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The method of matched asymptotic expansions is used to study the canonical problem
of steady laminar flow through a narrow two-dimensional channel blocked by
a tight-fitting finite-length highly permeable porous obstacle. We investigate the
behaviour of the local flow close to the interface between the single-phase and
porous regions (governed by the incompressible Navier–Stokes and Darcy flow
equations, respectively). We solve for the flow in these inner regions in the limits
of low and high Reynolds number, facilitating an understanding of the nature of the
transition from Poiseuille to plug to Poiseuille flow in each of these limits. Significant
analytical progress is made in the high Reynolds number limit, and we explore in
detail the rich boundary layer structure that occurs. We derive general results for
the interfacial stress and for the conditions that couple the flow in the outer regions
away from the interface. We consider the three-dimensional generalization to unsteady
laminar flow through and around a tight-fitting highly permeable cylindrical porous
obstacle within a Hele-Shaw cell. For the high Reynolds number limit, we give
the coupling conditions and interfacial stress in terms of the outer flow variables,
allowing information from a nonlinear three-dimensional problem to be obtained by
solving a linear two-dimensional problem. Finally, we illustrate the utility of our
analysis by considering the specific example of time-dependent forced far-field flow
in a Hele-Shaw cell containing a porous cylinder with a circular cross-section. We
determine the internal stress within the porous obstacle, which is key for tissue
engineering applications, and the interfacial stress on the boundary of the porous
obstacle, which has applications to biofilm erosion. In the high Reynolds number
limit, we demonstrate that the fluid inertia can result in the cylinder experiencing
a time-independent net force, even when the far-field forcing is periodic with zero
mean.
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1. Introduction
Flow through a narrow channel containing a porous blockage is a canonical

problem with numerous practical applications. For example, this flow configuration
is used: to purify colloids in separation science, where it is also known as dead-end
filtration (McCarthy et al. 1998; Van der Bruggen et al. 2003; Bessiere et al. 2005);
to deliver nutrient to cells growing in a porous tissue construct in tissue engineering
(El Haj et al. 1990; Jaasma, Plunkett & O’Brien 2008; O’Dea, Waters & Byrne
2009); and to erode porous biofilms that have grown within a pipe, where the erosion
is dependent on the interfacial shear stress (Picioreanu, Van Loosdrecht & Heijnen
2001; Telgmann, Horn & Morgenroth 2004; Duddu, Chopp & Moran 2009). In
many of these problems, the flow near the interface between the fluid and the porous
blockage is of experimental or industrial interest. For example, the stress acting on the
interface may be important because it is often coupled to some interesting physical
phenomenon, such as erosion, mechanotransduction or movement of the entire porous
blockage. However, in many models the behaviour of the flow near the interface
is ignored, leading to incomplete information about the flow. As the lubrication
equations used to approximate the flow away from the interface are reduced in order,
approximated interfacial boundary conditions must be applied to couple the flows
away from the interface (Waters et al. 2006; Cummings & Waters 2007; Cummings
et al. 2009; O’Dea et al. 2009, 2013). A detailed understanding of the flow behaviour
close to the interface will enable the correct coupling conditions to be applied and
(dynamic) interfacial effects to be accurately included. It is, therefore, of fundamental
interest to understand the flow near the interface of a porous blockage.

Our main motivation arises from a tissue engineering problem. One approach to in
vitro tissue engineering is to seed cells onto a porous biomaterial scaffold, which is
then cultured within a bioreactor. The combination of cells and scaffold is referred to
as a tissue construct and one particular aim of tissue engineering is to make porous
tissue constructs as permeable as possible whilst maintaining their structural integrity.
This is to enhance nutrient delivery to the cells residing in the interior of the construct
via advection. Moreover, many cells are mechanosensitive, and their proliferation rate
depends on the stress that they experience. In a high aspect ratio vessel bioreactor, the
porous tissue construct is placed within a bioreactor shaped like a Petri dish turned
on its side, and the entire set-up is saturated with a nutrient-rich fluid, and rotated
around the bioreactor axis (figure 1). The construct moves according to the force it
experiences and, in the short term, the construct undergoes periodic motion. However,
over a long time, the tissue construct drifts from its periodic orbit, an effect that can
be attributed to weak inertia. To predict the construct trajectory and, ultimately, the
nutrient transport in such a bioreactor, we must determine the forces acting on the
construct. Thus, determining the flow through the porous construct is of particular
importance. To gain insights into this problem, we consider the flow past a tissue
construct held at a fixed position, with a particular view to investigating the effect of
weak inertia. Such an analysis can then be used to determine the construct trajectory
when it is free to move. Another application of interest is the interfacial erosion of
a porous biofilm, which is proportional to the square root of the fluid shear stress
evaluated at the interface (Duddu et al. 2009). Thus, it is of interest to determine both
the internal stress within the porous obstacle for tissue engineering applications and
the interfacial stress acting on the obstacle boundary for biofilm erosion problems.

The main aim of this paper is to investigate steady laminar flow through a narrow
two-dimensional channel blocked by a tightly fitting finite-length porous obstacle, and
then to generalise this analysis to investigate a time-dependent three-dimensional flow
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(a) (b)

FIGURE 1. Schematic of a high aspect ratio vessel bioreactor, containing a porous scaffold
(darker region). The bioreactor has a similar shape to a Petri dish turned on its side. (a)
Face view. (b) Side view showing the gaps between the scaffold and the bioreactor. Cells
are seeded within the scaffold, and the entire bioreactor is filled with a nutrient-rich fluid
and rotated around its axis, causing the scaffold to move.
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FIGURE 2. The model geometry for flow within (a) a channel and (b) a Hele-Shaw cell.
The light region is the exterior fluid and the dark region is the porous obstacle.

past a porous cylinder with an arbitrary smooth cross-section within a Hele-Shaw
cell, as illustrated in figure 2. In particular, we are interested in the behaviour of the
flow near the interface between the single-phase and porous regions, governed by the
Navier–Stokes and Darcy equations, respectively. Transition from plug to Poiseuille
flow in a two-dimensional channel is a classic problem, with the asymptotic structure
examined by Van Dyke (1970) and Wilson (1971), and numerical solutions given by,
for example, Bodoia & Osterle (1961) and Brandt & Gillis (1966). Although Van
Dyke (1970) mentions that a porous mesh would have to be used experimentally to
induce uniform flow at the entry to a channel, the nature of the coupled flow between
single-phase and porous regions remains an open question – one which we will answer
in this paper.

Thompson (1968) used the method of matched asymptotic expansions to analyse
the three-dimensional flow near a solid circular cylinder within a Hele-Shaw cell,
exploiting the small aspect ratio of the cell. Due to the no-flux condition on the
solid cylinder, the normal flow near the interface is small. We are motivated by
the tissue engineering application in which there is flow within a highly permeable
porous obstruction of arbitrary smooth cross-section. The normal flow, in general,
is then significant near the interface and the flows inside and outside the obstacle
are coupled through their boundary conditions at the interface. Although we are
interested in a highly permeable obstacle, we do not consider the Brinkman extension
to the Darcy equations in this paper because the porous construct must maintain its
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structural integrity. That is, we consider a porous medium whose underlying solid
matrix is connected, so that Brinkman’s equations do not apply (Auriault 2009).

We shall make extensive use of the method of matched asymptotic expansions by
exploiting the small aspect ratio of the channel/Hele-Shaw cell – one of our goals
is to understand the flow near the interface (in an ‘inner’ region) given a general
flow away from the interface (in an ‘outer’ region). Although the outer problems
satisfy reduced equations, the inner problems are quasi-two-dimensional in each plane
perpendicular to the interface. In particular, we determine the behaviour of inherently
local properties, such as the stress acting on the interface. Additionally, we derive
systematically the conditions that couple the outer equations for a general far-field
forcing and for a general smooth cross-section of the porous obstacle. Due to their
generality, the results obtained in this paper can significantly reduce the computational
expense required to solve flow problems with coupled single-phase and porous regions,
whilst retaining important interfacial information.

There is a large literature addressing the question of interfacial conditions on the
boundary of a porous obstacle (and it remains an area of active research); see, for
example, Nield & Bejan (2006) for a comprehensive review. We do not address this
question here, and use as our interfacial boundary conditions: continuity of flux and
continuity of pressure, together with a no tangential slip condition. The first two are
derived in Levy & Sanchez-Palencia (1975), the last is a special case of the general
tangential slip condition derived in Carraro et al. (2015).

The structure of this paper is as follows. In § 2, we consider the steady two-
dimensional case of flow through a channel containing a tight-fitting highly permeable
porous obstacle. In § 2.1, we formulate the mathematical problem. In § 2.3, we
describe the asymptotic structure in the small aspect ratio limit and present the
problems to be solved to couple the outer single-phase and porous regions. In §§ 2.4
and 2.5, we investigate the asymptotic behaviour of these coupling conditions in
the small and large Reynolds number limits, respectively. In particular, we find that
the large Reynolds number limit induces a further boundary layer structure, and we
investigate this in full. In § 3 we extend our analysis to an unsteady three-dimensional
flow in a Hele-Shaw cell past a tight-fitting highly permeable cylindrical porous
obstacle. If the curvature of the cross-sectional boundary of the porous obstacle
is not large (in a sense to be made precise later), the boundary layer structure in
each plane perpendicular to the interface is equivalent to the two-dimensional case
considered in § 2, and we are able to generalize the two-dimensional results to the
three-dimensional case. In § 4 we apply the general results of § 3 to a time-dependent
forced far-field flow in a Hele-Shaw cell containing a porous cylinder with circular
cross-section. We determine the internal and interfacial stress within and on the
porous construct, and show that fluid inertia can result in the generation of a net
force on the cylinder, even when the far-field flow is periodic with zero mean. If the
cylinder were allowed to move, this would cause a long-term drift, thus highlighting
the singular perturbative nature of fluid inertia, and how it can be important in
dynamical problems arising in lubrication flow.

2. Steady two-dimensional flow
2.1. Model formulation

We consider the steady two-dimensional flow of an incompressible Newtonian fluid
with density ρ and viscosity µ in an infinitely long channel of height h. The channel
contains a fully saturated porous obstacle with rectangular cross-section, height h and
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length 2l, as illustrated in figure 2(a). The aspect ratio ε= h/l is assumed to be small.
We use Cartesian coordinates (x, z) along and across the channel, as illustrated in
figure 2(a), such that in the channel z∈ [0, h] and the plug lies in x∈ [−l, l], z∈ [0, h].
The flow is driven by a prescribed upstream pressure gradient, such that in the far field
we have Poiseuille flow with cross-sectionally averaged velocity of magnitude Uav.

The flow exterior to the porous plug (the light regions in figure 2a), which we
refer to as the ‘exterior flow’, is governed by the incompressible steady Navier–Stokes
equations with no body force. The exterior fluid velocity, pressure, and stress tensor
are denoted by u = uex + wez, p, and σ , respectively, where ex and ez are the unit
vectors in the x- and z-directions, respectively. The fluid inside the porous plug (the
dark region in figure 2a), which we refer to as the ‘interior flow’, is governed by
the incompressible Darcy equations, again with no body force. The Darcy (volume-
averaged) velocity and (interstitial) pressure within the porous plug are denoted by
Q=Uex +Wez and P, respectively. The porous plug has constant permeability k. We
do not use the porosity of the plug as a parameter as it is absorbed into the definition
of the volume-averaged velocity, but note that it is assumed to be constant.

We non-dimensionalize by setting x = lx′, z = εlz′, u = Uavu′, U = UavU′, w =
εUavw′, W = εUavW ′, p= (µUav/(εh))p′, P= (µUav/(εh))P′ and σ = (µUav/(εh))σ ′,
where primes denote dimensionless quantities. Since all variables are dimensionless
henceforth, we drop the primes without risk of confusion.

The dimensionless governing equations in the exterior region |x|> 1, 0< z< 1 are
the scaled Navier–Stokes equations given by

εRe(uux +wuz)=−px + uzz + ε2uxx, (2.1a)
ε3Re(uwx +wwz)=−pz + ε2wzz + ε4wxx, (2.1b)

0= ux +wz, (2.1c)

where Re= ρUavh/µ is the modified Reynolds number based on the channel height.
The governing equations in the porous plug |x| < 1, 0 < z < 1 are the scaled Darcy
equations given by

U =−KPx, ε2W =−KPz, 0=Ux +Wz, (2.2a−c)

where the dimensionless permeability K = k/h2. For the Darcy equations to be
valid, we must have K� 1. We discuss the typical sizes of the three dimensionless
parameters appearing in our model, ε, Re and K, in § 2.2.

2.1.1. Boundary conditions
On the channel walls we impose no-flux and no-slip conditions on the exterior flow

and a no-flux condition on the Darcy flow, so that

u= 0 on z= 0, 1 for |x|> 1; W = 0 on z= 0, 1 for |x|< 1. (2.3a,b)

On the inflow (x=−1) and outflow (x= 1) interfaces, continuity of flux, continuity of
pressure and a no tangential slip condition (Levy & Sanchez-Palencia 1975; Carraro
et al. 2015) are given by

u=U, p= P, w= 0 on x=±1 for 0< z< 1. (2.4a−c)

The flow is driven by imposing a constant, upstream pressure gradient in the far field,
with

dp
dx
→−12 as x→−∞, (2.5)

ensuring that the cross-sectionally averaged horizontal component of velocity has
magnitude 1 in the far field.
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Parameter Range Reference

h 2.5× 10−4–6× 10−3 m Pazzano et al. (2000), Pathi, Ma & Locke (2005),
Pierre et al. (2008)

l 10−3–10−1 m Pazzano et al. (2000), Pathi et al. (2005),
Pierre et al. (2008)

k 10−12–10−6 m2 Šimáček & Advani (1996), Sucosky et al. (2004),
Nabovati, Llewellin & Sousa (2009)

Uav 3× 10−9–3× 10−2 m s−1 Zhao et al. (2005), Pierre et al. (2008),
Chung et al. (2007)

ρ 103 kg m−3

µ 8.9× 10−4 kg m−1 s−1

ε 2.5× 10−3–6× 100

Re 10−6–2× 102

K 2.7× 10−8–8.3× 10−2

TABLE 1. Typical dimensional parameter values and the corresponding values of the
dimensionless parameters. The absolute upper bound of 1/12≈ 8.3× 10−2 for K can be
obtained by considering unobstructed Poiseuille flow through a channel. We use the density
and viscosity values of water at room temperature for ρ and µ, respectively.

2.2. Parameter values
Within a bioreactor, values of the three dimensionless parameters ε, Re and K can vary
greatly in magnitude (table 1). We will investigate the dimensionless problem defined
by (2.1)–(2.5) in specific regions of this parameter space.

The dimensionless problem is characterised by two length scales: the obstacle half-
length, 1, and the channel height, ε. We proceed by considering the case in which
ε� 1, the channel height then being much smaller than the half-length of the obstacle.

The value of K must be small enough for the underlying solid matrix to be
connected, resulting in Darcy’s equations governing the flow within the porous
medium (Auriault 2009), but large enough to enhance nutrient transfer via fluid
advection to the cells within the plug. There is an absolute upper bound of K< 1/12,
and this can be seen by considering unobstructed Poiseuille flow through a channel.
In reality, K � 1, and we work in this limit. We see in the three-dimensional case,
considered in § 3, that K = O(ε) corresponds to an obstacle which is impermeable
to the flow at leading order. Hence, this limit reduces to the leading-order problem
given in Thompson (1968), who considered the three-dimensional flow near a solid
circular cylinder within a Hele-Shaw cell. We consider instead the limit in which
ε�K� 1, corresponding to the regime in which the plug is long, thin and permeable
at leading order in ε. Examples of long, thin tissues include skin (Lei et al. 2011),
urothelial tissue (Gabouev et al. 2003) and the cornea (Su et al. 2003). Although we
do assume that K� 1 throughout this paper, we effectively treat K =O(1) as ε→ 0
in our following asymptotic analysis for mathematical expediency.

