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Atmospheric particulates may be a major source of boundary-layer instabilities leading
to laminar–turbulent transition on aerodynamically smooth bodies flying at supersonic
speeds. Particulates penetrating into the boundary-layer flow can excite wavepackets
of the first- and/or second-mode instability. The packets grow downstream, reach
the threshold amplitude and ultimately break down to turbulent spots. A numerical
model is developed to simulate excitation of unstable wavepackets by spherical solid
particulates. As an example, computations are carried out for a 14◦ half-angle sharp
wedge flying at an altitude of 20 km, Mach number 4 and zero angle of attack. The
numerical results agree satisfactorily with the theory developed by Fedorov (J. Fluid
Mech., vol. 737, 2013, pp. 105–131). The numerical model opens up an opportunity
to investigate receptivity to particulates for practical supersonic and hypersonic
configurations such as blunt bodies of revolution.
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1. Introduction
Under ‘quiet’ free-stream conditions, the boundary layer on a supersonic or

hypersonic body behaves as a convectively unstable waveguide (Fedorov 2011).
To predict the transition onset location one should solve the initial boundary-value
problem that requires detailed specification of the ambient disturbance environment.
Bushnell (1990) summarized information on the ambient disturbances for atmospheric
flights and pointed out that solid particulates are one of the major sources of
disturbance energy. The occurrence of atmospheric particulates is associated with
ice clouds, volcanic and other terrestrial dust as well cosmic dust (Turco 1992;
GAM Guide 1999). A substantial portion of particulates having sizes of the order
of 10 µm consists of the products of rocket exhausts from previous flights. These
findings motivated Fedorov (2013) to analyse the receptivity problem describing
excitation of unstable modes by spherical solid particulates interacting with the
laminar flow on a body moving at supersonic speeds. The analysis was focused on
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the dynamic interaction of particulates with the boundary layer. Effects associated
with particulate-induced vortical disturbances, acoustic waves and roughness were not
considered. Analytical solutions of the receptivity problem were incorporated into
the amplitude method of Mack (1977) to predict the particulate-induced transition
onset. As an example, Fedorov (2013) carried out computations for a 14◦ half-angle
sharp wedge flying in the standard atmosphere at altitude 20 km, Mach number 4
and zero angle of attack. In this case, transition is associated with instability of the
first mode according to the terminology of Mack (1969). It was shown that spherical
particulates of radius from 10 to 20 µm and density greater than 1 g cm−3 can cause
the transition onset corresponding to the amplification factor N = 9–10, which is in
the empirical range of flight data (Hefner & Bushnell 1979).

Note that flows in many impulse facilities used for ground testing of hypersonic
configurations may be heavily contaminated with particulates (diaphragm fragments,
rust particles, soot, dust, etc.). Transition measurements in these facilities may be
strongly influenced by particulate impacts. For example, Jewell et al. (2017) showed
that a cleaning procedure in a hypervelocity shock tunnel T5 at the California
Institute of Technology improves the repeatability of transition measurements. Prior
to the implementation of the cleaning regimen, unpredictable turbulent spots were
observed at locations uncharacteristic of natural transition. Following the cleaning,
these anomalous results have been nearly eliminated.

The theoretical model (Fedorov 2013) was developed for relatively simple basic
flows where the boundary layer is weakly non-parallel. The model exploits asymptotic
techniques with the assumption that the local Reynolds number based on the
boundary-layer thickness is large. The receptivity problem and the propagation
of particulate-induced wavepackets were analysed assuming that the dominant
wavelength was small compared to the body length (so called short-wave or
Wentzel–Kramers–Brillouin (WKB) approximation). However, in most of practical
cases particulates penetrate into the boundary layer near the body nose, where the
short-wave approximation is not valid. To avoid the foregoing restrictions and treat
more realistic configurations such as blunt bodies, it has been suggested that the
numerical component of the model be enhanced. Namely, the analytical solutions
are replaced by numerical integration of the full Navier–Stokes equations with
the particulate-induced source terms taken from the original analysis (Fedorov
2013). The theoretical (Fedorov 2013) and numerical (present paper) approaches
are cross-validated by detail comparisons of the wavepacket characteristics.

The paper is organized as follows. In § 2, we briefly outline the theoretical model
(Fedorov 2013) and set a problem to be solved numerically. In § 3, we discuss
the numerical method and formulate requirements for the computational grid and
other parameters by solving test problems. In § 4, we discuss numerical results for
a particulate-induced wavepacket on a sharp wedge at the free-stream Mach number
4, evaluate their accuracy and compare them with the theoretical solution. In § 5, we
conclude the paper with a summary discussion.

2. Governing equations and the theoretical solution
Consider a laminar flow past a sharp wedge in a supersonic free stream of speed

U∗
∞

, density ρ∗
∞

and temperature T∗
∞

(figure 1). Hereafter asterisks denote dimensional
quantities and ‘∞’ marks free-stream quantities. The inviscid shock layer between the
bow shock and the wedge surface is assumed to be much thicker than the viscous
boundary layer; i.e. the Reynolds number based on the wedge length and the free-
stream parameters is large. Neglecting the viscous–inviscid interaction, the inviscid
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FIGURE 1. (Colour online) Schematic of a supersonic flow past a sharp wedge and the
coordinate systems. BL stands for the upper boundary-layer edge.

shock-layer flow is assumed to be uniform and of constant velocity U∗2, density ρ∗2 ,
temperature T∗2 and pressure P∗2. At the initial time instant t∗ = t∗0 , a solid spherical
particulate of density ρ∗p and radius R∗p crosses the shock at a point r∗ = r∗0, where
r∗ = (r∗1, r∗2, r∗3) is shown in figure 1. Hereafter the subscript ‘p’ denotes a particulate
quantity.

