
J. Fluid Mech. (2022), vol. 933, A51, doi:10.1017/jfm.2021.1101
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Taylor vortices
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We use linear stability analysis and direct numerical simulations to investigate the coupling
between centrifugal instabilities, solute transport and osmotic pressure in a Taylor–Couette
configuration that models rotating dynamic filtration devices. The geometry consists of
a Taylor–Couette cell with a superimposed radial throughflow of solvent across two
semi-permeable cylinders. Both cylinders totally reject the solute, inducing the build-up
of a concentration boundary layer. The solute retroacts on the velocity field via the
osmotic pressure associated with the concentration differences across the semi-permeable
cylinders. Our results show that the presence of osmotic pressure strongly alters the
dynamics of the centrifugal instabilities and substantially reduces the critical conditions
above which Taylor vortices are observed. It is also found that this enhancement of
the hydrodynamic instabilities eventually plateaus as the osmotic pressure is further
increased. We propose a mechanism to explain how osmosis and instabilities cooperate
and develop an analytical criterion to bound the parameter range for which osmosis fosters
the hydrodynamic instabilities.
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1. Introduction

Reverse osmosis (RO) systems play a key role in the water–energy–climate nexus due to
their applications to seawater desalination and the treatment of municipal, agricultural
and industrial wastewaters. RO removes solutes from a feed solution by pressurizing
the feed and flowing it over a semi-permeable membrane sheet, as sketched in figure 1.
The pressure difference across the membrane forces water through the membrane, while
solutes are mostly blocked. Though modern RO is usually far more efficient than
conventional distillation processes (Ghaffour, Missimer & Amy 2013), it remains an
energy-intensive process due to the large feed pressures (up to 80 bars) required to
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Figure 1. Sketch demonstrating concentration polarization in a plate-and-frame RO system.

overcome the small membrane permeability and the large osmotic pressure difference
across the membrane. To date, these energy demands have been primarily reduced by
developing new membrane materials and energy recovery devices (Wang et al. 2014).
Further improvements must address a phenomenon called concentration polarization,
which is the accumulation of filtered solutes adjacent to the membrane surface, forming
a concentration boundary layer, or ‘polarization layer’, as sketched in figure 1. This
accumulation increases the transmembrane osmotic pressure and reduces the fraction of
water recovered from the feed (Sablani et al. 2001). It also leads to mineral scaling, which
is the precipitation of salts onto the membrane surface. Mineral scaling reduces membrane
life and increases downtime and maintenance costs (Lyster et al. 2009). It also contributes
to biofouling by driving nutrients to the membrane surface (Mansouri, Harrisson & Chen
2010). More broadly, concentration polarization is a challenge in nearly all membrane
filtration processes, including ultrafiltration processes, where it leads to the formation of
gel layers, and thermally driven membrane distillation processes (Lou et al. 2019, 2021)
where it impedes the treatment of high-concentration waste brine.

Current efforts to decrease concentration polarization often focus on the hydrodynamic
role of feed spacers (Ahmad & Lau 2006). Feed spacers are a mesh-like material placed
in the feed channel to support fragile membrane sheets and provide room for feed
flow tangential to the membrane. For sufficiently large feed flow rates, the filaments of
these spacers also generate unsteady vortical flow structures due to a wake instability
similar to the von Kármán vortex street. Experimental and numerical works suggest that
these vortical structures increase the transmembrane flow by stirring and attenuating
concentration boundary layers (refer to the works of Haidari, Heijman & van der
Meer 2016, 2018a,b, for reviews). Despite the considerable work to date, spacers are
still primarily designed using experience and trial and error. Due to their complicated
geometry, our knowledge of the flow regime in RO systems with feed spacers remains
inadequate. Meanwhile, the more fundamental question of how vortical structures might
interact with concentration polarization is itself poorly understood.

