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Abstract

We study large deviation principles for a model of wireless networks consisting of Poisson
point processes of transmitters and receivers. To each transmitter we associate a family
of connectable receivers whose signal-to-interference-and-noise ratio is larger than a
certain connectivity threshold. First, we show a large deviation principle for the empirical
measure of connectable receivers associated with transmitters in large boxes. Second,
making use of the observation that the receivers connectable to the origin form a Cox point
process, we derive a large deviation principle for the rescaled process of these receivers
as the connection threshold tends to 0. Finally, we show how these results can be used
to develop importance sampling algorithms that substantially reduce the variance for the
estimation of probabilities of certain rare events such as users being unable to connect.
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1. Model description and main results

We consider a stochastic geometry model for a wireless network consisting of a family of
transmitters and a family of receivers. Transmitters and receivers are modeled by independent
homogeneous Poisson point processes X and Y in Rd whose intensities are assumed to be
nonzero and finite and will be denoted by λT and λR, respectively. For instance, we may think
of transmitters and receivers as users participating in a device-to-device communication where
messages need not be routed via a base station. It is believed that this form of communication will
be a central concept in next-generation wireless networks [7]. The most basic requirement in the
design of such networks is to guarantee satisfactory quality of service on average. Additionally,
it is desirable to control and quantify the probability of a low quality of service occurring. This
necessitates a more detailed probabilistic analysis and the theory of large deviations provides
the appropriate tools.

Let us now describe the communication model. In order to determine the connection quality
of messages sent out from a transmitter located at x ∈ Rd to a receiver located at y ∈ Rd ,
the signal-to-interference-and-noise ratio (SINR) has been identified to be of fundamental
importance [3]. More precisely, we assume that signals are transmitted with some positive
powers Px and decay according to the path-loss function �(|x − y|), where ‘| · |’ denotes the
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Euclidean norm in Rd and � : [0, ∞) → [0, ∞) is a decreasing function satisfying �(r) ∈
o(r−α) for some α > d . In particular, � is bounded and

∫
�(|x|) dx < ∞. In addition to the

deterministic decay over distance, the signal strength is also influenced by random fading effects
that are encoded in a positive random variable Fx,y . Such fading effects can, for example, arise
from large obstacles in the environment or multipath interference due to moving reflectors [4,
Chapter 22].

Furthermore, considering a signal sent out from Xi , the strength of the interference experi-
enced at a location y ∈ Rd is assumed to be of the form

I (Xi, y) = I (Xi, y, X) = w +
∑
j �=i

PXj
FXj ,y�(|Xj − y|).

In words, the interference strength at a given location y consists of a contribution from the
thermal noise w > 0 and the aggregated signal strengths coming from all other transmitters.
For notational convenience, we differ from the common convention [3] and include the thermal
noise w in the interference term. Hence, the SINR for the transmitter Xi ∈ X and the possible
receiver location y ∈ Rd is defined as the ratio of the signal strength by the interference, i.e.

SINR(Xi, y) = SINR(Xi, y, X) = PXi
FXi,y�(|Xi − y|)

I (Xi, y)
.

We assume that a connection can be established between Xi ∈ X and Yj ∈ Y if SINR(Xi, Yj ) ≥
t for some fixed connectivity threshold t . The importance of the SINR stems from Shannon’s
law in information theory, which provides an explicit formula expressing the maximum possible
data throughput in terms of SINR, see [4, Chapter 16].

In this paper, we analyze how connectivity properties of the SINR-based network model
described above behave in certain asymptotic regimes. First, we associate to each transmitter Xi

the family of receivers Y (i) that are connectable to Xi , i.e.

Y (i) = {Yj ∈ Y : SINR(Xi, Yj ) ≥ t}.

An illustration of the transmitters together with their connectable receivers is shown in Figure 1.
The family Y (i) can be used to express a variety of frustration events for the transmitter Xi .
For instance, {Y (i) = ∅} describes the frustration event that the transmitter Xi is isolated, in
the sense that it fails to communicate with any of the receivers. Similarly, if Br(Xi) denotes the
open Euclidean ball with radius r centered at Xi , then Y (i) ⊂ Br(Xi) encodes the event that Xi

can only communicate with receivers at distance at most r .
Before we state our first main result, let us introduce the precise assumptions on the trans-

mission powers and fading variables. We assume that the transmission powers {Px}x∈Rd form
an independent and identically distributed (i.i.d.) random field whose existence is guaranteed
by Kolmogorov’s extension theorem. Note that only the subset of powers {PXi

}i≥1 is relevant,
but it is notationally convenient to work with the random field indexed by the full space Rd .
A similar remark holds for the random fading field {Fx,y}x,y∈Rd . It can reproduce two different
kinds of fading effects. First, a contribution stemming from a suitable random environment
such as slow fading, which is typically spatially correlated. Second, effects such as fast fading,
that are idiosyncratic to the pair (x, y) and, therefore, do not exhibit spatial correlation. To be
more precise for the first contribution, we assume that Z is a homogeneous Poisson point
process with intensity λE > 0 modeling the random environment. Moreover, we use an i.i.d.
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Figure 1: Realization of the network model. Transmitters (solid circles) are connected to receivers (open
circles) by solid lines when a fixed SINR-threshold is exceeded.

random field {Ux,y}x,y∈Rd consisting of random variables uniformly distributed on [0, 1] for
the idiosyncratic effects. Then the random fading field can have the following general form:

Fx,y = �(y − x, Z − x, Ux,y),

where � is measurable and positive. In particular, the construction is such that the fading field
is spatially translation invariant, i.e. {Fx+z,y+z} is equal in distribution to {Fx,y} for any z ∈ Rd .

The dependence of � on its second component should be local in the sense that there exists
an increasing function senv : [0, ∞) → [0, ∞) such that �(z, ϕ, u) = �(z, ϕ∩Bsenv(|z|)(o), u),
where Bsenv(|z|)(o) denotes the Euclidean ball of radius senv(|z|) centered at the origin. Moreover,
letting U be a single uniformly distributed random variable on [0, 1], we assume that there exist
N > 0, smax > smin > 0 such that for any z ∈ Rd and any locally finite ϕ ⊂ Rd the distribution
function qz,ϕ : t 
→ P(1/�(z, ϕ, U) ≤ t)

• is globally Lipschitz with Lipschitz constant N ,

• qx,ϕ(s) = 0 for s ≤ smin and qx,ϕ(s) = 1 for s > smax.

The second condition ensures that the fading variables have support bounded away from 0
and ∞. We assume the same for the power variables Px . Moreover the random objects X, Y ,
Z, {Px}, and {Ux,y} are independent.

We provide an example illustrating possible fading fields within the above framework.
For instance, a Boolean model � = ⋃

Zi∈Z B1(Zi) can be interpreted as randomly distributed
obstacles in a city. If the line of sight between transmitter x and receiver y is blocked by some
building the signal propagation is diminished. That is, Fx,y = exp(−1{[x,y]∩��=∅})J−1(Ux,y),
where J−1 is the generalized inverse of a globally Lipschitz function J that is the distribution
function of a random variable which is bounded away from 0 and ∞. We note that for modeling
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urban environments it is important to take into account the effects of correlated fading variables
due to fixed obstacles [5].

Our first main result will provide a large deviation principle (LDP) for the empirical measure
of the family of all connectable receivers Y (i) − Xi such that Xi is contained in the box �n =
[−n/2, n/2]d for large n. To make this precise, we first note that each Y (i) is a random variable
in the measurable space (Nf , Nf). Here, Nf is the family of all finite subsets of Rd that is
endowed with the σ -algebra Nf generated by maps of the form evB : ϕ 
→ #(ϕ ∩ B) for any
Borel set B ⊂ Rd . In fact, Nf is also a Polish space; see [9, Section A2.5]. Now, knowing the
distribution of the empirical measure

Ln = 1

|�n|
∑

Xi∈�n

δY (i)−Xi
,

we can answer questions such as:

• What is the probability that, when spatially averaged, a certain proportion of transmitters
in �n are isolated?

• What is the probability that, when spatially averaged, a certain proportion of transmitters
in �n have l receiver in an r proximity?

Apart from these examples, Ln can be used to describe more general events such as the average
number of connectable receivers per transmitter, i.e. |�n|−1∑

Xi∈�n
#Y (i).

The empirical measure Ln is a random variable with values in the measurable space (Mf(Nf),

Bcy(Mf)). Here, Mf(Nf) denotes the family of all finite measures on Nf and Bcy(Mf) is the
σ -algebra generated by the evaluation maps μ 
→ μ(B), where B is any bounded Borel set
of Nf . Since our first main result provides a level-2 LDP, the τ -topology on Mf will play an
important role. This topology is generated by the maps μ 
→ μ(B), where B is any bounded
Borel set of Nf . We refer the reader to [10, Section 6.2] for a detailed discussion of this
topological space.

The LDP allows us to quantify the decay of probability for events away from their ergodic
limit on an exponential scale. The exponential rate of decay to 0 is proportional to the volume
and the proportionality factor is called the rate function. In order to identify the LDP rate
function, we first recall the notion of specific entropy of point marked random fields. We follow
the presentation in [16] and also refer the reader to [15, Chapter 15] for further details. Let E

be a Polish space and write E for the corresponding Borel σ -algebra. Furthermore, let NE

denote the family of all configurations ϕ ⊂ Rd × E whose projection to Rd is injective and
with image forming a locally finite set. The space NE is endowed with the smallest σ -algebra
for which all evaluation maps ϕ 
→ #(ϕ ∩ (B × F)) are measurable for any Borel sets B, F

of Rd and E, respectively. Any probability measure on (NE, NE) is called an E-marked point
random field. Let n ≥ 1 and let P be an E-marked point random field whose realizations are
contained in �n with probability 1. Moreover, let Q be another E-marked point random field
that is absolutely continuous with respect to P , where f denotes the respective density. Then,
the specific entropy H(Q | P) of Q with respect to P is defined as

H(Q | P) := P(f log f ),

where P(f log f ) denotes the expectation of f log f with respect to P . This definition is
extended to random point fields Q that are not absolutely continuous with respect to P by
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putting H(Q | P) = ∞. Finally, if P and Q are any E-marked point random fields, we
introduce the notation

h(Q | P) := sup
n≥1

1

|�n|H(Q�n | P�n),

where P�n and Q�n denote the projection of P and Q to �n.
In the following, we write Pθ for the family of all stationary E-marked point random fields

of finite intensity. Here, a stationary E-marked point random field is a probability measure
on NE that is invariant with respect to shifts on Rd . The intensity of Q is defined as∫

NE

#{(xi, ei) ∈ ϕ : xi ∈ [0, 1]d}Q(dϕ).

We also need the notion of the Palm version of a stationary point random field as defined, for
example, in [20]. The (unnormalized) Palm mark measure Qo associated with Q ∈ Pθ is
given by

Qo(F) =
∫

NE

#{(xi, ei) ∈ ϕ : (xi, ei) ∈ [0, 1]d × F }Q(dϕ), F ∈ E .

In other words, after normalization, Qo describes the distribution of the marks of Q.
The concept of random marked point random fields is very flexible so that the probability

space associated with X, Y , Z, {Px}, and {Ux,y} can be encoded in this framework, see
Section 2.2 for details.

Let us state the first main result of this paper, an LDP for the empirical measure of connectable
receivers associated with transmitters in a large box. Starting from a stationary point random
field Q of transmitters, receivers, and environment, we define Q∗ as the Palm mark measure of
the stationary Nf -marked point random field defined by {(Xi, Y

(i) − Xi)}i≥1.

Theorem 1. The random measures {Ln}n≥1 satisfy an LDP in the τ -topology with rate |�n|
and good rate function

� (Q) = inf
Q∈Pθ , Q∗=Q

h(Q | P).

That is, for all A ∈ Bcy(Mf),

lim sup
n→∞

1

|�n| log P(Ln ∈ A) ≤ − inf
Q∈Ā

� (Q)

and

lim inf
n→∞

1

|�n| log P(Ln ∈ A) ≥ − inf
Q∈Ao

� (Q),

where Ā denotes the closure and Ao the interior of A. Moreover, the function � is lower
semi-continuous and has compact level sets.

To prove Theorem 1, we make use of the level-3 LDPs established in [16] (see also [13] and
[14] for related results). However, the long-range dependencies induced by the interferences
prevent us from applying the contraction principle directly. Similarly to [1], we first have to
perform a truncation step and consider an approximate model with finite-range dependencies.
In order to deduce Theorem 1 from the level-3 LDP in the truncated scenario, we show that
by a suitable choice of the truncation range, the truncation error becomes arbitrarily small.
We note that a certain finite-range approximation has also been used in the proof of LDPs for
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stabilizing functionals [22]. Although functionals involving SINR do not fit into the framework
of stabilization, an alternative approach to proving Theorem 1 could be to try and extend the
arguments in [22], which are based on the notion of near-additivity [23], to the present setting.