We must also define the relative scaling of Re. There is a distinguished limit when
Re=O(1), and the investigation of this limit is the subject of the next section. Further
analytic progress can be made when Re is either small or large: we consider the
asymptotic sublimit Re� 1 in § 2.4, and the asymptotic sublimit 1� 1/K�Re� 1/ε
in § 2.5. We note that Darcy’s law (2.2) and the continuity of pressure condition (2.4b)
would require modification if we were to generalize this work to significantly larger
Reynolds numbers (Kaviany 2012).
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I II III IV V VI VII

2

(a)

(b)

FIGURE 3. The boundary layer structure for Re= O(1). The light region is the exterior
fluid and the dark region is the porous obstacle. (a) The different asymptotic regions are
indicated and labelled in Roman numerals. (b) A schematic representation of the flow.

2.3. Asymptotic structure for Re=O(1)
We seek a solution using the method of matched asymptotic expansions with small
parameter ε. The asymptotic structure is shown in figure 3(a), where each of seven
asymptotic regions are labelled I–VII. We describe the regions as follows, noting that
in each case the relevant transverse length scale is the channel height, ε. There are
three ‘outer’ regions characterised by an O(1) axial length scale: two for the exterior
fluid (regions I and VII) in which we have Poiseuille flow at leading order, and one
for the interior fluid (region IV) in which we have plug flow at leading order. Thus,
there is a transition from Poiseuille to plug to Poiseuille flow, between regions I, IV
and VII, respectively, as illustrated schematically in figure 3(b). The inflow transition
from Poiseuille to plug flow occurs near the interface x = −1, where there are two
‘inner’ regions, one on each side of the interface, each characterised by an axial length
scale of O(ε). The exterior inflow inner region is region II, and the porous inflow
inner region is region III. In a similar manner, the outflow transition from plug to
Poiseuille flow occurs near the interface x=1, where again there are two inner regions,
one on each side of the interface, and each characterised by an axial length scale
of O(ε). The porous outflow inner region is region V and the exterior outflow inner
region is region VI.

2.3.1. Outer regions
In the outer regions I, IV and VII, we begin by posing asymptotic expansions of

the form

(u,Q, p, P)= (u0,Q0, p0, P0)+ ε(u1,Q1, p1, P1)+O(ε2) as ε→ 0. (2.6)

Substituting (2.6) into (2.1), we find that the leading-order governing equations for the
exterior flow are simply the lubrication equations

0=−p0x + u0zz, 0=−p0z, 0= u0x +w0z for |x|> 1, 0< z< 1. (2.7a−c)

Substituting (2.6) into (2.2), the leading-order governing equations for the interior flow
are

U0 =−KP0x, 0=−KP0z, 0=U0x +W0z for |x|< 1, 0< z< 1. (2.8a−c)
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At leading-order, the channel wall boundary conditions (2.3) become

u0 = 0 on z= 0, 1 for |x|> 1, (2.9a)
W0 = 0 on z= 0, 1 for |x|< 1, (2.9b)

while the far-field condition (2.5) becomes

dp0

dx
→−12 as x→−∞. (2.10)

We are unable to impose at leading-order the interfacial boundary conditions (2.4) in
the outer regions; these conditions are satisfied within the inner regions described in
§ 2.3.2. For the outer problems, we must instead impose matching conditions (using
the matching law given in Van Dyke (1975)). These are determined in § 2.3.2, and
we state them here to close the leading-order outer problem. As the outer pressure
is independent of z and the fluid velocity is proportional to the pressure gradient,
we find that we may impose continuity of total flux and pressure at each interface
(corresponding to Neumann and Dirichlet conditions on the pressure, respectively).
That is, ∫ 1

0
u0 dz=

∫ 1

0
U0 dz, p0 = P0 on x=±1. (2.11a,b)

We note that whilst the conditions (2.11) close the outer problem, they give no
information about, for example, the leading-order stress acting on the interfaces.

The leading-order solutions are readily obtained as follows: in region I,

u0 = 6z(1− z)ex, p0 =−12x; (2.12a,b)

in region IV,

U0 = ex, P0 =−1+ x
K
+ 12; (2.13a,b)

and in region VII,

u0 = 6z(1− z)ex, p0 =−12x+
(

24− 2
K

)
. (2.14a,b)

The pressure is determined up to an arbitrary constant which (at this order) we fix by
supposing p0 + 12x→ 0 as x→−∞, without loss of generality. We remark that the
presence of the porous plug introduces a jump in pressure of 24− 2/K ∼−2/K (as
K is small). Equivalently, an O(1) pressure drop creates an O(K) flow through the
porous plug.

We note that the horizontal components of velocity (2.12a) and (2.13a) are
incompatible with the continuity of flux condition (2.4a) on the interfacial inflow
boundary for the full problem. Similarly for outflow, we find that (2.13a) and (2.14a)
are incompatible with (2.4a). In the next section we introduce inner regions to resolve
this issue, but for the remainder of this section we consider higher-order terms in the
outer regions as the higher-order pressure is coupled to the leading-order flow in the
inner regions.

Using the leading-order solutions (2.12) and (2.14), the O(ε) terms in the governing
equations for the exterior flow (2.1) become

0=−p1x + u1zz, 0=−p1z, 0= u1x +w1z for |x|> 1, 0< z< 1. (2.15a−c)
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Similarly, using the leading-order solutions (2.13), the O(ε) terms in the governing
equations for the interior flow (2.2) become

U1 =−KP1x, 0=−KP1z, 0=U1x +W1z for |x|< 1, 0< z< 1. (2.16a−c)

The channel wall boundary conditions (2.3) at this order are as follows

u1 = 0 on z= 0, 1 for |x|> 1, (2.17a)
W1 = 0 on z= 0, 1 for |x|< 1, (2.17b)

while the far-field condition (2.5) implies

dp1

dx
→ 0 as x→−∞. (2.18)

The matching conditions across each interface are determined in § 2.3.2, and we
give them here to close the problem. For inflow, we have

∫ 1

0
u1 dz=

∫ 1

0
U1 dz, p1 − P1 =Π−(Re,K) on x=−1, (2.19a,b)

and for outflow we have

∫ 1

0
u1 dz=

∫ 1

0
U1 dz, p1 − P1 =Π+(Re,K) on x= 1, (2.20a,b)

where the pressure jumps Π− and Π+ are functions of the parameters Re and K. In
§ 2.3.2, we specify the problems that need to be solved to determine these functions,
while in §§ 2.4 and 2.5 we determine their asymptotic behaviour for small and large
Re.

Given Π±, the solution to (2.15)–(2.20) is readily determined: in region I,

u1 = 0, p1 =Π−; (2.21a,b)

in region IV,

Q1 = 0, P1 = 0; (2.22a,b)

and in region VII,

u1 = 0, p1 =Π+. (2.23a,b)

As with the leading-order solutions (2.12)–(2.14), the pressure field is unique up to an
arbitrary constant. For convenience, we choose the constant such that P1(0, 0.5)= 0,
without loss of generality. We proceed by considering the inner regions, highlighting
the problems that would need to be solved numerically to determine the functions Π−

and Π+.
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2.3.2. Inner regions
The appropriate scalings in the inflow and outflow inner regions are x=∓1+ εX∓,

respectively, with (w, W) = (w, W)/ε. To make it clear that we are working in
the inner regions we introduce overbars on the other dimensionless variables, writing
(u,U)= (u,U), (p,P)= (p,P) and (u,Q)= (u,U)ex+ (w,W)ez. Using vector operators
in terms of X∓ and z as appropriate, the exterior fluid governing equations (2.1)
become

Re(u · ∇)u=−ε−1
∇p+∇2u, 0=∇ · u in regions II and VI, (2.24a,b)

which are valid when X−<0 for inflow (region II) and X+>0 for outflow (region VI),
with 0< z< 1 in both cases. The interior fluid governing equations (2.2) become

Q=−ε−1K∇P, 0=∇ ·Q in regions III and V, (2.25a,b)

which are valid for X−> 0 for inflow (region III) and X+< 0 for outflow (region V),
with 0< z< 1 in both cases.

Similarly to (2.6), we form inner expansions in powers of ε as follows:

(u,Q, p, P)= (u0,Q0, p0, P0)+ ε(u1,Q1, p1, P1)+O(ε2) as ε→ 0. (2.26)

At leading order, it follows from (2.24a) that

0=−∇p0 in regions II and VI, (2.27)

while (2.25a) gives, similarly,

0=−K∇P0 in regions III and V. (2.28)

The appropriate interfacial conditions on X∓ = 0 for the leading-order pressure are
given by the leading-order terms in (2.4b), which become

p0 = P0 on X∓ = 0. (2.29)

Thus p0 and P0 are constant and equal in regions II and III and in regions V and
VI, leading to the matching condition (2.11b). Using the leading-order outer solutions
(2.12)–(2.14) for the pressure, we find

p0 = 12 in region II, P0 = 12 in region III, (2.30a,b)

for inflow, and

P0 = 12− 2
K

in region V, p0 = 12− 2
K

in region VI (2.31a,b)

for outflow. We note that these leading-order pressures are constant on the interface,
as predicted by Levy & Sanchez-Palencia (1975).

As the leading-order fluid pressures are constant within each inner region, the
leading-order inner flow is driven by the first correction to pressure, and these
equations are given by the O(1) terms in (2.24) and (2.25). We illustrate the
leading-order flow problems in figure 4 for inflow, and in figure 5 for outflow.
In both cases, the inner flow transition problem is governed by the two-dimensional
steady Navier–Stokes equations coupled to the Darcy equations. To fully determine
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Region II Region III

FIGURE 4. The inner inflow problem for Re=O(1). The flow is from left to right.

Region V Region VI

FIGURE 5. The inner outflow problem for Re=O(1). The flow is from left to right.

the inflow and outflow pressure jumps Π− and Π+, we would have to solve the
problems indicated in figures 4 and 5 numerically for two parameters: Re and K.

However, to couple the outer regions, we require another condition on the pressure.
We note that we can analytically determine suitable coupling conditions for the
horizontal components of velocity averaged over the channel height by appealing to
global conservation of mass, rather than solving the full problem. By integrating the
continuity equations across the channel height, using the conditions for the flow in
the normal direction at each boundary and matching with the outer solutions, we
deduce the following coupling conditions for the outer horizontal components of
velocity

∫ 1

0
u0 dz=

∫ 1

0
U0 dz,

∫ 1

0
u1 dz=

∫ 1

0
U1 dz on x=±1. (2.32a,b)

We proceed by determining the inner flow in the asymptotic sublimits Re � 1
and 1� 1/K � Re� 1/ε, starting with the former. This will allow us to calculate
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quantities that are unobtainable from sole consideration of the outer problem, such
as the stress acting on the interface and the limiting behaviour of the functions Π−,
Π+.

2.4. Small Reynolds number: Re� 1
In the sublimit in which Re � 1, the leading-order problems outlined in figures 4
and 5 become Stokes flow coupled with Darcy flow. Therefore, the flow equations
are now reversible, and it suffices to solely consider inflow. We therefore use X−=X
for ease of notation. Further, we note that the inflow and outflow pressure jumps are
now linked via the expression Π+ =−Π−.

We solve the resulting leading-order system numerically (for the streamfunction
within the exterior flow and for the pressure within the porous flow) using a
second-order accurate central finite-difference scheme. Due to the elliptic nature
of the governing equations, we use an iterative method to bypass some of the cost of
solving the fully coupled elliptic problems in one step. That is, we iterate between
solving Laplace’s equation for the pressure in region III, and the biharmonic equation
for the streamfunction in region II, and use the solution found in the previous iteration
to determine the boundary conditions for the current iteration. We truncate the infinite
domain to [−1, 0] for X in region II and [0, 1] for X in region III (we note that an
extended domain adds little accuracy to the scheme), using 300 grid points for X in
each region and 300 grid points for z. The simulation is halted once the difference
between successive iterations at each grid point is less than 10−4.

The normal and shear components of stress acting on the interface are

σxx ∼−12+ ε(−p1 + 2u0X), (2.33a)
σxz ∼ ε(u0z +w0X), (2.33b)

respectively, as ε, Re→ 0. We show the O(ε) stress results for K = 0.01 in figure 6,
and calculate Π− = 1.92 to three significant figures. The leading-order normal stress
term in (2.33a) takes the specific value of −12 because we have imposed P(0, z)= 0
to uniquely define the pressure. In fact, it is the O(ε) terms in (2.33) which are
more interesting, as these are the dominant terms which vary in z and, unlike
the leading-order pressure, cannot simply be determined from the outer solution.
Hence, the boundary layer analysis is essential to obtain these results. The reason
the outer solutions cannot make good predictions of the z-variation of interfacial
stress is because of the tendency of the exterior flow to move towards the channel
edges in transition between Poiseuille and plug flow in the boundary region. The
interfacial normal stress is greater/smaller than predicted by the outer flow towards
the centre/edges of the channel, whilst the magnitude of interfacial shear stress is
greater than predicted by the outer solution.

2.5. Large Reynolds number: 1� 1/K� Re� 1/ε
We now consider the sublimit in which 1� 1/K � Re� 1/ε. We do not consider
further the sublimits in which ReK =O(1) or 1� Re� 1/K� 1/ε. This is because
we are interested in the tissue engineering problem with porous plugs whose values of
K are not too small. Moreover, the above sublimits yield coupled nonlinear problems
which are not amenable to analytic study. We emphasize that the limit we consider is
when the external fluid has a large Reynolds number, but the pore Reynolds number
is small, so that the Darcy equations and continuity of pressure conditions are valid.
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FIGURE 6. The O(ε) normal and shear stresses acting on the interface X=0, for K=0.01.
(a) p1 − 2u0X , (b) −(u0z +w0X).

In this section we perform an asymptotic analysis using the small parameter
δ= 1/Re� 1 for ease of notation. Therefore, when we refer to, for example, ‘leading
order’ in this section, it is meant in reference to δ. In the limit δ→ 0, there is
a significant change in boundary layer structure within the inner regions II and
VI compared to the O(1) Reynolds number case. The limit as δ→ 0 is singular,
and we expect viscous effects to become important in regions near each boundary.
Furthermore, as fluid momentum dominates within regions II and VI, the flow
direction is important. Indeed, we obtain a different boundary layer structure for
inflow and outflow, and therefore split the analysis into these two cases, starting with
inflow.

In the limit of small δ, the first-correction terms u1, Q1, p1 and P1 from the
asymptotic series in the outer regions (2.6) are now scaled with δ−1 to be consistent
with the new inner scalings, as follows:

(u1,Q1, p1, P1)= δ−1(u10,Q10, p10, P10)+ (u11,Q11, p11, P11)+O(δ). (2.34)

The scalings for the pressure jumps Π− and Π+ will turn out to be

Π− =Π−1 +O(δ), Π+ = δ−1Π+0 +O(1) as δ→ 0, (2.35a,b)

our objective being to determine Π−1 and Π+0 .
Though we have not yet fully described the inner asymptotic structure, we give the

form of the asymptotic expansions within each region in table 2 for ease of reference.

2.5.1. Inflow
The inflow inner problem (within regions II and III) is shown in figure 4. The limit

as δ→ 0 yields leading-order inviscid flow in region II away from the boundaries,
with five additional boundary layers being required to satisfy all of the boundary
conditions. Two of these viscous boundary layers are on the channel walls, one is
on the porous interface, whilst the remaining boundary layers occur in the corners
between the channel wall and porous interface. The boundary layer structure for the
inflow problem is shown in figure 7.

