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Bi-orders do not arise from total orders
Samuel M. Corson

Abstract. We present a Zermelo–Fraenkel (ZF) consistency result regarding bi-orderability of groups.
A classical consequence of the ultrafilter lemma is that a group is bi-orderable if and only if it is locally
bi-orderable. We show that there exists a model of ZF plus dependent choice in which there is a group
which is locally free (ergo locally bi-orderable) and not bi-orderable, and the group can be given a
total order. The model also includes a torsion-free abelian group which is not bi-orderable but can be
given a total order.

1 Introduction

The goal of this note is to explore the set theoretic strength of bi-orderability in the
setting of Zermelo–Fraenkel (ZF) set theory. Let ZF denote Zermelo–Fraenkel set
theory minus AC, the axiom of choice. Recall that a total order on a set X is a binary
relation < for which exactly one of x < y or y < x holds for distinct x , y ∈ X, x < x is
false for all x ∈ X, and x < y and y < z imply x < z.

If G is a group, we say that a total order < on G is a left-order (respectively right-
order) provided for all g , h, k ∈ G we have that g < h implies kg < kh (resp. gk < hk).
We say G is left-orderable provided there exists a left order on G. One could similarly
define right-orderable but since a left-order explicitly defines a right-order and vice-
versa, questions of left- or right-orderability of a group are equivalent. Left-orderable
groups are torsion-free. A group order is a bi-order if it is both a left- and right-order
and a group is bi-orderable provided such an order exists.

The ultrafilter lemma (every filter on a set extends to an ultrafilter) implies the
classically known local-to-global bi-orderability result (see [4, Proposition 1.4]):

A group G is bi-orderable if and only if every finitely generated subgroup is
bi-orderable.

In a nice setting, one can have explicit bi-orders without having recourse to this
local-to-global theorem. Given a total order on a set X, one immediately obtains
a bi-order on the free abelian group Fab(X) generated by X by considering the
lexicographic order, and a bi-order on a free abelian group restricts to a total order
on the free set of generators. Importantly, the assertion that every set can be given a
total order cannot be proved from ZF, so a total order on an arbitrary set X does not
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exist a priori. Thus in ZF, a free abelian group is bi-orderable if and only if a free set
of generators can be given a total order. By a more elaborate argument, in ZF a free
group is bi-orderable if and only if a free generating set has a total order [2]. It seems
natural to ask whether in ZF a total order on a locally free, or a torsion-free abelian,
group implies bi-orderbility (by a total order on a group we mean, of course, a total
order on the group’s underlying set). We show that this is not even the case in the
presence of dependent choices.

Recall that the principle of dependent choices is the assertion that if R is a binary
relation on a nonempty set X for which (∀x ∈ X)(∃y ∈ X)[xRy], then there exists a
sequence {xn}n∈ω for which xn Rxn+1. This principle, which is a consequence of the
axiom of choice, implies many of the standard results in analysis and also implies the
axiom of countable choices.

Theorem 1.1 If ZF is consistent then there exists a model of ZF in which the following
hold:
(1) There exists a group G which is locally free and can be given a total order, but G is

not bi-orderable.
(2) There exists a torsion-free abelian group A which can be given a total order, but A

is not bi-orderable.
(3) The principle of dependent choices.

The overall strategy in this independence proof is to work in a permutation
model of set theory, constructing the claimed groups via presentations, and using the
permutations of the model to eliminate any possibility of a bi-order.

We leave some remaining questions regarding bi-orderability. We have mentioned
that the local-to global bi-orderability theorem, which we will denote LG, follows
from the ultrafilter lemma. Also, LG implies the ordering principle (every set can be
totally ordered) by considering the free abelian group on a set, which is locally free
abelian and therefore locally bi-orderable. Thus we ask:

Question Is LG strictly weaker than the ultrafilter lemma?

Question Is LG strictly stronger than the ordering principle?

Since the ultrafilter lemma is strictly stronger than the ordering principle [3], the
answer to at least one of the two above questions is “yes.”