The present study investigates an aspect of this latter question by considering RO in the
Taylor–Couette cell sketched in figure 2(a). In the annular gap between two concentric
cylinders, a feed solution composed of a solvent and a solute is set in motion by the
rotation of the inner cylinder. There is no applied pressure gradient in the axial direction,
and contrary to traditional RO systems, there is no mean axial flow. Both cylinders are
semi-permeable membranes through which solvent can flow, while the solute is retained
in the annular gap. The inner membrane surrounds a cavity filled with pure solvent
maintained at a desired constant pressure Pin. The region outside the outer membrane is
similarly filled with solvent maintained at the constant pressure Pout. Note that figure 2(a)
only shows the fluid in the annular gap. Applying a radial pressure difference �P =
Pin − Pout drives a radial throughflow of solvent across both cylindrical membranes and
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Figure 2. (a) Sketch of the base-state flow and concentration field in a Taylor–Couette cell with two
semi-permeable cylinders and a superimposed radial inflow. (b) Sketch of the counter-rotating Taylor vortices
(the blue online toroidal streamtubes), the outward and inward jets which (the black arrows) advect the
concentration boundary layer to form zones of alternate accumulation and depletion of solute, shown in the
planform above.

the gap. The solute advected by the radial throughflow forms a concentration boundary
layer at the cylinder through which the solvent exits the gap.

We show that, below a critical rotation rate of the inner cylinder, the flow fields in
this set-up admit a simple steady analytical solution, as shown in figure 2(a). Beyond
that rotation rate, toroidal Taylor vortices appear as sketched in figure 2(b). These
counter-rotating vortices form alternating outward and inward radial jets. These jets stir
the concentration boundary layer and form alternating regions of solute accumulation
and depletion on the membrane surface. Osmosis then acts to dilute regions of solute
accumulation and concentrate regions of solute depletion. This occurs by a reduction
of the outgoing transmembrane flow in regions of accumulation and an increase of the
transmembrane flow in regions of depletion. These variations of the transmembrane flow
in turn likely retroact on the vortices. Assessing this mechanism is the goal of the present
work. More specifically, we focus on the question of whether concentration polarization
and osmotic pressure act in favour or against the formation of vortices. The subsequent
question of whether vortices increase or decrease the average transmembrane flow is left
for future work.
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This Taylor–Couette configuration provides a unique ‘test bed’ with which we can
control, observe and study the interactions between vortices, concentration polarization
and osmotic pressure. First, the characteristics of the concentration polarization layer can
be controlled by imposing the radial flow, independently of the azimuthal flow driven by
the rotation of the inner cylinder. Second, the appearance of vortices due to a centrifugal
instability can be easily controlled by setting the rotation rate of the inner cylinder. These
centrifugal instabilities and their critical conditions are well studied and understood and we
show that our specific configuration also admits a simple analytical solution for the base
state, which permits an analytical stability analysis and a parametric study of the vortices.
Finally, the straightforward geometry allows complementary direct numerical simulations
using high-order spectral methods.

Our particular configuration is of limited practical use for filtration, because the
amount of solvent extracted through one cylinder is balanced by that entering through
the other. In industry, rotating filtration processes based on Taylor–Couette cells have
a stationary impermeable outer cylinder and a rotating semi-permeable inner cylinder.
Feed is pumped axially through the gap while solvent exits the inner cylinder. Although
this mode of filtration has niche applications in separating blood plasma from cells, its
poor membrane–surface to volume ratio and complicated moving parts make it unrealistic
for industrial RO (Hallström & Lopez-Leiva 1978; Margaritis & Wilke 1978; Kroner &
Nissinen 1988; Ohashi et al. 1988; Beaudoin & Jaffrin 1989; Belfort et al. 1993a,b;
Lueptow & Hajiloo 1995; Schwille, Mitra & Lueptow 2002). Taylor–Couette flow and
its various regimes have been widely studied experimentally, numerically and analytically
(see discussions and references in Taylor 1923; Coles 1965; Davey, DiPrima & Stuart
1968; Cole 1976; Marcus 1984; Andereck, Liu & Swinney 1986; Koshmieder 1993; Bilson
& Bremhorst 2007; Ostilla-Monico et al. 2014, among many others). The current work
considers cases where the outer cylinder remains stationary. We also focus on the initial
transition from steady flow to toroidal vortices, the stability of which is known to be
retrieved by linear stability analysis. The stability of a Taylor–Couette cell filled with
pure solvent, with a stationary outer cylinder and a superimposed radial flow through
both cylinders was first considered by Bahl (1970). For narrow gaps, linear stability
analyses (Min & Lueptow 1994; Martinand, Serre & Lueptow 2017) and direct numerical
simulations (Serre, Sprague & Lueptow 2008) show that a radial inflow or strong radial
outflow have a stabilizing effect, while a small radial outflow has a slightly destabilizing
effect for the first transition from non-vortical to vortical flows. Extending the analysis
to large gaps, Martinand et al. (2017) found that a strong radial outflow can select
pairs of counter-propagating helical vortices, and a strong radial inflow tends to squeeze
the vortices against the inner cylinder and dramatically shrink their cross-section in a
meridional plane. Weakly nonlinear analyses and numerical simulations (Martinand et al.
2017) also found that a strong radial outflow or inflow modified the usual supercritical
transition to a subcritical transition, exhibiting a hysteresis cycle.