In the shock layer, the particulate dynamics is governed by the equations

m∗p
du∗p
dt∗
=F∗p, (2.1)

u∗p(t
∗

0)= (U
∗

∞
, 0, 0)T, (2.2)

where u∗p = dr∗p/dt is particulate velocity, m∗p = 4πR∗3p ρ
∗

p/3 is particulate mass and F∗p
is the drag force. The gravitational force is neglected. The flow past the particulate is
treated as quasi-steady, and the drag is calculated as

F∗p =−CD
ρ∗

2
|u∗p − u∗|(u∗p − u∗)πR∗2p . (2.3)

The drag coefficient CD is computed using the empirical correlation of Crowe
(1967). If the particulate radius is much smaller than the boundary-layer thickness
near the particulate impact on the body surface, R∗p� δ

∗, then the problem (2.1)–(2.2)
describes the particulate passage through the viscous boundary layer also.

By solving (2.1)–(2.3) we can determine the particulate velocity u∗pw ≡ u∗c at the
collision point and then assume that the particulate passes through the thin boundary
layer at constant speed u∗pw. Hereafter the subscript ‘w’ stands for ‘wall’, while ‘c’
refers to the collision point. Preliminary computations of the particle trajectory showed
that, in the case considered hereafter, the speed u∗p decreases by less than 0.25 % as
the particulate crosses the boundary layer.

For simplicity, let the particulate stick to the wall upon the collision. Effects related
to the particulate-induced roughness or the particulate rebound, are not considered.
Note that the wall surface can be treated as aerodynamically smooth if the roughness
Reynolds number Rekk ≡ kuk/νk < 25, where uk and νk are the velocity and kinematic
viscosity in the undisturbed boundary layer at the roughness height k (Schneider
2008). The cases considered hereafter satisfy this restriction (Fedorov 2013). Moving
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through the boundary layer, the particulate generates flow disturbances (including
unstable modes) in a local region where the unperturbed laminar flow can be treated
as locally parallel (see figure 1).

A small particulate induces concentrated sources of force and heat (if the particulate
surface is not in thermal equilibrium with the ambient flow). The source terms are
included in the Navier–Stokes equations for a calorically perfect gas. These equations
are written in the dimensionless form

∂ρ

∂t
+
∂

∂rj
(ρuj)= 0, (2.4)

∂

∂t
(ρui)+

∂

∂rj
(ρuiuj + pδij)=

1
Re
∂τij

∂rj
+ R2

pF̄piδ(r− rp), (2.5)

ρ

[
∂T
∂t
+ uj

∂T
∂rj

]
=

1
Pr Re

∂

∂rj

(
µ
∂T
∂rj

)
+ (γ − 1)M2

∞

(
∂p
∂t
+ uj

∂p
∂rj

)
+
(γ − 1)M2

∞

Re
Φ

+
Rp

Pr Re
Q̄pδ(r− rp)+ R2

p(γ − 1)M2
∞
(upj − uj)F̄pjδ(r− rp), (2.6)

γM2
∞

p= ρT, (2.7)

where the velocity components uj, density ρ, temperature T and pressure p are scaled
using their free-stream values U∗

∞
, ρ∗
∞

, T∗
∞

and ρ∗
∞

U∗2
∞

, respectively. The length
scale L∗ is of the order of the wedge length, the time scale is L∗/U∗

∞
, the Reynolds

number is Re= ρ∗
∞

U∗
∞

L∗/µ∗
∞

and the Mach number is M∞=U∗
∞
/a∗
∞

, where a is the
speed of sound. The momentum equation (2.5) contains the particulate-induced force
components R2

pF̄piδ(r− rp), where δ(r− rp) is three-dimensional Dirac delta function,
and

F̄pi =CD
ρ

2
π|u− up|(uip − ui). (2.8)

The energy equation (2.6) contains the dissipation function Φ, the particulate-induced
energy source proportional to Q̄p = 2πNu(Tp − T), where Nu is the Nusselt number,
and the power source term proportional to (upj − uj)F̄pj.

In the theoretical analysis (Fedorov 2013), the flow field is expressed as

q(x, y, z, t)=Q(x, y, z)+ R2
pq̃(x, y, z, t), (2.9)

where the Cartesian coordinate system (x, y, z) is shown in figure 1, q is a certain
physical quantity (e.g. the wall pressure), Q is the unperturbed basic flow and R2

pq̃= q′
is the particulate-induced disturbance.

Because the dimensionless radius of particulate is small, Rp� 1, the disturbance is
governed by the linearized Navier–Stokes equations in the first-order approximation
with respect to R2

p. In this framework, the receptivity problem is solved using the
biorthogonal eigenfunction decomposition method. If the particulate hits the wall at
the point (x, y, z)= (xc, 0, 0) and time instant t= 0, the particulate-induced disturbance
related to mode m is expressed as

x> xc : q̃(x, y, z, t)

=
1

(2π)2

∫
∞

−∞

∫
∞

−∞

Dm(ω, β; xc)q̂m(x, y, β, ω) exp(iS+ iβz− iωt) dω dβ, (2.10)
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S=
∫ x

xc

αm(x′, β, ω) dx′, (2.11)

where q̂m(x, y;ω, β) is the eigenfunction of the mode m with eigenvalue αm(x, β, ω);
ω is the circular frequency; β is the z-component of the wavenumber; S is the eikonal
calculated from the collision point xc; Dm is the receptivity coefficient, which can be
expressed in the analytical form obtained by Fedorov (2013).

If the observation station x is sufficiently far downstream from the collision point,
so that |S| � 1, then the integrals over ω and β can be estimated using the steepest
descent method. The disturbance is dominated by a wave having frequency ωs and
wavenumber βs, which are determined from the equations

∂Si

∂ω
= 0,

∂Si

∂β
= 0. (2.12a,b)

Hereafter subscripts r and i denote the real and imaginary parts of a complex
quantity, while s corresponds to the saddle point. The disturbance maximum is
observed at z= zs and time instant ts, which are determined from the equations

∂Sr

∂ω
− ts = 0,

∂Sr

∂β
+ zs = 0. (2.13a,b)

The disturbance amplitude has an approximate Gaussian shape. Its maximum is
expressed as:

q′(ωs, βs, x)=CreceptCdispeN(xc,x), (2.14)

Crecept = R2
p|Dm(ωs, βs)q̂m(x, βs, ωs)|, Cdisp =

1
π
|K(ωs, βs)|, (2.15a,b)

