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Summary

Human alteration of the planet’s terrestrial landscapes for agriculture, habitation and com-
merce is reshaping wildlife communities. The threat of land cover change to wildlife is pro-
nounced in regions with rapidly growing human populations. We investigated how species
richness and species-specific occurrence of bats changed as a function of land cover and canopy
(tree) cover across a rapidly changing region of Florida, USA. Contrary to our predictions, we
found negligible effects of agriculture and urban development on the occurrence of all species.
In contrast, we found that a remotely sensed metric of canopy cover on a broad scale (25 km2)
was a good predictor of the occurrence of eight out of ten species. The occurrence of all smaller
bats (vespertilionids) in our study increased with 0–50% increases in canopy cover, while larger
bats showed different patterns. Occurrence of Brazilian free-tailed bats (Tadarida brasiliensis)
decreased with increasing canopy cover, and Florida bonneted bats (Eumops floridanus) were
not influenced by canopy cover. We conclude that remotely sensed measures of canopy cover
can provide amore reliable predictor of bat species richness than land-cover types, and efforts to
prevent the loss of bat diversity should consider maintaining canopy cover across mosaic
landscapes with diverse land-cover types.

Introduction

Humans and their activities have left few ecosystems unaltered (Ellis & Ramankutty 2008), and
many systems have been converted to agricultural land uses, which now cover nearly 40% of the
land area of the planet (Ellis & Ramankutty 2008). While urban areas cover a relatively small
area, they support most of the world’s human population and have disproportionately negative
impacts on the surrounding environment (Grimm et al. 2008).

When native vegetation is converted to urban and agricultural land, local animal communities
are reshaped (Vitousek et al. 1997). These land transformations have become a major threat to
wildlife (Wilcove et al. 1998). Nonetheless, the influence of land alterations on wildlife varies
dramatically across land cover types, taxonomic groups and environmental gradients (e.g.,
Hansen et al. 2001, Jetz et al. 2007, Reichert et al. 2017). Accordingly, there is a need to better
understand which human-altered land covers are driving changes in wildlife communities across
broad scales. Collecting data on wildlife communities and land cover across large spatial extents
can be time-consuming and onerous, but integrating passive wildlife monitors with remotely
sensed environment data has the potential to overcome these challenges (Turner 2014).

Bats (order: Chiroptera) move across large landscape scales (Duchamp et al. 2007) and are
sensitive to landscape alterations, and thus can function as indicators of disturbance (Jones et al.
2009). Additionally, recent advances in acoustic monitoring technology and data processing
have facilitated the assessment of bat communities with passive sensors that can be placed
throughout the landscape (Mac Aodha et al. 2018). This makes bats an excellent model species
group to study the effects of human-dominated landscapes on wildlife communities. Previous
research suggests that many species of bats are negatively impacted by human influences on the
landscape (Gaisler et al. 1998, Legakis et al. 2000, Jung & Threlfall 2016). Urbanization is often
more detrimental for wildlife than agricultural expansion (Jung & Threlfall 2016); however, the
influence of urbanization on bats appears to be highly species specific. While some species
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decline, others tolerate and even benefit from urbanization (Russo
& Ancillotto 2015, Li & Kalcounis-Rueppell 2018).

Bats also exhibit species-specific responses to variation in can-
opy cover, a phenomenon commonly linked to variation in bat
wing morphology, echolocation call structure and roost prefer-
ences (Norberg & Rayner 1987, Mancina et al. 2012). At a commu-
nity level, the structural complexity provided by canopy cover in
urban areas appears to increase bat species richness (Lumsden
et al. 1995, 2002, Lumsden & Bennett 2005, Dixon 2012) andmain-
tain bat community diversity in agricultural systems (Williams-
Guillen et al. 2016). Thus, bat communities may be more sensitive
to changes in canopy cover than to differences among land-
cover types.