To date, the above analytical and numerical results have all been obtained by
imposing a prescribed radial velocity to the base flow, while simultaneously prescribing
a no-penetration condition, i.e. a zero radial velocity, to the instabilities. This assumption
neglects the potential for flow instabilities to penetrate into the permeable surfaces, which
has been shown to destabilize channel and boundary layer flows.

The mixing and transport properties of Taylor vortices have been studied both from
a fundamental point of view (Akonur & Lueptow 2002; Nemri et al. 2013) and for
practical applications (Miyashita & Senna 1993; Giordano, Giordano & Cooney 2000a;
Giordano et al. 2000b; Aljishi et al. 2013). Nevertheless, no studies to date have considered
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the boundary conditions associated with the rejection of the solute at a membrane and
the build-up of a concentration boundary layer together with osmotic pressure. The
coupling between transmembrane flow and osmotic pressure has been modelled and
studied in boundary layers or channel flows (Haldenwang et al. 2010; Lopes et al. 2012;
Bernales et al. 2017). But these works have focused on laminar flows within the Prandtl
approximation, thus excluding the possibility of vortical flows.

The article is organized as follows. Section 2 presents the geometry, governing equations
and base state. Section 3 describes the linear stability analysis and the numerical methods.
Section 4 first demonstrates the impact of osmotic pressure on centrifugal instabilities by
presenting converging numerical and analytical results (§ 4.1) then quantitatively assesses
over a relevant parameter space the magnitude of this impact on the critical conditions
(§ 4.2) and spatial structures (§ 4.3) of the instabilities. Section 5 further explains how
the semi-permeable membrane and the related velocity and concentration boundary
conditions generate this effect. Section 6 sums up our results by expressing analytically
the range of parameters over which osmosis impacts the instabilities and the magnitude
of this impact as a function of the radius ratio only. Section 7 discusses the interest and
limitations of the set-up and presents possible future works.

2. Geometry, governing equations and base state

We consider a Taylor–Couette cell with a stationary outer cylinder of radius r2, and a
concentric inner cylinder of radius r1. The inner cylinder rotates about its longitudinal
axis with constant angular velocity Ω , as sketched in figure 2. The flow of interest occurs
in the annular gap r1 ≤ r ≤ r2, which is filled with an incompressible Newtonian solution
composed of a solvent (water) and solute. Hereinafter, we use cylindrical coordinates x =
(r, θ, z), in which the fluid velocity vector is denoted V = (U, V, W)t, where U, V and W
are the radial, azimuthal and axial components, respectively. The fluid pressure is denoted
P. The concentration is denoted C, and expressed in mol m−3.

The inner and outer cylinders are both semi-permeable membranes of thickness h,
through which only the solvent can flow. The inner membrane surrounds a cavity (r <

r1 − h) filled with solvent maintained at constant pressure Pin. Similarly, the region beyond
the outer membrane (r > r2 + h) is filled with solvent maintained at constant pressure
Pout. The pressure difference between these cavities,

�P = Pin − Pout, (2.1)

drives radial flow through the annular gap. A positive �P drives flow in the positive radial
direction, with solvent entering the inner cylinder and leaving the outer cylinder. This
causes solute accumulation at the outer cylinder. A negative �P drives flow in the negative
radial direction, causing solutes to accumulate at the inner cylinder.

