in figure 22, under such a large solitary wave, momentary
liquefaction may occur near the water–seabed interface as well, and it starts after the
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Figure 21. (a) The time history of the dynamic water pressure at the water–seabed interface under a solitary
wave with a′

0/h
′ = 0.2 and h′ = 30 m. (b) The colour map of the stress angle inside the seabed under a solitary

wave. The stress angle achieves the maximum, 20.7◦, at the water–seabed interface when ϕ = −0.94. The
physical parameters used in the calculation are given in the caption of figure 11.
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Figure 22. (a) The time history of the dynamic water pressure at the water–seabed interface under a solitary
wave with a′

0/h
′ = 0.4 and h′ = 30 m. (b) The colour map of the stress angle inside the seabed. The red line

indicates the contour of φ = φc, and the black line indicates the contour of φ = 90◦. The other parameters used
in the calculation are consistent with those given in the caption of figure 11.

beginning of shear failure and ends before the end of shear failure. Note that the poroelastic
theory is no longer valid once shear failure occurs. To investigate the liquefaction potential
and related processes within the seabed, a poroelastoplastic model is further required
(Young et al. 2009).

Using the wave conditions and seabed properties presented in § 5, the stress angles under
the bore are calculated and displayed in figure 23. The stress angle increases from the
water–seabed interface towards the bottom of the seabed. The maximum value, 19.98◦,
appears at the bottom of the seabed when ϕ = 0.04. Clearly, shear failure does not occur
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Figure 23. (a) History of the dynamic water pressure at the water–seabed interface under a bore. (b) Contours
of the stress angle inside the seabed under a bore. The stress angle reaches the maximum 19.98◦ at the bottom
of the seabed when ϕ = 0.04. The physical parameters used in the calculation are given in the caption of
figure 11.

within the seabed for this case, since the internal friction angle of the soil is 31◦. Note that,
under a bore, the pore pressure is always in the acceleration phase and the effective normal
stress is always in compression, which create a less favourable condition for shear failure.
However, the effective shear stress also contributes to the increase of stress angle, i.e. see
(6.4). Thus, the potential of shear failure will increase if the bore strength is increased. For
example, if a′

0/h
′ is increased to 1, which is most likely a breaking bore, the maximum

stress angle increases to 24.9◦, which is still not large enough to cause shear failure.
However, if a′

0/h
′ is further increased to 2, the maximum stress angle increases to 36.3◦,

and shear failure occurs near the bottom of the seabed. Note that such a violent (turbulent)
bore could occur in extreme conditions, such as tsunamis; however, the frictional stress on
the water–seabed interface becomes significant and needs to be considered. This is beyond
the scope of the present study.

6.2. Effects of soil properties on shear failure
The analytical solutions for the wave-induced effective stresses (i.e. (3.18), (3.20) and
(3.21)) depend on the soil properties, such as the degree of saturation Sr, the shear modulus
G and the permeability ks, suggesting that the shear failure potential of the seabed is
affected by the soil properties as well. In this section, as an illustration, the effects of
these three parameters (Sr, G and ks) on the shear failure are investigated under solitary
waves with a′

0/h
′ = 0.4 and h′ = 30 m.

First, the effects of the degree of saturation, Sr, on shear failure are investigated for a
highly saturated seabed with Sr between 0.94 and 0.998 (Sumer 2014). The corresponding
bulk modulus of elasticity of the pore fluid, K, varies from 4.9 × 106 Pa to 1.38 × 108 Pa.
The other soil parameters remain the same as those presented in § 5. Using (6.5), the stress
angle φ inside the seabed can be calculated. For a specified elevation Z, shear failure does
not occur if the maximum of φ, denoted by φmax(Sr, Z), is smaller than the critical value
φc, namely φmax(Sr, Z) < φc. Therefore, the values of φmax(Sr, Z) in the parameter space
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Figure 24. The contour map of the maximum stress angle φmax(Sr,Z) induced by a solitary wave with
a′

0/h
′ = 0.4 and h′ = 30 m (the red line indicates the contour of φmax(Sr,Z) = φc). Shear failure occurs when

Sr ≤ 0.9943. The physical parameters used in the calculation are given in the caption of figure 11.

0.94 < Sr < 0.998 and 0 < Z < 1 are numerically calculated and displayed in figure 24.
In figure 24, the red line indicates the contour of φmax(Sr, Z) = φc. The region below the
red line is called the stable zone and the region above is called the shear failure zone in
this paper.

As shown in figure 24, φmax(Sr, Z) is sensitive to the change of saturation. Shear failure
occurs near the water–seabed interface when the saturation degree Sr is smaller than
0.9943, and the shear failure depth decreases gradually when Sr increases from 0.94 to
0.9943. For a seabed with large saturation degree, the ratio between G and K measured
by G̃ is relatively small; for example, when Sr = 0.998, G̃ = 0.065. Accordingly, the
dimensionless parameter β is relatively large, indicating that the wave-induced effective
stresses are weak inside the seabed. Thus, it is difficult for shear failure to happen
in this situation. When Sr decreases, the diffusion depth of the wave-induced pressure
decreases as well and the effective stresses increase rapidly in the diffusion region.
Therefore, the maximum stress angle quickly damps to a small value with increasing soil
depth.