Previous research on the responses of bats to land-cover change
has had limitations. Some studies examined overall bat activity,
without accounting for the species-level responses that shape com-
munities (Gehrt & Chelsvig 2003). Additionally, many studies
investigated responses to increases in a single land-cover type, such
as urban development (Dixon 2012, Krauel & LeBuhn 2016) or
agriculture (Wickramasinghe et al. 2003, Williams-Guillen et al.
2016). These shortcomings can be addressed by examining bats
across a suite of land covers and accounting for species-level
responses and imperfect detection to inform community metrics.
Bayesian hierarchical community occupancy modelling has been
used to accomplish this for other animal groups (e.g., birds, butter-
flies and terrestrial mammals; e.g., Kery & Royle 2016), but until
now, we are unaware of this approach being applied to bats.

The goal of this study was to understand the influence of
anthropogenic land covers and canopy cover on the species and
communities of bats across a broad geographic area. We addressed
this goal by coupling easily accessible, remotely sensed environ-
mental data with passively detected bat species detection/non-
detection data. We predicted that species-specific occurrence
and species richness would be lower in urban and agricultural areas
when compared to areas of native vegetation (i.e., wetlands and
uplands). We also predicted that a broad-scale measure of canopy
cover would be positively correlated with species occurrence, but it
would not be as strong a predictor as land-cover type.

Methods

Study Area

We conducted research in 16 counties in southern Florida (Fig. S1,
available online). This region is home to 8 million people and sev-
eral of the nation’s critically endangered ecosystems. In the next

50 years, southern Florida is expected to lose most of its agriculture
and natural areas to human development as a result of the growing
population (Zwick & Carr 2006). In our study area, we currently
estimate over 930 000 ha of upland land covers, over 13 000 000 ha
of wetlands, over 3 800 000 ha of agricultural land and over
3 700 000 ha of developed land (Fig. S1).

Site Selection

Bats travel long distances while foraging (Lumsden et al. 2002),
making broad-scale investigations essential to understanding their
distributional patterns across human-dominated landscapes
(Gehrt & Chelsvig 2003). To adequately cover our large study area,
we used a geographic information system (ArcMap 10.1; ESRI,
Redlands, CA, USA) to establish a grid system comprising 5–km
× 5–km cells (25 km2) across southern Florida, using the sample
framework provided by the North American Bat Monitoring
Program (NABat; Loeb et al. 2015). To ensure access, we excluded
grid cells that were located >2 km from any roads. To capture the
dominant cover types in this rapidly changing region and to under-
stand the responses of bats to anthropogenic land uses, we classi-
fied the land cover of each grid cell into four major categories –
agriculture, developed, upland and wetland – by simplifying the
Florida Natural Areas Inventory classifications (see Bailey et al.
2017). We then randomly selected 17 grid cells of each of the four
land cover types (Fig. S1). Finally, we placed five random sampling
points in each selected grid cell, buffering each point by >400 m.

Bat Surveys

Ten species of bats are resident in southern Florida. These species
vary in their wing morphology, echolocation characteristics and
roost selection (Table 1). Two of these bats were in the family
Molossidae (hereafter ‘molossids’) and eight were in the family
Vespertilionidae (‘vespertilionids’). The two molossids were the
Florida bonneted bat (Eumops floridanus; EUFL), a federally endan-
gered south Florida endemic (US Fish and Wildlife Service 2013),
and the Brazilian free-tailed bat (Tadarida brasiliensis; TABR), a
Florida species of greatest conservation need (Florida Fish and
Wildlife Conservation Commission 2012). All vespertilionids found
in southern Florida except for the evening bat (Nycticeius humeralis;
NYHU) were Florida species of greatest conservation need (Florida
Fish and Wildlife Conservation Commission 2012). These species
include the Northern yellow bat (Lasiurus intermedius; LAIN),
Seminole bat (Lasiurus seminolus; LASE), red bat (Lasiurus borealis;
LABO), big brown bat (Eptesicus fuscus; EPFU), Rafinesque’s
big-eared bat (Corynorhinus rafinesquii; CORA), southeastern

Table 1. Wing morphology, echolocation call characteristics and roost structures preferred by each bat species in southern Florida, USA.