Both membrane surfaces satisfy the no-slip condition for the tangential velocity
components V and W

V|r=r1 = Ωr1, W|r=r1 = V|r=r2 = W|r=r2 = 0. (2.2a,b)

Radial solvent flow through the inner membrane satisfies a boundary condition involving
the transmembrane pressure difference and transmembrane concentration difference in the
form of an osmotic pressure given by van’t Hoff’s law

U|r=r1 = K
(

Pin − P|r=r1 + RTC|r=r1

)
, (2.3)

where K is the membrane permeance to water in the wall-normal direction, defined as the
transmembrane velocity of solvent per unit pressure difference, R is the ideal gas constant
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and T is the fluid temperature, assumed constant. Similarly, solvent flow through the outer
cylinder satisfies

U|r=r2 = −K
(
Pout − P|r=r2 + RTC|r=r2

)
. (2.4)

Flows over permeable surfaces may have a non-zero tangential velocity at the surface
due to momentum transfer to the fluid within the porous material (see Beavers & Joseph
1967). This tangential velocity is important when a streamwise pressure gradient drives
a streamwise flow within the porous material. In filtration flow, the no-slip assumption
(2.2a,b) is reasonable, because the permeability (or the permeance in our case) is very
small, and the membrane very thin. Consequently, the transmembrane pressure gradient,
i.e. the transmembrane pressure difference over the membrane thickness, necessary to
drive even a small transmembrane velocity is several orders-of-magnitude higher than
any pressure gradient tangent to the wall. For systems in which the no-slip assumption
is invalid, porous surfaces should be modelled using appropriate momentum transfer
condition (see Beavers & Joseph 1967), but to the best of our knowledge, such conditions
have never been numerically and/or analytically implemented and assessed in filtration
set-ups.

The absence of any solute flux through the inner and outer cylinders requires radial
advection and diffusion of solutes to sum to zero at r1 and r2,

[
UC − D ∂C

∂r

]
r=r1

=
[

UC − D ∂C
∂r

]
r=r2

= 0, (2.5)

where D is the solute molecular diffusivity. It is worth stressing here that the no-flux
boundary condition (2.5) has a nonlinear term, UC.

There is no applied axial pressure gradient and, equivalently, no net axial fluid flow. As
a consequence, the mass flow rate entering the gap through one of the cylinders balances
that leaving through the other, leading to

r1 〈U〉r1 = r2 〈U〉r2 , (2.6)

where 〈U〉ri denote the radial velocities averaged over the inner (i = 1) and outer (i = 2)
cylinders. Due to this balance in radial mass flow rates, solute accumulation at one cylinder
is balanced by depletion at the other, such that the solute concentration C0 averaged over
the full domain remains constant. This configuration allows us to control all the physical
mechanisms of interest in this study, i.e. the build up of a concentration boundary layer,
the coupling between the osmotic pressure and transmembrane flow, and the driving of
hydrodynamic instabilities.

2.1. Non-dimensional parameters and equations
Fluid flow and solute transport in the gap are governed by the incompressible continuity,
Navier–Stokes and advection–diffusion equations. These are non-dimensionalized using
the gap width d = r2 − r1 for the characteristic length, ν/d for the characteristic velocity,
d2/ν for the characteristic time, ρν2/d2 for the characteristic pressure and the average
concentration C0 for the characteristic concentration, where ρ is the fluid density and ν

its kinematic viscosity. Hereinafter, all expressions are non-dimensional, unless otherwise
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stated. The governing equations may be expressed as

∇ · V = 0,

∂V
∂t

+ (V · ∇) V = −∇P + ∇2V ,

∂C
∂t

+ V · ∇C = 1
Sc

∇2C,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.7)

where Sc = ν/D is the Schmidt number. Boundary conditions are now expressed at the
non-dimensional inner and outer radii r1 = η/(1 − η) and r2 = 1/(1 − η), respectively.
The boundary conditions for the tangential velocity components can be expressed as

V|r=r1 = Ta, W|r=r1 = V|r=r2 = W|r=r2 = 0, (2.8a,b)

where Ta = r1Ωd/ν is the Taylor number. The boundary conditions for U and C at the
cylinder are written as

U|r=r1 = σ
(
Pin − P|r=r1

) + χ C|r=r1 ,

U|r=r2 = −σ
(
Pout − P|r=r2

) − χ C|r=r2 ,

}
(2.9a)

[
Sc UC − ∂C

∂r

]
r=r1

=
[

Sc UC − ∂C
∂r

]
r=r2

= 0. (2.9b)