In our second main result, we investigate how the connectable receivers associated with a
typical transmitter located at the origin behave as the connection threshold t tends to 0. Since
this scenario turns out to be more complicated than the one considered in Theorem 1, we impose
stronger additional assumptions. To be more precise, we assume that �(r) = min{1, r−α} for
some α > d , the transmission power at the origin is fixed (say equal to 1) and that there is
no random environment Z. That is, {Fx,y}x,y∈Rd are i.i.d. and we set q(a) = P(1/Fx,y ≤ a).
Moreover, we assume that there exist N > 0 and smin > 0 such that

• q is globally Lipschitz and globally Lipschitz in its first derivative, both with Lipschitz
constant N ,

• q(s) = 0 for s ≤ smin and q(s) > 0 for s > smin.

To begin with, we provide some important preliminary observations: first, we note that the
receivers connectable to the origin; namely,

Y t = {Yj ∈ Y : SINR(o, Yj , X ∪ {o}) ≥ t},
form a Cox point process with random intensity measure Mt given by

Mt(B) = λR

∫
B


(t−1�(|y|), y) dy,

where


(a, y) = E(q(aI (y)−1) | X) for a ≥ 0 and y ∈ Rd . (1)

In other words, 
 is an expectation with respect to the fading field in the interference. More
precisely, it is the conditional expectation on the transmitter process X = {(Xi, Pi)} that
also carries the transmission powers as marks. For instance, this observation implies that the
probability for the origin to be isolated is given by pt = E exp(−Mt(R

d)) and tends to 0
as t tends to 0. The representation of the isolation probability provides a strong hint that the
Varadhan–Laplace technique from the theory of large deviations (see, e.g. [16]) could be a
useful tool in the analysis of the asymptotic behavior of pt as t tends to 0. In particular, pt

should decay exponentially as t tends to 0. The exact form of this decay is presented in
Corollary 1. In Theorem 2, we give a more general result describing the exponential decay of
unlikely numbers of connectable receivers in space. Throughout the entire manuscript, β = 1/α

denotes the inverse of the path-loss exponent. Furthermore, we set �′
t = �2(wsmint)−β , so that

q(t−1�(|y|)I (y)−1) = 0 if y �∈ �′
t and write ‘Pos’ for the stationary point random field induced

by a homogeneous Poisson point process with intensity s ≥ 0.

Theorem 2. The random measures {|�′
t |−1Y t (t−β ·)}t<1 satisfy an LDP in the weak topology

with rate |�′
t | and good rate function given by

� (ϕ) =
⎧⎨
⎩

∫
�′

1

�y(ϕ̇(y)) dy if dϕ/dx = ϕ̇ exists,

∞ otherwise,
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where

�y(s) = inf
Q∈Pθ

(h(Q | P) + h(Pos | PoλRQ(
(|y|−α,o)))), (2)

and Q(
(|y|−α, o)) denotes the expectation of 
(|y|−α, o) for a stationary marked point
process X = {(Xi, Pi)} that is distributed according to Q.

In contrast to Theorem 1, the probability measures Q ∈ Pθ in (2) are distributions only of
the transmitters X and their transmission powers P . Setting ϕ ≡ 0 gives the decay of isolation
probability, this is the content of the following corollary.

Corollary 1. We have

lim
t→0

|�′
t |−1 log pt = lim

t→0
|�′

t |−1 log E exp

(
−λR

∫
Rd


(t−1�(|y|), y) dy

)

= −
∫

�′
1

inf
Q∈Pθ

(h(Q | P) + λRQ(
(|y|−α, o))) dy.

Large deviation principles in SINR-based networks have already been considered in [12] and
[25]. However, the question treated in Theorem 2 is in a certain sense dual to the ones discussed
in [12] and [25]. In those papers a large deviation principle was derived for the interference at
the origin caused by the signals from other users. We investigate a scenario where the origin
sends out a signal and we are interested in the interference at the location of the other users.

To prove Theorem 2, we introduce a stationary point process that carries more information
than Y t . For this point process, we first establish a level-1 LDP based on the results of [16], and
then deduce a path-space LDP using the Dawson–Gärtner technique. The proof is concluded
by applying the contraction principle.

In Corollary 1 we showed that pt decays exponentially in t−d/α and provides a variational
characterization of the rate function. However, for the purpose of estimating the actual value
of pt , our asymptotic result has two drawbacks. First, in Corollary 1, we do not make any claims
as regards to how small t should be for the asymptotic to be an acceptable approximation. It is not
at all clear from the variational formula how to compute (or even approximate) the asymptotic
rate function. Nevertheless, when estimating the isolation probability pt via Monte Carlo
simulations, our large deviation result can be used to devise an importance sampling scheme
that substantially reduces the estimation variance. In the field of stochastic processes, large
deviation techniques have emerged as a powerful tool to find suitable importance sampling
densities [2, Chapter 6.6], but so far have not found widespread use for spatial rare-event
problems.

As a notable exception, we mention [24], which deals with rare events arising from large
values of the interference measured at the origin. In that paper, it was shown that the asymp-
totically efficient importance sampling density is given by a certain inhomogeneous Poisson
point process. In our setting, the variational characterization in Theorem 2 suggests that the
asymptotically optimal density is not given by a Poisson point process, but by a collection
of location-dependent Gibbs processes. Still, in a first step, we provide simulation results
illustrating that using an isotropic Poisson point process already leads to substantial variance
reduction. Let us also note that importance sampling for Gibbs processes on the lattice has
been studied in [6].

The present paper is organized as follows. In Sections 2 and 3 we provide the proofs for
Theorems 1 and 2, respectively. Section 3 also contains the proof of Corollary 1. Finally, in
Section 4 we describe two importance sampling schemes and provide some simulation results.
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2. Proof of Theorem 1

As mentioned in Section 1, in order to prove Theorem 1, we use the classical level-3 large
deviation result for Poisson point processes [16, Theorem 3.1]. However, the interferences
induce long-range interactions that are not immediately compatible with the topology τL of
local convergence that is used in [16]. To resolve this issue, we will proceed similarly to [1]
and show that a suitable truncation of the path-loss functions appearing in the interference
expression induces only a negligible error; see Section 2.1. After this truncation, we show in
Section 2.2 how the LDP for the stationary empirical field [16, Theorem 3.1] can be used to
prove Theorem 1.

2.1. Truncation of the path-loss function

First, we show that only an asymptotically negligible error occurs when disregarding trans-
mitters close to the boundary of �n. This is a well-known consequence of the Poisson
concentration property [8, Chapter 2.2], but for the convenience of the reader, we provide
a detailed proof.

Lemma 1. Let b, ε > 0 be arbitrary. Then,

lim
n→∞

1

|�n| log P(X(�n \ �n−b) ≥ ε|�n|) = −∞.

Proof. Let δ = λT(1− (1−b/n)d), m = δnd , and τ = εnd , then the Poisson concentration
inequality [8, Chapter 2.2] implies that

P(X(�n \ �n−b)) ≥ τ) ≤
(

m

τ

)τ

exp(τ − n)

= (δε−1)εn
d

exp((ε − δ)nd)

≤ exp(εnd log(eδε−1)).

Since log(eδε−1) tends to −∞ as n → ∞, this proves the claim. �
Next, we show that truncating the path-loss function in the interference at a finite threshold

only leads to a small error provided that the threshold is chosen sufficiently large. To be more
precise, for b ≥ 1 we set �b(r) = �(r) if r < b and �b(r) = 0 if r ≥ b. Furthermore, we define

Ib(Xi, y) = w +
∑
j �=i

PXj
FXj ,y�b(|Xj − y|), SINRb(Xi, y) = PXi

FXi,y�(|Xi − y|)
Ib(Xi, y)

,

and

Lb
n = 1

|�n|
∑

Xi∈�n

δY (i),b−Xi
,

where Y (i),b = {Yj ∈ Y : SINRb(Xi, Yj ) ≥ t} denotes the point process of b-connectable
receivers for the transmitter Xi . We show that when using the total variation distance

dTV(Ln, L
b
n) = sup

B∈Nf

|Ln(B) − Lb
n(B)|,

the random measures {Lb
n}n≥1 are exponentially good approximations of the random measures

{Ln}n≥1 in the sense of [10, Definition 4.2.14].
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Lemma 2. Let ε > 0 be arbitrary. Then,

lim
b→∞ lim sup

n→∞
1

|�n| log P(dTV(Ln, L
b
n) ≥ ε) = −∞.

Proof. To be specific and for notational convenience, let us assume that the support of the
power variables is contained in [s−1

max, s
−1
min]. The definition of the total variation distance implies

that

dTV(Ln, L
b
n) ≤ 1

|�n|#{Xi ∈ �n : Y (i) �= Y (i),b}.
Next, by Lemma 1, we only need to consider those Xi that are contained in �n−2r0 , where
r0 > 0 is chosen such that �(r0) ≤ ws2

mint . Then, almost surely, for Xi ∈ �n−2r0 and Yi ∈ �c
n,

SINRb(Xi, Yj ) < t for all b ≥ 1. Consequently, it suffices to bound the number of transmitter-
receiver pairs (Xi, Yj ) ∈ X × Y such that Xi ∈ �n−2r0 , Yi ∈ �n, and SINR(Xi, Yj ) < t ≤
SINRb(Xi, Yj ). In fact, it suffices to focus on the receivers in these pairs. Indeed, let us call Yj

b-pivotal if there exists some transmitter Xi such that the pair (Xi, Yj ) has these properties.
Then, since we assumed that qx,ϕ(r) = 0 for r ≤ smin, for each receiver Yj there exist
K = �t−1s2

max/s
2
min� transmitters, A(Yj , X) = {Xi1 , . . . , XiK } such that SINRb(Xi, Yj ) < t

if Xi �∈ A(Yj , X). Hence, it suffices to show that, for every ε > 0,

lim
b→∞ lim sup

n→∞
1

|�n| log P(#{Yj ∈ �n : Yj is b-pivotal} ≥ ε|�n|) = −∞.

In order to do so, we use the exponential Markov inequality with s ≥ 1 and estimate

P(#{Yj ∈ �n : Yj is b-pivotal} ≥ ε|�n|)
≤ exp(−sε|�n|)E exp(s#{Yj ∈ �n : Yj is b-pivotal}).

Hence, it suffices to show that, for every s ≥ 1,

lim
b→∞ lim sup

n→∞
1

|�n| log E exp(s#{Yj ∈ �n : Yj is b-pivotal}) = 0.

The point process of receivers that are b-pivotal form a stationary Cox point process with
random intensity measure

M ′(B) = λR

∫
B

P(y is b-pivotal | X, Z) dy, B ∈ B(Rd),

where we think of X = {(Xi, Pi)}i≥1 as a marked point process and we evaluate the probability
with respect to the fading variables associated with the pairs (y, Xi)i≥1. Since q is assumed to
be globally Lipschitz with constant N , we arrive at

P(y is b-pivotal | X, Z)

≤
∑

Xi∈A(y,X)

P(SINR(Xi, y) < t ≤ SINRb(Xi, y) | X, Z)

≤
∑

Xi∈A(y,X)

P(F−1
Xi,y

t ∈ [PXi
�(|Xi − y|)I (Xi, y)−1,

PXi
�(|Xi − y|)Ib(Xi, y)−1] | X, Z)

≤
∑

Xi∈A(y,X)

�(|Xi − y|)Ns−1
mint

−1w−2E(I (Xi, y) − Ib(Xi, y) | X, Z),
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which is at most S
∑

i≥1�(|Xi − y|) − �b(|Xi − y|), where S = K�(0)Ns−3
mint

−1w−2. In
particular, we obtain

M ′(B) ≤ S′
∫

B

∑
i≥1

�(|Xi − y|) − �b(|Xi − y|) dy,

where S′ = λRS. Hence, using the formula for the Laplace functional of a Cox point process,
we obtain

E exp[s#{Yj ∈ �2n : Yj is b-pivotal}]
≤ E exp

[
(es − 1)S′

∫
�2n

∑
i≥1

�(|Xi − y|) − �b(|Xi − y|) dy

]

= exp

[
λT

∫
Rd

exp

(
(es − 1)S′

∫
�2n

�(|x − y|) − �b(|x − y|) dy

)
− 1 dx

]
.