Bat species Wing morphology Echolocation call characteristics Roost structures

CORA Low AR, low WL Low intensity Cavity, artificial
PESU Low AR, low WL Moderate frequency, broadband Foliage, cavity/bark, artificial
MYAU Low AR, low WL Moderate frequency, broadband Cavity/bark, artificial
NYHU Moderate AR, moderate WL Moderate frequency, broadband Foliage, cavity/bark, artificial
EPFU Moderate AR, moderate WL Moderate frequency, broadband Cavity/bark, artificial
LAIN Moderate AR, moderate WL Moderate frequency, broadband Foliage
LABO Moderate AR, moderate WL Moderate frequency, broadband Foliage
LASE Moderate AR, moderate WL Moderate frequency, broadband Foliage
TABR High AR, high WL Low frequency, narrowband Cavity, artificial
EUFL High AR, high WL Low frequency, narrowband Cavity/bark, artificial

AR = aspect ratio (wingspan2/wing area); WL = wing loading (mass/wingspan); CORA = Rafinesque’s big-eared bat; PESU = tricoloured bat; MYAU = southeastern myotis; NYHU = evening bat;
EPFU = big brown bat; LAIN = northern yellow bat; LABO = red bat; LASE = Seminole bat; TABR = Brazilian free-tailed bat; EUFL = Florida bonneted bat.
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myotis (Myotis austroriparius; MYAU) and tricoloured bat
(Perimyotis subflavus; PESU). MYAU, LABO, CORA and EPFU
are considered rare in southern Florida.

We used digital ultrasonic recorders and microphones
(SM2BAT+ with SMX-US microphone; Wildlife Acoustics,
MA, USA) for acoustic bat surveys and set them to record
continuously from 15 minutes before sunset to 15 minutes after
sunrise. We elevated each microphone to 3.4 m above ground
and positioned them horizontally with a downward tilt
(Agranat 2014).

To effectively model variable rates of detection, we conducted
repeated surveys at 66 grid cells during 20 January–13 June 2014
and 13 January–12 May 2015 (one upland and one agricultural cell
were excluded due to logistical constraints). We visited each cell
three times a year, separating visits by >3 weeks. During each visit,
detectors recorded bat activity for two to three consecutive nights.
We placed each detector in a location<100 m from each randomly
generated point in order tomaximize detection (e.g., vegetation did
not obstruct recordings; Loeb et al. 2015). Most points in the devel-
oped and agricultural cells were located on private land. If access
permission was denied, we moved to the next closest property.

During 2014, we set a detector at five points per cell during the
first visit. We sampled only four points in each cell during the sec-
ond and third visits (equipment failure). We randomly rotated the
unsampled points in order to ensure each point was surveyed for
four or more nights per year. In 2015, we sampled all five points in
each cell during all visits.

Bat Species Identification

We analysed all files in Kaleidoscope Pro 3.1.0 using the Bats of
Florida 3.1.0 classifiers (Wildlife Acoustics; Maynard, MA, USA).
We used a classification filter that identified bat call sequences as
a series of five or more calls with a <5–second gap between them
(Britzke et al. 2002). High-quality calls were identified by
Kaleidoscope Pro as one of nine species or species couplets:
CORA, EPFU, EUFL, LAIN, LASE/LABO, MYAU, NYHU, PESU
or TABR. We grouped LASE and LABO into one species class
because of the relative rarity of LABO in our study region and
our inability to distinguish between their calls. If the maximum like-
lihood p-values calculated by Kaleidoscope Pro were ≤0.05, we con-
sidered a species to be present (US Fish and Wildlife Service 2018).