We start by considering the coupled regions II and III, and show that the transition
to Poiseuille flow occurs solely within region III at leading order in δ.
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Region Asymptotic expansions Relative scalings

I (u, p)= (u0, p0)+ ε(u1, p1)+O(ε2)

(u1, p1)= δ−1(u10, p10)+ (u11, p11)+O(δ)

II (u, p)= (u0, p0)+ ε(u1, p1)+O(ε2) u= u, w= ε−1w
u0 = 6z(1− z)ex + δu01 +O(δ4/3) x= εX, p= p

p1 = p11 +O(δ1/3)

IIa (û, p̂)= (û0, p̂0)+ ε(û1, p̂1)+O(ε2) u= û, w= ε−1δŵ
û0 = 6z(1− z)+ δu01(0, z)+O(δ4/3) x= εδX̂, p= p̂

ŵ0 = ŵ01 +O(δ1/3)

p̂1 = p11(0, z)+O(δ1/3)

III (Q, P)= (Q0, P0)+ ε(Q1, P1)+O(ε2) U =U, W = ε−1W
Q0 =Q00 + δQ01 +O(δ4/3) x= εX, P= P

P1 = P11 +O(δ1/3)

IV (Q, P)= (Q0, P0)+ ε(Q1, P1)+O(ε2)

(Q1, P1)= δ−1(Q10, P10)+ (Q11, P11)+O(δ)

V (Q, P)= (Q0, P0)+ ε(Q1, P1)+O(ε2) U =U, W = ε−1W
Q0 ∼ ex + δ1/2Q0a x= εX, P= P

P1 ∼−X−/K + δ1/2P1b

VI (u, p)= (u0, p0)+ ε(u1, p1)+O(ε2) u= u, w= ε−1w
u0 ∼ ex + δ1/2u0a x= εX, p= p

p1 ∼ δ−1/2p1a

VIa (ũ, p̃)= (ũ0, p̃0)+ ε(ũ1, p̃1)+O(ε2) u= ũ, w= ε−1δw̃
ũ0 = ũ00 +O(δ1/2) x= εδ−1X̃, p= p̃
w̃0 = w̃01 +O(δ1/2)

p̃1 = δ−1p̃10 +O(δ−1/2)

VII (u, p)= (u0, p0)+ ε(u1, p1)+O(ε2)

(u1, p1)= δ−1(u10, p10)+O(δ−1/2)

TABLE 2. Asymptotic expansions within boundary layers in the large Reynolds number
limit.

2.5.2. Regions II and III
Within regions II and III, we make the following asymptotic expansions

u0 = 6z(1− z)ex + δu01 + δ4/3u02 +O(δ5/3), (2.36a)
Q0 =Q00 + δQ01 + δ4/3Q02 +O(δ5/3), (2.36b)

(p1, P1)= (p11, P11)+ δ1/3(p12, P12)+O(δ2/3) (2.36c)

as δ→ 0, where the non-integer powers of δ come from corrections to the flow that
arise due to the presence of a boundary layer near the channel walls (regions IIb in
figure 7). These terms are used in appendix A, but are not required further in this
section.

Substituting the asymptotic expansions (2.36) into the governing equations presented
in figure 4, the O(1/δ) terms in region II are trivially satisfied, but so far Q00
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II IIa III

IIb IIc

IIb IIc

FIGURE 7. Schematic diagram of the inner regions IIa–c within the inflow boundary
region II. The light region is the exterior fluid and the dark region is the porous obstacle.
The size of the boundary layers has been exaggerated for illustrative purposes.

is unknown. Proceeding with the expansions, we find at O(1) that u01 = (u01, w01) is
governed by

u00u01X + u00zw01 =−p11X − 12, u00w01X =−p11z, ∇ · u01 = 0 in region II,
(2.37a−c)

where u00 = 6z(1− z), while Q00 = (U00,W00) is governed by

Q00 =−K∇P11, 0=∇ ·Q00 in region III. (2.38a,b)

The boundary conditions we impose at this order in region II are again obtained via
matching. On the channel walls (via matching with region IIb in appendix A), we
have no flux, so that

w01 = 0 on z= 0, 1 for X− < 0, (2.39)

while in the far field we match with region I, to obtain

u01→ 0, p11 ∼−12X− +Π−1 as X−→−∞ for 0< z< 1. (2.40a,b)

Similarly, the boundary conditions in region III are

W00 = 0 on z= 0, 1 for X− > 0, (2.41)

while matching with region IV gives

P11 ∼−X−

K
as X−→∞ for 0< z< 1. (2.42)

We note that the far-field matching condition Q00∼ ex as X−→∞ follows consistently
from (2.42) using (2.38a).
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The interfacial conditions at X− = 0 for (2.37)–(2.38) are formally derived from
consideration of the inner–inner boundary layer (region IIa) in § 2.5.3, within which
we are able to satisfy the no tangential slip condition, but additionally find that the
leading-order flow and the first correction to the pressure p11 are unchanged. From
§ 2.5.3, the correct conditions to couple regions II and III are continuity of flux and
pressure, with

6z(1− z)=U00, p11 = P11 on X− = 0 for 0< z< 1. (2.43a,b)

The system to solve in regions II and III (up to the O(δ) terms) is given by (2.37)–
(2.43). We see that regions II and III have decoupled: the boundary condition (2.43a)
allows us to solve for Q00 and P11 using (2.38) with (2.41)–(2.42), and then we can
use the boundary condition (2.43b) to determine u01 and p11 using (2.37) with (2.39)–
(2.40). The governing equations (2.38), with boundary conditions (2.41)–(2.42) and
(2.43a), are solved by

−KP11 = X− +
∞∑

k=1

Ak exp(−2kπX−) cos(2kπz), Ak = 3
(πk)3

. (2.44)

Since u00 is independent of X− within region II, the leading-order transition from
Poiseuille to plug flow occurs entirely within the porous medium in region III, and is
governed by (2.44).

We now complete the solution in region II by determining u01 and p11. As well as
allowing us to determine Π−1 , knowledge of p11 gives the normal stress acting on the
interface up to O(ε), the first order at which the stress varies in the z-direction. A
rearrangement of the exterior flow (2.37) allows us to decouple the region II system
(where −∞< X− < 0 and 0< z< 1) into

z(1− z)∇2w01 + 2w01 = 0, (2.45a)
∇2p11 =−2u00zw01X− . (2.45b)

We solve (2.45a) for w01 first, using boundary conditions (2.39) on z = 0, 1 and
(2.40a) as X−→−∞. We derive a consistent boundary condition for w01 on X− = 0
using the boundary condition (2.43b) for the pressure on X−= 0, in combination with
the governing equation (2.37b), giving

w01X− =− 1
Ku00

∞∑

k=1

2kπAk sin(2kπz) on X− = 0 for 0< z< 1. (2.46)

The boundary condition (2.46) ensures that w01 does not vanish on X− = 0, inducing
a slip velocity on this interface within region II. This issue is taken care of in an
inner–inner boundary layer closer to the interface (region IIa in figure 7) in § 2.5.3.
The linearity of the governing equation (2.45a), with boundary conditions (2.39),
(2.40a) and (2.46), also allows us to deduce that w01 scales with K−1. Further, from
the continuity equation (2.37c) it follows that u01 also scales with K−1.

We solve for w01 using a standard central finite-difference scheme. By numerically
integrating w01 with respect to X−, we are able to plot the streamlines in figure 8. In
figure 8(a), we show the streamlines for the first correction to the velocity, and in
figure 8(b), we show the streamlines for the full velocity up to this first correction.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.308


104 M. P. Dalwadi, S. J. Chapman, S. L. Waters and J. M. Oliver

 0.5

 0

 0

 0

1.0

 0.5

 0

1.0

z

(a) (b)

0–0.2

–0.02

–0.4

–0.01

–0
.0

05
–0.005

0.01

–0.01

–0.015

0.005

–0.005

0.02

0.01

0.015

0.005

0.005

0–0.5–1.0
 0 0

 0

FIGURE 8. The streamlines for inflow near the interface. (a) The streamlines for the
scaled first-correction velocity Ku01, which is independent of K. The fluid moves from
the centre of the channel to the channel walls. (b) The streamlines for the full velocity
up to first correction u00 + δu01 (with a large value of δ/K = 1 taken to emphasise the
effect of the correction). The fluid moves from left to right.

We see that the fluid moves from the centre of the channel towards the channel walls,
as expected. Therefore, adjustment from Poiseuille to plug flow occurs in region II, but
at higher order. This movement induces a horizontal slip velocity on the channel walls,
which is resolved in appendix A by introducing a boundary layer near the channel
walls in which z=O(δ1/3) on the bottom wall, with a similar layer near the top wall.
These regions are labelled as IIb in figure 7. In appendix A, we show that the flow
near z= 0 has the form

u0 ∼ 6z(1− z)+ δ
∞∑

k=1

Ck exp(µkX−)g′k(0)

∫ z/δ1/3

0
Ai(akv) dv

∫ ∞

0
Ai(aks) ds

as z→ 0+, (2.47)

where Ck, µk, and gk are described in (A1)–(A 2), Ai is the Airy function of the
first kind and ak is defined below (A 10). From (2.47), we see that the leading-order
solution is preserved near the channel wall. In fact, the slip is resolved within higher-
order terms in the boundary layer, and does not affect the leading-order solution in
region II.

The problem for p11 is given by (2.45b) with boundary conditions (2.40b) and
(2.43b). We obtain consistent boundary conditions for p11 on the channel walls by
substituting the leading-order flow solution into the governing equation (2.37b) to
obtain

p11z = 0 on z= 0, 1 for X− < 0. (2.48)

We solve the full system for p11, given by (2.45b) with boundary conditions (2.40b),
(2.43b), and (2.48) numerically using a central finite-difference scheme. Using a
similar scaling argument as for w01, we find that Π−1 scales with 1/K. We are able
to calculate Π−1 by plotting (p11+ 12X−)K, and using the matching condition (2.40b).
As Π−1 is independent of z, and to more easily show the pressure drop on a graph, we
plot (

∫ 1
0 p11 dz+ 12X−)K for varying X− in figure 9. We find thereby that Π−1 = α/K,

where α =−0.117 to three significant figures.
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FIGURE 9. The function (
∫ 1

0 p11 dz+ 12X−)K for varying X− in region II, which allows
us to determine the outer pressure drop for inflow.

2.5.3. Inner–inner region IIa
We now investigate the inner–inner boundary layer closer to the interface, region IIa

in figure 7. This boundary layer is required to satisfy the no tangential slip condition
on the interface, and captures a balance between the relevant inertial terms and the
viscous terms induced by the presence of the porous interface.

The relevant scalings are X−= δX̂ and w0= δŵ0, and we introduce the new variables
u0= û0 and p1= p̂1 to signify that we are working in region IIa. Under these scalings,
in region IIa (where −∞< X̂< 0 and 0< z< 1) the exterior flow equations in figure 4
become

δ−1û0û0X̂ + δŵ0û0z =−p̂1X̂ + δ−1û0X̂X̂ + δû0zz, (2.49a)
û0ŵ0X̂ + δ2ŵ0ŵ0z =−δp̂1z + ŵ0X̂X̂ + δ2ŵ0zz, (2.49b)

0= û0X̂ + δ2ŵ0z, (2.49c)

and the interfacial boundary conditions become

û0 =U0, p̂1 = P1, ŵ0 = 0 on X̂ = 0 for 0< z< 1. (2.50a−c)

The purpose of this boundary layer is to determine the tangential velocity ŵ0, and
to ensure that it is possible to satisfy the no tangential slip boundary condition on
X− = 0. Therefore, we form asymptotic expansions as follows:

û0 = 6z(1− z)+O(δ), (2.51a)
ŵ0 = ŵ01 +O(δ4/3), (2.51b)

p̂1 = p11(0, z)+O(δ1/3) (2.51c)

as δ→ 0, where p11 is known from § 2.5.2. Substituting the asymptotic expansions
(2.51) into (2.49) and equating powers of δ, we find that (2.49a) and (2.49c) are
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automatically satisfied at leading order, whilst the leading-order terms in (2.49b) are

6z(1− z)ŵ01X̂ = ŵ01X̂X̂. (2.52)

Using (2.44), the leading-order interfacial boundary conditions (2.50) become

6z(1− z)=−KP11X̂, p11 = P11, ŵ01 = 0 on X̂ = 0 for 0< z< 1. (2.53a−c)

The relevant far-field condition arises via matching with region II, giving

ŵ01→w01(0, z) as X̂→−∞ for 0< z< 1, (2.54)

where w01 is determined in § 2.5.2.
The interfacial conditions (2.53a,b) are used to couple regions II and III in § 2.5.2.

The remaining terms in the system (2.52)–(2.54) yield ŵ01, and are solved by

ŵ01 =w01(0, z)(1− exp(6z(1− z)X̂)). (2.55)

We see that (2.55) can only be a solution for inflow, as we require 6z(1 − z)X̂ < 0
as we move back into region II. For outflow, this inner–inner region is not a valid
boundary layer, and we must tackle the problem in a different manner.

We note that this boundary layer persists for alternate tangential slip conditions. We
can showcase the robust nature of the boundary layer via two examples. The first
example uses the general tangential slip condition derived in Carraro et al. (2015).
That is, instead of (2.53c), we consider a condition of the form

w= λu on X− = 0, for 0< z< 1, (2.56)

which reduces to (2.53c) when λ= 0. Here, λ is a slip coefficient, obtained by solving
the cell problem given in Carraro et al. (2015). Using this condition, the transverse
velocity is

w∼ 6λz(1− z) exp(6z(1− z)X̂)+ δw01(0, z)(1− exp(6z(1− z)X̂))+O(δ4/3), (2.57)

in region IIa. In the second example, we use a Beavers and Joseph slip condition
(Beavers & Joseph 1967) of the form

wX̂ =
λ̂√
K
(W −w) on X− = 0, for 0< z< 1, (2.58)

where λ̂ is the experimentally determined slip coefficient. In this case, the transverse
velocity would be

w∼ δ
(

w01(0, z)+ λ̂W0

6
√

Kz(1− z)

)
+O(δ4/3). (2.59)

Hence the boundary layer structure persists if the no-slip condition is modified in
either of these two ways. Physically, we can conclude that the thickness of each
boundary layer involved in inflow is unchanged for any of the three boundary
conditions applied at the interface. Moreover, the flow induced by each of the three
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FIGURE 10. The interfacial stress predicted by the inner flows (from (2.60)) at O(ε).
(a) The normal stress (we plot Kp11(0, z)) and (b) the shear stress (we plot 6z(1 −
z)Kw01(0, z)). As both the normal and shear stress scale with 1/K at this order, both
plotted terms are independent of K.

boundary conditions is only different in region IIa, the boundary layer closest to the
interface.

Returning to the original no-slip boundary condition (2.50c), it is straightforward to
calculate that the components of stress on the interface at x=−1 are given by

σxx =−(12+ εp11(0, z))+O(δ1/3ε), (2.60a)
σxz =−ε(6z(1− z)w01(0, z))+O(δ1/3ε) (2.60b)

as ε, δ→ 0, with ε� δ� 1. Whilst the normal stress (2.60a) is nominally O(1), the
leading-order term comes from the decision to impose P(0, 0.5)= 0 to uniquely define
the pressure. Thus, the more interesting result occurs at O(ε), which is the lowest
order at which the normal stress varies in the z-direction. For the shear stress (2.60b),
the leading-order terms are O(ε), and this varies in z. Those terms which vary in
z cannot be determined solely from the outer solution: they are obtained from our
boundary layer analysis and are each plotted in figure 10. We show in the previous
section that p11 and w01 both scale with 1/K, thus the stress also scales with 1/K at
O(ε).

Additionally, since we have imposed P(0, z)= 0, we have no O(ε/δ) constant term
from the pressure in the normal stress (2.60a). In three dimensions, the tangential
(that is, in the (ex × ez)-direction) variation in pressure ensures that there will be an
O(ε/δ) term in the corresponding normal stress component no matter how we define
the pressure (as we show in § 3.6.1).

We have now solved for the flow variables within the inflow boundary layers for
the regions that affect the stress and the pressure drop. As shown in figure 7, there
are further boundary layers which are important for inflow, and we discuss these in
appendix A.

2.5.4. Summary
The main part of the leading-order inflow may be summarized as follows. The

leading-order axial flow and pressure are unchanged until they reach the interface,
after which they transition to plug flow inside the obstacle in region III, whose length
is comparable to the channel height. This has an effect on the correction to normal
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IV V VIIVI VIa

VIb

VIb

VIc

FIGURE 11. Schematic diagram of the inner regions for outflow – VIa, VIb, and VIc.
The size of the boundary region VIb has been exaggerated for illustrative purposes, is of
height O(εδ1/2), and grows proportional to the square root of the distance from the porous
obstacle. Region VIc lies within region VIb and has height and length O(εδ).

flow and pressure in region II. Meanwhile, the tangential velocity satisfies the no
tangential slip condition on the obstacle surface in region IIa – a boundary layer of
even smaller width, which is comparable to the length of the channel height multiplied
by the reciprocal of the Reynolds number.