K =

∣∣∣∣∣ ∂2S
∂ω2

∂2S
∂β2
−

(
∂2S
∂ω∂β

)2
∣∣∣∣∣
−1/2

(ω,β)=(ωs,βs)

, (2.16)

N(xc, x)=−
∫ x

xc

αmi(x′, βs, ωs) dx′. (2.17)

Hereafter we consider the case where the dominant instability is associated with
the first mode according to the terminology of Mack (1969); i.e. mode m is treated
as the first mode. The eigenvalues αm(x, β, ω) are calculated with accounting for the
basic-flow non-parallel effect using the multiple-scale approximation (Gaponov 1980;
Nayfeh 1980; Tumin & Fedorov 1982). The collision point x= xc does not necessarily
coincide with the neutral point xn(βs, ωs), i.e. the growth rate −αmi(xc, βs, ωs) may be
non-zero. Therefore, the receptivity coefficient (2.15) should be calculated at complex
αm. This can be done using the theoretical solution (Fedorov 2013) and assuming
that |αmi(xc, βs, ωs)| � αmr(xc, βs, ωs). Preliminary computations showed that this
restriction is satisfied in the cases considered hereafter, which also implies a weak
dependence of the receptivity coefficient on the distance between the collision point
and the neutral point.
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Note that the coefficient Cdisp equals 1/2 of that reported by Fedorov (2013). For
the first-mode instability, there are two saddle points (±βs, ωs) where ωs > 0, βs > 0.
Therefore, in the far field the disturbance splits into two wavepackets. Trajectories of
their humps zs(xs), projected onto the wall plane y= 0, are symmetric with respect to
the line z= zc passing through the collision point (x, z)= (xc, zc).

The particulate-induced disturbance contains all modes of discrete and continuous
spectra. Since the theoretical solution (2.14)–(2.17) consists of the first mode only,
for correct comparisons of the theoretical and numerical results one should extract
the first-mode wavepacket from the numerically simulated (NS) disturbance. This is
performed using the biorthogonal eigenfunction decomposition method (Zhigulev &
Tumin 1987; Tumin 2007). In a certain streamwise station x0 located downstream
of the collision point xc, the spectral density of the NS disturbance vector aNS =

(u′, ∂u′/∂y, v′, p′, T ′, ∂T ′/∂y,w′, ∂w′/∂y)T is calculated as

âNS(x0, y, β, ω)=
1

2π

∫
∞

−∞

∫
∞

−∞

aNS(x0, y, z, t) exp(iωt− iβz) dt dz. (2.18)

The spectral density of the first mode contained in the NS disturbance is

âR(y;ω, β, x0)=
〈H2âNS, b̂m〉

〈H2âm, b̂m〉
âm, (2.19)

where âm and b̂m are the eigenfunctions of the direct and adjoint stability problems,
respectively. The scalar product is defined as

〈H2â, b̂〉 =
∫
∞

0
(H2â, b̂) dy, (2.20)

where (·, ·) is a Hermitian scalar product. An explicit form of matrix H2 is given by
Tumin (2007).

The first-mode wavepacket contained in the NS disturbance is calculated using the
inverse Fourier transform:

aR(x0, y, z, t)=
1

2π

∫
∞

−∞

∫
∞

−∞

âR(y;ω, β; x0) exp(iβz− iωt) dω dβ. (2.21)

3. Numerical model and its verification
In order to validate the theoretical solution (2.14)–(2.16), we perform numerical

integration of the full Navier–Stokes equations including the particulate-induced source
terms. Namely, we calculate the unperturbed laminar flow field (basic flow), compute
the particulate trajectory by integrating equation (2.1) with the drag force (2.3), adopt
a discretizing model for the particulate-induced point source terms and simulate the
flow disturbances directly using a Navier–Stokes solver. In this section, we discuss the
adopted numerical method and its applicability.

3.1. Numerical method
The Navier–Stokes equations (2.4)–(2.7) are solved using the in-house solver HSFlow
(High Speed Flow), which implements an implicit finite-volume shock-capturing
method with second-order approximation in space and time. A Godunov-type
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total-variation-diminishing (TVD) scheme with a Roe approximate Riemann solver is
used. Reconstruction of the dependent variables at grid cell boundaries is performed
using a third-order WENO (weighted essentially non-oscillatory) scheme. Newton
and GMRes (generalized minimal residual) methods are used to solve an algebraic
system of equations that approximates the partial differential equations. Despite the
dissipative nature of the TVD scheme, it is feasible to simulate unstable disturbances
in supersonic and hypersonic boundary layers using sufficiently fine computational
grids (see, for example, Novikov, Egorov & Fedorov 2016; Novikov 2017; Chuvakhov,
Fedorov & Obraz 2018). In particular, nonlinear breakdown of wavepackets into
turbulent spots (Chuvakhov et al. 2018) agrees well with the results of Salemi &
Fasel (2015), which were obtained using a high-order numerical method.

Present computations were carried out on high-performance multiprocessor computer
clusters using a parallel version of HSFlow. The MPI technology and PETSc library
of linear algebra routines were employed. Initially structured grids were split up into
multiple zones with node-to-node interzone connectivity. More details on the HSFlow
solver can be found in Egorov & Novikov (2016).

3.2. Undisturbed flow field and particulate trajectory
Consider a three-dimensional (3-D) computational domain of Cartesian topology. Its
bottom face (‘wall’) corresponds to the isothermal wedge surface, where the boundary
conditions are u = uw ≡ 0, T = Tw. The basic flow comes through the left and top
faces (‘inlet’), and leaves the domain through the right face (‘outlet’). The dependent
variables are fixed at the inlet and are linearly extrapolated out of the domain at the
outlet.