We treated EUFL differently – because it has an extremely dis-
tinctive call, sequences consisting of two or more calls were used to
identify this species. We manually looked at all calls identified
by Kaleidoscope Pro as either ‘No ID’ (likely bat call but not
identified) or EUFL (Bailey et al. 2017). We classified calls with
a minimum frequency of 10–18 kHz and a maximum frequency
of 16–22 kHz as EUFL (Bailey et al. 2017).

Detection Covariates

Many bat species increase activity with increasing temperature
(Rodhouse et al. 2015). To account for potential changes in
detection, we recorded the minimum temperature for each survey
night (surveytemp). To account for potential changes in detectabil-
ity of species from seasonal variability, we converted the date of
each survey to a Julian date (date).

Occupancy Covariates

Our agricultural land strata included improved pasture, rangeland
with native vegetation and intensively managed crops. To account

for these differences, we reclassified grid cells dominated by
‘agriculture’ into two new categories. We classified land covers
of ‘improved pasture’ or ‘unimproved/woodland pasture’ as range-
land and retained all other crops, orchards and nurseries as agri-
culture (Bailey et al. 2017). We then characterized each grid cell
surveyed for bats using the ‘Tabulate Area’ feature in the Spatial
Analyst toolbox in ArcMap in order to determine the percentage
of each grid cell (25 km2) that was covered by upland (upland),
wetland (wetland), crop-dominated agriculture (ag), rangeland
(range) and developed (developed) cover types (Bailey et al. 2017).
We also used the percentage of each land cover type to reclassify grid
cells based on whether they containedmore or less than the mean of
each cover type (i.e., we converted land-cover percentage to categori-
cal (binary) covariates for each land-cover type: upland.bin, wet-
land.bin, ag.bin, range.bin and developed.bin). We used these
land-cover types to predict bat species occurrence.We also estimated
average percentage canopy cover (cc) for each grid cell using the
30–m raster file from the 2011 National Land Cover Database
(Homer et al. 2015).

Data Analysis

Weused a hierarchical community occupancymodelling approach
(Kery & Royle 2016), which provides improved estimates of indi-
vidual species occurrence probabilities by leveraging data from all
recorded species and accounting for imperfect detection among
species, locations and time (Zipkin et al. 2009, Kery & Royle
2016). Used to uncover landscape-level drivers of community
change in birds (e.g., White et al. 2013) and terrestrial mammals
(e.g., Reichert et al. 2017), to our knowledge, this is the first time
a hierarchical community occupancymodelling approach has been
used to assess bats. The approach we employed assumes that spe-
cies present within the sampling unit (grid) are available to be
detected. If species availability varies with land-cover type or can-
opy cover, estimates of species occurrence could be biased low.
Potential availability bias is likely a limitation of acoustic monitor-
ing methods rather than community occupancy models.

To estimate species responses, we reduced the total number of
recorded call files into species-specific detection/non-detection
data, assigning a ‘1’ for every night a species was recorded by a
detector and a ‘0’ when a species was not detected. Then, we mod-
elled species-specific effects of covariates on detection and site
occupancy probabilities as random effects, where species-level
model coefficients were drawn from common ‘community-level’
normal prior distributions with estimated ‘hyper-parameters’
and vague, normally distributed hyper-priors (Kery & Royle
2016).We developed amodel to test for the potential effects of land
cover on the probability of species k occurring at site (point location)
i during survey j (ψijk) for all observed species. We first tested to see
whether explanatory variables were highly correlated (r2 > 0.60;
Rodhouse et al. 2015). As no explanatory variables were highly
correlated, we tested for categorical effects of land cover with
binary variables upland.bin, wetland.bin, ag.bin, range.bin and
developed.bin. We ran a model with the continuous land-cover
variables upland, wetland, ag, range and developed, and we reached
the same conclusions. We included linear and non-linear effects of
cc by including a quadratic term (cc2). Since many bat species fly
relatively long distances each night (see Best et al. 1997, Best &
Geluso 2003, Elmore et al. 2005), we included grid cell (25 km2)
as a covariate to account for potential spatial correlation between
points located within the same cell. To ensure reasonable values
for site occupancy (0–1), we modelled the relationships between
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explanatory covariates and site occupancy on the logit scale using
the following occupancy model:

logit  ijk

� � ¼ �k þ β1ik � grid þ β2k � upland:binþ β3k

� wetland:binþ β4k � ag:binþ β5k � range:bin
þ β6k � developed:binþ β7k � ccþ β8k � cc2 (1)

where μ is the occurrence probability for species k at point location i
and β values are the estimated model coefficients.