Combining the original asymptotic expansion (2.26) with the asymptotic expansion
in region II, namely (2.36c), we deduce that the pressure jump between outer inflow
regions I and IV is O(ε). Specifically, we have determined that

Π− ∼ α
K

as ε, δ→ 0 with ε� δ� 1, (2.61)

where α ≈−0.117.
The argument presented in this section will not hold if the fluid is leaving the

obstacle rather than entering it. This is because the boundary layer region IIa is only
valid for inflow (as can be seen from (2.55)). We reconsider our approach for outflow
in the next section.

2.5.5. Outflow
The outflow inner problem (within regions V and VI) is shown in figure 5. We again

seek a solution as δ→ 0 with ε � δ � 1 using the method of matched asymptotic
expansions.

The asymptotic structure for outflow is shown schematically in figure 11. The flow
in region V is unchanged at leading order and reaches the interface as uniform plug
flow with magnitude 1. There is an inviscid core in the centre of region VI, flanked
by Prandtl boundary layers near z= 0, 1 whose thicknesses are of O((δX+)1/2). These
boundary layers (region VIb) grow downstream, and the transition to Poiseuille flow
occurs when their thicknesses become of O(1). This occurs on a horizontal length
scale of O(1/δ) in a transition region we denote region VIa. There is a third boundary
layer, denoted region VIc, which occurs in the corner between the channel wall and
the porous interface. This region deals with a singularity at the corner that arises in
region VIb, as in the classic Prandtl problem.

In this section, we investigate the regions VI and VIa to understand the transition
from plug to Poiseuille flow and to calculate the pressure jump between the outer
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regions IV and VII. Regions VIb and VIc are discussed in appendix B.1 since they
are not important to the transition. Recall that, from (2.61), we calculated an O(ε)
pressure jump between outer regions I and IV for inflow. We show that the pressure
jump between outer regions IV and VII is of O(ε/δ) for outflow.

We start by investigating how the fluid moves through region VI. The leading-order
behaviour is plug flow, and we determine the effect of the interfacial no tangential slip
condition on the correction to the plug flow. In particular, we determine the far-field
behaviour of the flow, which allows us to impose the correct matching conditions for
the problem of transition to Poiseuille flow in region VIa.

2.5.6. Inner regions V and VI
To determine the outflow pressure jump (2.35b), we must consider first-order flow

terms. Therefore, we pose the asymptotic expansions

u0 ∼ ex + δ1/2u0a, Q0 ∼ ex + δ1/2Q0a, p1 ∼ δ−1/2p1a, P1 ∼−X+

K
+ δ1/2P1b,

(2.62a−d)
as δ→ 0, where the non-integer powers of δ arise due to the correction terms
from the boundary layers in region VIb near the channel walls. We determine the
leading-order behaviour within the coupled regions V and VI, but do not fully
solve for the higher-order terms due to their complexity. Instead, we analyse the
higher-order problems to obtain the information required for the matching condition
with the transition region VIa.

Substituting the asymptotic expansions (2.62) into the system outlined in figure 5,
the leading-order equations are trivially satisfied. The O(δ1/2) exterior flow equations
are

u0aX+ =−p1aX+, w0aX+ =−p1az, 0= u0aX+ +w0az in region VI, (2.63a−c)

and the O(δ1/2) interior flow equations are

Q0a =−K∇P1b, 0=∇ ·Q0a in region V. (2.64a,b)

In region V, the first correction to the boundary condition on the channel walls is
given by

W0a = 0 on z= 0, 1 for X+ < 0, (2.65)

while the far-field conditions are obtained by matching with region IV, to yield

P1b→ 0, Q0a→ 0 as X+→−∞ for 0< z< 1. (2.66a,b)

In region VI, the boundary conditions on the channel walls are obtained by matching
with region VIb. We show in appendix B.1 that, at this order, the flow problem within
region VIb is equivalent to the standard Prandtl problem of uniform flow past a flat
plate (Prandtl 1905). The matching conditions are therefore given by

w0a = β̃(4X+)−1/2 on z= 0 for X+ > 0, (2.67a)
w0a =−β̃(4X+)−1/2 on z= 1 for X+ > 0, (2.67b)

where β̃ (≈ 1.721) is a constant that is determined numerically from a nonlinear
ordinary differential equation (discussed further in appendix B.1); the parameter β
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used in Van Dyke (1970) and Wilson (1971) is related to β̃ via β̃ = 21/2β. Finally,
the interfacial conditions on X+ = 0 are

u0a =U0a, p1a = 0, w0a = 0 on X+ = 0 for 0< z< 1. (2.68a−c)

We do not solve the coupled system of equations (2.64)–(2.68) here, though we
note that it is possible to obtain an implicit representation for w0a via a Fourier
transformation. Instead, we acquire the necessary information for the matching with
region VIa, which allows us to determine Π+0 in the next section. We note that (2.63)
can be rearranged to deduce the following three results: firstly, that

∇2w0a = 0 in region VI; (2.69)

secondly, that p1a is the harmonic conjugate of w0a; and, thirdly, that p1a + u1a
is independent of X+. We deduce the leading-order far-field behaviour of w0a by
considering the governing equation (2.69) together with the channel wall boundary
conditions (2.67) as X+→∞, to obtain the expansion

w0a ∼ β̃(1− 2z)
(4X+)1/2

as X+→∞ for 0< z< 1. (2.70)

Using the far-field condition (2.70) in the governing equations (2.63a,c), we further
deduce that

u0a ∼ β̃(4X+)1/2, p1a ∼−β̃(4X+)1/2 as X+→∞ for 0< z< 1. (2.71a,b)

We note that the far-field expansions (2.70)–(2.71) have no dependence on the
permeability K. As these far-field expansions are used to form matching conditions,
which transfer information into the transition region VIa (which is where we calculate
the pressure drop Π+0 ), we note that Π+0 will be independent of K. We carry out this
matching in appendix B.2.

The components of stress on the interface at x= 1 are given by

σxx =−
(

12− 2
K
+ εδ−1/2p1a

)
+ o(εδ−1/2), (2.72a)

σxz = εδ1/2 (u0az +w0aX+)+ o(εδ1/2) (2.72b)

as ε, δ→ 0 with ε� δ� 1, where we have not explicitly calculated p1a, u0a, or w0a. In
terms of the first order at which the stress varies in z, we find that the normal stress
(2.72a) for outflow is a factor of O(δ−1/2) larger than for inflow (2.60a), while the
shear stress (2.72b) for outflow is a factor of O(δ1/2) smaller than for inflow (2.60b).

2.5.7. Transition region VIa
We now consider the region in which the flow transitions from plug to Poiseuille

flow. This occurs when the growing Prandtl boundary layers with thickness of
O((δX+)1/2) become of O(1), that is, when X+ = O(1/δ), bringing about a balance
in the exterior flow equations between fluid momentum and viscosity across the full
channel width. Recall that we have called this region VIa, as illustrated in figure 11.
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The relevant scalings are X+ = δ−1X̃ and w0 = δw̃0, and we introduce the new
variables u0 = ũ0 and p1 = p̃1 to signify that we are working in region VIa. Then,
in region VIa (where 0< X̃ <∞ and 0< z< 1) the exterior flow equations given in
figure 5 become

ũ0ũ0X̃ + w̃0ũ0z =−δp̃1X̃ + δ2ũ0X̃X̃ + ũ0zz, (2.73a)
δ2(ũ0ũ0X̃ + w̃0w̃0z)=−δp̃1z + δ4w̃0X̃X̃ + δ2w̃0zz, (2.73b)

ũ0X̃ + w̃0z = 0. (2.73c)

We pose the asymptotic expansions

ũ0 = ũ00 +O(δ1/2), w̃0 = w̃01 +O(δ1/2), p̃1 = δ−1p̃10 +O(δ−1/2), (2.74a−c)

as δ→ 0, and substitute them into the governing equations (2.73) to yield the
following leading-order governing equations in region VIa:

ũ00ũ00X̃ + w̃01ũ00z =−p̃10X̃ + ũ00zz, 0=−p̃10z, ũ00X̃ + w̃01z = 0. (2.75a−c)

The boundary conditions on the channel walls become

u00 = 0 on z= 0, 1 for X̃ > 0. (2.76)

The leading-order matching conditions are derived in appendix B.2. They are
obtained by forming composite expansions between regions VI and VIb, then using
Van Dyke’s matching rule (Van Dyke 1975). We use the multiplicative composite
expansions (Van Dyke 1975) to ensure that the matching condition for the velocity
satisfies the no-slip condition on the channel walls. This allows a greater accuracy
when we solve numerically the resulting system. The matching conditions are given
by

ũ00 ∼ (1+ 2β̃X̃1/2)f ′(η̃(0))f ′(η̃(1)), (2.77a)

w̃01 ∼ (1− 2z)

2β̃X̃1/2
(η̃(0)f ′(η̃(0))− f (η̃(0)))( f (η̃(1))− η̃(1)f ′(η̃(1))), (2.77b)

p̃10 ∼−2β̃X̃1/2, (2.77c)

as X̃ ↓ 0, where f is the standard Blasius similarity solution (defined in (B 7)), η̃(0) =
z/X̃1/2 and η̃(1) = (1 − z)/X̃1/2. The matching conditions (2.77) are consistent with
a small X̃ expansion (for fixed z) of the governing equations (2.75). The matching
conditions between regions VIa and VII are given by

ũ00∼ 6z(1− z), w̃01→ 0, p̃10∼−12X̃+Π+0 as X̃→∞ for 0< z< 1, (2.78a−c)

where Π+0 is determined from the solution in region VIa. The full system for the flow
in region VIa is given by (2.75)–(2.78).

In Bodoia & Osterle (1961), this same transition region was considered, though
was not derived formally through asymptotic methods. The authors used the boundary
conditions

ũ00 = 1, w̃01 = 0, p̃10 = 0 on X̃ = 0 for 0< z< 1, (2.79a−c)
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FIGURE 12. Calculating the outflow pressure drop along the channel by plotting
p̃10 + 12X̃. See text for further details.

instead of the matching conditions (2.77). We note that, unlike (2.77b), the condition
(2.79b) is not consistent with the small X̃ approximation to the governing equations
(2.75), from which it can be deduced that w̃01 is singular at the corners at X̃ = 0,
z=0,1. With the boundary conditions (2.79), it was found in Bodoia & Osterle (1961)
that the pressure jump Π+0 ≈−0.338.

We now calculate Π+0 numerically using the formal matching conditions (2.77). We
start the numerical simulation at X̃=10−4 to avoid the inverse square root singularities
in w̃01 and in p̃10X̃ , and use the finite-difference scheme outlined in Bodoia & Osterle
(1961). In figure 12, we show the numerical solutions for p̃10+12X̃ as a function of X̃,
and we emphasise that p̃10 is independent of z. From the matching condition (2.78c),
we determine that the value of the leading-order outflow pressure jump between outer
regions IV and VII is given by Π+0 = −0.331 to 3 significant figures. We note that
the value of Π+ found by Bodoia & Osterle (1961) using their inconsistent boundary
conditions (2.79) only differs by approximately 2 % from the value of Π+ obtained
using formal matching conditions.

Combining the original asymptotic expansion (2.26) with the asymptotic expansion
in region VIa (2.74c), we deduce that the pressure jump between outer outflow regions
IV and VII is O(ε/δ). Specifically, we have determined that

Π+ ∼ Π
+
0

δ
as ε, δ→ 0 with ε� δ� 1, (2.80)

where Π+0 ≈−0.331.

2.6. Summary
We have thus far determined the boundary layer structure for two-dimensional flow
through a channel with stationary walls containing a porous obstacle. We formulated
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O O(l )

D

n

s

FIGURE 13. Plan view of streamlines through and around a general porous obstacle model
with a uniform far-field flow. The z-axis points out of the page. The Hele-Shaw cell has a
depth of length h in the z-direction (not shown). We show the unit vectors ex and ey in the
x- and y-directions respectively (for the Cartesian coordinate system), and the curvilinear
(n, s)-coordinate system for a given point on the boundary of the obstacle.

the full problem for an O(1) Reynolds number, then considered the asymptotic
sublimits in which ε � Re� 1 and 1� Re� 1/ε. In the first sublimit, the inflow
and outflow boundary layer structure was found to be the same, whereas in the latter
sublimit, a rich boundary layer structure was unveiled, which differed for inflow
and outflow. We determined how flow transitions from Poiseuille to plug for inflow
and from plug back to Poiseuille for outflow, which allowed us to determine the
leading-order asymptotic values of the pressure jumps Π− and Π+ across regions
II/III and regions V/VI, respectively. For inflow, where the flow problems in regions
II and III decouple, we calculated the stress acting on the interface up to the order
at which there is a variation in z. For outflow, where the relevant flow problems in
regions V and VI are coupled, we determined the scalings of the stress acting on the
interface up to the order at which there is a variation in z.

In the next section, we generalize the problem and consider unsteady three-
dimensional flow in a Hele-Shaw cell past a tight-fitting, highly permeable cylindrical
porous obstacle, with a smooth boundary. As the fluid can now travel around the
porous obstacle, the high Reynolds number limit has an entrainment effect for outflow.
We show that this entrainment can lead to a net force acting on the obstacle, even
when the unidirectional far-field forcing is periodic with a zero mean.

3. Unsteady three-dimensional flow
A schematic of the three-dimensional problem is illustrated in figure 2(b), and a

two-dimensional plan view is illustrated in figure 13. We initially work in a Cartesian
coordinate system (x, y, z) with origin at the obstacle centre of mass projected onto
the planar plate of the Hele-Shaw cell in the plane z= 0, the other plate lying in the
plane z= h. The obstacle axis is normal to the two parallel flat sides of the Hele-Shaw
cell, and is parallel to the z-axis. The typical cross-sectional extent of the obstacle is
l, the Hele-Shaw cell height is h, and we shall also assume that ε = h/l� 1.

The exterior and interior fluid velocities are denoted by us = usex + vsey +wsez and
Qs = Usex + V sey + Wsez, respectively. The exterior and interior fluid pressures are
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denoted by ps and Ps, respectively. We use the superscript s to denote variables in
the three-dimensional problem, and we later reduce the three-dimensional problem by
relating these variables to their two-dimensional counterparts in the three-dimensional
analogue of the inner regions considered in §§ 2.3–2.5. The typical magnitude of the
unidirectional far-field flow is U∞. We non-dimensionalize by scaling the variables
as follows: (x, y) ∼ l, z ∼ εl, t ∼ l/U∞ (corresponding to an O(1) Strouhal number),
(ps, Ps)∼ µU∞/(εh), (us, vs,Us, V s)∼U∞ and (ws,Ws)∼ εU∞. With these scalings,
the dimensionless Navier–Stokes equations, which hold inside the Hele-Shaw cell but
outside the porous obstacle, are given by

εRe(us
t + us

· ∇us)=−ps
x + ε2∇2

⊥us + us
zz, (3.1a)

εRe(vs
t + us

· ∇vs)=−ps
y + ε2∇2

⊥v
s + vs

zz, (3.1b)

ε3Re(ws
t + us

· ∇ws)=−ps
z + ε4∇2

⊥ws + ε2ws
zz, (3.1c)

0=∇ · us, (3.1d)

where Re = ρhU∞/µ is the global Reynolds number, ∇ is the three-dimensional
gradient operator and ∇2

⊥ = ∂xx + ∂yy is the two-dimensional Laplacian operator. The
dimensionless Darcy equations, which hold inside the porous obstacle, are given by

Us =−KPs
x, V s =−KPs

y, ε2Ws =−KPs
z, 0=∇ ·Qs, (3.2a−d)

where K = k/h2� 1, as before.