Besides the shear failure potential, information on the initiation and duration of shear
failure are also important. Figure 25 shows the interface of the shear failure zone and the
stable zone under four different degrees of saturation degree, i.e. Sr = 0.96, 0.98, 0.99 and
0.993. Under the solitary wave, shear failure starts earlier and ends later with decreasing
degree of saturation.

For dense sand, the shear modulus of the seabed, G, is of the order of
magnitude of O(108 Pa), but it reduces to O(106 Pa) for loose sand (Yamamoto
1978; Zhai et al. 2018). The effects of shear modulus on shear failure are studied
for 2 × 106 Pa < G < 4.4 × 108 Pa. Using the soil properties presented in § 5, the
dimensionless parameter G̃ varies from 0.045 to 10. By numerical integration, the
maximum stress angle, φmax(G̃, Z), can be calculated and is displayed in figure 26.

In figure 26, the red line denotes the contour of φmax(G̃, Z) = φc. Shear failure occurs
when G̃ is larger than 0.068. Near the water–seabed interface, the maximum stress angle
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Figure 25. (a) The time history of the dynamic water pressure at the water–seabed interface under a solitary
wave with a′

0/h
′ = 0.4 and h′ = 30 m. (b) The interface between the shear failure zone and the stable zone

under the conditions of Sr = 0.96, 0.98, 0.99 and 0.993. The parameters used in the calculation are given in
the caption of figure 11.
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Figure 26. The contour map of the maximum stress angle, φmax(G̃,Z), induced by a solitary wave with
a′

0/h
′ = 0.4 and h′ = 30 m. The red line indicates the contour of φmax(G̃,Z) = φc, and shear failure occurs

when G̃ ≥ 0.068. In the calculation, the shear modulus varies between 2 × 106 Pa and 4.4 × 108 Pa, and the
other physical parameters used in the calculation are given in the caption of figure 11.

increases rapidly with increasing G̃. For a loose seabed, G̃ is small, and the dimensionless
parameter β approaches 1. Similar to the scenario of a large degree of saturation, the
wave-induced effective vertical normal stress τzz is small. Physically, this means that most
of the wave loading is balanced by the pore fluid, as the soil skeleton is easier to compress
than the pore fluid. Hence shear failure is unlikely to occur inside the seabed in this case.
However, for dense seabed with relatively large G̃, the dimensionless parameter β becomes
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Figure 27. (a) The time history of the dynamic water pressure at the water–seabed interface under a solitary
wave with a′

0/h
′ = 0.4 and h′ = 30 m (b) The interface between the shear failure zone and the stable zone

under the conditions of G̃ = 0.1, 0.3, 1.0 and 10. The other parameters used in the calculation are given in the
caption of figure 11.

close to 0. For example, when G̃ = 10, then β = 0.02. Meanwhile, the dimensionless
parameter α, which can be viewed as the inverse of the diffusion distance for the pore
pressure, is insensitive to the change of shear modulus when G̃ is relatively large. For
example, α = 2.72 when G̃ = 5, and α = 2.69 when G̃ = 10. Based on (3.18), τzz varies
over a wide range in this scenario, and the wave-induced tension stress in the deceleration
phase is relatively large. Consequently, the shear failure potential increases.

Figure 27 further shows the interface between the shear failure zone and the stable zone
under four different shear modulus conditions, i.e. G̃ = 0.1, 0.3, 1.0 and 10. Shear failure
starts earlier and ends later with increasing shear modulus.

Since the soil permeability ks is of the order of magnitude of O(10−11 m2) for fine
sandy seabed and O(10−9 m2) for coarse sandy seabed (Hsu & Jeng 1994), the effects
of the soil permeability on shear failure are studied for 10−11 m2 < ks < 10−9 m2. The
corresponding dimensionless parameter κ2

2 varies from 2.1 × 10−4 to 2.1 × 10−2. The
contour map of the maximum stress angle φmax(κ

2
2 , Z) is produced and displayed in

figure 28. In the figure, the red line represents the contour of φmax(κ
2
2 , Z) = φc, separating

the shear failure zone and the stable zone. As shown in figure 28, shear failure always
occurs near the water–seabed interface. Meanwhile, the shear failure depth is affected by
the soil permeability, because the diffusion distance of p measured by 1/α increases with
increasing ks.