Note, that we can bound the integral∫
Rd

exp

[
τ

∫
�2n

�(|x − y|) − �b(|x − y|) dy

]
− 1 dx

≤
∫

�4n

exp

[
τ

∫
Rd\Bb(x)

�(|x − y|) dy

]
− 1 dx

+
∫

Rd\�4n

exp

[
τ

∫
�2n

�(|x − y|) dy

]
− 1 dx,

where τ := (es −1)S′. In the next step, we derive bounds for these expressions separately. For
the first, we have

1

nd

∫
�4n

exp

[
τ

∫
Rd\Bb(x)

�(|x − y|) dy

]
− 1 dx = 4d

[
exp

(
τ

∫
Rd\Bb(o)

�(|y|) dy

)
− 1

]
,

which tends to 0 as b tends to ∞. For the second expression, we note that, for x ∈ Rd \ �4n

and y ∈ �2n,

|x − y| = |x − y| + √
d|x − y|

1 + √
d

≥ |x − y| + |y|
1 + √

d
≥ (1 + √

d )−1|x|.

Consequently, using the fact that �(r) ∈ o(r−d), we have, for large n,

1

nd

∫
Rd\�4n

exp

[
τ

∫
�2n

�(|x − y|) dy

]
− 1 dx

≤ 1

nd

∫
Rd\�4n

exp[τ(2n)d�((1 + √
d )−1|x|)] − 1 dx

≤
∫

Rd\�4n

τ2d+1�((1 + √
d )−1|x|) dx

=
∫

Rd\�4n(1+√
d )−1

τ2d+1(1 + √
d )d�(|x|) dx,

which tends to 0 as n tends to ∞. �
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2.2. Application of an LDP for the stationary empirical field

In order to apply [16, Theorem 3.1], we need to relate the empirical measure of connectable
receivers to the stationary empirical field considered in [16]. Here, the first task consists of
encoding the probability space carrying the point processes of transmitters X, the point process
of receivers Y , the random environment Z, the transmission powers {Px}, and the i.i.d. family
{Ux,y} in the framework of stationary marked point processes. To be more precise, we set
� = {E, R, T} and consider the mark space E = � × (0, ∞) × [0, 1]N equipped with some
complete and separable metric. Furthermore, we let V denote an independently E-marked
homogeneous Poisson point process with intensity

∑
σ∈� λσ . The mark distribution on E is a

product of three distributions defined on the spaces �, (0, ∞), and [0, 1]N, respectively. First,
on �, we choose the distribution assigning σ ∈ � the probability λσ /

∑
σ ′∈� λσ ′ . Second,

on (0, ∞), we choose the distribution of the transmission power Px considered in Section 1.
Third, the distribution on [0, 1]N describes a family of i.i.d. random variables that are uniformly
distributed [0, 1]. The Poisson point process Z that generates the random environment is
represented by elements of V = (vi, σi, Pi, (Ui,j )j≥1)i≥1 with σi = E. Elements of V =
(vi, σi, Pi, (Ui,j )j≥1)i≥1 with σi = T are thought of as transmitters and are denoted by X.
Elements of V = (vi, σi, Pi, (Ui,j )j≥1)i≥1 with σi = R are thought of as receivers and are
denoted by Y . We note that the power variables Pi have no meaning if σi �= T. The random
variables Ux,y should be thought of as being attached to the transmitters. Moreover, proceeding
as in [16, Section 1], let

V per,n =
⋃
s∈Zd

((V ∩ �n) + ns)

denote the periodic spatial continuation of V ∩�n. The stationary empirical field is defined as

Rn,V := 1

|�n|
∫

�n

1{V per,n−v} dv,

where V per,n − v = {(vj − v, ej )}j≥1 is the spatial translation of V per,n by v. Now, we let
Y per,n,b,(i) denote the family of periodized receivers that have a b-connection to the transmitter
X

per,n
i = (xi, T, Pi, (Ui,l)l≥1). More precisely,

Y per,n,b,(i) =
{
Yj = (yj , R, Pj , (Uj,l)l≥1) ∈ Y per,n : t ≤ PiFxi ,yj

�(|xi − yj |)
w + ∑

k �=i PkFxk,yj
�(|xk − yj |)

}
,

where
Fxi,yj

= �(yj − xi, Z
per,n − xi, Ui,�(yj −xi ,Y

per,n−xi )),

and where the integer �(yj −xi, Y
per,n−xi) ≥ 1 is defined as follows. If k ≥ 1 is such that yj −

xi is the kth closest element in Y per,n−xi to the origin, then we set �(yj − xi, Y
per,n − xi) = k.

This construction will ensure translation invariance for the periodized version. The empirical
measure L

per,b
n of b-connectable receivers associated with transmitters in �n when the network

is based on periodized configurations can also be expressed as a function of Rn,V . Indeed, by
the same technique that was used to define the individual empirical field in [16], we arrive at

L
per,b
n = 1

|�n|
∑

xi∈Xper,n∩�n

δY per,n,b,(i)−xi
= 1

|�n|
∫

�n

g′(V per,n − v) dv,

where
g′(V per,n − v) =

∑
xi−v∈(Xper,n−v)∩�1

g(V per,n − xi),
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and where g is the Dirac measure concentrated on the family of b-connectable receivers from
the origin multiplied with the indicator function that the origin is a transmitter. Next, we prove
that the random measures {Lper,b

n }n≥1 and {Lb
n}n≥1 are exponentially equivalent (in the sense

of [10, Definition 4.2.10]), when using the total variation metric.

Lemma 3. Let ε > 0 be arbitrary. Then,

lim
n→∞

1

|�n| log P(dTV(L
per,b
n , Lb

n) ≥ ε) = −∞.

Proof. As in Lemma 2, choose r0 ≥ 1 such that �(|x − y|) ≤ ws2
mint if |x − y| ≥ r0.

In particular, Y (i),b ⊂ Br0(Xi). Furthermore, by the truncation of the interference, to decide
whether Yj ∈ Y (i),b it suffices to look at transmitters in Bb(Yj ). As a consequence, the family
Y (i),b depends only on the network configuration in Br0+b+senv(b)(Xi). Hence,

dTV(L
per,b
n , Lb

n) ≤ #(X ∩ �n \ �n−2(r0+b+senv(b))),

and the claim follows from Lemma 1. �

Now, we are in a position to provide a proof for the LDP asserted in Theorem 1 when Ln

is replaced by Lb
n. Let Q be the distribution of some stationary E-marked point process

V = (vi, σi, Pi, (Ui,j )j≥1)i≥1. Then, we define Q∗,b as the Palm mark measure of the marked
point process (Xi, Y

(i),b − Xi). Here, as above, Xi ∈ V are interpreted as transmitters and
Y (i),b ⊂ V as the b-connectable receivers.

Proposition 1. The random measures {Lb
n}n≥1 satisfy an LDP in the τ -topology with rate |�n|

and good rate function
� b : Q 
→ inf

Q∈Pθ , Q∗,b=Q
h(Q | P).

Proof. First, we note that the map �b : Q 
→ Q∗,b is continuous with respect to the τ -
topology. Indeed, for Qn → Q and B ∈ Nf , the locality that is established after truncating the
interferences leads to |Q∗,b(B) − Q

∗,b
n (B)| → 0 as n → ∞. As �b(Rn,V ) = L

per,b
n , we can

apply [16, Corollary 3.2] and the contraction principle. Thus, the random measures {Lper,b
n }n≥1

satisfy an LDP with good rate function �b. Finally, in Lemma 3 we show that {Lper,b
n }n≥1 and

{Lb
n}n≥1 are exponentially equivalent with respect to the total variant distance. This implies

the exponential equivalence of {Lper,b
n }n≥1 and {Lb

n}n≥1 when evaluated on an arbitrary Borel
subset of Nf . So the claim follows from [11, Corollary 1.10, Remark 1.4]. �

The same arguments also prove the following result, where we consider the marked point
process (Xi, Y

(i),b − Xi, Y
(i),b′ − Xi) at different truncation thresholds b′ > b ≥ 1. Starting

from Q ∈ Pθ , the associated Palm mark distribution is denoted by Q∗,b,b′
.

Lemma 4. Let b′ > b ≥ 1. Then, the random variables {(1/|�n|)#{Xi ∈ �n : Y (i),b′ �=
Y (i),b}}n≥1 satisfy an LDP with rate |�n| and good rate function

s 
→ inf
Q∈Pθ , Q∗,b,b′

(Y (o),b′ �=Y (o),b)=s

h(Q | P).

Finally, we complete the proof of Theorem 1. In Lemma 2, we showed that {Lb
n}n≥1 are

exponentially good approximations of {Ln}n≥1 and, hence, an application of [11, Theorem
1.13] is natural.
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Proof of Theorem 1. As mentioned in the previous paragraph, [11, Theorem 1.13] implies
that it suffices to verify the following condition. For every ε, K > 0 there exists b ≥ 1 such
that supQ∈Pθ , h(Q | P)≤KdTV(Q∗, Q∗,b) ≤ ε. We show that a slightly stronger statement holds,
where dTV(Q∗, Q∗,b) is replaced by Q∗(Y (o),b �= Y (o)).

In Lemma 2 we showed that there exists b0 ≥ 1 such that if b′ > b ≥ b0 then

lim sup
n→∞

|�n|−1 log P(#{Xi ∈ �n : Y (i),b′ �= Y (i),b} > ε|�n|) ≤ −K.

Hence, the LDP from Lemma 4 yields

inf
Q0∈Pθ , Q

∗,b,b′
0 (Y (o),b′ �=Y (o),b)>ε

h(Q | P) > K.

In particular, if h(Q | P) ≤ K then Q∗,b′,b(Y (o),b′ �= Y (o),b) ≤ ε, as required. �

3. Proof of Theorem 2

The difficulty in proving Theorem 2 is that the connectable receivers associated with the
origin are not stationary, so that we cannot use LDPs for the stationary empirical field directly.
Therefore, we first consider a more general stationary marked point process from which the
connectable receivers can be reproduced by an application of the contraction principle. Since we
need a path-space LDP for this stationary marked point process, we proceed as in the classical
proof of Mogulskii’s theorem [10, Theorem 5.3.1] and use the Dawson–Gärtner technique to
deduce the path-space LDP from the finite-dimensional marginals.

In order to define a suitable auxiliary stationary marked point process, we consider the
random measure

Mt(·) = λR

∫
�′

t

∫ ∞

0
1{·}νy(ds) dy,

where νy([0, s]) = 
(s, y) = E(q(sI (y)−1) | X); see also (1). Then, we let Zt = {(Yj , Sj )}
denote a Cox process with this random intensity measure. Writing

�t(ξ
1, . . . , ξd) = t−β

d∏
i=1

[
−|�′

1|1/d

2
, ξ i

]
,

define the two-parameter field Y ∗,t = {Y ∗,t (x, s)}(x,s)∈�′
1×[0,∞) by Y ∗,t (x, s) = Zt(�t (x) ×

(0, s]). In particular, for any fixed (x, s)∈ �′
1×[0, ∞), conditioned on X the random variable

Y ∗,t (x, s) is Poisson distributed with parameter λR
∫
�t (x)


(s, y) dy. Moreover, Y ∗,t is a
random variable with values in Linc, the space of [0, ∞)-valued, bounded, and coordinate-
wise increasing functions on �′

1×[0, ∞).
We set μQ(s) = λRQ(
(s, o)) and note that the derivative (d/ds)μQ(s) exists since q is

differentiable and (d/ds)q(s) is Lipschitz continuous with Lipschitz constant N .
Similar to [10, Section 5.3], we introduce the notion of absolute continuity for increasing

functions F : �′
1 × [0, ∞) → [0, ∞), (x, s) 
→ F(x, s). For the convenience of the reader,

we reproduce some of these definitions and observations. We define F as an additive set-
function on the set of cubes. More precisely, for � = (a1, b1] × (a2, b2] × · · · × (ad, bd ] ×
(ad+1, bd+1], we will sometimes write F(�) := ∑

u σ (u)F (u) with σ(u) : = (−1)ρ , where
ρ = #{k : uk = ak} and the summation extends over all corners u of �; see [18, Chapter 3].
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It follows from Carathéodory’s extension theorem, that any right-continuous F ∈ Linc induces
a unique measure μF on �′

1×[0, ∞) with the Borel sigma-algebra satisfying

μF

( d∏
i=1

[
−|�′

1|1/d

2
, ξ i

]
× [0, s]

)
= F(ξ1, . . . , ξd , s)

for any s ≥ 0 and (ξ1, . . . , ξd) ∈ �′
1; see [18, Theorem 3.25].