Because laminar flow past a wedge is two-dimensional, we obtain a 3-D basic-flow
field by solving the Navier–Stokes equations in the (x, y) plane and translating the 2-D
solution in the z-direction. Initialized with the free-stream values, the 2-D flow field
is converged to its steady state; i.e. all dependent variables vary within 10−8 over the
time interval 1t=1. Then the 2-D grid is refined as discussed in § 3.5, the steady-state
solution is recomputed and extruded into the third dimension. For 3-D computations,
the symmetry boundary conditions are imposed on the side faces (planes of constant z).
To reduce computational cost, 3-D simulations are performed in a subdomain, which
is located entirely beneath the bow shock and, thereby, does not contain the nose and
top parts of the original domain. The all dependent variables are fixed on the new inlet
using the steady-state solution. Details of this approach can be found in Chuvakhov
et al. (2018).

Considering a particulate of radius Rp � 1, we neglect its influence on the
surrounding flow and compute the drag force (2.3) using the unperturbed basic
flow. The problem (2.1)–(2.3) is integrated numerically with the initial conditions:
rp(0) = rp0, up(0) = up0 = (1, 0, 0)T, where rp0 corresponds to the particulate located
in the free stream ahead of the bow shock. A simple low-order scheme is applied as

up,n+1 = up,n + f1t,
rp,n+1 = rn + 0.5(up,n+1 + up,n)1t.

}
(3.1)

Computations are performed for the time period 0 < t 6 tc until the particulate
collides with the wedge surface at the point (xp, yp, zp)|tc = (xc, 0, 0) (see figure 1). For
t> tc, the particulate-induced source terms are assumed to be zero. All test problems
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are focused on heavy particulates (ρp = ρ
∗

p/ρ
∗

∞
> 104) whose trajectories are nearly

straight lines in the shock layer.
Then, the original 2-D grid is refined near the particulate trajectory. The steady-state

solution and the particulate trajectory are updated on the refined grid with a desired
time sampling interval. Finally, the trajectory file stores the radius vector rp, velocity
up and the source intensities R2

pF̄pi as functions of time.
Note that the computational subdomain does not contain the initial part of the

particulate trajectory to save computational resources; this issue is addressed in § 4.
The particulate is launched at a small distance apart from the inflow boundaries,
which ensures the particulate-induced source terms do not conflict with boundary
conditions. The particulate moves strictly along the precomputed trajectory.

3.3. Particulate-induced source terms
The particulate-induced source terms in (2.6)–(2.7) are proportional to the delta
function

δ(r− rp)= δ(x− xp) · δ(y− yp) · δ(z− zp),

∫∫∫
R3

δ(r− rp) dr= 1, (3.2a,b)

which can be approximated by the bell-shaped Gaussian function as

δh(r− rp)=


1

(σ
√

2π)3
exp

[
−
|r− rp|

2

2σ 2

]
, |r− rp|< 4σ

0, |r− rp|> 4σ
(3.3)

∫∫∫
R3

δh(r− rp) dr= 1−1I ≈ 0.9998. (3.4)

Being computationally convenient, the finite carrier region (a sphere of radius 4σ )
gives a small deviation of the integral (3.4) from the ideal case (3.2): 1I ≈ 0.02 %.
A source with bigger carrier (larger values of σ ) is easier to resolve numerically.
However, the source should be much smaller than the boundary-layer thickness in the
collision region.

3.4. Test problem
Consider a 14◦ half-angle sharp wedge moving in the standard atmosphere at
altitude 20 km and zero angle of attack. The free-stream parameters are taken
from Fedorov (2013): T∗

∞
= 216.7 K, P∗

∞
≈ 5530 Pa, ρ∗

∞
≈ 0.0889 kg m−3, M∞ = 4,

Re= ρ∗
∞

U∗
∞

L∗/µ∗
∞
= 7.381× 106, where L∗ = 1 m. The wedge-surface temperature is

close to the adiabatic temperature: Tw = (1 + M2
2

√
Pr(γ − 1)/2)T∗2/T

∗

∞
≈ 3.8, where

M2 ≈ 3.0 and T∗2 ≈ 324.9 K are flow parameters behind the bow shock. A spherical
particulate has density ρ∗p = 103 kg m−3 and radius R∗p = 10 micron. The particulate
surface is in thermal equilibrium with ambient flow; i.e. the particulate-induced heat
source is Q̄p = 0.

The particulate trajectory rp(t) has been computed from the initial point rp0 =

(0.029, 0.016, 0) to the collision point xc ≈ 0.067 where the boundary-layer thickness
is δ0.99(xc) ≈ 6.4× 10−4. The trajectory lies in the symmetry plane of computational
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dzc
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xle xcL xc xcR

dxc → dxWP 

xle xcL
xc

xcR
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(a) (b)

FIGURE 2. (Colour online) Scheme of the computational domain: views from side +0z
(a) and bottom −0y (b). Red circle marks the collision point. The bold line in (a) shows
the subdomain boundary. The wall beneath the collision region is hatched, the transient
regions of grid spacing are in grey, z> 0 for the base grid.

domain: zp= 0. The time sampling interval of trajectory dt= 8× 10−5 corresponds to
the time step of the integration of Navier–Stokes equations.

The all computations are performed for a perfect gas of constant specific heats
ratio γ = 1.4 and Prandtl number Pr = 0.72. The dynamic viscosity coefficient is
calculated using Sutherland’s formula µ = (1 + S)/(T + S)T3/2, S = 110.4K/T∗

∞
, the

bulk viscosity is zero. The theoretical analysis is performed using the compressible
Blasius solution as a basic flow, with the upper edge flow parameters being taken
from the Navier–Stokes solution. Note that the viscous–inviscid interaction parameter
χ = M3

2Re−0.5
e,x (µwTe/µeTw)

0.5 (including the Chapman–Rubesin constant) is smaller
than 0.03 at the collision station and downstream, which implies the interaction is
weak and the Blasius profiles are close to the Navier–Stokes profiles. To check this
assumption we compare the profiles U(y) and T(y), and found that the temperature
profiles are slightly different. We have performed receptivity computations using the
Navier–Stokes profiles in the collision stations and found that the discrepancy of
receptivity coefficients Crecept is less than 2.5 %.