The semi-permeable nature of the membrane and its permeance K manifest through
two independent non-dimensional coefficients in boundary conditions (2.9a): the
velocity–pressure coupling coefficient σ = Kρν/d and the velocity–concentration
coupling coefficient χ = KRTd C0/ν. Lastly, the averaged transmembrane velocities are
expressed in terms of the Reynolds number

Re = r1 〈U〉r1

ν
= r2 〈U〉r2

ν
. (2.10)

Although this set-up is not commonly used in industrial RO or nanofiltration devices, we
nonetheless establish the ranges of the non-dimensional parameters that would prevail in a
RO Taylor–Couette cell with semi-permeable cylinders and filled with seawater. In typical
seawater plate-and-frame RO systems, the transmembrane velocity is of order 10−6 m s−1

for operating pressure ranging from 5 to 8 MPa, with the osmotic pressure being around
3 MPa. The permeance K of these membranes is of order 10−13 to 10−12 m s−1 Pa−1

(see table 1 in van Wagner et al. 2009, for examples of commercial RO membranes).
Assuming arbitrarily the radii r1 and r2 are of order 10−2 to 10−1 m, and the gap
width d is of order 10−3 to 10−2 m, produces velocity–pressure coupling coefficients
and Reynolds numbers ranging between 10−14 < σ < 10−12 and 10−2 < Re < 10−1,
respectively. Assuming seawater at 25 ◦C, with an average salt concentration C0 ≈
103 mol m−3, produces velocity–concentration coupling coefficients ranging between
10−3 < χ < 10−1. Considering that D for monovalent ions such as Na+ and Cl− is
of order 10−9 m2 s−1, the Schmidt number is of order 103. Typical transitional Taylor
numbers Ta ∼ 100 then correspond to rotation rates Ω ranging from 10−1 to 10 rad s−1.

2.2. Steady base state
Equations (2.7)–(2.9) admit a steady, axially and azimuthally invariant base state
[V b(r), Pb(r), Cb(r)], the expression of which is given in Appendix A. These velocity and
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Figure 3. (a) Radial velocity of the base state Ub(r) for radius ratio η = 0.85 and radial inflow Re = −0.1.
(b) Concentration field of the base state Cb(r) for radius ratio η = 0.85 a radial inflow with Péclet number
Pe = Re Sc = −20 (light grey, green online) and Pe = Re Sc = −100 (dark grey, blue online). The vertical
dashed (blue online) line materializes the polarization layer thickness δ as computed from (2.15) for Pe = −100.

pressure fields are parameterized by Ta and Re solely. Positive values of Re produce a radial
velocity Ub > 0 flowing outwards, while Re < 0 produces radial velocities Ub < 0 flowing
inwards, as seen in figure 3(a) for Re = −0.1. By writing the base state in this form, we
apply the Reynolds number Re directly, and then compute the necessary operating pressure
(2.1) from boundary conditions (2.9a),

�P = Pb(r1) − Pb(r2) + χ

σ
[Cb(r2) − Cb(r1)] + 1

σ
[Ub(r2) + Ub(r1)] . (2.11)

To further interpret the concentration boundary layer, the base state Cb in (A4) can be
re-expressed in terms of the radius ratio η = r1/r2 and the Péclet number associated with
the radial transmembrane flow Pe = Re Sc

Cb(r) = Pe + 2
2

1 − η2

1 − ηPe+2 (1 − η)Pe rPe for Pe /=−2. (2.12)

Figure 3(b) shows two examples of Cb when η = 0.85 with Péclet numbers Pe = −20
(light grey, green online) and Pe = −100 (dark grey, blue online). As Pe increases
in absolute value, whether by increasing the Reynolds or the Schmidt numbers, the
solute accumulates in an increasingly thin boundary layer near the inner membrane.
Simultaneously, pure solvent entering through the outer cylinder depletes the solute
concentration outside the polarization layer. To characterize the base-state polarization
layer, we first compute the maximum concentration Cb,max (shown as dots in figure 3),
which occurs on the membrane surface. We then define the polarization layer thickness δ as
the radial distance from the membrane where the concentration is 0.05Cb,max. Depending
on the direction of the radial flow, Cb,max is obtained from (2.12) as

Cb,max =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cb(r1) = −(Pe + 2)

2
1 − η2

1 − η−(Pe+2)

1
η2 , for Pe < 0,

Cb(r2) = Pe + 2
2

1 − η2

1 − ηPe+2 , for Pe > 0,

(2.13)

and, combined with (2.12), leads to

δ =

⎧⎪⎪⎨
⎪⎪⎩

(0.051/Pe − 1)
η

1 − η
, for Pe < 0,

(1 − 0.051/Pe)
1

1 − η
, for Pe > 0.