The function F is called absolutely continuous if F is right-continuous and μF is absolutely
continuous with respect to the Lebesgue measure on �′

1×[0, ∞). We write ∂F/∂x∂s for its
Radon–Nikodym derivative. Let

AC1
0 :=

{
F : F is absolutely continuous, F(x, 0) = 0 and F

(
−|�′

1|1/d

2
, ξ2, . . . , ξd , s

)

= F

(
ξ1, −|�′

1|1/d

2
, . . . , ξd , s

)
= · · · = F

(
ξ1, . . . , ξd−1, −|�′

1|1/d

2
, s

)
= 0

}
.

Later, we derive Theorem 2 by the contraction principle from the following result.

Proposition 2. The random fields {|�′
t |−1Y ∗,t (·, ·)}t<1 satisfy an LDP in the topology of

pointwise convergence with rate |�′
t | and good rate function given by

� (F ) =

⎧⎪⎨
⎪⎩

∫
�′

1

� ∗
(

∂F

∂y∂s
(y, ·)

)
dy if F ∈ AC1

0 ,

∞ otherwise,

where � ∗(g) = infQ∈Pθ
h(Q | P) + ∫ ∞

0 h(g(s) | (d/ds)μQ(s)) ds.

3.1. Finite-dimensional result

In order to apply the Dawson–Gärtner theorem [10, Theorem 4.6.1], we first derive the
finite-dimensional LDPs.

Proposition 3. Let −|�′
1|1/d/2 = ξ0 < ξ1 < · · · < ξk ≤ |�′

1|1/d/2 and 0 = s0 < s1 <

· · · < sr . Furthermore, set � = {ξ0, ξ1, . . . , ξk} and S = {s0, s1, . . . , sr}. Then, the random
variables {(|�′

t |−1Y ∗,t (x, s))(x,s)∈�d×S}t<1 satisfy an LDP with rate |�′
t |. Writing �μQ(si) =

μQ(si) − μQ(si−1), the good rate function is given by

��,S(F ) =
∑
x∈�d

|��(x)| inf
Q∈Pθ

h(Q | P)+
r∑

i=1

h

(
1

|��(x)|F(��(x)×(si−1, si]) | �μQ(si)

)
,

where ��(ξi1 , . . . , ξid ) = ∏d
j=1(ξij ,ξij +1] with (ξi1 , . . . , ξid ) ∈ �d .

The basic idea of the proof for Proposition 3 is to apply the LDP for the stationary empirical
field [16, Theorem 3.1]. However, in order to cast our problem into a suitable framework, we
first have to perform a truncation and a periodization step.

3.1.1. Truncation of the path-loss function. In a first step, we show that truncation of the path-
loss function gives an exponentially good approximation. Let b ≥ 1, s′ ≥ s ≥ 0, and x, x′ ∈ �1
be such that all coordinates of x′ − x are positive. Then, we let Y ∗,b,t (x, x′, s, s′) denote a
random variable that conditioned on the independently marked Poisson particle process X
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is Poisson distributed with parameter λR
∫
�t (x,x′) 
b(s′, y) − 
b(s, y) dy, where 
b(s, y) =

E(sI b(y)−1 | X),

�t(x, x′) = t−β�(x, x′) = t−β
d∏

i=1

(πk(x), πk(x
′)],

and πk : Rd → R denotes the projection onto the kth coordinate. From now on let us again
assume that the support of the power variables is contained in [0, s−1

min].
Lemma 5. Let b ≥ 1, s′ ≥ s > 0, and x, x′ ∈ �′

1. Then, {Y ∗,b,t (x, x′, s, s′)}b≥1,t<1 are
exponentially good approximations of {Y ∗,t (�t (x, x′) × (s, s′])}t<1.

Proof. Conditioned on X, the random variable |Y ∗,b,t (x, x′, s, s′) − Y ∗,t (x, x′, s, s′)| is
stochastically dominated by a Poisson distributed random variable with parameter

Hb = λR

∫
�t (x,x′)


b(s′, y) − 
(s′, y) + 
b(s, y) − 
(s, y) dy.

Hence, using the Laplace transform of Poisson random variables, for any a ≥ 1, the exponential
moments of a|Y ∗,b,t (x, x′, s, s′) − Y ∗,t (x, x′, s, s′)| are bounded above by

E exp(a|Y ∗,b,t (x, x′, s, s′) − Y ∗,t (x, x′, s, s′)|) ≤ E exp((ea − 1)Hb).

Now, similar to the proof of Lemma 2, Hb can be bounded above by

λRN(s + s′)s−2
minw

−2
∫

�t (x)

∑
i≥1

�(|Xi − y|) − �b(|Xi − y|) dy.

Using this observation, we can now conclude as in Lemma 2 since

E exp(a|Y ∗,b,t (x, x′, s, s′) − Y ∗,t (�t (x, x′) × (s, s′])|)
≤ E exp

(
(ea − 1)λRN(s + s′)s−2

minw
−2

∫
�t (x,x′)

∑
i≥1

�(|Xi − y|) − �b(|Xi − y|) dy

)
.

This completes the proof. �
3.1.2. Periodization of the integration domain. Next, we show that replacing the quantity
Y ∗,b,t (x, x′, s, s′) by a periodized variant is exponentially equivalent. To be more precise, let
b ≥ 1, s′ ≥ s ≥ 0, and x, x′ ∈ �′

1 be such that all coordinates of x′ − x are positive. Then,
Xper,t denotes the periodization of X ∩ �t(x, x′), i.e.

Xper,t =
⋃
z∈Zd

(|�t(x, x′)|1/dz + X ∩ �t(x, x′)).

As in Lemma 5, we let Y ∗,per,b,t (x, x′, s, s′) denote a random variable that conditioned on X is
Poisson distributed with parameter λR

∫
�t (x,x′)


per,b(s′, y) − 
per,b(s, y) dy. Here, 
per,b(s,

y) = E(q(sI per,b(y)−1) | Xper,t ) and I per,b(y) is the interference at y in the periodized
configuration computed using truncated path-loss functions.

Lemma 6. The random variables {Y ∗,per,b,t (x, x′, s, s′)}t<1 are exponentially equivalent to
the random variables {Y ∗,b,t (x, x′, s, s′)}t<1.
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Proof. Since we consider truncated interferences, we have I per,b(y) = I b(y) for all y ∈
�−

t (x, x′), where �−
t (x, x′) denotes the subset of all y ∈ �t(x, x′) such that Bb(y) ⊂

�t(x, x′). In particular, |Y ∗,per,b,t (x, x′, s, s′)−Y ∗,b,t (x, x′, s, s′)| is stochastically dominated
by a Poisson random variable with parameter 2λR|�t(x, x′) \ �−

t (x, x′)|. Now, using the
Poisson concentration property we can conclude as in Lemma 3. �

3.1.3. Application of an LDP for stationary empirical fields. We have seen that truncating the
interference and considering a periodization does not have an effect on {Y ∗,t (x, x′, s, s′)}t<1 in
the LDP asymptotics. Now, we derive an LDP after these modifications have been implemented.
We set μb

Q
(s) = Q(
b(s, o)).

Proposition 4. The random variables {|�′
t |−1#Y ∗,per,b,t (x, x′, s, s′)}τ<1 satisfy an LDP with

rate |�′
t | and good rate function

� x,x′,s,s′
b,N (a) = |�(x, x′)| inf

Q∈Pθ

(
h(Q | P) + h

(
a

|�(x, x′)|
∣∣∣∣ μb

Q(s′) − μb
Q(s)

))
.

Let us recall from [10, Equations 1.2.12 and 1.2.13] that if the random variable considered
in an LDP is measurable with respect to the Borel σ -algebra on the underlaying topological
space, then the proof of the upper and lower bound can be carried out directly for closed and
open sets, respectively. We use this in the sequel without further mention.

We prepare the proof of Proposition 4 by a lemma. First, we note that [16, Theorem 3.1]
gives the following auxiliary result, where we set

Mav,t = Mav,t (x, x′, s, s′) = λR|�t(x, x′)|−1
∫

�t (x,x′)

per,b(s′, y) − 
per,b(s, y) dy.

Lemma 7. Let F and G be compact and open subsets of [0, ∞), respectively. Then,

lim sup
t→0

1

|�t(x, x′)| log E exp
(
−|�t(x, x′)| inf

a∈F
h(a | Mav,τ )

)
≤ − inf

Q∈Pθ , a∈F
h(Q | P) + h(a | μb

Q(s′) − μb
Q(s)),

and

lim inf
t→0

1

|�t(x, x′)| log E exp
(
−|�t(x, x′)| inf

a∈G
h(a | Mav,τ )

)
≥ − inf

Q∈Pθ , a∈G
h(Q | P) + h(a | μb

Q(s′) − μb
Q(s)).

Proof. In order to apply [16, Theorem 3.1], we need to check that the functions Q 
→
infa∈F h(a | μb

Q
(s′) − μb

Q
(s)) and Q 
→ infa∈G h(a | μb

Q
(s′) − μb

Q
(s)) are lower- and upper-

semicontinuous, respectively. First, Q 
→ μb
Q
(s′) − μb

Q
(s) is continuous in the τL-topology,

since 
b(·, o) only depends on X via X ∩ Bb(o). Now, we conclude by observing that a′ 
→
infa∈F h(a | a′) is lower-semicontinuous as pointwise infimum of a two-parameter lower-
semicontinuous function over a compact set and a′
→ infa∈G h(a | a′) is upper-semicontinuous
as infimum over a family of continuous functions. �

Now, we can proceed with the proof of Proposition 4.
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Proof of Proposition 4. The upper bound for compact F is an immediate consequence of
Lemma 7, since [21, Lemma 1.2] implies that

P(|�′
t |−1Y ∗,per,b,t (x, x′, s, s′) ∈ F) ≤ E exp

(
−|�t(x, x′)| inf

a∈F
h

(
a

|�(x, x′)|
∣∣∣∣ Mav,τ

))
.

The proof of the lower bound is more involved. First, we may assume that G is an interval, i.e.
G = [0, γ ) or G = (γ−, γ+) for some γ, γ−, γ+ > 0. Next, introduce the function f (k) by
f (0) = 1 and f (k) = e−1/12k(

√
2πk)−1 for k ≥ 1, and set Gt = Z ∩ (|�′

t |G). Then, by [21,
Lemma 1.3], P(|�′

t |−1Y ∗,per,b,t (x, x′, s, s′) ∈ G) is bounded below by

E exp
(
− inf

k∈Gt
− log f (k) + h(k|�t(x, x′)|Mav,t )

)
≥ E exp

(
−|�′

t |(|�′
t |−1/2 + |�(x, x′)| inf

k∈Gt
Mav,t h(k|�t(x, x′)|−1M−1

av,t ))
)
,

where h(k|�t(x, x′)|−1M−1
av,t ) = h(k|�t(x, x′)|−1M−1

av,t | 1) is abbreviated notation. Now, we
distinguish between the cases where G contains 0 and where it does not. We claim that if
G = [0, γ ) and ε > 0, then infk∈Gt Mav,t h(k|�t(x, x′)|−1M−1

av,t ) is at most

ε + inf
g∈G

Mav,t h

(
g

|�(x, x′)|M
−1
av,t

)
,

provided that t > 0 is sufficiently small. Once this claim is proven, Lemma 7 completes the
proof of the lower bound for the G = [0, γ ) case. Let ε > 0 be arbitrary. Then, under the
event Mav,t ≤ ε, we deduce that infk∈Gt Mav,t h(k|�t(x, x′)|−1M−1

av,t ) ≤ Mav,t ≤ ε. On the
other hand, if Mav,t ≥ ε then, for every g ∈ G,

|g|�(x, x′)|−1M−1
av,t − k(g)|�t(x, x′)|−1M−1

av,t | ≤ |�t(x, x′)|−1ε−1,

where k(g) ≥ 1 is chosen as the element of Z ∩ (|�′
t |G) such that k(g)|�t(x, x′)|−1 mini-

mizes the distance to g|�(x, x′)|−1. In particular, uniform continuity of h(·) on the interval
[0, γ |�(x, x′)|−1ε−1] implies that

inf
k∈Gt

Mav,t h(k|�t(x, x′)|−1M−1
av,t ) ≤ ε + inf

g∈G
Mav,t h(g|�(x, x′)|−1M−1

av,t )

for all sufficiently small t > 0. Finally, we deal with the case when G = (γ−, γ+) and observe
that if Mav,t ≥ ε then we can conclude as before. To be more precise,

E exp
(
−|�t(x, x′)| inf

k∈Gt
Mav,t h(k|�t(x, x′)|−1M−1

av,t )
)

≥ E exp
(
−|�t(x, x′)|

(
−ε + inf

g∈G
Mav,t h(g|�(x, x′)|−1M−1

av,t )
))

− E1{Mav,t ≤ ε} exp
(
−|�t(x, x′)|

(
−ε + inf

g∈G
Mav,t h(g|�(x, x′)|−1M−1

av,t )
))

.