In the test case considered, the particulate comes to the upper boundary-layer edge
at Mp≈ 0.75 relative to the local unperturbed flow and hits the surface at Mp< 2. The
relative Reynolds number Rep=ρ

∗
|u∗−u∗p| 2R∗p/µ

∗ is less than 60, which is acceptable
for the drag coefficient correlation (Crowe 1967).

3.5. Computational grid

Main features of 3-D computational grid are depicted in figure 2. The particulate effect
is simulated in a subdomain whose boundary is shown by the bold line (figure 2a).
The subdomain grid is divided into three regions: the collision region (subscript ‘c’),
the wavepacket region (subscript ‘WP’) and the transient region in between (greyed).

The first one contains the collision point x= xc (grey circle (red online) in figure 2)
and lies between the subdomain input boundary xcL≈ xc−1.51xc and the station xcR≈

xc + 0.51xc. This region is symmetric with respect to the particulate trajectory plane
z= 0 and has a span of 1zc = 2zc. The grid nodes are uniformly distributed in the x
and z directions outside of the transient region, which provides a smooth transition of
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xcL xcR xWP zc Lx Lz dxc dzc dxWP dzWP Nx Ny Nz

0.0515 0.0721 0.1879 0.004 0.27 0.03 5× 10−5 dxc 16dxc 6dxc 625 211 251

TABLE 1. Parameters of the base grid in the subdomain region.

the grid spacing:

dx=

dxc,

dxc→ dxWP,
dxWP,

x ∈ [xcL; xcR];

x ∈ [xcR; xWP];

x ∈ [xWP; Lx];

dz=

dzc,

dzc→ dzWP,
dzWP,

z ∈ [0; zc];

z ∈ [zc; 1.25zc];

z ∈ [zWP; Lz].

(3.5a,b)

Since the front angle of most unstable oblique wave is approximately 70◦, the steps
dxWP and dzWP are coupled as dzWP ≈ dxWP/tan70◦ in order to provide nearly equal
spatial resolution of the dominant wave component.

The subdomain upper boundary starts at 1y(xcL)≈ 8δ0.99(xc) and moves away from
the wall as x increases. The subdomain grid parameters are given in table 1. This grid
is further referred to as a base grid.

The full grid is refined in the nose region (x < xle, see figure 2) to resolve the
formation of the bow shock with nearly square cells in the (x, y) plane. The grid
lines fit the bow shock and cluster near the wall resulting in 140–150 grid points
across the boundary layer. For x > xcL, the wall adjacent cells cover the range of
5 6 y+1 6 9 in wall units y+1 = ρ∗wU∗τ y∗1/µ

∗

w = y1
√
ρwReL(∂u/∂n)w/µw. In the case of

σ = 5 × 10−5 called the base case, the base grid provides approximately six points
per particulate source (pps) in both the x- and z-directions: ppsx≈ 6σ/dxc= 6, ppsz≈

6σ/dzc= 6. In most of test cases, we consider a combination of different σ and grid
spacing, providing a certain pps. Analysing the effect of a certain parameter, all other
parameters correspond to the base grid by default.

The numerical simulation strategy is illustrated by the flow sheet in figure 3.

3.6. Verification study
Consider a pressure disturbance footprint p′w(x, z) at t = 0.24 when the wavepacket
is well developed and located within the computational subdomain. In the all cases
considered, the footprints are qualitatively the same and only their strengths are
different. The latter is characterized well by the wavepacket envelope maximum in
the symmetry plane: p′sym

w,max = maxx |H[p′w(x, z = 0)]|, where ‘H’ stands for Hilbert
transform. Hereafter, we compare the relative deviation of this quantity

1p′sym
w,max ≡

p′sym
w,max − p′sym

w,max,ref

p′sym
w,max,ref

, (3.6)

where the subscript ‘ref ’ denotes a reference case (the base case by default).
Figure 4 shows the pressure disturbance footprint obtained on the base grid.

Dominant oblique waves with the front angle of 65◦–75◦ relative to the Oz axis are
associated with the first-mode instability. This is consistent with the linear stability
theory: since the Mach number at the upper boundary-layer edge is relatively low
(M2 ≈ 3.0) and the wall temperature is close to the adiabatic wall case, there is only
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Solve unsteady problem using N-S equations
with particle-induced source terms

Refine grid in the subdomain regions

Update basic flow field

Refine grid near the particle trajectory

Compute the particle trajectory

Calculate 3D basic (unperturbed) flow field

2D solution in (x, y) plane Translate versus z

Determine subdomain containing: collision region, wavepacket region and transient region

Store the particle trajectory, velocity and source intensities versus time

FIGURE 3. Flow sheet of numerical simulations.

one unstable mode – the first mode. However, the linear stability theory predicts that
the envelope maximum should move away from the symmetry plane, while in the
numerical solution this maximum is observed at z= 0. The discrepancy is due to the
fact that the wavepacket has not reached its far-field asymptotic behaviour (see § 4
and figures 8–10).

Computations at various values of σ and fixed ppsx= ppsz= 6 show that the relative
deviations (with respect to the base case of σ = 5× 10−5) are small: 1p′sym

w,max=−9.7 %
at σ = 10−4 and 1p′sym

w,max = 0.3 % at σ = 2.5 × 10−5. This partially confirms that the
Gaussian approximation of the delta function is robust for the receptivity problem
considered. Figure 5 shows a quick convergence of the distribution p′sym

w (x) at z = 0
versus σ . This suggests that the source of size σ = 5× 10−5 can be treated as a point
source in spite of the fact that its diameter (estimated as ≈ 2σ

√
2) is approximately

22 % of the boundary-layer thickness δ0.99(xc)≈ 6.4× 10−4 at the collision station.
Considering the effects of the streamwise dxc and spanwise dzc grid spacing on the

particulate-induced wavepacket as well as the effect of symmetry condition at z= 0,
the cases of σ = 5 × 10−5 and σ = 10−4 show similar results, as summarized in
tables 2 and 3. Surprisingly, rather poor resolution (ppsx, ppsz) = 3 × 3 leads to a
small overestimation of p′sym

w,max in the no-symmetry case, when the particulate moves
inside the computational domain.