For this occupancy model, we assumed species detections (pos-
itive identifications from acoustic recordings) yijkwere drawn from
Bernoulli distributions conditional on the latent occupancy state z,
yijk|zik ~ Bern(zik*pijk), where pijk is the probability of detecting
species k given it was present during survey j at point location i.
Using a logit link function, we modelled the effects of surveytemp
and date on the probability of detecting each using the following
detection model:

logit pijk
� � ¼ pik þ �1k � surveytempþ �2k � date (2)

where p is the detection probability for species k at point location i,
and site j and α are model coefficients corresponding to each
variable.

We used JAGS v.3.4.0 (Plummer 2003) launched from RStudio
v.0.98 with the R2jags library (Su & Yajima 2015) to implement
Bayesian estimation of model parameters via Markov chain
Monte Carlo (MCMC) samples of posterior distributions.
Posterior summaries were based on 15 000 MCMC samples of
the posterior distributions from three chains run simultaneously
with a thinning rate of 10, following an initial burn-in of 5000 iter-
ations. We assessed convergence of MCMC chains with trace plots
and the Gelman–Rubin diagnostic (bR); convergence was reached
for all parameters according to the criteria |bR – 1| < 0.1
(Ntzoufras 2009). We made inferences on species-level habitat
relationships based on the coefficients of the saturated model.
Mean values of model coefficients indicated the direction (positive
or negative) of relationships between associated model covariates
and species-specific detection probabilities. We considered covari-
ates significant when 95% credible intervals (CRIs) of the β did not

include zero. All variables were scaled to 0, allowing us to interpret
β and CRIs as effect sizes.

We derived site-level species richness using the species-specific
site occupancy results (Kery &Royle 2016, Reichert et al. 2017).We
compared differences in mean (and 95% CRI) species richness
among land-cover types and across a gradient of canopy cover,
where non-overlapping 95% CRIs indicate significant differences
in species richness.

Results

We recorded 1839 nights of acoustic data from 330 points (in 66
grid cells) in 2014 and 2015. These included 30 points in six cells
dominated by crop-dominated agriculture, 25 points in five cells
dominated by rangeland, 85 points from 17 grid cells dominated
by development, 80 points from 16 cells dominated by uplands
and 110 points from 22 cells dominated by wetlands. All land-
cover types had overlapping ranges of canopy cover (Fig. S2).

We detected nine different species of bats. CORA was detected
at only one point and excluded from further analysis. MYAU was
detected at 23 points, EUFL at 61 points, NYHU at 82 points, PESU
at 144 points, LASE/LABO at 171 points, LAIN at 209 points,
EPFU at 247 points and TABR at 272 points. Both surveytemp
and date accounted for differences in the detection of multiple
species (Fig. S3). Minimum nightly temperatures had a positive
influence on the detection of all species, with a significant effect
on four (EPFU: β= 0.17, 0.05–0.29; LAIN: β= 0.43, 0.26–0.59;
NYHU: β= 0.44, 0.23–0.68; and TABR: β= 0.22, 0.11–0.33). For
all species except MYAU, Julian date was also positively associated
with species detection probabilities, with a significant effect
on three species (EUFL: β= 0.45, 0.08–0.82; LAIN: β= 0.23,
0.06–0.41; and LASE/LABO: β= 1.37, 1.01–1.63).