Now, for any K ≥ 1, there exists ε > 0 such that Mav,t h(γ−|�(x, x′)|−1M−1
av,t ) ≥ K if

Mav,t ≤ ε. In particular, we may complete the proof of the lower bound by noting that

exp
(
−|�t(x, x′)|

(
−ε + inf

g∈G
Mav,t h(gM−1

av,t )
))

≤ exp(−|�t(x, x′)|(−ε + K)).
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Since Y ∗,per,b,t (x, x′, s, s′) is stochastically dominated by a Poisson random variable with
parameter λR|�t(x, x′)|, the random variables {|�′

t |−1Y ∗,per,b,t (x, x′, s, s′)}t<1 are exponen-
tially tight. This implies both goodness of the rate function and the full LDP. �

Next, using Lemma 4, we derive an LDP for the finite-dimensional marginals of Y ∗,per,b,t(·,·).
In order to state this precisely, it is convenient to introduce some notation. Let −|�′

1|1/d/2 =
ξ0 < ξ1 < · · · < ξk ≤ |�′

1|1/d/2 and 0 = s0 < s1 < · · · < sr . Then, for x = (ξi1 , . . . , ξid )

and s = si , we set x+,� = (ξi1+1, . . . , ξid+1) and s+,S = si+1, where we use the conventions
ξk+1 = |�′

1|1/d/2 and s�+1 = ∞.

Corollary 2. Let −|�′
1|1/d/2 = ξ0 < ξ1 < · · · < ξk ≤ |�′

1|1/d/2 and 0 = s0 < s1 < · · · <

s�. Furthermore, set � = {ξ0, ξ1, . . . , ξk} and S = {s0, s1, . . . , sr}. Then, the random vectors
{(|�′

t |−1Y ∗,b,t (x, x+,�, s, s+,S))(x,s)∈�d×S}t<1 satisfy an LDP with rate |�′
t | and good rate

function

� b
�,S((az)z∈�d×S) =

∑
x∈�d

|�(x, x+,�)| inf
Q∈Pθ

h(Q | P) +
r∑

i=1

h

(
ax,si

|�(x, x+,�)|
∣∣∣∣ �μb

Q(si)

)
.

Proof. First, we observe that (Y ∗,per,b,t (x, x+,�))x∈�d defines a family of independent
random vectors, where we set Y ∗,per,b,t (x, x+,�) = (Y ∗,per,b,t (x, x+,�, s, s+,S))s∈S . Indeed,
this is a consequence of the independence property of the Poisson point process X since by
the definition of the periodization, Y ∗,per,b,t (x, x+,�) depends on X only via X ∩ �t(x, x+,�).
Hence, if, for any fixed x ∈ �d , we can establish an LDP for Y ∗,per,b,t (x, x+,�) with a
certain good rate function, then [10, Exercise 4.2.7] allows us to deduce that the collection
(Y ∗,per,b,t (x, x+,�))x∈�d satisfies an LDP with good rate function given by the sum of the
individual ones. If |S| = 1 then the LDP for Y ∗,per,b,t (x, x+,�) is precisely the result of
Lemma 4, and an inspection of its proof shows that it also extends to the case of general
finite S.

In Lemma 5 we have seen that periodization replaces {Y ∗,b,t (x, x′, s, s′)}τ<1 by exponen-
tially equivalent random variables. Hence, by applying [10, Theorem 4.2.13] we are able to
complete the proof. �

In order to deduce Proposition 3 from Corollary 2, we need to undo the truncation approx-
imations. Before we start with the proof of Proposition 3, it is convenient to derive certain
continuity properties of μb

Q
and (d/ds)μb

Q
(s) with respect to b and Q. The technique of proof

is similar to the one used in the proof of Theorem 1.

Lemma 8. Let ε, K > 0, and s ≥ 0 be arbitrary. Then, there exists b ≥ 1 such that if Q ∈ Pθ

satisfies h(Q | P) ≤ K then μb
Q
(s) − μQ(s) ≤ ε and |(d/ds)μb

Q
(s) − (d/ds)μQ(s)| ≤ ε.

Proof. We first deal with the part of the statement not involving derivatives. Let b′ ≥ b ≥ 1
be arbitrary. Proceeding as in Lemma 7, we see that {|�′

t |−1
∫
�′

t

b(s, y) − 
b′

(s, y) dy}t<1
satisfies an LDP with rate |�′

t | and good rate function

a 
→ inf
Q∈Pθ , μb

Q
(s)−μb′

Q
(s)=a

h(Q | P).

In particular, the proof is completed once we show the existence of b0 ≥ 1 such that

lim sup
t→0

|�′
t |−1 log P

(∫
�′

t

|�′
t |−1
b(s, y) − 
b′

(s, y) dy > ε

)
≤ −K
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for all b′ ≥ b ≥ b0. Note that


b(s, y) − 
b′
(s, y) ≤ Nss−2

minw
−2

∑
i≥1

�b′(|y − Xi |) − �b(|y − Xi |). (3)

Using this result, we may now conclude as in Lemma 2, since the formula for the Laplace
functional of a Poisson point process shows that, for any a > 0,

E exp

(
a

∫
�′

t


b(s, y) − 
b′
(s, y) dy > ε

)

≤ exp

(
λT

∫
Rd

exp

(
aNs−2

minw
−2

∫
�′

t

�(|x − y|) − �b(|x − y|) dy

)
− 1 dx

)
.

Considering the part involving the derivatives, note that the derivative of μQ(s) is given
by λRQ(I (o)−1(d/ds)
(s, o)). Essentially, this means replacing in the above arguments
the expression q(sI (y)−1) by I (y)−1(d/ds)q(sI (y)−1). We conclude by observing that this
specific form only comes into play in the estimate (3), which can be replaced by∣∣∣∣I b(y)−1 d

ds
q(sI b(y)−1) − I b′

(y)−1 d

ds
q(sI b′

(y)−1)

∣∣∣∣
≤ I b(y)−1

∣∣∣∣ d

ds
q(sI b(y)−1) − d

ds
q(sI b′

(y)−1)

∣∣∣∣
+ d

ds
q(sI b′

(y)−1)|I b(y)−1 − I b′
(y)−1|

≤ (Nss−2
minw

−3 + Nw−2s−2
min)

∑
i≥1

(�b′(|y − Xi |) − �b(|y − Xi |)). �

Corollary 3. Let K > 0 and s ≥ 1 be arbitrary. Then, in the τL-topology,

• as b → ∞, the functions Q 
→ μb
Q
(s) converge to μQ(s) uniformly in {Q : h(Q | P)

≤ K}. In particular, Q 
→ μQ(s) is continuous on {Q : h(Q | P) ≤ K};
• as b → ∞, the functions Q 
→ (d/ds)μb

Q
(s) converge to (d/ds)μQ(s) uniformly in

{Q : h(Q | P) ≤ K}. In particular, Q 
→ (d/ds)μQ(s) is continuous on {Q : h(Q | P)

≤ K};
• if bn → ∞, Qn → Q, and lim supn→∞ h(Qn | P) ≤ K , then μ

bn

Qn
(s) → μQ(s).

Proof. Since the first two items are an immediate consequence of Lemma 8, we only deal
with the last item. Here, we may conclude, as before, by using the decomposition

|μQ(s) − μ
bn

Qn
(s)| ≤ |μQ(s) − μb

Q(s)| + |μb
Q(s) − μb

Qn
(s)| + |μbn

Qn
(s) − μb

Qn
(s)|. �

Now, we have completed all preparations for the proof of Proposition 3.

Proof of Proposition 3. In Lemma 5 we have seen that truncation leads to an exponentially
good approximation. Therefore, combining Corollary 2 with [10, Theorem 4.2.16] shows that
the random vector {(|�′

t |−1Y ∗,t (x, s))(x,s)∈�d×S}t<1 satisfies a weak LDP with rate function

� ′
�,S((ax,s)(x,s)) = sup

m≥1
lim inf
b→∞ inf

{(a′
x,s )(x,s) : |(a′

x,s )(x,s)−(ax,s )(x,s)|∞≤m−1}
� b

�,S((a′
x,s)(x,s)).
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Since the random vectors {(|�′
t |−1Y ∗,t (x, s))(x,s)∈�d×S}τ<1 are exponentially tight, the proof

is completed once we show that � ′
�,S((ax,s)(x,s)) = ��,S((ax,s)(x,s)), where

��,S((ax,s)(x,s)) =
∑
x∈�d

|�(x, x+,�)| inf
Q∈Pθ

h(Q | P) +
r∑

i=1

h

(
ax,si

|�(x, x+,�)|
∣∣∣∣ �μQ(si)

)
.

First, we note that q(sI b(o)−1) is decreasing in b and converges to q(sI (o)−1) as b → ∞.
Hence, for any Q ∈ Pθ and x ∈ �d ,

lim
b→∞

r∑
i=1

h

(
ax,si

|�(x, x+,�)|
∣∣∣∣ �μb

Q(si)

)
=

r∑
i=1

h

(
ax,si

|�(x, x+,�)|
∣∣∣∣ �μQ(si)

)
.

In particular, � ′
�,S((ax,s)(x,s)) ≤ ��,S((ax,s)(x,s)). Conversely, fix δ > 0 and x ∈ �d . Then,

for m ≥ 1, choose a sequence, (bm,n)n≥1, such that limn→∞ bm,n = ∞ and write

lim
n→∞ inf

{Q∈Pθ , (a′
x,s )(x,s) : |(a′

x,s )s−(ax,s )s |∞≤m−1}
h(Q | P) +

r∑
i=1

h

(
a′
x,si

|�(x, x+,�)|
∣∣∣∣ �μ

bm,n

Q
(si)

)

= lim inf
b→∞ inf

{Q∈Pθ , (a′
x,s )(x,s) : |(a′

x,s )s−(ax,s )s |∞≤m−1}
h(Q | P)

+
r∑

i=1

h

(
a′
x,si

|�(x, x+,�)|
∣∣∣∣ �μb

Q(si)

)
.

Next, for each m, n ≥ 1, choose Qx,m,n ∈ Pθ , and for each m, n ≥ 1, and s ∈ S choose
a′
x,s,m,n ∈ [ax,s − 1/m, ax,s + 1/m] such that

inf
{Q∗∈Pθ , (a∗

x,s )s : |(a∗
x,s )s−(ax,s )s |∞≤m−1}

h(Q∗ | P) +
r∑

i=1

h

(
a∗
x,si

|�(x, x+,�)|
∣∣∣∣ �μ

bm,n

Q∗ (si)

)

≥ −δ + h(Qx,m,n | P) +
r∑

i=1

h

(
a′
x,si ,m,n

|�(x, x+,�)|
∣∣∣∣ �μ

bm,n

Qx,m,n
(si)

)
.

If lim supn→∞ h(Qx,m,n | P) = ∞ then

lim
n→∞ inf

{Q∈Pθ , (a′
x,s )(x,s) : |(a′

x,s )s−(ax,s )s |∞≤m−1}
h(Q | P) +

r∑
i=1

h

(
a′
x,si

|�(x, x+,�)|
∣∣∣∣ �μ

bm,n

Q
(si)

)

= ∞,

which is certainly at least as large as ��,S((ax,s)(x,s)). Otherwise, after passing to a subse-
quence, we may assume that limn→∞ Qx,m,n = Qx,m for some Qx,m ∈ Pθ by sequential
compactness. Furthermore, we may also assume, for each 1 ≤ i ≤ r , that limn→∞ a′

x,si ,m,n =
a′
x,si ,m

for some a′
x,si ,m

∈ [ax,s − 1/m, ax,s + 1/m]. In particular, lower semicontinuity
of h implies that lim infn→∞ h(Qx,m,n | P) ≥ h(Qx,m | P). Moreover, by Corollary 3,
limn→∞ �μ

bm,n

Qx,m,n
(si) = �μQx,m

(si). Hence, by another application of lower semicontinuity,
we have

lim inf
n→∞ h

(
a′
x,si ,m,n

|�(x, x+,�)|
∣∣∣∣ �μ

bm,n

Qx,m,n
(si)

)
≥ h

(
a′
x,si ,m

|�(x, x+,�)|
∣∣∣∣ �μQx,m

(si)

)
.
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Arguing as above, we may assume that Qx,m converges to some Qx as m → ∞. In order to
conclude the proof of the proposition, it therefore suffices to show that

lim inf
m→∞ h

(
a′
x,si ,m

|�(x, x+,�)|
∣∣∣∣ �μQx,m

(si)

)
≥ h

(
ax,si

|�(x, x+,�)|
∣∣∣∣ �μQx

(si)

)
.