3.1. Boundary conditions
The boundary conditions on the plates of the Hele-Shaw cell at z= 0, 1 are those of
no slip and no flux for the exterior flow and of no flux for the interior flow, so that

us = 0 on z= 0, 1 outside the obstacle, (3.3a)
Ws = 0 on z= 0, 1 inside the obstacle. (3.3b)

On the interface, we impose three-dimensional equivalents of the two-dimensional
interfacial conditions given by (2.4). These are continuity of normal flux, continuity
of pressure and a no tangential slip condition, as follows

us
· n=Qs

· n, (3.4a)
ps = Ps, (3.4b)

us − (us
· n)n= 0, (3.4c)

evaluated at the interface, where n is the unit normal pointing out of the porous
obstacle.

The far-field condition is

ps ∼−12xG(t) as x2 + y2→∞, (3.5)

where G(t) is a dimensionless function of time. We take |G(t)| and |G′(t)| to be of
O(1), so that the far-field forcing does not have a large velocity or acceleration.
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3.2. Asymptotic structure
The dimensionless problem (3.1)–(3.5) is characterised by two length scales: the
typical cross-sectional extent of the obstacle, 1, and the Hele-Shaw cell height, ε� 1.
We again seek a solution using the method of matched asymptotic expansions in
terms of the small parameter ε. We note that, in contrast to § 2, not all of the fluid
has to pass through the porous obstacle as it is now able to flow around the porous
obstacle. In this section, we show that this difference results in a Darcy velocity of
O(K) with an O(1) pressure drop, in comparison to the two-dimensional case where
the Darcy velocity was of O(1) with an O(1/K) pressure drop. As the continuity of
flux condition (3.4a) ensures that us · n = O(K) near the interface, we are able to
deduce that K = O(ε) corresponds to an obstacle which is impermeable at leading
order in ε. As discussed previously, we wish to investigate the case where the obstacle
is as permeable as possible, and we therefore consider the limit where ε � K � 1.
The local Reynolds number (defined later) characterises the flow close to the interface.
We initially consider the distinguished limit whereby the local Reynolds number is
of O(1), then consider the asymptotic sublimits of a small and large local Reynolds
number in more detail, as before.

The outer problems are characterised by an O(1) length scale in the (x, y)-plane
(with the Hele-Shaw cell height, ε, being the length scale in the z-direction), where
we have at leading order Poiseuille and plug flow in the exterior and interior regions,
respectively. We assume that the obstacle is a cylinder whose cross-section has a
curvature of O(1), so that the surface near a point on the obstacle boundary is
well approximated by the tangent plane at that point. The inner regions are then
characterised by an O(ε) extension of each local normal plane to the interface and
occur on either side of the interface, so that the inner problems are similar to those
considered in § 2, and the boundary layer structure is its three-dimensional equivalent.

3.3. Outer regions
In the outer regions, we take asymptotic expansions in the limit as ε→ 0, of the form

f = f0 + εf1 +O(ε2), (3.6)

for f ∈ {us, vs, ws, Us, V s, Ws, ps, Ps}. At leading-order we find that, exterior to the
obstacle,

us
0 = g1(z)ps

0x, vs
0 = g1(z)ps

0y, ws
0 = 0, ∇ · us

0 = 0, (3.7a−d)

where g1(z)= z(z− 1)/2, while interior to the obstacle,

Us
0 =−KPs

0x, V s
0 =−KPs

0y, Ws
0 = 0, ∇ ·Qs

0 = 0, (3.8a−d)

so that both the interior and exterior pressure satisfy Laplace’s equation in two
dimensions. We define the two-dimensional cross-section of the obstacle as D and
the one-dimensional boundary of this as ∂D. Thus, the governing equations are

∇2
⊥ps

0 = 0 outside D, ∇2
⊥Ps

0 = 0 in D. (3.9a,b)

The far-field condition is

ps
0 ∼−12xG(t) as x2 + y2→∞. (3.10)
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In § 3.4, we find that the leading-order coupling conditions on the interface are

ps
0 = Ps

0,
∂ps

0

∂n
= 12K

∂Ps
0

∂n
on ∂D, (3.11a,b)

where (3.11b) is equivalent to the continuity of total flux condition given in (2.11a).
The leading-order problem is defined by (3.9)–(3.11), and can be solved for a given
obstacle boundary ∂D. For future reference, we deduce from (3.8) that the segments
of the boundary where we have inflow/outflow at leading order occur when ∂Ps

0/∂n
evaluated on the boundary is positive/negative.

For the O(ε) correction terms we find that, outside D,

us
1 =

∂

∂x

(
ps

1g1(z)+ Re
(
ps

0tg2(z)+ |∇ps
0|2g3(z)

))
, (3.12a)

vs
1 =

∂

∂y

(
ps

1g1(z)+ Re
(
ps

0tg2(z)+ |∇ps
0|2g3(z)

))
, (3.12b)

ws
1 =−∇2

⊥

(
ps

1

∫ z

0
g1(ξ) dξ + Re|∇ps

0|2
∫ z

0
g3(ξ) dξ

)
, (3.12c)

∇ · us
1 = 0, (3.12d)

where

g2(z)= g1(z)
12

(z2 − z+ 1), (3.12e)

g3(z)= g1(z)
240

(2z4 − 4z3 + z2 + z+ 1), (3.12f )

while in the obstacle,

Us
1 =−KPs

1x, V s
1 =−KPs

1y, Ws
1 = 0, ∇ ·Qs

1 = 0 in D, (3.13a−d)

so that the pressures satisfy

∇2
⊥

(
ps

1 +
3Re
560
|∇ps

0|2
)
= 0 outside D, ∇2

⊥Ps
1 = 0 in D. (3.14a,b)

The time derivative of ∇2ps
0 does not appear in (3.14a) due to the governing equation

(3.9a). The far-field condition is

ps
1→ 0 as x2 + y2→∞. (3.15)

The first-order coupling conditions on the interface are determined in § 3.4 and
appendix C, and are given by

ps
1 − Ps

1 =Π s−H(−u0 · n)+Π s+H(u0 · n), (3.16a)
∂

∂n

(
ps

1 −
Re
10

(
ps

0t −
3

56
|∇ps

0|2
))
− 12K

∂Ps
1

∂n
=Λs−H(−u0 · n)+Λs+H(u0 · n),

(3.16b)

for u0 · n 6= 0, where a superscript ending in −/+ refers to an inflow/outflow quantity,
and H(x) is the Heaviside step function. These inflow/outflow segments of ∂D are
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determined from (3.7)–(3.11) as previously discussed. The presence of the Heaviside
functions in (3.16) introduces the possibility of pressure singularities appearing at
points on the boundary at which u0 · n = 0. We discuss this in more detail once
we determine the asymptotic approximations of the coefficients premultiplying these
functions.

The coupling condition (3.16b) represents conservation of mass across the interface
at this order and, in contrast to the two-dimensional versions (2.19a), (2.20a), has
additional terms which correspond to an entrainment effect at this order. That is, the
jump in the O(ε) average normal velocity across the interface (between outer regions)
has a contribution from the variation of the leading-order tangential velocity in the
inner regions.

3.4. Inner regions
As the inner regions are close to the obstacle boundary, it will be convenient to work
in general curvilinear coordinates (n, s, z) such that n= 0 on the boundary, with n> 0
corresponding to the exterior of D, and s being the arc length along the boundary
measured anticlockwise, as illustrated in figure 13.

The relevant inner scalings are n= εN and (ws,Ws)= (ws,Ws
)/ε, and we define the

components of fluid velocity in curvilinear coordinates by us = usn + vst + wsez and
Qs = Usn+ V st+Wsez in the exterior and interior regions, respectively. Under these
scalings, the exterior flow equations (3.1) become (see, for example, Schlichting &
Gersten (2000))

Re(usus
N +wsus

z)+O(εRe)=−ε−1ps
N + us

NN + us
zz +O(ε), (3.17a)

Re(usvs
N +wsvs

z)+O(εRe)=−ps
s + vs

NN + vs
zz +O(ε), (3.17b)

Re(usws
N +wsws

z)+O(εRe)=−ε−1ps
z +ws

NN +ws
zz +O(ε), (3.17c)

0= us
N +ws

z + ε(κ(s)us + vs
s)+O(ε2), (3.17d)

where κ(s) denotes the curvature of the obstacle boundary (positive if the centre of
the osculating circle lies in the region in which n< 0 for a given s), and we assume
that |κ| =O(1). Similarly, the interior flow equations (3.2) become

εUs =−KPs
N, (3.18a)

V s =−KPs
s +O(ε), (3.18b)

εWs =−KPs
z, (3.18c)

0=Us
N +Ws

z + ε(κ(s)Us + V s
s)+O(ε2). (3.18d)

The boundary conditions on the Hele-Shaw cell walls (3.3) become

us = 0 on z= 0, 1 for N > 0, (3.19a)
Ws = 0 on z= 0, 1 for N < 0. (3.19b)

The interfacial conditions (3.4) on N = 0 become

us =Us
, ps = Ps

, vs = 0, ws = 0. (3.20a−d)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.308


118 M. P. Dalwadi, S. J. Chapman, S. L. Waters and J. M. Oliver

We form inner expansions in powers of ε as follows:

(us,Qs
, ps, Ps

)= (us
0,Qs

0, ps
0, Ps

0)+ ε(us
1,Qs

1, ps
1, Ps

1)+O(ε2) as ε→ 0; (3.21)

substituting these expansions into the inner exterior flow equations (3.17a,c) and the
interior flow equations (3.18a,c), then equating powers of ε, yields the leading-order
pressure equations

0=−ps
0N, 0=−ps

0z, 0=−Ps
0N, 0=−Ps

0z. (3.22a−d)

This leading-order system is the same as in the two-dimensional case, and we
proceed in exactly the same way. Matching with the outer pressures, and using the
leading-order version of the continuity of pressure condition (3.20b), we deduce
that the leading-order pressures are unchanged through the inner regions and we are
justified in writing the coupling condition (3.11a). In a similar manner, integrating
the leading-order version of the continuity equations (3.17d) and (3.18d) over the cell
height, using the cell wall boundary conditions (3.19), and then matching with the
outer regions, justifies the coupling condition (3.11b). The entrainment effect does
not occur at this order.

The first-order flow equations in the (N, z)-plane decouple from the tangential
velocities vs and V s, and the tangential coordinate s can be treated as a parameter
in the problem. We can further reduce these problems to the two-dimensional cases
considered previously using the scalings

(us
0(N, s, z, t),Us

(N, s, z, t))=−ν(s, t)(u0(N, z),U0(N, z)), (3.23a)

(ws
0(N, s, z, t),Ws

0(N, s, z, t))= |ν(s, t)|(w0(N, z),W0(N, z)), (3.23b)

(ps
1(N, s, z, t), Ps

1(N, s, z, t))= (P1(0, s, t), P1(0, s, t))+ |ν(s, t)|(p1(N, z), P1(N, z)),
(3.23c)

where the variables on the right-hand side without a superscript s are variables from
the two-dimensional problem, and ν(s, t)=− ∫ 1

0 u0 ·n dz= ps
0n(0, s, t)/12=KPs

0n(0, s, t)
is positive for inflow and negative for outflow. With N =−X− for inflow and N =X+
for outflow we obtain the systems shown in figures 4 and 5, but with Re replaced by
the appropriate local Reynolds number, namely Re(s, t)=|ν|Re. The three-dimensional
pressure jump functions in (3.16a) are related to their two-dimensional equivalents via
the expression

(Π s−(s, t), Π s+(s, t))= |ν(s, t)|(Π−, Π+). (3.24)

We have, therefore, already calculated the asymptotic behaviour of Π s− and Π s+

for the pressure coupling condition (3.16a) in §§ 2.5.1 and 2.5.5. We see that
Π s−, Π s+→ 0 as ν→ 0 and thus (3.16a) does not impose a pressure singularity
at points where ν = 0. However, the possibility remains that (3.16b) could still
impose a pressure singularity when ν = 0, in which case an additional inner region
would be present. We proceed by assuming that |ν| =O(1), and discuss any pressure
singularities when they occur. We now calculate the behaviour of the tangential
velocities vs

0 and V s
0 within the inner regions (which are new to the three-dimensional

problem). This will allow us to determine local properties near the interface, for
example, the stress, and to couple the outer regions by determining the functions Λs−

and Λs+ in the final coupling condition (3.16b).
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On the boundary layer structure near a highly permeable porous interface 119

Within the obstacle, the tangential velocity is given at leading order by

V s
0 ≡−KPs

0s(0, s, t). (3.25)

The scaling

vs
0(N, s, z, t)=−(ps

0s(0, s, t)/12)v0(N, z; s, t), (3.26)

where we reiterate that s and t are now parameters in the inner three-dimensional
problem, results in the exterior flow equation

Re(s, t)(u0v0X +w0v0z)= 12+ v0XX + v0zz. (3.27)

Here, we introduce X such that X=X−<0 for inflow, and X=X+>0 for outflow, thus
remaining consistent with the two-dimensional analysis. We emphasise that, as with
the two-dimensional case, we expect the behaviour of the tangential velocity to vary
depending on whether we have inflow or outflow. The cell wall boundary conditions
for v0 are given by

v0 = 0 on z= 0, 1 for X− < 0 and X+ > 0, (3.28)

the interfacial conditions are

v0 = 0 on X = 0 for 0< z< 1, (3.29)

and the matching conditions are

v0→ 6z(1− z) as X−→−∞ and X+→∞ for 0< z< 1. (3.30)

In appendix C, we integrate the O(ε) continuity conditions (3.17d), (3.18d) over the
channel height to obtain the expression

∂

∂n

(
ps

1 −
Re
10

(
ps

0t −
3

56
|∇ps

0|2
))
− 12K

∂Ps
1

∂n

= 12
∫ ∞

0

∫ 1

0

(
vs

0s(N, s, z, t)− us
0s(0, s, z, t) · s

)
dz dN, (3.31)

encompassing the entrainment effect which occurs at this order. Using the outer
solutions (3.7) and the tangential velocity scaling (3.26) in (3.31), we deduce that the
inflow and outflow flux jumps Λs− and Λs+ in (3.16b) are given by

Λs− =−
∫ 0

−∞

∫ 1

0

∂

∂s
(ps

0s(0, s, t)(v0(X−, z; s, t)− 1)) dz dX−, (3.32a)

Λs+ =−
∫ ∞

0

∫ 1

0

∂

∂s
(ps

0s(0, s, t)(v0(X+, z; s, t)− 1)) dz dX+, (3.32b)

where v0 satisfies the system (3.27)–(3.30). We proceed by determining the leading-
order asymptotic behaviour of Λs− and Λs+ in the sublimits in which Re� 1 and
1� 1/K� Re� 1/ε.
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3.5. Small local Reynolds number: Re� 1
For the small local Reynolds number case, Re � 1, the inertial terms in the
governing equation (3.27) are not present at leading order in Re. Therefore, v0
has no dependence on s or t (which come from Re(s, t)), nor on whether we have
inflow or outflow. The local Reynolds number uses the local velocity component
normal to the interface averaged over the channel height. Thus, the problem we
present in this section governs the case when the normal local velocity is small, as
well as the case when the global Reynolds number is small. The former case can
occur, for example, in the transition between inflow and outflow for a large global
Reynolds number, or when the obstacle is close to impermeable. For the latter reason,
this problem also appears in the impermeable obstacle case considered in Thompson
(1968).

We consider outflow without loss of generality, the O(1) terms in (3.27) yielding
the governing equation

−12= v0XX + v0zz, with X+ = X > 0. (3.33)

It follows from (3.33) and the outflow versions of the boundary conditions given in
(3.28)–(3.30) that

v0 = 6z(1− z)− 24
∞∑

k=0

α−3
k exp(−αkX) sin αkz, (3.34)

where αk = (2k + 1)π for non-negative integers k. Using this flow result, we can
deduce that the shear stress in the tangential direction is

σns ∼ εvs
0X(0, z; s, t)= ε

(
−2ps

0s(0, s, t)
∞∑

k=0

α−2
k sin αkz

)
, (3.35)

as ε, Re→ 0.
Substituting the tangential flow solution (3.34) into the outer flux jump conditions

(3.32), we obtain at leading order an analytic expression for the coupling condition
(3.16b), namely

∂ps
1

∂n
− 12K

∂Ps
1

∂n
= 93ζ (5)

2π5
ps

0ss on ∂D, (3.36)

where ζ is the Riemann zeta function. As inflow and outflow are reversible in the
Stokes equations, the Heaviside functions in (3.16b) disappear and we can deduce that,
in the limit in which ε� Re� 1, no pressure singularities exist up to O(ε).