Consider the grid spacing effects on the wavepacket propagation. The grid is
designed such that the z-resolution of the dominant wave component is always
finer than the x-resolution (see (3.5)). Therefore, we focus on the effect of dx. The
x-spacing is excessively fine in the collision region, smoothly increases to dxWP in the
transient region and remains constant in the wavepacket region x> xWP. To assess the
effect of dxWP the computational domain was extended to Lx= 0.6 and Lz= 0.05. The
wavepacket propagation was computed up to t = 0.7, when the wavepacket hump at
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FIGURE 4. (Colour online) The pressure disturbance footprint at t= 0.24 in the base case
of σ = 5× 10−5 and its slices along the marked lines z= const or x= const. The footprint
is mirrored with respect to the symmetry plane z= 0 for clarity.
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FIGURE 5. (Colour online) Effect of σ on the wall pressure disturbance p′sym
w (x) at

ppsx,z = 6 and t= 0.24.

z= 0 reaches the station xsym
w,max ≈ 0.53. Figure 6 shows the effect of grid refinements

on the relative deviation 1p′sym
w,max from the finest grid case of dxWP,ref = 0.25dxWP.

In the base case of dxWP, this effect is most pronounced in the near-field region
(just downstream the collision region), where small-scale disturbances, which are
better resolved on the finer grid, are appreciable. As the wavepacket propagates
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ppsx = 3 6 12

ppsz = 3 noSym: +3.2 %

6 sym: +0.5 % sym: 0.0 % (ref) sym: +0.1 %
noSym: +0.6 %

12 sym: −1.5 % sym: +2.1 %
noSym: +0.5 % noSym: 0.0 %

TABLE 2. Relative deviations 1p′sym
w,max at σ = 5× 10−5 at different numbers of grid points

per the particulate source, ppsx × ppsz, in the collision region; simulations with (‘sym’)
and without (‘noSym’) symmetry boundary condition at z= 0; ‘ref’ – the reference case
(see (3.6)).

6× 6 12× 12 24× 24

sym: 0.0 % (ref ) sym: −0.7 % sym: +0.5 %
noSym: +1.5 %

TABLE 3. Same as for table 2, σ = 10−4.

downstream, these disturbances damp and the deviation reduces to 6–7 % at the
beginning of the wavepacket region where there are approximately 25 base grid
points per dominant wavelength. More specifically, the deviation attains its local
maximum of 8 % at (t, xsym

w,max)= (0.3, 0.26) and then decreases monotonically to 6.3 %
at (t, xsym

w,max) = (0.7, 0.53). This trend is associated with the wavepacket dispersion,
which leads to the increase in the number of grid points per dominant wavelength.
A similar behaviour is observed in the case of 0.5dxWP, while the deviation is ten
times less than in the base case. Therefore, a nearly converged unsteady solution is
attained on the finest grid.

It should be noted that the functional dependency dx(x) in the base case is different
from the other two cases in the transient region. This difference is not important
because it mainly affects the near-field region where small-scale disturbances are
dominant. However, these disturbances are negligibly small in the region where the
instability wavepacket is observed. Thus, the base grid allows for simulations of the
wavepacket propagation with the error being less than 6.3 % in the region x > 0.53,
where the number of grid points per dominant wavelength is larger than 35.

The temporal resolution was studied for 2-D cases only (not presented here for
brevity). It was found that the deviation 1p′2D

w,max is negligible if there are at least 25
time steps as the particulate crosses the boundary. Concerning the resolution of the
wavepacket propagation, the error becomes negligible if there are more than 60 time
steps per period of the dominant wave. The latter constraint is less critical because
the duration of the particulate flight inside the boundary layer is short compared to
the period of the dominant wave. In the present 3-D computations the time step is
fixed, dt = 8 × 10−5, and corresponds to 35 time points per particulate flight across
the boundary layer and 450 time points per dominant wave period at t= 0.24.

We have also performed computations with the particulate being launched near
the upper boundary-layer edge. It turned out that the wavepacket amplitude p′sym

w,max is
smaller than in the base case by less than 0.3 % at t= 0.24; i.e. the outer part of the
particulate trajectory weakly affects the receptivity mechanism.
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FIGURE 6. The relative deviation 1p′sym
w,max (3.6) due to the grid refinement (a), and the

corresponding distribution of dx versus x (b). dxWP and 0.25dxWP stand for the base and
the reference cases, respectively.

To summarize, the receptivity process is simulated with the error 1p′sym
w,max < 2.4 %

if: the particulate-induced point source is modelled by a Gaussian (3.3) with the
characteristic diameter 2σ

√
2 being less than 22 % of the boundary-layer thickness

at the collision station; the grid resolves the particular source term with no less than
6 × 6 × 6 points. If this source is modelled without the symmetry assumption, the
error becomes less than 1 %, and remains within 3.2 % even in the case of 3× 3× 3
points. The wavepacket propagation is simulated with the error 1p′sym

w,max < 6.3 %, if
the grid is uniform versus x and there are at least 25–30 grid points per dominant
wavelength. Since the outer part of the particulate trajectory weakly affects the
receptivity process, high-accuracy computations are needed in the boundary layer
only.

4. Results
In this section, the theoretical (Fedorov 2013) and numerical (present paper)

models are cross-validated for the base case of σ = 5× 10−5. In order to simulate the
downstream evolution of particulate-induced wavepacket, the computational domain
is extended to Lx ≈ 1.21 and Lz = 0.085. The grid cells are additionally z-stretched
in the region 0.93Lz < z < Lz to suppress effects associated with reflections of
disturbances from the side boundary z = Lz. The other parameters of the base grid
remain unchanged.