A final application of lower semicontinuity completes the proof. �

3.2. Application of Dawson–Gärtner and identification of a rate function

In Proposition 3, we have shown that the finite-dimensional distributions of the random
fields {Y ∗,t }t<1 satisfy an LDP. We have also identified the good rate function. Hence, the
Dawson–Gärtner theorem [10, Theorem 4.6.1] implies that the random fields {Y ∗,t }t<1 satisfy
an LDP with respect to the topology of pointwise convergence and that the good rate function
is given by �̃ (F ) = sup�,S ��,S(F ), where the supremum is over all finite S ⊂ [0, ∞)

and � ⊂ [−|�′
1|1/d/2, |�′

1|1/d/2]. The proof of Proposition 2 now amounts to showing
�̃ (F ) = � (F ). This is done using an adaptation of arguments appearing in the classical
derivation of Mogulskii’s theorem provided in [10, Theorem 5.3.1]. For the convenience of the
reader, we provide some details.

Proof of Proposition 2. First assume that F ∈ AC1
0 and let f = ∂F/∂x∂s denote the density

of F . By nonnegativity of ��,S(F ), we can assume that ξk = �′
1|1/d/2. Note that ��,S(F )

is of the form
∑

x∈�d |��(x)| infQ f (F (x), Q), where f is convex in the pair (F (x), Q) by
linearity of μQ. Hence, also G(F(x)) = infQ f (F (x), Q) is convex in F(x) so that using
Jensen’s inequality, we have

��,S(F ) ≤
∫

�′
1

inf
Q∈Pθ

h(Q | P) +
k∑

i=1

h

(∫ si

si−1

f (x, s) ds | �μQ(si)

)
dx.

Again by convexity of h and Jensen’s inequality, we can further estimate

h

(∫ si

si−1

f (x, s) ds | �μQ(si)

)
≤

∫ si

si−1

h

(
f (x, s)

∣∣∣∣ d

ds
μQ(s)

)
ds.

This proves �̃ (F ) ≤ � (F ). For the other direction, we first consider the supremum over
partitions � and let some S-partition be fixed. The idea is to use a volume partition into equal
subcubes with side length going to 0 as a lower bound. More precisely, let {ρk(l)}kd

l=1 denote the
disjoint partition of �′

1 into cubes of volume |�′
1|/kd and equal side-length δ(k) = |�′

1|1/d/k.
Then,

��,S(F ) ≥ lim inf
k→∞

kd∑
l=1

1

kd
inf

Q∈Pθ

h(Q | P) +
r∑

i=1

h(F (ρk(l) × (si−1, si]) | �μQ(si))

= lim inf
k→∞

∫
�′

1

inf
Q∈Pθ

h(Q | P) +
r∑

i=1

h(f k
i (x) | �μQ(si)) dx,

where each f k
i (x) is constant on each of the cubes ρk(l), l = 1, . . . , kd . By Lebesgue’s theorem,

f k
i (x) → ∫ si

si−1
f (x, s) ds for Lebesgue almost all x as k tends to ∞. Therefore, by Fatou’s
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lemma and the lower semicontinuity of the rate function,

sup
�

��,S(F ) ≥ lim inf
k→∞

∫
�′

1

inf
Q∈Pθ

h(Q | P) +
r∑

i=1

h(f k
i (x) | �μQ(si)) dx

≥
∫

�′
1

lim inf
k→∞ inf

Q∈Pθ

h(Q | P) +
r∑

i=1

h(f k
i (x) | �μQ(si)) dx

=
∫

�′
1

inf
Q∈Pθ

h(Q | P) +
r∑

i=1

h

(∫ si

si−1

f (x, s) ds | �μQ(si)

)
dx

= �S(F ).

For the supremum over S-partitions, we use the same approach and consider a partition of
intervals [0, k] for k ∈ N with constant mesh size 1/k. Using Fatou’s lemma, we have

sup
S

�S(F ) ≥
∫

�′
1

lim inf
k→∞ inf

Q∈Pθ

h(Q | P) +
k2∑

i=1

1

k
h

(∫ i/k

(i−1)/k f (x, s) ds

1/k

∣∣∣∣ �μQ(i/k)

1/k

)
dx,

where we can look at k
∫ i/k

(i−1)/k f (x, s) ds as a stepfunction f k
x on [0, k]. Similarly, for

k[μQ(i/k) − μQ((i − 1)/k)] = k
∫ i/k

(i−1)/k(d/ds)μQ(s) ds with gk
Q

on [0, k], we have

k2∑
i=1

1

k
h

(
k

∫ si

si−1

f (x, s) ds | k�μQ

(
i

k

))
=

∫ k

0
h(f k

x (r) | gk
Q(r)) dr.

Now fix x ∈ �1 and k ≥ 1 and let Qx
k such that

inf
Q∈Pθ

h(Q | P) +
∫ k

0
h(f k

x (r) | f k
Q(r)) dr = h(Qx

k | P) +
∫ k

0
h(f k

x (r) | gk
Qx

k
(r)) dr,

which exists since lower-semicontinuous functions assume their minimum on compact sets.
Let kn be the subsequence such that the limit inferior becomes a limit and for simplicity
write again k. Furthermore, we can assume that supk h(Qx

k | P) < ∞ for Lebesgue almost
all x since otherwise there is nothing to show. Since h(· | P) has sequentially compact level
sets there exists a cluster point Qx∗ of (Qx

k )k∈N and by lower semicontinuity and Fatou’s
lemma, we have supS �S(F ) ≥ ∫

�′
1
h(Qx∗ | P) + ∫ ∞

0 lim infk→∞ h(f k
x (r) | gk

Qx
k
(r)) dr dx.

Note that by Lebesgue’s theorem for almost all s ∈ [0, ∞), lim infk→∞ f k
x (s) = f (x, s).

Furthermore, lim infk→∞ gk
Qx

k
(s) = (d/ds)μQx∗ (s). Indeed, by the mean value theorem for

s ∈ ((i − 1)/k, i/k) there exists s′ ∈ ((i − 1)/k, i/k) such that gk
Qx

k
(s) = (d/ds)μQx

k
(s′) and∣∣∣∣gk

Qx
k
(s) − d

ds
μQx∗ (s)

∣∣∣∣ ≤
∣∣∣∣ d

ds
μQx

k
(s′) − d

ds
μQx

k
(s)

∣∣∣∣ +
∣∣∣∣ d

ds
μQx

k
(s) − d

ds
μQx∗ (s)

∣∣∣∣.
The second summand on the right tends to 0 as k tends to ∞ by Corollary 3. For the first term,
we have, by Lebesgue’s theorem,∣∣∣∣ d

ds
μQx

k
(s′) − d

ds
μQx

k
(s)

∣∣∣∣ ≤ λRQx
k

(
E

(
d

ds |s=s′
q(sI (o)−1) − d

ds |s=s

q(sI (o)−1)

∣∣∣∣ X

))
,
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which is at most Nw−2|s′ − s| and, therefore, tends to 0 as k tends to ∞. Thus,

lim inf
k→∞ gk

Qx
k
(s) = d

ds
μQx∗ (s).

Using the fact that the function h is lower-semicontinuous, we arrive at

lim inf
k→∞ h(f k

x (s) | gk
Qx

k
(s)) ≥ h

(
f (x, s)

∣∣∣∣ d

ds
μQx∗ (s)

)
,

as required.
Finally, let F /∈ AC0. First, for any ε > 0, there exists QS,x ∈ Pθ such that

�̃ (F ) ≥ sup
�,S

[ ∑
x∈�d

|��(x)|h(QS,x | P)

+
r∑

i=1

|��(x)|h
(

F(��(x) × (si−1, si])
|��(x)|

∣∣∣∣ �μQS,x
(si)

)]
− ε

≥ sup
�,S

[ ∑
x∈�d

r∑
i=1

|��(x)|h
(

F(��(x) × (si−1, si])
|��(x)|

∣∣∣∣ �μQS,x
(si)

)]
− ε

= sup
�,S

[ ∑
x∈�d

r∑
i=1

|��(x)| sup
ρ

[
ρ

F(��(x) × (si−1, si])
|��(x)| − (eρ − 1)�μQS,x

(si)

]]
− ε

using also the Legendre transform of the relative entropy. Furthermore, we have

|μQS,x
(si) − μQS,x

(si−1)| ≤ λR|QS,x(
(si, o) − 
(si−1, o)| ≤ NλRw−2|si − si−1|,
and, hence, for ρ ≥ 0,

�̃ (F ) ≥ ρ sup
�,S

[ ∑
x∈�d

r∑
i=1

[F(��(x) × (si−1, si]) − (eρ − 1)NλR|��(x)||si − si−1|]
]

− ε.

If F is not right-continuous, there exists a point (x, s) such that F(x, s) < limn→∞ F(x +
1/n, s + 1/n) = M . Consider a sequence of finite partitions (�n, Sn)n∈N where the cube
(
∏d

j=1(xj , xj + 1/n]) × (s, s + 1/n] is contained in (�n, Sn) for all n ∈ N. Then

�̃ (F ) ≥ ρ

[
F

(
x + 1

n
, s + 1

n

)
−F(x, s) − (eρ − 1)NλR1

nd+1

]
− ε

and letting n → ∞ gives �̃ (F ) ≥ ρ[M − F(x, s)] − ε which tends to ∞ as ρ → ∞.
If F is right-continuous but F /∈ AC0 there exists δ > 0 and a sequence of measurable

sets Ak , with νd+1(Ak) → 0 and μF (Ak) ≥ δ. Using the regularity of the Lebesgue measure
there exists a disjoint union of countably many (d + 1)-dimensional cuboids such that Ak ⊂⋃

l q
k
l and νd+1(

⋃
l q

k
l \ Ak) < 1/k. Then, for every ρ ≥ 0,

�̃ (F ) ≥ ρ

∞∑
l=1

F(qk
l ) − (eρ − 1)NλRνd+1

(⋃
l

qk
l

)
− ε

≥ ρμF (Ak) − (eρ − 1)NλR

(
νd+1(Ak) + 1

k

)
− ε.

Letting k tend to ∞, we have �̃ (F ) ≥ ρδ − ε which tends to ∞ as ρ → ∞. �
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3.3. Contraction principle and identification of rate function

In this section we apply the contraction principle to derive Theorem 2 from Proposition 2.
Consider the function � : K → M(�′

1) given by

F(·) 
→ F((· × [0, ∞)) ∩ {(y, s) ∈ �′
1 × [0, ∞) : s ≤ |y|−α}).

Then, the random measure �(|�′
t |−1Y ∗,t (·, ·)) is exponentially equivalent to the random

measure |�′
t |−1Y t (t−β ·). Moreover, � is continuous when restricted to the subset Linc,0(�

′
1 ×

[0, ∞)) of Linc(�
′
1 × [0, ∞)) consisting of those F with μF (∂M) = 0, where

M = {(y, s) ∈ �′
1 × [0, ∞) : s ≤ |y|−α}

and K ⊂ Linc(�
′
1 ×[0, ∞)) denotes the family of all [0, ∞)-valued, bounded, increasing, and

right-continuous functions. Since the Lebesgue measure of ∂M is 0, the rate function from the
LDP of Proposition 2 is infinite on the complement of K . Hence, [10, Lemma 4.1.5] shows
that the random fields {|�′

t |−1Y ∗,t (·, ·)}t<1 also satisfy an LDP on K . Hence, the contraction
principle applies and it remains to identify the rate function. That is, we need to show that

inf
F∈K, G(·)=F(·1M)

∫
�′

1

inf
Q

h(Q | P) +
∫ ∞

0
h

(
f (y, s)

∣∣∣∣ d

ds
μQ(s)

)
ds dy

=
∫

�′
1

inf
Q

h(Q | P) + h(g(y) | μQ(|y|−α)) dy,

where f = ∂F/∂y∂s and g = ∂G/∂y denote the Radon–Nikodym derivatives of F and G,
respectively. Note that if G was not absolutely continuous, then neither could F be, so that
the left-hand side would be ∞. We show that the equality arises as a consequence of two
inequalities. First, we show that the left-hand side is at least as large as the right-hand side.
As in the proof of Proposition 2, an application of Jensen’s inequality implies that

∫ |y|−α

0
h

(
f (y, s)

∣∣∣∣ d

ds
μQ(s)

)
ds ≥ h

(∫ |y|−α

0
f (y, s) ds | μQ(|y|−α)

)
.