3.6. Large local Reynolds number: 1� 1/K� Re� 1/ε
Now we consider the local asymptotic sublimit 1� 1/K�Re� 1/ε and, as in § 2.5,
we find it useful to work with the inverse local Reynolds number, δs = Re−1� 1, for
ease of notation. The asymptotic structure here is the same as in § 2.5; our goal is to
determine the behaviour of the tangential velocity v0 from the system (3.27)–(3.30),
and use this to determine the asymptotic behaviour of the flux jump functions from
(3.32).

We scale the first correction terms in the outer regions with the global Reynolds
number as follows

(us
1,Qs

1, ps
1, Ps

1)= Re(us
10,Qs

10, ps
10, Ps

10)+ (us
11,Qs

11, ps
11, Ps

11)+O(Re−1
), (3.37)

but the inner regions will be asymptotic expansions in the local Reynolds number. We
split the analysis into inflow and outflow, starting with the former.
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3.6.1. Inflow
The inflow behaviour is similar to the flow considered in § 2.5.1, for which the

asymptotic structure is given in figure 7. We show that the leading-order tangential
velocity is independent of X− through region II and region III, but the next-order flow
depends on X− in region II. In this section we also show that the no tangential slip
condition (3.29) is satisfied in region IIa, and we calculate the asymptotic behaviour
of Λs− as δs→ 0.

In region II, the tangential flow is unchanged at leading order and satisfies the
asymptotic expansion

v0(X−, z; s, t)= 6z(1− z)+ δsv01 +O(δ4/3
s ) as δs→ 0. (3.38)

Substituting (3.38) into the governing equation (3.27) and equating terms of O(1),
gives

z(1− z)v01X− + (1− 2z)w01 = 0, (3.39)

with the matching condition

v01→ 0 as X−→−∞. (3.40)

Equation (3.39), with far-field condition (3.40), can be integrated numerically with
respect to X− to determine v01. The resulting correction to the tangential velocity
induces a slip on the cell walls, which is remedied by a boundary layer in region IIb
(as illustrated in figure 7), the details of which are omitted from this paper for the
sake of brevity.

The coordinate scaling in region IIa is X− = δsX̂, and we use hats to denote all
variables in this region. We use the flow variables calculated in § 2.5.3, and pose an
asymptotic expansion for the tangential velocity of the form

v̂0(X̂, z; s, t)= v̂00(X̂, z; s, t)+O(δs), (3.41)

where the leading-order term satisfies the governing equation

6z(1− z)v̂00X̂ = v̂00X̂X̂ for X̂ < 0, 0< z< 1, (3.42)

with the no tangential slip condition (3.29) yielding

v̂00 = 0 on X̂ = 0, 0< z< 1, (3.43)

and a matching condition with region II given by

v̂00(X̂, z; s, t)∼ 6z(1− z) as X̂→−∞, for 0< z< 1. (3.44)

The system (3.42)–(3.44) is solved by

v̂00 = 6z(1− z)(1− exp(6z(1− z)X̂)). (3.45)

The leading-order contribution to Λs− in (3.32a) is of O(δs), and comes from
both the O(δs) term in region II and the O(1) term in region IIa, as region IIa
is O(δs) smaller than region II. Therefore, substituting the asymptotic expansion
(3.38) into (3.32a), and using the governing equation (3.39) to relate the velocity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.308


122 M. P. Dalwadi, S. J. Chapman, S. L. Waters and J. M. Oliver

v01 to w01 (which has already been calculated numerically in § 2.5.2), along with the
leading-order solution for the tangential velocity in region IIa (3.45), the leading-order
contribution to (3.32a) becomes

Λs− ∼ 1
Re

∂

∂s

(
ps

0s(0, s, t)
ν(s, t)

(
1−

∫ 0

−∞

∫ 1

0

(
2z− 1

z(1− z)

∫ X−

−∞
w01(ξ , z; s, t) dξ

)
dz dX−

))
,

(3.46)

as ε, 1/Re→ 0 with ε � 1/Re� K � 1. We note that the integral is finite because
w01→ 0 as z→ 0, 1.

In contrast to the two-dimensional case, the pressure now varies in the s-direction.
Therefore, the component of the interfacial stress in the normal direction is different
from the two-dimensional case (2.60a), and in three dimensions is given by

σnn =−(Ps
0(0, s, t)+ ε(RePs

10(0, s, t)+ ps
11(0, s, z, t)))+O(ε/Re1/3

) (3.47)

as ε,1/Re→ 0 with ε�1/Re�K�1. We note that Ps
0 and Ps

10 have no z-dependence.
Therefore, as in two dimensions, the first order at which the normal stress varies in z
is at O(ε). Finally, we determine the leading-order term in the component of the shear
stress on the obstacle boundary in the s-direction for inflow, σns. From the tangential
flow solution in region IIa given by (3.45), and recalling the scaling (3.26), we deduce
that

σns ∼ ε

δs

ps
0s(0, s, t)

12
v̂0X̂(0, z; s, t)=−εRe(3ν(s, t)ps

0s(0, s, t)(z(1− z))2), (3.48)

as ε, 1/Re→ 0 with ε� 1/Re�K� 1.

3.6.2. Outflow
Outflow occurs in a similar manner to § 2.5.5, for which the asymptotic structure is

illustrated in figure 11. The tangential velocity within region V is plug flow (as given
by (3.25)) and the tangential flow in region VI is of O(δs). The tangential flow then
transitions to Poiseuille flow in region VIa, where it becomes of O(1). In this section
we solve for the leading-order tangential flow for outflow and calculate the asymptotic
behaviour of Λs+ as δs→ 0.

In region VI, we use the flow variables calculated in § 2.5.6 as well as the
asymptotic expansion

v0(X+, z; s, t)= δs(12X+)+O(δ3/2
s ) as δs→ 0, (3.49)

which satisfies the no tangential slip condition (3.29). The no-slip condition on the cell
walls is satisfied in region VIb (as illustrated in figure 11) via a similarity solution,
as described in appendix B.1. As with the three-dimensional inflow case considered
in the previous section, the component of the interfacial stress in the normal direction
is now

σnn =−(Ps
0(0, s, t)+ εRePs

10(0, s, t))+O(ε/δ1/2
s ), (3.50)

as ε, 1/Re→ 0 with ε � 1/Re � 1, and where Ps
0 and Ps

10 have no z-dependence.
Therefore, as in two dimensions, the first order at which the normal stress varies in z
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On the boundary layer structure near a highly permeable porous interface 123

is at O(ε/δ1/2
s ). From (3.49) and the scaling (3.26), we deduce that the stress on the

interface in the tangential direction is

σns ∼−ε ps
0s(0, s, t)

12
v̂0X+(0, z; s, t)= ε

ν(s, t)Re
ps

0s(0, s, t), (3.51)

as ε, 1/Re→ 0 with ε� 1/Re�K� 1.
The transition to Poiseuille flow occurs in region VIa, within which the relevant

coordinate scaling is X+ = δ−1
s X̃. We further use v0 = ṽ0 to indicate that we are in

this intermediate region, and use the variables introduced in § 2.5.7. We substitute the
asymptotic expansion

ṽ0 = ṽ00 +O(δ1/2
s ) as δs→ 0, (3.52)

into the governing equation (3.27) to obtain the leading-order governing equation

ũ00ṽ00X̃ + w̃01ṽ00z = 12+ ṽ00zz. (3.53)

The cell wall boundary conditions (3.28) become

ṽ00 = 0 on z= 0, 1 for X̃ > 0, (3.54)

the matching condition with region VI is

ṽ00→ 0 as X̃ ↓ 0 for 0< z< 1, (3.55)

and the far-field behaviour is determined via the matching condition (3.30), and is
given by

ṽ00 ∼ 6z(1− z) as X̃→∞ for 0< z< 1. (3.56)

The system (3.53)–(3.56) details the transition from plug to Poiseuille tangential
flow. To determine the flux jump Λs+ at leading order, the system must be solved
numerically. We note that the system (3.53)–(3.56) is independent of K, and hence
only needs to be solved once to determine Λs+ at leading order.

Accounting for the change of variable X+ = δ−1
s X̃ being dependent on s, we find

∂

∂s
7→ ∂

∂s
− X̃
ν

dν
ds

∂

∂X̃
, (3.57)

and it follows that the leading-order behaviour of Λs+ is given by

Λs+ ∼−ReΛa
∂

∂s
(νps

0s(0, s, t)), (3.58a)

where

Λa =
∫ ∞

0

∫ 1

0
(1− ṽ00(X̃, z)) dz dX̃. (3.58b)

We calculate ṽ00 numerically using a second-order central finite-difference scheme,
then determine Λa using the trapezium rule. We find that Λa ≈ 0.125 to three
significant figures.
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Combining the outflow flux jump (3.58) with its inflow equivalent (3.46), and
recalling that ν=KPs

0n(0, s, t), we find that the leading-order (in δ) coupling condition
(3.16b) in the large Reynolds number asymptotic sublimit is given by

∂

∂n

(
ps

10 −
1
10

ps
0t +

3
560
|∇ps

0|2
)
− 12K

∂Ps
10

∂n
=−KΛa

∂

∂s

(
Ps

0nps
0s

)
H(u0 · n) on ∂D.

(3.59a)

The leading-order pressure jump condition (3.16a) in the large Reynolds number
sublimit is given by

ps
10 − Ps

10 = (KPs
0n)

2Π+0 H(u0 · n) on ∂D. (3.59b)

We see that the coefficient premultiplying the Heaviside function in (3.59a) does
not necessarily vanish when u0 · n = 0, whereas the coefficient premultiplying the
Heaviside function in (3.59b) does vanish. Thus, at these points the pressure is
continuous but the pressure derivative along the boundary will have a log singularity.

3.7. Summary
We now summarise the main results for the three-dimensional case. The general outer
problem is governed by the two-dimensional linear equations: outside D

∇2
⊥ps

0 = 0, ∇2
⊥

(
ps

1 +
3Re
560
|∇ps

0|2
)
= 0; (3.60a,b)

and inside D
∇2
⊥Ps

0 = 0, ∇2
⊥Ps

1 = 0. (3.61a,b)

The coupling conditions (in outer variables) on the boundary of the obstacle cross-
section ∂D are given by

ps
0 − Ps

0 = 0, (3.62a)

ps
1 − Ps

1 =K
∣∣∣∣
∂Ps

0

∂n

∣∣∣∣Π(s, t; Re,K), (3.62b)

∂ps
0

∂n
− 12K

∂Ps
0

∂n
= 0, (3.62c)

∂

∂n

(
ps

1 −
Re
10

(
ps

0t −
3

56
|∇ps

0|2
))
− 12K

∂Ps
1

∂n
=Λ(s, t; Re,K). (3.62d)

Here, ∂/∂n denotes the outward normal derivative to the obstacle, and we define the
functions

Π(s, t; Re,K)=Π−(s, t; Re,K)H(Ps
0n)+Π+(s, t; Re,K)H(−Ps

0n), (3.63a)
Λ(s, t; Re,K)=Λs−(s, t; Re,K)H(Ps

0n)+Λs+(s, t; Re,K)H(−Ps
0n), (3.63b)

where Π− and Π+ are outputs to the nonlinear systems presented in figures 4 and 5,
Λs− and Λs+ are solutions to (3.32a) and (3.32b) respectively and H(x) denotes the
Heaviside step function.
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For ε, Re→ 0, we found that Π− = −Π+ and these functions can be numerically
determined by solving a system of linear equations, as described in § 2.4. Additionally,
from (3.36), we found that

Λs−, Λs+ ∼ 93ζ (5)
2π5

ps
0ss(0, s, t) as ε, Re→ 0, (3.64)

where ζ is the Riemann zeta function.
For ε, 1/Re→ 0 with ε � 1/Re � K � 1, we found in §§ 2.5.1 and 2.5.5,

respectively, that

Π− ∼ α/K, Π+ ∼ ReK|Ps
0n(0, s, t)|Π+0 , (3.65a,b)

recalling that Re(s, t)= K|Ps
0n|Re, where α ≈−0.117 and Π+0 ≈−0.331. In the same

limit, we also found that Λs−=O(1/(ReK)) (the prefactor at this order of magnitude
is given in (3.46)), and that

Λs+ ∼−ReKΛa
∂

∂s
(Ps

0n(0, s, t)ps
0s(0, s, t)) (3.66)

as ε, 1/Re→ 0 with ε� 1/Re�K� 1, where Λa ≈ 0.125 (defined in (3.58b)).
In the limit in which ε, Re→ 0, we found that the interfacial stress σ (n)|∂D =
−ps

0n|∂D +O(ε), where n is the unit normal vector on the interface directed towards
the exterior fluid. The prefactors in the error term can be determined by solving a
linear system of equations. For these stress components in the n- and z-directions, we
must solve the problem of Stokes flow coupled to Darcy flow, and present the system
to be solved numerically in § 2.4. The error term due to the stress component in the
s-direction is given in (3.35). For the stress components in the n- and z-directions, we
showed in figure 6 the O(ε) stress acting on the interface, the first order at which the
stress varies in z.

In the limit in which ε, 1/Re→ 0 with ε� 1/Re� K� 1, the interfacial stress is
given by

σ (n)|∂D ∼ −(Ps
0(0, s, t)+ εRePs

10(0, s, t))n
− εReK(3Ps

0n(0, s, t)ps
0s(0, s, t)(z(1− z))2)H(Ps

0n)t, (3.67)

where t = ez × n is the unit tangent vector on the interface in the anticlockwise
direction. The given stress components in the normal direction in (3.67) do not vary
in z, and the order of magnitude of the error is different for inflow and for outflow.
For inflow, the error is of O(ε) and the correction terms in the n- and z-directions
are given in (3.47) and (2.60b), respectively. In figure 10, we show the O(ε) stress
for inflow (in the n- and z-directions) due to the inner flow. For outflow, the errors
in the interfacial stress are of O(ε(ReK)1/2) in the n-direction, O(ε/(ReK)) in the
s-direction and O(ε/(ReK)1/2) in the z-direction, as deduced in (3.50), (3.51) and
(2.72b), respectively.

4. Application of results to a cylinder with a circular cross-section within a Hele-
Shaw cell
We now apply our results to the problem of a forced time-dependent far-field flow

in a Hele-Shaw domain containing a porous cylinder whose cross-section is a circle
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with dimensionless radius 1. Such a set-up can arise in tissue engineering, where the
interior of the porous obstacle is seeded with cells. Another application is in modelling
the erosion of a porous biofilm, for example, the attempted removal of dental plaque
from between teeth.

In these applications, quantities of physical interest can be determined from our
analysis. Firstly, the net force acting on the porous obstacle determines the movement
of the porous obstacle were it free to move. Although a periodic forcing in the low
Reynolds number regime would lead to no net movement over one oscillation (Purcell
1977), the same is not true for a large Reynolds number regime, and we investigate
the latter case here. Secondly, in tissue engineering applications, cell growth is often
coupled to the shear stress that cells experience, which is one part of a process known
as mechanotransduction. Thus, to help with cell placement within a porous scaffold, it
is important to know how the internal shear stress varies within an obstacle. We use
results from Whittaker et al. (2009) to estimate the spatial variation of shear stress
within the porous obstacle, and thus the spatial variation of shear stress experienced
by cells placed within such an obstacle. Finally, biofilm erosion is often taken to be
proportional to the square root of the shear stress acting on the interface (Duddu et al.
2009) and, to this end, we determine the interfacial shear stress.

We use cylindrical polar coordinates (r, θ, z), where r=0, z=1/2 corresponds to the
centre of the porous obstacle, and define the components of the exterior and interior
fluid velocities as us = urer + uθeθ + uzez and Qs =Urer +Uθeθ +Uzez, respectively.