2 The proof

We will work in a modification of the model of van Douwen (see [8] or [1, Model
N2 (LO)]). We let M be a model of ZFA +AC with set A of atoms such that ∣A∣ = ℵ1.
Write A as a disjoint union A = ⋃α<ℵ1 Aα with each Aα being countably infinite and
endowed with a total order <α which makes Aα order isomorphic to Z. Let � be the
set of bijections τ on A for which τ ↾ Aα ∈ Aut(Aα , <α) for all α < ℵ1. Let F be the
normal filter on � given by the ideal of countable subsets of A. Let N ⊆M denote
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the permutation model of hereditarily F-symmetric objects in M. For each B ⊆ A we
let fix(B) = {τ ∈ � ∣ (∀a ∈ B)τ(a) = a} and for an object x ∈M we let stab(x) = {τ ∈
� ∣ τ(x) = x}. For each a ∈ A we let s(a) denote the next largest element under <α in
Aα , where a ∈ Aα .

That the model N satisfies the principle of dependent choices follows from the fact
that the ideal defining the filterF is closed under taking countable unions (see [1, Note
144]). It is not difficult to see that the existence of the claimed groups in Theorem 1.1
is boundable in the sense of Pincus [5]. Thus, our main result will follow from the
transfer principle [6, Theorem 4] (or see [1, p. 286]) provided that we can establish
the existence of the claimed groups in the model N.

Let J = A× {0, 1} and F(J) = (WJ , ○J ,−1 , 1WJ) denote the free group on the set
J, with WJ denoting the set of reduced words over the alphabet J±1, ○J and −1

denoting the group multiplication and group inversion operations, and 1WJ denot-
ing the trivial element. This group, which we have defined in M, is clearly in N

as well; moreover, stab(WJ) = stab(○J) = stab(−1) = �. Notice that the subset XJ =
{(s(a), 0)(a, 1)(s(a), 0)−1(s(a), 1)}a∈A ⊆ WJ is also in N and also supported by ∅ ⊆
A. Therefore, the normal subgroup NJ = ⟨⟨XJ⟩⟩ ⊴ F(J) is in N and supported by ∅,
and the similar claims hold for the quotient G = F(J)/NJ . We emphasize that the
identity element NJ of G, which we will denote 1G, is supported by ∅.

G is locally free. For each α < ℵ1, let Jα = (⋃β≤α Aβ) × {0, 1}. Similarly, define the free
group F(Jα) and notice that F(Jα) is in N and the set of reduced words in J±1

α , the
group multiplication operation and the inverse operation are supported by∅. Let rα ∶
F(J) → F(Jα) denote the retraction map given by deleting all letters in J±1 ∖ J±1

α and
freely reducing, and notice that rα is in N and supported by∅. Letting Gα = F(Jα)NJ ,
we see that Gα is also in N and supported by ∅. Also, rα(XJ) ⊆ XJ ∪ {1WJ} and so
rα(NJ) ⊆ NJ . Then the retraction homomorphism G→ Gn given by taking a coset K
of NJ to rn(K)NJ is in N and is similarly invariant under �.

We will show that each Gα is locally free and this is sufficient since any finitely
generated subgroup of G includes into some Gα . Fix α < ℵ1. Let Tα denote the group

F(Jα)/⟨⟨{(s(a), 0)(a, 1)(s(a), 0)−1(s(a), 1)}a∈⋃β≤α Aβ ⟩⟩.

It is easy to see that Tα is in N and that the identity map on the generators induces
an isomorphism with Gα (and this isomorphism is also in N). We establish that Tα is
locally free.

By selecting aβ ∈ Aβ for each β ≤ α, we have fix({aβ}β≤α) = fix(⋃β≤α Aβ). Since
the object Tα is hereditarily supported by fix({aβ}β≤α) and M is a model of ZFA +
AC, we may use AC in arguing that Tα is locally free. It is clear that Tα is the free
product of ∣α∣ + 1 copies of the group H given by presentation.

⟨{xm}m∈Z ∪ {yn}n∈Z ∣ {yn = x−1
n+1 y−1

n+1xn+1}n∈Z⟩.(1)

Since the class of locally free groups is closed under taking free products, we now need
to show that H is locally free.

Lemma 2.1. The group H is locally free and all generators {xm}m∈Z ∪ {yn}n∈Z are
nontrivial elements in H.
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Proof Notice that for a fixed N ∈ Z, the presentation defining H does not require
the relators {yn = x−1

n+1 y−1
n+1xn+1}n<N and the generators {yn}n<N since the relators

{yn = x−1
n+1 y−1

n+1xn+1}n<N are only used in giving names to the elements {yn}n<N . This
is because for any positive k ∈ ω we can write

yN−k = x−1
N−k+1x

−1
N−k+2⋯x−1

N y(−1)k

N xN⋯xN−k+2xN−k+1.