The right-hand side is equal to h(g(y) | μQ(|y|−α)) if G(·) = F(·1M).
The other direction is more involved. First, we proceed as in the proof of Proposition 2

and note that the right-hand side can be approximated using a suitable discretization. To be
more precise, let {ρ(l)}2dk

l=1 be a subdivision of �′
1 into congruent cubes of side length δ(k) =

|�′
1|1/d2−k . The point in the lth cube which minimizes the distance to the origin will be

denoted by yk,l . In the first step of the discretization, we replace the expression μQ(|y|−α) by
μQ(|yk,l |−α).

Lemma 9. We have

lim sup
k→∞

2dk∑
l=1

∫
ρ(l)

inf
Q∈Pθ

h(Q | P) + h(g(y) | μQ(|yk,l |−α)) dy

≤
∫

�′
1

inf
Q∈Pθ

h(Q | P) + h(g(y) | μQ(|y|−α)) dy.
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Proof. First, note that for every l ∈ {1, . . . , 2dk}, y ∈ ρ(l), and Q ∈ Pθ , we have

h(g(y) | μQ(|yk,l |−α)) − h(g(y) | μQ(|y|−α))

≤ g(y) log
μQ(|y|−α)

μQ(|yk,l |−α)
+ |μQ(|yk,l |−α) − μQ(|y|−α)|

≤ |μQ(|yk,l |−α) − μQ(|y|−α)|,
where the last inequality follows from the choice of yk,l . In particular, the right-hand side is alw-
ays bounded above by 1. Moreover, for ε > 0, we let Aε = {l ∈ {1, . . . , 2dk} : miny∈ρ(l) |y| <

ε} denote the set of indices of cubes that are close to the origin. Then, the Lipschitz assumption
implies that, for every l �∈ Aε, y ∈ ρ(l) and Q ∈ Pθ ,

|μQ(|yk,l |−α) − μQ(|y|−α)| ≤ Nα|yk,l |−α−1|y − yk,l | ≤ Nαε−α−1
√

dδ(k)−1.

Hence, for sufficiently large k ≥ 1, the difference

2dk∑
l=1

∫
ρ(l)

inf
Q∈Pθ

h(Q | P) + h(g(y) | μQ(|yk,l |−α)) dy

−
(∫

�′
1

inf
Q∈Pθ

h(Q | P) + h(g(y) | μQ(|y|−α)) dy

)

is bounded above by |ρ(1)|#Aε +Nαε−α−1
√

dδ(k) ≤ 2dεd +Nαε−α−1
√

dδ(k), Since ε > 0
was arbitrary, this completes the proof. �

The next lemma is proved similarly to Proposition 2 using Jensen’s inequality and a dis-
cretization of the integral. We omit the proof.

Lemma 10. Let k ≥ 1 and 1 ≤ l ≤ 2dk be arbitrary. Then,

|ρ(l)|−1
∫

ρ(l)

inf
Q∈Pθ

h(Q | P) + h(g(y) | μQ(|yk,l |−α)) dy

≥ inf
Q∈Pθ

h(Q | P) + h(|ρ(l)|−1G(ρ(l)) | μQ(|yk,l |−α)) dy.

Now that we have discretized the integral, we can define approximations F (k) to the desired
function F . For this purpose, we first need to construct certain minimizers. Recall from
Corollary 3 that the function Q 
→ μQ(|yk,l |−α) is continuous on every set of the form
{Q : h(Q | P) ≤ K} for some K < ∞. Therefore, the function

Q 
→ h(Q | P) + h(|ρ(l)|−1G(ρ(l)) | μQ(|yk,l |−α))

is lower semicontinuous, and we let Qk,l be one of its minimizers. Now, define measurable
functions f (k) : �′

1 → [0, ∞], k ≥ 1, by

f (k)(y, s) =

⎧⎪⎪⎨
⎪⎪⎩

|ρ(l)|−1G(ρ(l))(d/ds)μQk,l
(s)

μQk,l
(|yk,l |−α)

if y ∈ ρ(l) and s ≤ |yk,l |−α,

d

ds
μQk,l

(s) if y ∈ ρ(l) and s > |yk,l |−α .
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Here, we make the convention that the first line is equal to 0 if μQk,l
(|yk,l |−α) = G(ρ(l)) = 0

and is equal to ∞ if μQk,l
(|yk,l |−α) = 0, but G(ρ(l)) �= 0. Furthermore, we let F (k) denote

the distribution function of the measure with density f (k)(y, s). Then, for every y ∈ ρ(l), the
expression infQ∈Pθ

h(Q | P) + ∫ ∞
0 h(f (k)(y, s) | (d/ds)μQ(s)) ds is bounded above by

h(Qk,l | P) +
∫ |yk,l |−α

0
h

( |ρ(l)|−1G(ρ(l))(d/ds)μQk,l
(s)

μQk,l
(|yk,l |−α)

∣∣∣∣ d

ds
μQk,l

(s)

)
ds

= h(Qk,l | P) + h(|ρ(l)|−1G(ρ(l)) | μQk,l
(|yk,l |−α)).

From the favorable rate function in Proposition 2, the functions (F (k))k≥1 have an accumu-
lation point, and from lower-semicontinuity, therefore, we have∫

�′
1

inf
Q∈Pθ

h(Q | P) +
∫ ∞

0
h(f (y, s) | μQ(s)) ds

≤
∫

�′
1

inf
Q∈Pθ

h(Q | P) + h(g(y) | μQ(|y|−α)) dy.

Hence, it remains to show that the measures induced by G(·) and F(·1M) coincide. In order
to prove this claim, we first show that F (k)(M(k) \ M) tends to 0 as k tends to ∞, where
M(k) = {(y, s) ∈ �′

1 × [0, ∞) : y ∈ ρ(l) and s ≤ |yk,l |−α}.
Lemma 11. The expression F (k)(M(k) \ M) tends to 0 as k tends to ∞.

Proof. First, observe that F (k)(M(k) \ M) can be expressed as

F (k)(M(k) \ M) =
2dk∑
l=1

G(ρ(l))|ρ(l)|−1
∫

ρ(l)

μQk,l
(|yk,l |−α) − μQk,l

(|y|−α)

μQk,l
(|yk,l |−α)

dy.

Now, for ε > 0, introduce the set

Aε = {l ∈ {1, . . . , 2dk} : min
y∈ρ(l)

|y| < ε or max
y∈ρ(l)

|y|−α > wsmin − ε}

of indices whose associated cubes are far away from the origin and the boundary of the ball
B(wsmin)−1/α (o). Hence, we arrive at

F (k)(M(k) \ M) = αε−α−1N
√

dδ(k)
∑
l �∈Aε

G(ρ(l))

μQk,l
(|yk,l |−α)

+ r(ε),

where r(ε) tends to 0 as ε tends to 0. Since the sum above consists of at most 2dk summands, it is
enough to consider those l �∈ Aε that satisfy |ρ(l)|−1G(ρ(l)) > μQk,l

(|yk,l |−α). Now, note that
if l �∈ Aε then μP(|yk,l |−α) ≥ 1/K for some sufficiently large K = K(ε) not depending on k

and l. We also claim that μQk,l
(|yk,l |−α) ≥ 1/K . Once this is shown, the proof is complete.

Suppose that μQk,l
(|yk,l |−α) < 1/K . First, if |ρ(l)|−1G(ρ(l)) ≥ μP(|yk,l |−α) then

h(|ρ(l)|−1G(ρ(l)) | μP(|yk,l |−α)) < h(|ρ(l)|−1G(ρ(l)) | μQk,l
(|yk,l |−α)),

which contradicts the minimality of Qk,l . Otherwise, set Q∗ = λP + (1 − λ)Qk,l , where
λ ∈ [0, 1) is chosen such that

λμP(|yk,l |−α) + (1 − λ)μQk,l
(|yk,l |−α) = |ρ(l)|−1G(ρ(l)).
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Then, since the specific relative entropy h (introduced in Section 1) is an affine function,

h(Q∗ | P) + h(|ρ(l)|−1G(ρ(l)) | μQ∗(|yk,l |−α)) = (1 − λ)h(Qk,l | P).

As the right-hand side is strictly smaller than

h(Qk,l | P) + h(|ρ(l)|−1G(ρ(l)) | μQk,l
(|yk,l |−α)),

this contradicts again the minimality of Qk,l . �

Now, we can complete the proof of Theorem 2.

Proof of Theorem 2. By Lemmas 9 and 10, it suffices to show that G(f ) = F(f 1M) holds
for any f : �′

1 → [0, ∞) of the form f = 1ρ(l0) for some 1 ≤ l0 ≤ 2dk0 . Now, we can argue
as follows:

|F(f 1M) − G(f )| ≤ lim sup
k→∞

|F (k)(f 1M(k)) − G(f )| + lim sup
k→∞

F (k)(f 1M(k)\M).

from Lemma 11 we see that the second summand is 0. Moreover, from the definition of F (k),
we see that F (k)(f 1M(k)) = G(k)(f ), where G(k), k ≥ k0, denotes the measure with locally
constant density g(k)(y) = |ρ(l)|−1G(ρ(l)). Hence,

G(k)(f ) = G(k)(ρ(l0)) =
∑

ρ(l)⊂ρ(l0)

G(ρ(l)) = G(ρ(l0)) = G(f ),

as required. �

3.4. Proof of Corollary 1

Proof. The upper estimate is a direct consequence of the upper bound in Theorem 2,

lim sup
t→0

|�′
t |−1 log pt = lim sup

t→0
|�′

t |−1 log P(|�′
t |−1Y t (t−β ·) = 0)

≤ −
∫

�′
1

inf
Q∈Pθ

(h(Q | P) + λRQ(
(|y|−α, o))) dy.

For the lower estimate, first note that pt = E exp (−λR
∫
�′

t

(t−1�(y), y) dy), where 
(a, y) =

E(q(aI (y)−1) | X) is a nonlocal function of the transmitter process. In order to be able to
apply [16, Theorem 3.1], we need to establish a translation-invariant setting using discretization
of the integrand. To be more precise, we subdivide �′

t into 2dn subcubes �i
t of side length

21−n|wsmint |−β and let yi denote the corresponding element of the subcube �i
t which is closest

to the origin. Then,

pt ≥ E exp

(
−λR

2dn∑
i=1

∫
�i

t


(t−1�(|yi |), y) dy

)
≥ E exp

(
−λR

2dn∑
i=1

∫
�i

t


b(t−1�(|yi |), y) dy

)
,

where 
b(a, y) = E(q(aIb(y)−1) | X). Furthermore, let Xper,i be the configuration obtained
after extending the configuration of the marked Poisson point process X in the subcube �i

t peri-
odically in the entire Euclidean space Rd . The error made in replacing

∑2dn

i=1

∫
�i

t

b(t−1�(yi), y)
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by
∑2dn

i=1

∫
�i

t

per,b(t−1�(yi), y) is negligible in the large deviation principle where 
per,b(a,

y) = E(q(aIb(y)−1) | Xper,i ), indeed

∫
�i

t

[
b(t−1�(yi), y) − 
per,b(t−1�(yi), y)] dy

≤ N(w2t)−1
∫

�i
t

[I b(o, y, X) − I b(o, y, Xper,i )] dy

≤ N(s2
minw

2t)−1
[ ∑

Xj ∈X, Xj �∈�i
t , Xj ∈�i

t,b

∫
�i

t

�b(|Xj − y|) dy

+
∑

Xj ∈Xper,i , Xj �∈�i
t , Xj ∈�i

t,b

∫
�i

t

�b(|Xj − y|) dy

]

≤ N(s2
minw

2t)−1[X(�i
t,b \ �i

t ) + Xper,i (�i
t,b \ �i

t )]
∫

Bb(o)

�b(|y|) dy, (4)

where �i
t,b denotes the volume �i

t joined with its b-boundary. Hence, for all ε > 0,

E exp

(
−λR

2dn∑
i=1

∫
�i

t


b(t−1�(|yi |), y) dy

)

≥ e−ε|�′
t |E exp

(
−λR

2dn∑
i=1

∫
�i

t


per,b(t−1�(|yi |), y) dy

)

− P

(
λR

2dn∑
i=1

∫
�i

t


b(t−1�(yi), y) − 
per,b(t−1�(yi), y) dy ≥ ε|�′
t |
)

.

By (4), the second line is bounded from below by

−2P

(
λR2N(s2

minw
2t)−1

∫
Bb(o)

�b(|y|) dyX(�1
t,b \ �1

t ) ≥ ε|�1
t |

)
.