We consider the (more interesting) case where ε, 1/Re→ 0 with ε� 1/Re� K�
1, and use the corresponding outer system as outlined in § 3.7. That is, we consider
asymptotic expansions of the form

us ∼ us
0 + εReus

10 as ε, 1/Re→ 0 with ε� 1/Re�K� 1, (4.1)

with similar expressions for Qs, ps and Ps. The governing equations for the exterior
fluid are

∇2
⊥ps

0 = 0, ∇2
⊥

(
ps

10 +
3

560
|∇ps

0|2
)
= 0 for r> 1, 0< θ 6 2π, 0< z< 1; (4.2a,b)

and, for the interior flow,

∇2
⊥Ps

0 = 0, ∇2
⊥Ps

10 = 0 for r< 1, 0< θ 6 2π, 0< z< 1. (4.3a,b)

The coupling conditions on r= 1 are given by

ps
0 − Ps

0 = 0, (4.4a)

ps
10 − Ps

10 =Π+0
(

K
∂Ps

0

∂r

)2

H(−Ps
0r), (4.4b)

∂ps
0

∂r
− 12K

∂Ps
0

∂r
= 0, (4.4c)

∂

∂r

(
ps

10 −
1

10

(
ps

0t −
3
56
|∇ps

0|2
))
− 12K

∂Ps
10

∂r
=−KΛa

∂

∂θ

(
Ps

0rp
s
0θ

)
H(−Ps

0r),

(4.4d)
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where K is the dimensionless permeability, Π+0 , Λa and Λb are constants defined in
§ 3.7, and H(x) is the Heaviside step function. The far-field conditions are

ps
0 ∼−12xG(t), ps

10→ 0 as r→∞. (4.5a,b)

The leading-order problem is solved by

ps
0 =−12

(
r+ A

r

)
G(t) cos θ, Ps

0 =−12(1+ A)rG(t) cos θ, (4.6a,b)

where A = (1 − 12K)/(1 + 12K). The points on the obstacle boundary at which the
flow transitions between inflow and outflow are when Ps

0r = 0 which, for this specific
problem, is when θ =π/2, 3π/2, and the region θ ∈ (π/2, 3π/2) admits inflow when
G> 0, and outflow when G< 0. The first-order problem is solved by

ps
10 =−

27A2

35
G2(t)

r4
+
∞∑

n=1

an(t)r−n cos nθ, (4.7a)

Ps
10 =

∞∑

n=0

bn(t)rn cos nθ, (4.7b)

where the coefficients an, bn can be determined via a standard application of
Fourier series, and we give bn (which are used in the following analysis) in
appendix D. We note that the even modes (apart from n = 0, 2) vanish, and
(a2n+1, b2n+1) ∼ ((−1)n/(2n + 1)2)(α, β) as n→∞ (where α and β are constant).
Thus, at the points θ = π/2, 3π/2 (where there is a transition between inflow and
outflow) the O(εRe) pressures are continuous but their derivatives with respect to θ
are singular, as expected. Using (3.67), the total force acting on the obstacle, F, is
given by

F ∼ −
∫ 2π

0
(Ps

0(1, θ, t)+ εRePs
10(1, θ, t))(cos θex + sin θey) dθ

− εReK
∫ 2π

0
H(Ps

0r)

∫ 1

0
3(z(1− z))2Ps

0r(1, θ, t)ps
0θ(1, θ, t)

× (−sinθex + cos θey) dz dθ, (4.8)

as ε, 1/Re→ 0 with ε� 1/Re�K� 1. Thus the only contribution to the total force
acting on the obstacle from Ps

10 is from the coefficient b1(t), given by

b1(t)= 6(1− A)
5(1+ 12K)

G′(t)− 96K(1+ A)2

π(1+ 12K)
(2KΠ+0 +Λa)G(t)|G(t)|. (4.9)

Thus, the force (4.8) is given by

F∼
(

12π(1+ A)G(t)+ εRe
(

48K
5
(1+ A)2G(t)|G(t)| −πb1(t)

))
ex, (4.10)

as ε, 1/Re→ 0 with ε� 1/Re�K� 1.
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If the far-field forcing is periodic, with zero mean, the force acting on the obstacle
does not necessarily vanish. That is, if there exists T > 0 such that G(t + T)≡ G(t)
for all t, and where

∫ T
0 G(t) dt= 0, the net force experienced by the obstacle over one

oscillation is given by
∫ T

0
F(t) dt∼ 96(1+ A)2(εReK)

(
1

10
+ 2KΠ+0 +Λa

1+ 12K

)(∫ T

0
G(t)|G(t)| dt

)
ex (4.11)

as ε, 1/Re→ 0 with ε� 1/Re�K� 1. The integral on the right-hand side of (4.11)
vanishes for single-mode oscillations (for example, G(t) = cos t) but, in general, not
for more complicated periodic functions (for example, G(t) = cos t − cos 2t). Even
though the forcing is periodic, the effect of fluid inertia is to impart a net force over
one oscillation. This would cause the obstacle to drift were it free to move. We note
that the right-hand side of (4.11) vanishes as K→ 0, and hence the net force would
not appear at this order for impermeable obstacles. We can attribute the appearance
of the net force to the entrainment effect that occurs for outflow, which we were able
to capture via a formal boundary layer analysis.

In tissue engineering applications, the shear stress S experienced within the porous
obstacle is of interest, as cells are placed within the porous obstacle and their growth
may be dependent on the shear stress. As different cells will require different levels
of shear stress to grow optimally, it is important to understand how the shear stress
experienced by cells will vary across the porous obstacle. In Whittaker et al. (2009),
it was shown that the shear stress experienced by cells within the individual porous
scaffold pores can be estimated from the Darcy velocity. In particular, the shear stress
is proportional to the magnitude of the Darcy velocity, which can be obtained by the
pressure solutions (4.6b) and (4.7b), to obtain

S∝ |K∇Ps| ∼ 12K(1+ A)|G| − εReK
G
|G|

∞∑

n=0

(n+ 1)bn+1(t)rn cos nθ. (4.12)

We can see from (4.12) that the spatial variation of shear stress through the
obstacle occurs at O(εReK). We show that there can be significant spatial variation
of shear stress within the obstacle (figure 14). From the coefficients bn(t), given
in appendix D, we can deduce that the spatial variation is symmetric across x = 0
when

∫ T
0 G|G| dt = 0. Thus, all single-mode oscillations will cause an internal shear

stress which is symmetric across x = 0 at O(εRe), for example G(t) = (cos t)/
√

π
(figure 14(a)), but this will not be the case for more complicated forcing functions,
such as G(t)= (cos t− cos 2t)/

√
2π (figure 14(b)). The prefactors of these functions

are chosen such that
∫ 2π

0 G2(t) dt=1. We see that there are apparent singularities in the
internal shear stress at (x, y)= (0,±1), these are due to the logarithmic singularities
that we have previously discussed. Although the shear stress will increase near these
points, their singular nature is unphysical and the shear stress will be bounded; we
expect that a formal realization of this could be achieved by considering boundary
regions near these points if required.

We can also apply the results of our boundary layer analysis to predict the erosion
of a porous biofilm, by calculating the shear stress acting on the interface. The
square root of this shear stress is proportional to the interfacial erosion due to the
flow (Duddu et al. 2009). Using the flow solution (4.6) in (3.67), we see that the
leading-order shear stress, τ , is

τ = 216(εReK)H(Ps
0r)((1+ A)G(t)z(1− z))2 sin 2θ t, (4.13)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.308


On the boundary layer structure near a highly permeable porous interface 129

 0.5

 0

 –0.5

 –1.0

1.0

 0.5

 0

 –0.5

 –1.0

1.0

0 0.5 1.0–1.0 –0.5 0 0.5 1.0–1.0 –0.5

–0.1 0.1 0.2 0.300.050.05

0.15
0.1

0.15
0.1

y

x x

(a) (b)
0.2

0.2

FIGURE 14. The spatial variation of the Darcy velocity averaged over one temporal
oscillation of the far field, given by the O(εReK) term in (4.12). This term is proportional
to the shear stress experienced within the porous obstacle. We use far-field forcing
functions of (a) G(t) = cos(t)/

√
π, (b) G(t) = (cos t − cos 2t)/

√
2π. The functions are

chosen such that
∫ 2π

0 G2(t) dt = 1. In both figures, we take K = 0.01, we use contour
spacings of 0.05 and, as there are logarithmic singularities at (x, y)= (0,±1), we do not
plot contours of values larger than 0.3. We see that the symmetry exhibited in (a) is not
present in (b). This is due to the effect of fluid inertia.

where t= ez× n is the tangential vector on the interface in the direction of increasing
θ . The Heaviside step function in (4.13) means that τ vanishes for θ ∈ (π/2, 3π/2)
when G < 0, and for θ ∈ (−π/2, π/2) when G > 0. For a periodic far-field forcing
with zero mean, the temporal average over one oscillation of the square root of the
magnitude of shear stress is

1
T

∫ T

0
|τ |1/2 dt= Γ z(1− z)| sin 2θ |1/2, (4.14a)

Γ =
(
(216(εReK))1/2

1+ A
T

)
×





∫ T

0
|G|H(G(t)) dt for θ ∈ (π/2, 3π/2),

∫ T

0
|G|H(−G(t)) dt for θ ∈ (−π/2,π/2).

(4.14b)

Here, (4.14a) is proportional to the initial biofilm erosion. Thus, we have deduced
that this erosion has a shape of z(1− z)| sin 2θ |1/2, repeated in each quadrant of the
interface. The magnitude of this erosion will be the product of Γ and the constant of
proportionality linking erosion to the square root of shear stress. From the form of Γ ,
given in (4.14b), we see that the magnitude of erosion is not necessarily symmetric
across x= 0 and the asymmetry will depend on G(t). The interfacial erosion is locally
maximal at (θ, z)= (π(1+ 2n)/4, 0.5) for n∈Z and, in each quadrant, decreases from
these points of maxima with two lines of symmetry, one with constant z and the other
with constant θ (figure 15).
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1

0

0

0.1

0.2

z

FIGURE 15. A contour plot of the function z(1 − z)| sin 2θ |1/2, showing the shape of
erosion in the region (θ, z)∈ [0,π/2] × [0, 1]. This shape is repeated in each quadrant of
the circular cylinder interface, but the magnitude will vary, as discussed in the text. We
use contour spacings of 0.05.

5. Discussion

We make extensive use of the method of matched asymptotic expansions to
investigate the laminar flow around and through a porous obstacle in both a channel
and a Hele-Shaw cell. In particular, we determine how the flow behaves close to an
interface (in a region whose width is of the order of the small aspect ratio) between
single-phase and porous flows (governed by the Navier–Stokes and Darcy equations,
respectively) for both small and large Reynolds numbers.

Our analysis allows us to resolve everywhere the leading-order fluid velocity, a
necessary condition to start investigating the nutrient transport in the system, with
the eventual goal to optimize nutrient delivery to cells within the porous obstacle.
Furthermore, we obtain important characteristics of the inner flow (in a sense made
formal within the main text), such as the interfacial stress, and determine suitable
conditions to couple the (simpler) outer flows. The analytical approach reveals the
dependence of the flow on the Reynolds number and the dimensionless permeability,
without resorting to numerically expensive parameter sweeps for an inherently
nonlinear problem. Importantly, we note that any variation of the interfacial stress
in the direction transverse to the channel/cell cannot be determined solely from the
outer solutions, and requires an in-depth boundary layer analysis. In particular, we
must continue past the leading-order terms in the asymptotic expansions to obtain the
relevant contributions to the stress.

In the first part of this paper we consider two-dimensional steady flow through a
channel fully blocked by a finite-length porous obstacle and, in particular, examine
the regions near the interface between single-phase and porous flow. These inner
regions satisfy the full two-dimensional Navier–Stokes equations, and we calculate
the pressure and flux jumps between outer regions in the asymptotic limits of small
and large Reynolds number.

Whilst we include results for the small Reynolds number limit for comparison
and completeness, the case that is more physically relevant to tissue engineering
applications is the large Reynolds number limit. In this paper, we show that the latter
case also exhibits more interesting flow behaviour, and we unveil a rich boundary
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layer structure. The leading-order (in terms of the large Reynolds number) transition
between Poiseuille and plug flow occurs within the porous medium for inflow, and
outside the porous medium for outflow. Therefore, the boundary layer structure is
different for inflow and outflow, reflecting the irreversible nature of the large Reynolds
number flow. We determine that the pressure jump is an order of the Reynolds number
larger in magnitude for outflow than for inflow. There is no flux jump between outer
regions, due to the restriction of fluid movement to a two-dimensional plane.

In the second part of this paper we extend the two-dimensional work to consider
unsteady three-dimensional flow in a Hele-Shaw cell containing a cylindrical porous
obstacle (which fits tightly between the parallel planar plates of the cell) whose
cross-sectional boundary is smooth. Due to the smooth boundary, the flow behaviour
and boundary layer structure close to the interface are similar to the two-dimensional
channel flow considered previously and we can reduce much of the three-dimensional
problem to the two-dimensional problem considered in the first part of the paper.
However, in contrast to the two-dimensional channel flow case, a small flux jump
between the outer flows is now present, as the tangential flow allows a small amount
of fluid to move around, instead of through, the porous obstacle. We summarise the
main results of the three-dimensional problem in § 3.7, including the results for the
interfacial stress and the derived conditions required to couple the outer flows.

In § 4 we apply the general results to a three-dimensional cylinder with a circular
cross-section in a flow with a far-field forcing. From this, we are able to make several
physical predictions. We deduce that, due to the fluid inertia, a periodic forcing with
zero mean could cause a drift on the cylinder were it free to move. This is relevant
to the tissue engineering application we discussed in § 1, where it is important to
control the movement of the porous obstacle, which has implications for the delivery
of nutrients to cells within the construct. Moreover, knowledge of this long-term
drift may be helpful in flushing blockages from pipes. We also calculate the spatial
variation in internal shear stress through the obstacle. As cell growth can be coupled
to shear stress, this has important implications for cell placement in tissue engineering
applications. We show that the spatial variation in shear stress is symmetric through
the obstacle for a single-mode far-field oscillatory forcing, but can break symmetry
for multiple-mode far-field oscillatory forcings. We are also able to determine the
interfacial stress and use this result to obtain the initial interfacial erosion of a porous
biofilm, assuming that interfacial erosion is proportional to the square root of the
modulus of shear stress with a given constant of proportionality.

In the large Reynolds number limit, we apply three different tangential slip
conditions on the interface for inflow to see the effect of varying boundary condition.
We find that any of the three tangential slip conditions we apply produce the same
leading-order coupling conditions for inflow. Thus, knowledge of the tangential
velocity condition is important for inflow if local information about, say, the interfacial
stress were required, and it is important for outflow if global information about the
outer problem is required. Additionally, we note that although we imposed continuity
of pressure on the full problem, the coupling condition (3.62a) would remain the
same if we had imposed continuity of stress instead. This is because the viscous
term in the normal stress does not contribute to the stress at leading order. The
higher-order pressure coupling condition (3.62b) would remain unchanged in the
large Reynolds number limit for the same reason, but would be different in the small
Reynolds number limit.

In this work, we have considered a porous medium within which the flow is
governed by Darcy’s equations. We restrict ourselves to these governing equations
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because the tissue engineering application we are interested in requires a porous
scaffold that maintains its structural integrity whilst moving within the flow. Thus, at
the very least, the underlying solid matrix of which the porous medium consists must
be connected, and Brinkman’s equations will not apply (Auriault 2009). However,
there may be applications that are not as restrictive, where Brinkman’s equations may
apply. In such cases, the coupling conditions for the outer problem would be different
to those derived in this paper, and a new analysis would be necessary to determine
these. Whilst the issue of coupling the plain and porous flow regions is numerically
simpler (as Brinkman’s equations are able to be applied to both plain and porous
fluid domains), the presence of the Laplacian viscous term means that it is more
difficult to make analytic progress with the resulting partial differential equations. For
example, the boundary layer structure may be significantly more complex within the
porous medium.