In particular, for any fixed N ∈ Z, we know that H is isomorphic to the group HN with
presentation

⟨{xm}m∈Z ∪ {yn}n≥N ∣ {yn = x−1
n+1 y−1

n+1xn+1}n≥N⟩(2)

via the map ρN determined by

xm ↦ xm for all n ∈ Z
yn ↦ yn for n ≥ N

yN−k ↦ x−1
N−k+1x

−1
N−k+2⋯x−1

N y(−1)k

N xN⋯xN−k+2xN−k+1 for k ≥ 1.

Consider the normal subgroup K = ⟨⟨{xn}n>N⟩⟩ ⊴ HN . The quotient HN/K has
presentation

⟨{xm}m≤N ∪ {yn}n≥N ∣ {yn = y−1
n+1}n≥N⟩

and this group is simply the free group in the generators {xm}m≤N ∪ {yN}. This
implies that for each N ∈ Z the set {xm}m≤N ∪ {yN} freely generates a subgroup
of HN .

For any finite set of words {w0 , . . . , wr} in the letters {xm}±1
m∈Z ∪ {yn}±1

n∈Z,
there exists some N for which each of the words w0 , . . . , wr is written in the
letters {xm}±1

m≤N ∪ {yn}±1
n≤N . Then applying ρN to the group elements represented

by w0 , . . . , wr places this set within the subgroup ⟨{xm}m≤N ∪ {yN}⟩ ≤ HN , and
since this subgroup is free, we have that H is locally free. The second claim
follows immediately from our proof since we showed that for each N ∈ Z the set
{xm}m≤N ∪ {yN} freely generates a subgroup of H. ∎

G can be given a total order. Toward producing a total order on G, we produce, in
M, a normal form for G. Since AC holds in M, we shall freely use choices in this
construction, and the fact that the normal form is also in N will become apparent.
Recall that a word rewriting system on a free monoid Mon(X) on set X is a set
of rules R whose inputs and outputs are words in the monoid (see [7, Section
1.7]). We define binary relation →R on Mon(X) by letting w0 →R w1 if there exist
v0 , v1 , v′1 , v2 ∈ Mon(X) with w0 ≡ v0v1v2 and w1 ≡ v0v′1v2 and (v1 , v′1) ∈ R. Let →∗R be
the smallest transitive binary relation including →R and let ↔∗R denote the smallest
equivalence class including →∗R. Rewriting system R is confluent if whenever w0 →∗R
w1 and w0 →∗R w2, there exists w3 for which w1 →∗R w3 and w2 →∗R w3. It is locally
confluent if whenever w0 →R w1 and w0 →R w2, there exists w3 for which w1 →∗R w3
and w2 →∗R w3.

Rewriting system R is terminating if each sequence w0 →R w1 →R w2⋯→R wn
must eventually stabilize. A word w is a terminus of R if w →R v implies w ≡ v. If
R is terminating and locally confluent, then it is confluent, and if R is terminating
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and confluent then each equivalence class in ↔∗R contains a unique terminus (see [7,
Section 1.7]).

We let Mon(J±1) denote the free monoid on the set {(a, 0)}a∈A ∪ {(a, 1)}a∈A ∪
{(a, 0)−1}a∈A ∪ {(a, 1)−1}a∈A, and let e denote the empty word. Consider the rewrit-
ing system R under which for all a ∈ A we have rules
(1) (a, 0)(a, 0)−1 ↦ e
(2) (a, 0)−1(a, 0) ↦ e
(3) (a, 1)(a, 1)−1 ↦ e
(4) (a, 1)−1(a, 1) ↦ e
(5) (s(a), 0)(a, 1) ↦ (s(a), 1)−1(s(a), 0)
(6) (s(a), 0)(a, 1)−1 ↦ (s(a), 1)(s(a), 0)
(7) (s(a), 0)−1(s(a), 1) ↦ (a, 1)−1(s(a), 0)−1

(8) (s(a), 0)−1(s(a), 1)−1 ↦ (a, 1)(s(a), 0)−1

The idea of this system is to both freely reduce and to move the (a, 0)±1 letters to the
right.