Figure 29 further shows the interface between the shear failure zone and stable zone
under three different permeability conditions, κ2

2 = 2 × 10−3, 7 × 10−3 and 2 × 10−2.
Shear failure starts early and lasts for a short time when κ2

2 is relatively large. This is
because it is more difficult for the pore fluid to drain out to dissipate the wave-induced
pore pressure for the seabed with small permeability.
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Figure 28. The contour map of the maximum stress angle, φmax(κ
2
2 ,Z), induced by a solitary wave with

a′
0/h

′ = 0.4 and h′ = 30 m; the red line indicates the contour of φmax(κ
2
2 ,Z) = φc. In the calculation, the

soil permeability varies from 10−11 m2 to 10−9 m2, and the other physical parameters used in the calculation
are given in the caption of figure 11.
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Figure 29. (a) The time history of the dynamic water pressure at the water–seabed interface under a solitary
wave with a′

0/h
′ = 0.4 and h′ = 30 m. (b) The interface between the shear failure zone and the stable zone

under soil permeability conditions of κ2
2 = 2 × 10−3, 7 × 10−3 and 2 × 10−2. The parameters used in the

calculation are given in the caption of figure 11.

7. Concluding remarks

In this study, we presented analytical solutions for transient wave-induced soil responses
within a poroelastic seabed of finite thickness. In the framework of consolidation theory,
the soil skeleton was treated as a poroelastic medium and the pore fluid was assumed to
be unsaturated. Since the effective bulk modulus of elasticity of the pore fluid varies with
the degree of saturation, and can be of the same order of magnitude as the shear modulus
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of the soil, the compression of both the pore fluid and soil skeleton were considered for
the dynamic and kinematic responses in the seabed. However, the vertical thickness of
the seabed was assumed to be much smaller than the wavelengths of the ocean waves and
the shear waves. As a result, the present theory is applicable for a general transient wave
loading, periodic or non-periodic.

To validate the present poroelastic theory, we compared the analytical solutions for the
pore pressure and its gradients with two sets of laboratory measurements. The comparisons
of the theoretical results and experimental data demonstrate that the assumptions made
in this study are reasonable, and the present solutions are reliable in predicting the
wave-induced pore pressure and its gradients within a sandy bed of finite thickness. Using
the present poroelastic theory, the dynamic and kinematic responses inside a sandy seabed
under transient wave loadings, including a linear periodic wave train, a solitary wave and
a bore, were investigated in detail and were compared with the previous study of Liu et al.
(2007). The results showed that the soil deformation is important to transient wave-induced
soil responses when the effective bulk modulus of elasticity of the pore fluid, K, is close
to the shear modulus of the soil, G.

As an application, the present theory was used to investigate seabed instability. The
shear failure potential under transient waves was studied. The results indicated that shear
failure can be caused inside a sandy seabed by transient waves during the deceleration
phase. The analysis also demonstrated that the shear failure potential and duration are
highly dependent on the soil properties, such as the saturation degree, shear modulus and
permeability.
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Appendix A. The continuity equation for the soil skeleton

In this appendix, we present the derivation of the continuity equation for the soil skeleton,
(2.3). According to Yamamoto et al. (1978) and (2.1), the dimensionless continuity
equation for the soil skeleton is given by

κ2
2

κ2
1

(
κ2

1
∂2p
∂x2 + ∂2p

∂Z2

)
= n

G
K
∂p
∂t

+ ∂ε

∂t
. (A1)

938 A36-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

18
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-3195-6833
https://orcid.org/0000-0003-3195-6833
https://orcid.org/0000-0002-2170-5507
https://orcid.org/0000-0002-2170-5507
https://doi.org/10.1017/jfm.2022.184


L. Tong and P.L.-F. Liu

In the above equation, κ2 is given by (2.4), and ε is the dimensionless volume strain of the
soil skeleton, which is defined by (Yamamoto et al. 1978)

ε = κ2
1
∂Us

∂x
+ ∂Ws

∂Z
, (A2)

with Us and Ws denoting the dimensionless displacements of the soil skeleton in the
horizontal and vertical directions, respectively. The left-hand side of (A1) is the discharge
volume of the pore fluid, the first term on the right-hand side of (A1) denotes the
compression volume of the pore fluid, and the last term of (A1) represents the compression
volume of the soil skeleton. The relations between the velocity and displacement of the soil
skeleton can be expressed as

us = ∂Us

∂t
+ κ2

1γ us
∂Us

∂x
+ γws

∂Us

∂Z
and ws = ∂Ws

∂t
+ κ2

1γ us
∂Ws

∂x
+ γws

∂Ws

∂Z
.

(A3a,b)

In coastal regions, γ is a typical small parameter; for example, γ = 0.001 when a′
0 = 1 m

and G = 107 Pa. Therefore, substituting (A2) and (A3a,b) into (A1), the continuity
equation for the soil skeleton can be simplified as

κ2
2

κ2
1

∂2p
∂Z2 − ∂ws

∂Z
+ κ2

1

(
κ2

2

κ2
1

∂2p
∂x2 − ∂us

∂x

)
= n

G
K
∂p
∂t
. (A4)

The above equation is consistent with the continuity equation used in Mei & Foda (1981).
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