The wavepacket spreads in space and amplifies, propagating downstream as shown
in figure 7. Its structure is dominated by an oblique wave which is formed in the
wavepacket head and slowly attenuates in the trailing region. Figure 8 compares
theoretical and numerical trajectories zmax(xmax) of the wavepacket hump. The latter
are evaluated using the footprints of the wall pressure disturbance at different time
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FIGURE 7. (Colour online) The wall pressure disturbance p′w(x, z) and isolines p′w =
5 × 10−7 for the case of σ = 5 × 10−5 at equidistant time instants t = 0.01 (a),
0.19 (b), 0.37 (c), 0.55 (d), 0.73 (e), 0.91 ( f ), 1.09 (g) and 1.27 (h). The particulate
collides with the wall at t ≈ 0.009. See also the supplementary movie available at
https://doi.org/10.1017/jfm.2018.842.

instants (black circles). The former (lines with white circles) are calculated using
(2.13) as

zmax =±
∂Sr

∂β
(βs, ωs, xmax). (4.1)

The numerical trajectories are obtained as follows. At each time instant t = tn,
we consider the spanwise oscillation p′w(x, z, tn) for each available slice x = const,
compute its envelope using Hilbert transform, |H[p′w(x, z, tn)]| and determine the
envelope maximum as

p′w(x, zmax)=max
z
|H[p′w(x, z, tn)]|. (4.2)

Then, the maximum over x is calculated as

p′w,max ≡ p′w,max(xmax, zmax)=max
x

p′w(x, zmax). (4.3)
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FIGURE 8. Comparison of the theoretical (lines with white circles) and numerical (black
circles) trajectories of the wavepacket hump.

In the mid-field xc < x< 0.4, the numerically obtained wavepacket hump is located
near z= 0 (see figure 8). Further downstream, its trajectory deviates from the centre
line and approaches the far-field asymptotic trajectory (4.1). The agreement becomes
satisfactory in the region of x> 0.45, where the amplification factor is N(xc, x) > 4.9.

Figure 9 compares the wave-front angles ψ = arctan(β/α) for the dominant wave
component versus the value of xmax in the case of xc = 0.067. The theoretical
distribution corresponds to β = βs and α = αTS,r(βs, ωs, xmax), where αTS is the
eigenvalue of the first mode. The numerical distribution results from 2-D Fourier
transform of the wall footprints p′w(x, z) at various time instants t = tn. Each
Fourier image reveals the only well-distinguished point of maximum (αmax, βmax),
thereby providing an unambiguous value of ψ . The error bars 1ψ are calculated
using the Taylor formula for ψ(α, β) with 1α = 2π/(Lx − xcL), 1β = π/Lz,
(α, β)= (αmax, βmax):

1ψ =±
β/α

1+ (β/α)2

(
|1α|

α
+
|1β|

β

)
. (4.4)

It is seen that the theory overestimates the value of ψ by less than 5 % at xmax≈ 0.5,
and this discrepancy reduces to 3 % at xmax ≈ 0.9.

Figure 10 compares the amplitudes p′w,max of the wavepacket hump versus xmax. The
theoretical distributions (lines with white symbols) are calculated using (2.14) with
x = xmax. In the case of xc = 0.067, the theoretical curve approaches the numerical
data as the observation point xmax moves downstream from the collision point.
However, in the far field (for xmax > 0.7 where N(xc, xmax) > 6.5) the discrepancy
is still substantial – the theory underestimates the hump amplitude by approximately
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FIGURE 9. Theoretical and numerical distributions of the front angle ψ(xmax) of the
dominant wave in the case of xc = 0.067. Error bars correspond to discretization of the
Fourier space.

25 %. This discrepancy could be attributed to violation of the theoretical restriction
λs/xc� 1, where λs = 2π/αTS,r(ωs, βs, xc) is the length of the dominant wave at the
collision point. In this case, the first-mode eigenfunction q̂m(xc, y, βs, ωs) penetrates
the outer inviscid flow for a large distance from the wall, as shown in figure 11(b).
The penetration depth 1y is estimated as 1y = κ−1

r,min, where κr,min is the real part
of the minimal damping rate of the eigenfunction vector proportional to e−κy in
the outer flow. Figure 11(a) shows the ratio λs/xc as a function of the frequency
parameter Fs = ω

∗

s ν
∗

e /U
∗2
e . For low frequencies corresponding to the far-field stations

in figure 10, the ratio is not small: λs/xc≈ 0.5. To check this argument, we performed
computations for the doubled collision point xc= 0.134. However, this did not reduce
the discrepancy (see figure 10).

Another reason could be the spectral content of the particle-induced disturbance.
The NS disturbance contains all modes of the discrete and continuous spectra,
while the theoretical solution (2.14)–(2.17) consists of the first mode only. To
check this argument we performed spectral and normal-mode analyses of the NS
disturbance in the case of xc = 0.134. We considered the near-field station x = 0.2,
which is located just downstream of the collision point, and the far-field station
x = 0.6, where the amplification factor (2.17) is N(xc, x) ≈ 5. Figure 12 shows the
spectral density modulus of the wall pressure disturbance computed using (2.18),
where the spanwise wavenumber β and frequency ω are made non-dimensional
as: ω = ω∗L∗/U∗

∞
; β = β∗L∗. The Fourier transform (2.18) is evaluated using the

discrete fast Fourier transform. The space and time samplings are chosen for the
inverse transform to restore the original signal with the relative error less than 1 %.
In the case of x = 0.2, the discretization versus time and spanwise coordinate has
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FIGURE 10. Theoretical (lines with white symbols) and numerical (black symbols)
distributions of the hump amplitude p′w,max(xmax) for the collision points xc= 0.067 (circles)
and xc= 0.134 (stars); Fs – frequency parameter of the dominant wave at the observation
point xmax.
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FIGURE 11. The ratio λs/xc (a) and the penetration depth 1y (b) as functions of
frequency parameter Fs.

Nt= 250 and Nz= 200 points, respectively. At x= 0.6 it is sufficient to have Nt= 100
and Nz = 100. In the near-field station (figure 12a) the NS disturbance has a broad
spectrum of rather complex shape. As the disturbance propagates downstream, oblique
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FIGURE 12. (Colour online) The spectral density modulus of the wall pressure disturbance
at different stations. White circles denote the theoretical location of the dominant wave
(βs, ωs): (a) x= 0.2, (βs, ωs)= (584, 121); (b) x= 0.6, (βs, ωs)= (402, 79.5). The collision
point is xc = 0.134.
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FIGURE 13. (Colour online) The wall pressure oscillograms at (x, z) = (0.2, 0) (a) and
(x, z)= (0.6, 0) (b).

waves of the first mode grow exponentially. Their selective amplification results in
the wavepacket of the relatively simple spectrum shown in figure 12(b).