But this goes to 0 on an exponential scale infinitely fast by Lemma 1. Hence,

lim
t→0

|�′
t |−1 log E exp

(
−λR

2dn∑
i=1

∫
�i

t


b(t−1�(yi), y) dy

)

≥ lim
t→0

|�′
t |−1 log E exp

(
−λR

2dn∑
i=1

∫
�i

t


per,b(t−1�(yi), y) dy

)

= 2−dn
2dn∑
i=1

lim
t→0

|�i
t |−1 log E exp

(
−λR

∫
�i

t


per,b(t−1�(yi), y) dy

)
,
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where we used the independence of the Xper,i with respect to i in the second line. Now we are
in the position to apply [16, Theorem 3.1] and write

lim
t→0

|�′
t |−1 log E exp

(
−λR

2dn∑
i=1

∫
�i

t


per,b(t−1�(yi), y) dy

)

≥ −2−dn
2dn∑
i=1

inf
Q∈Pθ

(h(Q | P) + λRQ(
b(|yi |−α, o))),

using the continuity of 
per,b ensured by the truncation of the interference. Note that

lim sup
b→∞

inf
Q∈Pθ

(h(Q | P) + λRQ(
b(|yi |−α, o))) ≤ inf
Q∈Pθ

(h(Q | P) + λRQ(
(|yi |−α, o))).

Indeed, let Q0 be a minimizer of the right-hand side, then

lim sup
b→∞

inf
Q∈Pθ

(h(Q | P) + λRQ(
b(|yi |−α, o))) ≤ h(Q0 | P) + λR lim sup
b→∞

Q0(

b(|yi |−α, o))

and it suffices to show that

|Q0(

b(|y|−α, o)) − Q0(
(|y|−α, o))| ≤ N |y|−αw−2Q0

( ∑
Xj �⊂�b

�(|Xj |)
)

tends to 0 as b tends to ∞. But this holds since Q0 is a translation-invariant point process. In
order to perform the large-n limit, we have to show that

y 
→ inf
Q∈Pθ

(h(Q | P) + λRQ(
(|y|−α, o)))

is continuous. But this also holds since∣∣∣ inf
Q∈Pθ

h(Q | P) + λRQ(
(|y|−α, o))) − inf
Q∈Pθ

h(Q | P) + λRQ(
(|x|−α, o)))

∣∣∣
≤ sup

Q∈Pθ

|λRQ(
(|y|−α, o)) − λRQ(
(|x|−α, o))|

≤ Nw−1λR||y|−α − |x|−α|. �

4. Importance sampling

In this section we show how the LDPs derived in Theorems 1 and 2 can be used to devise
an importance sampling scheme improving the accuracy of basic Monte Carlo approaches
for estimating the probability of observing unlikely configurations of connectable receivers.
Theorems 1 and 2 imply that such probabilities generally tend to 0 exponentially quickly, so
that basic Monte Carlo estimators perform poorly.

The general heuristic for devising importance sampling schemes is the following. Instead
of sampling the transmitters according to their true distribution, the simulation is performed
by using a modified law under which the considered rare event is more likely. An appropriate
reweighting using likelihood ratios ensures the unbiasedness of the new estimator. For a more
detailed discussion of the general technique of importance sampling, we refer the reader to [2]
and [19].
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In principle, Theorems 1 and 2 provide precise descriptions of the asymptotically exponen-
tially optimal change of measure, in the sense that the modified law of transmitters should be
given by suitable Gibbs point processes. However, as these distributions just arise as minimizers
of fairly complicated functionals, it is difficult to use them for computational purposes. Still, by
performing this minimization in the restricted class of Poisson point processes, we can achieve
substantial accuracy benefits.

We only provide a proof of concept for the use of importance sampling, and, therefore, assume
a specific parameter constellation in the following. First, we fix d = 2, w = λR = λT = 1,
and assume that the path-loss function is given by �(r) = r−4. Moreover, we assume that
there is no random environment, and that transmission powers and fading random variables are
constant and equal to 1. Note that this choice is not covered by the assumptions for Theorems 1
and 2. Nevertheless, our simulation results illustrate that variance reduction through importance
sampling also hold under weaker conditions than the ones assumed in Theorems 1 and 2.

4.1. Importance sampling related to Theorem 1

Since we have assumed that there is no random environment and that transmission powers and
fading variables are constant, the minimization in the rate function of Theorem 1 is performed
only over stationary point processes of transmitters and receivers. As mentioned above, this
minimization is intractable in its full generality. Nevertheless, in this section, we show that
if minimization is performed only in the class of Poisson point processes, then the problem
becomes tractable. In fact, we provide an example problem, where the minimization can be
reduced to a standard two-dimensional constrained minimization problem, where the constraint
is given in terms of certain special functions. The disadvantage of this approach is that solving
the minimization problem in a restricted class of point process will not automatically lead to
good choices for the importance sampling. This will become apparent from the simulation
results discussed below.

We assume that t = 1 and consider events of the form

An,a =
{

1

|�n|
∑

Xi∈�n

#Y (i) < a

}
,

i.e. the event that the (spatially) averaged number of connectable receivers associated with
transmitters in the cube �n is less than a. Now, we explain how to implement an importance
sampling scheme based on the LDP. A related importance sampling scheme for a Poisson point
process on the real line has already been considered in [17], but for the convenience of the
reader, we present some details in our situation.

In order to estimate the probability of the event An,a , we simulate the Poisson point processes
with new intensities μR > 0 and μT > 0 in �n. Then, the likelihood ratio of a Poisson point
process with intensity 1 with respect to these point processes is given by

exp(|�n|(μR − 1) + |�n|(μT − 1))μ
−X(�n)
R μ

−Y (�n)
T .

Hence, an unbiased estimator for P(An,a) is given by

p̂n,a,μT,μR = exp(|�n|(μR − 1) + |�n|(μT − 1))μ
−X(�n)
R μ

−Y (�n)
T 1An,a .

In order to take into account edge effects, we also generate transmitters and receivers with the
unmodified intensity in a small environment around �n. We can obtain estimates p̂ and v̂ of
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Table 1: Comparison of the simulation results for the expectation and variance of the considered
importance sampling estimators with transmitter and receiver intensities (μR, μT).

(μR, μT) p̂ v̂

(1, 1) 3.31 × 10−4 3.31 × 10−4

(0.832, 0.984) 3.12 × 10−4 3.69 × 10−4

(0.892, 0.989) 3.29 × 10−4 5.10 × 10−5

the expectation and variance of p̂n,a,μT,μR by considering the sample average and variance of
N ≥ 1 i.i.d. copies generated using Monte Carlo simulation.

This leaves the question as of how to find good choices for μR and μT. In a first attempt,
choose these parameters to minimize the large deviation rate function appearing in Theorem 1. If
Q ∈ Pθ is the distribution of independent Poisson point processes of receivers and transmitters
with intensities μR and μT, then the relative entropy h(Q | P) is given by (μR log μR − μR +
1)+(μT log μT−μT+1). Hence, to determine the optimal intensities (λR,opt, λT,opt) according
to Theorem 1, we need to minimize this formula under the constraint Q∗(#Y (o)) < a. Next,
we express this constraint in terms of certain special functions. First, by Campbell’s theorem,

Q∗(#Y (o)) = μTμR

∫
B1(o)

Q∗
( |x|−4

1 + ∑
i≥1 |Xi |−4 ≥ 1

)
dx

= μTμR2π

∫ 1

0
rP

(∑
i≥1

|Xi |−4 ≤ μ2
T(r4 − 1)

)
dr,

where in the last line we used that scaling by 1/
√

μT transforms a Poisson point process
with intensity 1 to a Poisson point process with intensity μT. Moreover,

∑
i≥1 |Xi |−4 is

distributed according to an inverse gamma distribution with parameters 1
2 and π3/4. In

particular, P(
∑

i≥1 |Xi |−4 ≤ s) = π−1/2γ ( 1
2 , −π3/4s), where γ (·, ·) denotes the incomplete

gamma function. Now it is easy to check that

Q∗(#Y (o)) = μRμT2π

∫ 1

0
rγ

(
1

2

)(
π3

4μ2
T(r4 − 1)

)
dr = μRμTπ exp

(
π3

4μ2
T

)
erfc

(
π3/2

2μT

)
,

where ‘erfc’ denotes the complimentary error function. For instance, if we choose a = 1
2 then

(λR,opt, λT,opt) ≈ (0.832, 0.984).
In order to assess the accuracy improvements that can be achieved with this importance

sampling scheme, we performed a Monte Carlo analysis. We fixed a = 1
2 , n = 25, and

performed N = 10 000 00 simulation runs. We consider three different parameter choices for
the importance sampling intensities (μR, μT). First, we consider the case of basic Monte Carlo
simulation; that is, (μR, μT) = (1, 1). Second, we take the intensities that are obtained from the
large deviation analysis performed above, i.e. (μR, μT) = (0.832, 0.984). Third, we estimate
(μR, μT) from a simple cross-entropy scheme. That is, we performed a pilot run of 100 000
basic Monte Carlo simulations and determined the average intensities under the condition that
the rare event occurs. We obtain (μR, μT) = (0.892, 0.989). We refer the reader to [19] for
details on the general cross-entropy technique. The results for p̂ and v̂ are reported in Table 1.

In particular, we would like to draw the attention to an important observation: the estimator
that is obtained as the solution of the optimization based on our large deviation principle
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actually has a higher variance than the basic Monte Carlo estimator. Given the close relation
between the large deviation theory and asymptotically optimal change of measures, this might
come as a surprise at first sight. However, since we performed our optimization not in the full
class of stationary point processes, but only considered Poisson point processes, the simulation
output does not contradict this intuition. In fact, considered from a different perspective, the
simulation results provide evidence that the optimal change of measure is rather far (in the
Kullback–Leibler distance) from being a Poisson point process. In contrast, performing the
change of measure with the intensities obtained from the pilot run shows that for the considered
example, a more than seven-fold variance reduction can be achieved.

The discussion in the previous paragraph raises the legitimate question as to whether the
change of measures deduced from the large deviation result are of any practical use for
importance sampling. Indeed, in the example described above, the intensities that lead to
the seven-fold decrease in variance could be found without reference to the LDP; namely, by
an ‘educated guess’ (or rather ‘cross-entropy’). Nevertheless, when considering importance
sampling in the setting of Corollary 1, finding a good importance sampling change of measure
would involve ‘guessing’ a continuous family of parameters, which is substantially more
involved than what we have performed above. In contrast, a simple analysis of the large
deviation rate function provides immediately a useful heuristic for the shape of the curve.

4.2. Importance sampling related to Theorem 2

Finally, we investigate importance sampling techniques related to Theorem 2. We consider
the specific setting of Corollary 1, i.e. estimation of the isolation probability pt for small
values of t . Similar to the situation considered in Section 4.1, the full minimization problem is
intractable, so that we restrict our attention to the class of homogeneous Poisson point processes.
However, the situation is slightly different from the one considered in Section 4.1. Instead of
globally optimizing a transmitter and receiver intensity, we now have the freedom to choose a
different intensity for each point in �′

1. Due to isotropy, this reduces to the task of choosing
an optimal intensity λopt(r) for each r ∈ [0, 1]. This optimal intensity must minimize the
following expression that can be derived from the variational characterization in Corollary 1:

λopt(r) log λopt(r) − λopt(r) + 1 + P

(
r−4 ≥ 1 + λopt(r)

2
∑
i≥1

|Xi |−4
)

.

This is a standard minimization problem that can be solved by finding the roots of the derivative
with respect to λopt(r). After some simplifications, we arrive at

log λopt(r) = π√
r−4 − 1

exp

(
π3λopt(r)

2

4(r−4 − 1)

)
.

This equation can be solved numerically; a plot of this solution is shown in Figure 2.
As in the previous example, in order to assess the actual accuracy improvements for the

estimation of pt that can be achieved with this importance sampling scheme, we performed
a prototypical Monte Carlo analysis. We fixed t = 0.002 and performed N = 1 000 000
simulation runs. See Table 2.

In contrast to the previous example, we see that the importance sampling estimator derived
from large deviation theory provides substantial benefits. Indeed, the variance is reduced by
approximately 78%. Furthermore, applying the cross-entropy technique for the present example
would be substantially more involved than in the previous example. Indeed, instead of simply
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Figure 2: Plot of the optimal density λopt(r) at distance r from the origin.

Table 2: Comparison of the simulation results for the expectation and variance of the basic versus the
importance sampling estimator.

p̂ v̂

λ(·) ≡ 1 7.72 × 10−6 8.22 × 10−10

λ(·) ≡ λopt(·) 7.70 × 10−6 1.78 × 10−10

estimating two parameters, we would need to extract an entire curve from the pilot runs, so that
proper statistical tools would be needed to estimate such a functional object from the data.
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