Although we have considered a porous obstacle whose interfacial boundary is
normal to the channel or bioreactor walls, this may not be the case. We show in § 4
that erosion of an initially straight wall is not uniform in any tangent direction to the
interface. More generally, manufacturing constraints could cause the porous insert to
have non-straight walls. Such imperfections will only change the flow problem if the
gradient of the walls is significant in one of the boundary layers. If this occurs, the
change in problem geometry yields a complicated extension to the problem we have
presented. However, this extension is vital if the full dynamic problem of erosion is
to be considered in, for example, the shape evolution of a biofilm.

The tissue engineering experiment discussed in § 1 involves a moving porous
obstacle, which is possible as there are small gaps between the flat sides of the
porous obstacle and the flat sides of the bioreactor (figure 1). Whilst our work has
considered unsteady flow, we have restricted ourselves to a pinned obstacle in this
paper, and neglected the small gaps. To consider the dynamic problem fully, we must
investigate the role of these gaps. The presence of gaps would have no effect on the
flow up to the asymptotic orders considered if these gaps were smaller than the size
of the boundary layers presented (Dalwadi 2014). However, a gap height of the same
order as the width of one of these boundary layers would significantly complicate
the boundary layer problem, as a result of the significant change in the geometry of
one or more domains in which we solve various submodels arising in the boundary
layer analysis. Knowledge of the work presented here allows the porous obstacle
trajectory to be calculated once the effect of the small gaps has been calculated. As
the obstacle movement would affect the flow, this would allow a deeper understanding
of the dynamics of nutrient transport and, ultimately, tissue growth.

The analytic nature of our results can significantly reduce the numerical expense of
solving such dynamical problems. This is because the coupling conditions and stress
components that we have determined are all in terms of the outer variables. Hence,
we have reduced a nonlinear three-dimensional problem to a linear two-dimensional
problem. More generally, this work highlights how the exploitation of an underlying
separation of scales can significantly reduce the computational complexity of a
physical problem.
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Appendix A. Additional inflow regions

In this Appendix we resolve the additional boundary layers for inflow. We first
introduce a boundary layer near z = 0 to resolve the issue of the O(δ) slip velocity
induced on the channel wall in region II in § 2.5.2. We call this boundary layer
region IIb. We use X− = X for convenience, and note that there will be a similar
boundary layer near z= 1.

Before we proceed, it will be useful to analyse the fluid velocities u01 and w01 in
region II in more detail. In the separable solutions to the governing equations (2.37)
and (2.45a), the fluid velocities u01 and w01 are given by

u01 =
∞∑

k=1

Ck exp(µkX−)g′k(z), w01 =−
∞∑

k=1

µkCk exp(µkX−)gk(z), (A 1a,b)

where the eigenfunctions gk(z) satisfy the eigenvalue problem

g′′k(z)+
(

2
z(1− z)

+µ2
k

)
gk(z)= 0 for z ∈ (0, 1) (A 2)

together with boundary conditions gk(0)=gk(1)=0 (obtained from the no-slip channel
wall boundary conditions given in figure 4). The coefficients Ck would have to be
determined numerically using the orthogonality of the eigenfunctions.

The relevant scalings are u0= δ1/3ů , w0= δ4/3ẘ and z= δ1/3Z, and we introduce the
new variable p1= p̊ to signify that we are working in region IIb. Under these scalings,
the bulk flow governing equations in figure 4 become

ů ů X + δ2/3ẘů Z =−δ1/3p̊ X + ů ZZ + δ2/3ů XX, (A 3a)
δů ẘX + δ5/3ẘẘZ =−p̊ Z + δẘZZ + δ5/3ẘXX, (A 3b)

0= ů X + δ2/3ẘZ. (A 3c)

The boundary conditions on the channel wall are

ů = 0 on Z = 0 for X < 0. (A 4)

We use asymptotic expansions

ů ∼ 6Z − δ1/36Z2 + δ2/3ů 01 +O(δ), (A 5a)
ẘ∼ ẘ02 +O(δ), (A 5b)

p̊ ∼−12X + δ1/3p̊ 12 +O(δ2/3) (A 5c)

as δ→ 0; substituting into the bulk flow equations (A 3) yields

6(Zů 01X + ẘ02)=−p̊12X + ů 01ZZ, (A 6a)
0=−p̊12Z, (A 6b)

0= ů 01X + ẘ02Z. (A 6c)

The channel wall boundary condition (A 4) is given by

ů 01 = ẘ02 = 0 on Z = 0 for X < 0, (A 7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.308


134 M. P. Dalwadi, S. J. Chapman, S. L. Waters and J. M. Oliver

and, from the general form of the flow solution in region II, (A 1), the matching
condition with the horizontal velocity in region II is given by

ů 01 ∼
∞∑

k=1

Ck exp(µkX)g′k(0), as Z→∞. (A 8)

We seek solutions of the system (A 6)–(A 8) in the form

(ů 01, ẘ02, p̊ 12X)=
∞∑

k=1

exp(µkX)( f ′k(Z),−µkfk(Z), bk), (A 9)

which automatically satisfy (A 6b), (A 6c) and where bk and fk(Z) are to be determined.
Substituting (A 9) into (A 6a), we obtain the differential equation

f ′′′k (Z)+ a3
k(Zf ′k(Z)− fk(Z))= bk, (A 10)

for fk(Z), where a3
k = 6µk > 0, and with boundary conditions

fk(0)= 0, f ′k(0)= 0, f ′k(∞)=Ckg′k(0). (A 11a−c)

The system (A 10)–(A 11) is solved by

fk(Z)=Ckg′k(0)

∫ Z

0

∫ u

0
Ai(akv) dv du

∫ ∞

0
Ai(aks) ds

, (A 12)

where Ai is the Airy function of the first kind. To determine bk, note that the general
solution for (A 10) is

fk(Z)= bk

a3
k
+ Bk1Z + Bk2h1(Z)+ Bk3h2(Z), (A 13)

where the far-field behaviour of h1 and h2 as Z→∞ is

h1 ∼ Z−5/4 exp
(

2
3(akZ)3/2

)
, h2 ∼ Z−5/4 exp

(− 2
3 (akZ)3/2

)
as Z→∞. (A 14a,b)

Applying the boundary condition (A 11c) imposes Bk1 = Ckg′k(0) and Bk2 = 0. The
remaining boundary conditions (A 11a,b) yield the solution for bk and Bk3, but the
simplest route to determine bk is to equate (A 13) with (A 12) as Z→∞ to deduce
that

bk =−3a4
kCkg′k(0)

∫ ∞

0

∫ ∞

u
Ai(akv) dv du, (A 15)

where we have used the identity
∫∞

0 Ai(akv) dv = (3ak)
−1.

We are unable to impose any conditions on the interfacial boundary X = 0 within
region IIb. This issue is resolved by another boundary layer near X= 0, which we call
region IIc. The scalings from region II to region IIc are u0 = O(δ1/3), w0 = O(δ4/3),
p1=O(δ1/3), X=O(δ2/3), and z=O(δ1/3). The leading-order equations yield a solution
of u0 ∼ 6z tanh(3z(−X)/δ), from which w0 and p1 can be determined.
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Appendix B. Additional outflow regions
B.1. Regions VIb and VIc

In this section we solve for the flow near the outflow channel wall (to match with
the asymptotic regions considered in two (§ 2.5.6) and three dimensions (§ 3.6.2)), in
a region we denote region VIb. For the two-dimensional channel flow problem, this
boundary layer is equivalent to the classic uniform high Reynolds number flow past
a flat plate considered by Prandtl (1905). We therefore consider the three-dimensional
problem, which uses the two-dimensional results. We use X+ = X for convenience.

The relevant scalings from region VI to region VIb are: z= δ1/2
s z̆, v0= δsv̆ and w0=

δ1/2
s w̆. We also use u0 = ŭ and p1 = p̆ to signify that we are working in region VIb.

With these scalings, the bulk flow governing equations given in figure 5 and (3.27)
become

ŭŭX + w̆ŭz̆ =−δsp̆X + ŭz̆z̆ + δsŭXX, (B 1a)
ŭv̆X + w̆v̆z̆ = 12+ v̆z̆z̆ + δsv̆XX, (B 1b)

ŭw̆X + w̆w̆z̆ =−p̆z̆ + w̆z̆z̆ + δsw̆XX, (B 1c)
0= ŭX + w̆z̆. (B 1d)

Substituting the asymptotic expansions

ŭ= ŭ0+O(δ1/2
s ), v̆= v̆0+O(δ1/2

s ), w̆= w̆0+O(δ1/2
s ), p̆= p̆10+O(δ1/2

s ) (B 2a−d)

as δs→ 0, into the bulk flow equations (B 1), we obtain the following leading-order
equations

ŭ0ŭ0X + w̆0ŭ0z̆ =−p̆10X + ŭ0z̆z̆, (B 3a)
ŭ0v̆0X + w̆0v̆0z̆ = 12+ v̆0z̆z̆, (B 3b)

0=−p̆10z̆, (B 3c)
0= ŭ0X + w̆0z̆. (B 3d)

The boundary conditions on the channel wall z̆= 0 are given by

ŭ0 = 0 on z̆= 0 for X > 0, (B 4)

and the matching conditions into region VI are given by

ŭ0 ∼ 1, v̆0 ∼ 12X, p10→ 0, as z̆→∞ for X > 0. (B 5a−c)

The system (B 3)–(B 5) is solved by

ŭ0 = f ′(η), v̆0 = 12Xh(η), w̆0 = ηf ′(η)− f (η)
2X1/2

, p10 = 0, (B 6a−d)

where η = z̆X−1/2 is the similarity variable. The function f (η) satisfies the following
Blasius ordinary differential equation:

f ′′′(η)+ 1
2 f (η)f ′′(η)= 0, f (0)= f ′(0)= 0, f ′(∞)= 1; (B 7a−c)

the function h(η) satisfies the following ordinary differential equation

h′′(η)+ 1
2 f (η)h′(η)− f ′(η)h(η)=−1, h(0)= 0, h(∞)= 1. (B 8a−c)
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The function f is well studied (see, e.g., Boyd (2008)), and its behaviour up to
exponentially small terms as η→∞ is given by

f ∼ η− β̃ as η→∞, (B 9)

where β̃ ≈ 1.721. This far-field behaviour, in conjunction with the solution for w̆0
in (B 6c), yields the matching conditions (2.67).

Finally, we note that the scalings from region VI to region VIc are: z∼ δs, X+∼ δs,
v0 ∼ δ2

s and ps
1 ∼ δ−1

s , thus yielding the full two-dimensional Navier–Stokes equations
for u0 and w0, and the full version of (3.27) for v0. That is, taking Re≡ 1 in (3.27).
We do not consider region VIc further.

B.2. Matching into region VIa
In this section we form the composite expansion between regions VI and VIb in their
far field as X+→∞, and thereby obtain the matching conditions (2.77) and (3.55)
with region VIa. When discussing the abscissa in region VI, we use X+ = X for
convenience.

Combining the leading-order versions of (2.62a) and (3.38), together with the far-
field first-correction terms (2.70)–(2.71), we obtain the region V far-field expansions
(as X→∞) up to O(δ1/2

s ) for the flow, and up to O(δ−1/2
s ) for the pressure as follows

u0 ∼ 1+ 2β̃(δsX)1/2, v0 ∼ 12(δsX), w0 ∼ β̃(1− 2z)
2(X/δs)1/2

, p1 ∼−2β̃(X/δs)
1/2.

(B 10a−d)

The matching conditions are obtained as follows. We first form the multiplicative
composite expansion of (B 10) with the solution near the channel wall at z= 0 (given
by (B 6)), and the equivalent solution near the channel wall at z = 1 (obtained by
taking η = (1 − z)(δsX)−1/2 and reversing the sign on w0). Then, we write these
expansions in terms of X̃ = δsX, and retain the leading-order terms to yield, as X̃ ↓ 0,

ũ0 ∼ (1+ 2β̃X̃1/2)f ′(η̃(0))f ′(η̃(1)), (B 11a)

ṽ00 ∼ 12X̃h(η̃(0))h(η̃(1)), (B 11b)

w̃0 ∼ (1− 2z)

2β̃X̃1/2
(η̃(0)f ′(η̃(0))− f (η̃(0)))(η̃(1)f ′(η̃(1))− f (η̃(1))), (B 11c)

p̃10 ∼−2β̃X̃1/2, (B 11d)

where η̃(0) = z/X̃1/2 and η̃(1) = (1− z)/X̃1/2.

Appendix C. Flux jump condition
In this section we determine the flux jump in terms of the tangential velocity, as

given in (3.31) by integrating the inner continuity equations (3.17d) and (3.18d) over
the cell height. Using the asymptotic expansions (3.21), and equating powers of ε, we
deduce that

∂

∂N

∫ 1

0
us

0(N, s, z, t) dz= 0,
∂

∂N

∫ 1

0
Us

0(N, s, z, t) dz= 0, (C 1a,b)
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and
∫ 1

0
us

1N(N, s, z, t) dz+ κ(s)
∫ 1

0
us

0(N, s, z, t) dz+
∫ 1

0
vs

0s(N, s, z, t) dz= 0, (C 2a)
∫ 1

0
Us

1N(N, s, z, t) dz+ κ(s)
∫ 1

0
Us

0(N, s, z, t) dz+
∫ 1

0
V s

0s(N, s, z, t) dz= 0, (C 2b)

noting from (3.25), the scaled solution within the porous obstacle, that V s
0(N, s, z, t)≡

−KPs
0s(0, s, t).

The matching conditions for vs
0, V s

0, us
1 and Us

1 are given by

vs
0 ∼ t · us

0(0, s, z, t) as N→∞, (C 3a)

V s
0 ∼−KPs

0s(0, s, t) as N→−∞, (C 3b)
us

1 ∼ n ·
(
Nus

0n(0, s, z, t)+ us
1(0, s, z, t)

)
as N→∞, (C 3c)

Us
1 ∼ n ·

(
NQs

0n(0, s, z, t)+Qs
1(0, s, z, t)

)
as N→−∞. (C 3d)

To formally avoid infinite terms in the limit as N→∞ when we integrate with
respect to N in (C 2), it is necessary to subtract the far-field limit of (C 2) from itself
(using (C 1) and (C 3)), yielding

∫ 1

0

(
us

1N − n · us
0n

∣∣
∂D

)
dz=−

∫ 1

0

(
vs

0s − t · us
0s

∣∣
∂D

)
dz, (C 4a)

∫ 1

0

(
Us

1N − n ·Qs
0n

∣∣
∂D

)
dz= 0. (C 4b)

Integrating (C 4) with respect to N between 0 and ∞ (using the far-field conditions
(C 3)), we deduce that

∫ 1

0

(
n · us

1

∣∣
∂D − us

1

∣∣
N=0

)
dz=−

∫ ∞

0

∫ 1

0

(
vs

0s − t · us
0s

∣∣
∂D

)
dz dN, (C 5a)

∫ 1

0

(
n ·Qs

1

∣∣
∂D − Us

1

∣∣
N=0

)
dz= 0, (C 5b)

where outer/inner variables evaluated on ∂D is meant in the sense of the outer/inner
problem. Finally, integrating the leading-order interfacial continuity of flux condition
(3.20a) across the cell height, we can relate (C 5a) and (C 5b). Using the outer flow
solutions (3.12) and (3.13), we obtain (3.31).

Appendix D. Flow coefficients
The flow coefficients bn(t), given in (4.7b), are

b0(t)=−G2(t)
(

27
35(1+ A2)+ 36Π+0 K2(1+ A)2

)
, (D 1a)

(1+ 12K) b2(t)=G2(t)
(

27A
35 − 36K(1+ A)2

(
Λa + 2Π+0 K

))
, (D 1b)

(1+ 12K) b2k+1(t)= 6
5
(1− A)

dG
dt
δ0k + 288K(1+ A)2(−1)k

π
(
(2k+ 1)2 − 4

)
(
Λa + 2Π+0 K

2k+ 1

)
G(t)|G(t)|,

(D 1c)
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b2k = 0 for k 6= 0, 1, (D 1d)

for integer values of k, and where δij is the Kronecker delta, and all other parameters
are defined in § 4.
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