In order to confirm that the far-field disturbance is predominantly the first mode,
we extract the first-mode wavepacket from the NS disturbance using the biorthogonal
eigenfunction decomposition method outlined in § 2. Figure 13 compares the wall
pressure fluctuations p′w(t) at the near-field point (x, z)= (0.2, 0) and at the far-field
point (x, z) = (0.6, 0). The NS fluctuation is shown by the grey line (red online)
while the first-mode fluctuation, which is computed using (2.21), is shown by the
black line (blue online). It is seen that the NS disturbance quickly converges to the
first-mode wavepacket. Therefore, the discrepancy between the numerical simulation
and the theoretical prediction in figure 10 is not associated with the presence of other
modes.
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FIGURE 14. Distributions of parameters εω, εβ and N-factors (2.17) versus the observation
point x.

This discrepancy could be due to a low accuracy of the far-field asymptotic
approximation (2.14) of the double integral (2.10). This approximation is based
on the steepest descent method assuming that the selective amplification is strong
while receptivity weakly depends on ω and β. The corresponding mathematical
restrictions are

N(ωs, βs)� 1, εβ =

∣∣∣∣∂β f (ωs, βs)

f (ωs, βs)

∣∣∣∣
βs|∂

2
ββN(ωs, βs)|

� 1, εω =

∣∣∣∣∂ωf (ωs, βs)

f (ωs, βs)

∣∣∣∣
ωs|∂2

ωωN(ωs, βs)|
� 1, (4.5a−c)

where f (ω, β) = Dm(ω, β; xc)q̂m(x, y, β, ω) in (2.10). As shown in figure 14, the
parameters εω and εβ decrease slowly with x. In the cases presented in figure 10,
they are not very small (εω ∼ εβ ≈ 10 %) and the N-factor is not very large (N < 7.5).
This concern is confirmed by the fact that the theoretical locus (βs,ωs) of the spectrum
maximum, which is determined using (2.12), poorly correlates with the numerical
data (see figure 12). Although the theoretical curves in figure 10 verge toward the
numerical ones as the observation point xmax moves downstream, the convergence
is slow and the discrepancy remains appreciable by the end of the computational
domain. A similar slow convergence is observed in comparisons of the wavepacket
hump trajectories (figure 8) and the wave-front angles (figure 9).

The leading-order theoretical solution is indifferent to whether the particulate
falls onto the surface or flies away after a perfectly elastic collision; i.e. the
receptivity coefficient satisfies the condition |Crecept(vp)| = |Crecept(−vp)|, where vp
is the y-component of the particulate velocity. To check this result we performed
computations for the case where the particulate is launched from the wall point
ypw = 0, xpw = xc − 1x, zpw = 0 with the initial velocity corresponding to the case
of perfect reflection. Here xc = 0.067 and the upstream shift 1x = δ0.99(xc)/ tan(14◦)
is for the particulate to interact with the same boundary-layer region as in the
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base case. It has been found that the deviation from the base case is small,
1p′sym

w,max ≈ −4.3 %, in accord with the theoretical prediction. This opens up an
opportunity to set up controlled experiments on receptivity to particulates. By
shooting calibrated particulates from the wall and synchronizing measurements of
boundary-layer disturbances with the particulate strikes one could determine the
receptivity coefficient.

5. Summary
A numerical model has been developed to simulate excitation of unstable

wavepackets by spherical solid particulates. Namely, the analytical solution (Fedorov
2013) was replaced by numerical integration of the full Navier–Stokes equations with
the particulate-induced source terms taken from the original analysis (Fedorov 2013).
To cross-validate the theoretical and numerical models, computations were performed
for a test case: a 14◦ half-angle sharp wedge flying at altitude 20 km at Mach number
4 and zero angle of attack. A spherical particulate of density ρ∗p = 103 kg m−3 and
radius R∗p = 10 µm collides with the wedge surface at the streamwise distance of
≈6.7 cm from the leading edge. The particulate excites a first-mode wavepacket
propagating downstream and growing in space.

Using the in-house software HSFlow, it has been shown that the receptivity process
is simulated with the error 1p′sym

w,max < 1 % if:

(i) the particulate-induced point source is modelled by a Gaussian distribution of
width σ at which the characteristic diameter 2σ

√
2 is less than 22 % of the

boundary-layer thickness at the collision station;
(ii) the grid resolves the source term with at least 6×6×6 points along the trajectory

as well as in the collision region where the y-resolution becomes finer than the
others. The error rises to approximately 3 % for coarser resolution of 3× 3× 3
points without using the symmetry assumption;

(iii) the temporal resolution provides at least 25–30 time steps as the particulate
crosses the boundary layer.

Comparisons of the theoretical and numerical solutions show:

(i) the wavepacket hump trajectory deviates from the centre line and slowly
approaches the asymptotic trajectory predicted by the linear stability theory
in the far-field region where the amplification factor of the dominant wave is
N(xc, x) > 4.9;

(ii) in the far field, the theory underestimates the wavepacket hump amplitude by
approximately 25 %. Presumably, this discrepancy is due to low accuracy of the
far-field asymptotic approximation (2.14) of the double integral (2.10).

The numerical simulation confirmed the theoretical prediction that receptivity is
almost indifferent to whether the particulate falls onto the surface or flies away
after a perfectly elastic collision. This opens up an opportunity to set-up controlled
experiments on receptivity. By shooting calibrated particulates from the wall and
synchronizing measurements of boundary-layer disturbances with the particulate
strikes one could determine the receptivity coefficient.

The developed numerical model can be used for simulations of receptivity to
particulates for practical supersonic and hypersonic configurations such as blunt
bodies of revolution. In particular, it is feasible to treat the interaction of particulates
with strongly non-parallel flows near the body nose where the theoretical model is
not valid.
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