All species were detected in each land-cover type, except MYAU,
which was not detected in crop-dominated agriculture. Land-cover
type was not significantly correlated with occurrence for any of the
species observed in this study (Fig. S4). The occurrences of all species
were negatively associated with developed andwetlands, but the rela-
tionshipswere not significant (Fig. S4). Additionally, species richness
did not change as a function of land cover (Fig. 1).

The percentage canopy cover in each grid cell was significantly
associated with occurrence of all species except EUFL (Figs. 2, S5).
Occurrence increased linearly with canopy cover for EPFU
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Fig. 1. Box-and-whisker plots comparing estimated bat species richness (minimum, first quartile, mean, third quartile and maximum values) as a function of land cover type.
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(β= 0.53, 0.08–1.02), LAIN (β= 0.52, 0.07–1.02), LASE/LABO
(β= 0.74, 0.34–1.15), MYAU (β= 0.76, 0.13–1.51), NYHU
(β= 0.62, 0.16–1.11) and PESU (β= 0.55, 0.12–0.95). In contrast,
canopy cover was negatively associated with occurrence of TABR
(β= –1.16, –1.86 to –0.54). We also found significant support for a
non-linear effect of canopy cover for some species (Fig. 2). The
quadratic term was negative for all species except for TABR
(Fig. S5) and was significant for EPFU (β = –0.34, –0.63 to
–0.10), LAIN (β = –0.30, –0.58 to –0.05), LASE/LABO (β = –0.31,
–0.54 to –0.09) and MYAU (β = –0.41, –0.90 to –0.04).
Furthermore, we found a positive and significant relationship
between species richness and canopy cover, with the greatest spe-
cies richness found when canopy cover was >40% (Fig. 3).

Discussion

Compared to general land-cover types, we found that canopy cover
had a greater influence on bat communities (Figs. 2, 3). Broad-scale
canopy cover may be an important driver of the bat communities
in southern Florida, with the occurrence of all eight vespertilionid
species increasing with canopy cover (Figs. 2, S5). Tree cover is
critical for North America’s insectivorous bats, with over half of
the species using forested areas for roosting and foraging
(Brigham 2007). All bat species recorded in this study roost in
trees, at least occasionally (Barclay & Kurta 2007, Carter &
Menzel 2007). The species that were sensitive to forest cover
tended to be tree cavity or foliage roosters (Table 1).

Increased tree cover likely provides additional benefits to bats
beyond roosting habitat. Insectivorous bats may benefit from
insect productivity linked with increasing canopy cover (Avila-
Flores & Fenton 2005, Lumsden & Bennett 2005). Canopy cover
can also help bats avoid aerial predators by reducing light
(Zimmerman & Glanz 2000). Finally, increased canopy cover
can provide bats with protection from high winds and other
extreme weather events (Lewis & Dibley 1970).

Tree cover may be particularly important for smaller bats such
as PESU, NYHU and MYAU. The low aspect ratio, low wing load-
ing and high-frequency calls of these bats (Table 1) make them best
adapted for slow, manoeuvrable flight in cluttered, dense canopies
(Norberg & Rayner 1987). Bats with moderate aspect ratios, wing
loading and lower-frequency calls (EPFU, LAIN and LASE/LABO;
Table 1) are better adapted for flight at the interface of forest and
open vegetation than the smaller species (Norberg & Rayner 1987).
This could explain why the occurrence of these species was greatest
at intermediate levels of canopy cover and was reduced as canopy
cover increased further (Fig. 2). There is also evidence that exten-
sive canopy cover in grassland and savanna systems, like those
found in southern Florida, reduces herbaceous and understory
vegetation, suppressing faunal diversity (Ratajczak et al. 2012,
Darracq et al. 2016,McCleery et al. 2018). The neutral and negative
relationships between molossids and canopy cover may be
explained by their low manoeuvrability and low-frequency calls
(Table 1), which restrict their ability to capture insects in areas with
dense canopies.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Average canopy cover (%)
O

cc
up

an
cy

 p
ro

ba
bi

lit
y

EPFU
EUFL
LAIN
LASE/LABO
MYAU
NYHU
PESU
TABR

Fig. 2. Canopy cover’s influence on occupancy of bats. Lines represent responses of species. TABR= Brazilian free-tailed bat; PESU = tricoloured bat; NYHU= evening bat; MYAU
= southeastern myotis; LASE/LABO = Seminole/red bat; LAIN = northern yellow bat; EUFL = Florida bonneted bat; EPFU = big brown bat.