(2.14)
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Figure 4. (a) Maximum of the concentration field Cb,max (in log scale) as a function of the radius ratio η and
Péclet number Pe = Re Sc (in log scale). (b) Boundary layer thickness δ (in log scale) as a function of the
radius ratio η and Péclet number Pe = Re Sc (in log scale). Note the uncommon Pe-axis merging negative and
positive values of this parameter to account for radial in- and outflows, and the resulting discontinuities of the
surfaces. Note also the reversed η-axes in both figures.

For large Péclet numbers (in absolute value), the boundary layer thickness can be
approximated by

δ ≈

⎧⎪⎪⎨
⎪⎪⎩

log(20)

−Pe
η

1 − η
, for Pe < 0,

log(20)

Pe
1

1 − η
, for Pe > 0,

(2.15)

and is inversely proportional to the Péclet number. Figure 4 shows Cb,max and δ as
functions of the radius ratio η and Péclet number Pe, where Pe < 0 represents radial inflow
and Pe > 0 represents radial outflow. Maximum non-dimensional concentrations beyond
103 are not depicted, because these would likely trigger solute precipitation and call the
governing equations into question. Non-dimensional boundary layer thicknesses above 1
are not shown because this would correspond to layers larger than the gap. For δ > 1,
one can assume that no boundary layer forms. As expected, increasing the magnitude of
the Péclet number reduces the boundary layer thickness δ and increases the maximum
concentration Cb,max. Decreasing the radius ratio η, by reducing the radii r1 and r2,
increases the magnitude of the velocities Ub(r1) and Ub(r2) for a prescribed Péclet number.
It thus reduces the boundary layer thickness δ and increases the maximum concentration
Cb,max. Note that for a given Péclet number, the magnitude of the radial velocity through
the inner cylinder always exceeds that through the outer, because Ub(r1) = Ub(r2)/η.
Consequently, in figure 4(a), the solute concentration on the inner cylinder is greater than
that on the outer cylinder. Accordingly, in figure 4(b), the boundary layer at the inner
cylinder is thinner than that on the outer cylinder.

The base state ((A1a,b)–(A4)) does not present any dependence on the velocity–
concentration coupling coefficient χ and velocity–pressure coupling coefficient σ , as these
parameters only affect the operating pressure (2.11). This operating pressure is of major
practical importance because it imposes the non-dimensional power per unit axial length
needed to drive the fluid across the Taylor–Couette cell: P = 2πRe�P. The impact of
system design and operating conditions on �P can be understood by investigating each
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Figure 5. Reduced operating pressure σ�P/Re as a function of χ Sc and Pe = Re Sc, for (a) η = 0.85 and (b)
η = 0.25. All quantities are in log scale and note the uncommon Pe-axis merging positive and negative values
of this parameter to account for out- and inflows and the resulting discontinuities of the surfaces.

term in expression (2.11), repeated below for convenience

�P = Pb(r1) − Pb(r2) + χ

σ
[Cb(r2) − Cb(r1)] + 1

σ
[Ub(r2) + Ub(r1)]. (2.16)

The first term Pb(r1) − Pb(r2) is due to hydrodynamics and combines a contribution due
to the curvature of the azimuthal flow, scaling with Ta2, and a contribution due to the radial
flow, scaling with Re2, both up to multiplicative functions of η. The next term

χ

σ
[Cb(r2) − Cb(r1)] = χ (Pe + 2)

2σ

1 − η2

1 − ηPe+2 (1 − ηPe), (2.17)

is due to the osmotic pressure. For large Péclet numbers (in absolute value), it mostly
scales with χPe σ−1 = χRe Sc σ−1, up to a multiplicative function of η. The last term