Lemma 2.2. The rewriting system R is locally confluent.

Proof We will argue in cases. It is easy to see that if rules are applied independently
to nonoverlapping subwords then the order of application makes no difference. More
explicitly if we have a word w ≡ u0u1 and consider an application of a rule to u0 to
obtain w →R u′0u1, and consider the application of a possibly different rule to u1 to
obtain w →R u0u′1 then clearly u′0u1 →R u′0u′1 and u0u′1 →R u′0u′1 and so there can be
no obstruction to local confluence in this setting. Thus, it will only be necessary to
consider cases where rule applications are to overlapping subwords.

If w →R w0 and w →R w1 are each obtained by an application of a free reduction
rule (i.e., each is obtained by one of (i)–(iv)) then by applying free reductions to
each of w0 and w1, we obtain a unique freely reduced word w2, so that w0 →∗R w2
and w1 →∗R w2. Next, if w →R w0 and w →R w1 and each of these was given by an
application of possibly different rules among (v)–(viii) then either w0 ≡ w1 or these
rules were applied on distinct nonoverlapping subwords, and this latter case was
considered above.

Next, we suppose that w ≡ v0(s(a), 0)(a, 1)(a, 1)−1v1. By applying (iii), one has
w →R v0(s(a), 0)v1. By instead applying (v) to w we see that

w →R v0(s(a), 1)−1(s(a), 0)(a, 1)−1v1

and by applying (vi) and then (iv), we see that

v0(s(a), 1)−1(s(a), 0)(a, 1)−1v1→Rv0(s(a), 1)−1(s(a), 1)(s(a), 0)v1→Rv0(s(a), 0)v1 .

The cases where w is of form
w ≡ v0(s(a), 0)(a, 1)−1(a, 1)v1;
w ≡ v0(s(a), 0)−1(s(a), 1)(s(a), 1)−1v1; or
w ≡ v0(s(a), 0)−1(s(a), 1)−1(s(a), 1)v1

are each handled similarly.
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Suppose that we have a word w ≡ v0(s(a), 0)−1(s(a), 0)(a, 1)v1. If one applies
(ii), then one has w →R v0(a, 1)v1. If we instead apply (v), then we get w →R

v0(s(a), 0)−1(s(a), 1)−1(s(a), 0)v1, and applying rule (viii) and then (ii), we get

v0(s(a), 0)−1(s(a), 1)−1(s(a), 0)v1 →R v0(a, 1)(s(a), 0)−1(s(a), 0)v1 →R v0(a, 1)v1 .

The check in case w is of form

w ≡ v0(s(a), 0)−1(s(a), 0)(a, 1)−1v1;
w ≡ v0(s(a), 0)(s(a), 0)−1(s(a), 1)v1; or
w ≡ v0(s(a), 0)(s(a), 0)−1(s(a), 1)−1v1

is similar. Thus local confluence holds. ∎

We note also that the rewriting system is terminating. To see this, given a word w
we consider the function

j(w) = ∑
0≤i<Len(w),w(i)∈{(a ,0)±1}a∈A

∣{i < k < Len(w) ∣ w(k) ∈ {(a′ , 1)±1}a′∈A}∣

which counts the total number of times that a letter of form (a′ , 1)±1 appears in the
word somewhere to the right of a letter of form (a, 0)±1. Each application of a rule will
lower the value of the function Len(w) + j(w) (where Len(⋅)denotes the length of the
word) and so the fact that the system is terminating follows. Thus, each equivalence
class under ↔∗R contains a unique terminus.

All elements of the set R of words which are the terminus of a word in Mon(J±1)
under R are freely reduced. The set R is also obviously in N (notice that the rules are
themselves invariant under the action of �) and supported by ∅. Furthermore, it is
straightforward to see that each element in R is a unique representative of an element
in G. We give an order <l to the letters in J±1 as follows:

(a, 0)−1 <l (a, 0) <l (a, 1)−1 <l (a, 1) <l (a′ , 0)−1 <l (a′ , 0) <l (a′ , 1)−1 <l (a′ , 1),

where either a, a′ ∈ Aα with a <α a′ or a ∈ Aα and a′ ∈ Aα′ with α < α′. Endow the
elements of R with the shortlex order <o : w0 <o w1 if either Len(w0) < Len(w1), or
Len(w0) = Len(w1) and for the least 0 ≤ i < Len(w0) at which w0(i) ≠ w1(i)we have
w0(i) <l w1(i). It is clear that both <l and <o are in N, and more particularly they are
supported by ∅.