0 20 40 60 80 100

0

2

4

6

8

10

Mean canopy cover (%)

E
st

im
at

ed
 s

pe
ci

es
 ri

ch
ne

ss

Fig. 3. Estimated bat species richness and 95% credible intervals as a function of mean canopy cover.
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Contrary to our predictions, species-specific occurrence did not
change across land covers (Fig. S4). Urbanization and agricultural
intensification are commonly associated with decreased richness of
bats (Gaisler et al. 1998, Legakis et al. 2000, Jung & Threlfall 2016,
Mtsetfwa et al. 2018). However, the responses of bats to land-cover
alteration vary dramatically between species and regions (Jung &
Threlfall 2016, Li & Kalcounis-Rueppell 2018). Studies have found
both positive (Gehrt & Chelsvig 2003, 2004) and negative (Gaisler
et al. 1998, Legakis et al. 2000, Jung & Threlfall 2016) community
responses, as well as varied species-level responses (Coleman &
Barclay 2011, Krauel & LeBuhn 2016). Most of these studies
occurred in temperate, forested areas (see Jung & Threlfall
2016), where land-cover change is associated with decreases in tree
cover (Coleman & Barclay 2011). We suggest that the loss of tree
cover could be the mechanism for the decreased occurrence and
richness of bats in human-modified landscapes. While Gehrt
and Chesvig (2003, 2004) found increased abundance and richness
of bats in urban areas, they sampled areas with increased canopy
cover within the urban environment.

We recognize that smaller-scale variations in land cover can
play an important role in bat occurrence (Ober & Hayes 2008).
Each of the land-cover classifications we used included an array
of vegetation types and conditions (Fig. S2). Yet the goal of this
study was to understand how variation in broad-scale land covers
shaped wildlife communities. Collecting data over these large spa-
tial extents can be challenging, but this information is essential,
because these are the scales of land cover change and land-use
planning (Hawkins & Selman 2002).

Accordingly, we found that coupling easily accessible,
remotely sensed environmental measures with passive recordings
of wildlife communities was a practical approach that provided
meaningful insights into biodiversity at these broad landscape
scales (Turner 2014). Specifically, remote-sensed measures
of canopy cover provided a coarse measure of the landscape
patterns of bat diversity and were better predictors than
anthropogenic land covers that are known to shape bat diversity
(Jung & Threlfall 2016). However, before using canopy cover as a
proxy for bat diversity, we recommend that similar research
is conducted in other biomes, such as temperate and tropical
forests, to see if this pattern holds. Furthermore, our ability to
link remotely sensed measures of vegetation to bat diversity
is likely to be improved in the near future, as measures of
vegetation structure from Light Detection and Ranging
(LiDAR) become readily available (Hancock et al. 2019). Remote-
sensed LiDAR can produce detailed three-dimensional information
on forest structure that is more closely aligned with how bats use
the environment than canopy cover alone (Humphrey 1975,
Froidevaux et al. 2016).

Our study highlights the importance of broad-scale tree cover
for bat communities in mosaic landscapes. Maintaining vegetation
cover and large trees in urban environments may increase the
diversity of bats (Threlfall et al. 2016, 2017). Our research enhances
our understanding of the relationship between bats and canopy
cover by demonstrating that occupancy of all vespertilionid species
in our region increased as canopy cover increased from 0% to 50%.
Because further anthropogenic alteration of landscapes is inevi-
table, we suggest that efforts to prevent the loss of bat diversity
should consider maintaining canopy cover across mosaic land-
scapes with diverse land cover types.
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