G is not bi-orderable. To see that G is not bi-orderable, we suppose for contradiction
that <G is a bi-order on G in N. Select countable B ⊆ A for which fix(B) ≤ stab(<G).
Select α < ℵ1 such that Aα ∩ B = ∅. Let τ ∈ � be given by

τ(a) =
⎧⎪⎪
⎨
⎪⎪⎩

a if a ∉ Aα

s(a) if a ∈ Aα .

Let a ∈ Aα be given. By Lemma 2.1, we know that (a, 1)NJ is nontrivial. If 1G <G
(a, 1)NJ then 1G <G (s(a), 0)(a, 1)(s(a), 0)−1 NJ = (s(a), 1)−1NJ , from which we see
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that (s(a), 1)NJ <G 1G, but on the other hand

1G = τ(1G) <G τ((a, 1))NJ = (s(a), 1)NJ

which is a contradiction. The proof in case (a, 1)NJ <G 1G is symmetric.

The group A and its properties. We construct the group A which is claimed to be in
the modelN. In checking its various properties, we will simply sketch over the aspects
of the proofs which are nearly identical to those in the case of G. We take F(A) to
be the free group on the set A of atoms. Consider the subset XA = {[a, a′]}a ,a′∈A ∪
{a(s(a))2}a∈A, where [a, a′] denotes the commutator aa′a−1(a′)−1. This set is in
N and supported by ∅, and similarly for the normal subgroup NA = ⟨⟨XA⟩⟩ and
relevant group operations and underlying set of A = F(A)/NA. Letting 0A denote
the identity element, we emphasize that 0A is supported by ∅. Let Bα = ⋃β≤α Aβ and
rα ∶ F(A) → F(Bα) be the retraction. Let Aα = F(Bα)NA. Since rα(Y) ⊆ Y ∪ {1} we
have rn(NA) ⊆ NA. Thus, we have a retraction map A→ Aα given by K ↦ rα(K)NA
which is in N and supported by ∅.

Let Lα denote the groupF(Bα)/⟨⟨{[a, a′]}a ,a′∈Bα ∪ {a(s(a))2}a∈Bα ⟩⟩. Notice that
Ln ≃ An via the identity map on the generators (and this isomorphism is inN). Taking
aβ ∈ Aβ for each β ≤ α we have again that fix({aβ}β≤α) = fix(Bα). Thus, we may
utilize AC, which holds in M, in analyzing Lα . It is easy to see that Lα is isomorphic
to a direct sum of ∣α∣ + 1 copies of the additive group Z[ 1

2 ]. Thus Aα , and therefore all
of A, is torsion-free abelian and for each a ∈ A we have aNA nontrivial in A.

A normal form on A is given by words of the form

az0
0 az1

1 ⋯azm
m ,

where for each 0 ≤ i ≤ m we have z i ∈ Z ∖ 2Z and a i ∈ A j i with j0 < j1 < ⋯ < jm . The
set of all such words is in N and supported by ∅. Order the letters A±1 by order <l

given by

a−1 <l a <l (a′)−1 <l a′ ,

where a, a′ ∈ Aα for some α < ℵ1 and a <α a′, or a ∈ Aα and a′ ∈ Aα′ with α < α′. This
order <l is invariant under �. Order A using shortlex on the normal form.

Now suppose that <A is a bi-order on A. Let B ⊆ A be countable with fix(B) ≤
stab(<A). Select α ∈ ω such that Aα ∩ B = ∅. Let τ ∈ � be given by

τ(a) =
⎧⎪⎪
⎨
⎪⎪⎩

a if a ∈ A∖ Aα ,

s(a) if a ∈ Aα .

Let a ∈ Aα . Suppose that 0A <A aNA. On one hand, we have that 0A = τ(0A) <A
τ(aNA) = s(a)NA, but on the other hand, we have s(a)2NA = a−1NA <A 0A, a
contradiction. The proof in case aNA <A 0A is symmetric.
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