1
σ

[Ub(r2) + Ub(r1)] = Re
σ

1 − η2

η
, (2.18)

is due to the transmembrane flow of solvent and scales with Re σ−1, up to a multiplicative
function of η. Typical membrane filtration conditions present very small σ , such that the
hydrodynamic term in the operating pressure (2.11) is negligible compared with the two
next terms, i.e. the operating pressure is mostly imposed by the membrane permeance and
osmotic pressure. Neglecting the hydrodynamic terms leads to the approximation

σ�P
Re

≈ 1 − η2

η

(
1 + χ Sc (Pe + 2)

2Pe
η

1 − ηPe

1 − ηPe+2

)
, (2.19)

depicted in figure 5 for narrow (η = 0.85) and wide (η = 0.25) gaps. For narrow gaps,
this operating pressure is almost independent of the Péclet number. For wide gaps, the
operating pressure becomes substantially stronger for inflows than for outflows, due to the
strong discrepancy between the transmembrane velocities at the inner and outer cylinders.

3. Analytical and numerical methods

We explore the appearance of vortical flow structures and their coupling with
concentration polarization by performing a linear stability analysis of the base state. We
also perform complementary direct numerical simulations of the complete flow fields.
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Osmotic pressure and Taylor vortices

3.1. Linear stability analysis
The stability analysis decomposes the flow fields into the sum of the base state
[V b, Pb, Cb] and small perturbations [V p(x, t), Pp(x, t), Cp(x, t)]. Linearizing equations
(2.7) about the base state produces the following evolution equations for the small
perturbation,

∇ · V p = 0 ,

∂V p

∂t
+ V b · ∇V p + V p · ∇V b = −∇Pp + ∇2V p,

∂Cp

∂t
+ V b · ∇Cp + V p · ∇Cb = 1

Sc
∇2Cp.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

The linearization of boundary conditions (2.9) produces

Vp
∣∣
r=ri

= Wp
∣∣
r=ri

= 0, (3.2a)

Up
∣∣
r=ri

= ∓ [
σPp − χCp

]
r=ri

, (3.2b)[
UpCb + UbCp − 1

Sc
∂Cp

∂r

]
r=ri

= 0, (3.2c)

where ri = r1 or r2, and the negative (positive) sign in condition (3.2b) is used when r = r1
(r = r2). Note that the terms UpCb and UbCp in the no-flux condition (3.2c) arise from the
linearization of the solute advection term UC in condition (2.5).

Our stability analysis considers perturbations of the form[
V p(x, t), Pp(x, t), Cp(x, t)

] = [vp(r), pp(r), cp(r)] exp(ikz + inθ + st), (3.3)

where k and n are the axial and azimuthal wavenumbers, respectively, s is the growth rate
and [vp(r), pp(r), cp(r)] are radial profiles, describing the variation of the perturbation
structures in the radial direction. Substituting form (3.3) into the linearized equations
(3.1)–(3.2) produces a generalized eigenvalue problem

A[vp, pp, cp] = −sB[vp, pp, cp], (3.4)

for which s and [vp, pp, cp] are the eigenvalues and eigenvectors, respectively. The
differential operators A and B are given in Appendix B. The radial profiles satisfy the
boundary conditions

vp(ri) = wp(ri) = 0, (3.5a)

up(ri) = ∓ [
σpp (ri) − χcp (ri)

]
, (3.5b)

up(ri)Cb(ri) + Ub(ri)cp(ri) − 1
Sc

dcp

dr
(ri) = 0, (3.5c)

where, again, ri = r1 or r2, and the negative sign in condition (3.5b) is used when r = r1.
The eigenvalue problem is solved using a standard spectral collocation method with a

typical resolution of 72 Chebyshev polynomials in the radial direction. Newton–Raphson
methods previously explained in Martinand, Serre & Lueptow (2009) are used to
determine the critical conditions of the most unstable mode. This yields the critical
Taylor number Tacrit above which the real part of a first eigenvalue s, associated with
the eigenmode [vcrit

p , pcrit
p , ccrit

p ] with axial wavenumber kcrit and azimuthal wavenumber
ncrit, becomes positive.
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3.2. Direct numerical simulations
We perform axisymmetric direct numerical simulations (DNS) of (2.7)–(2.9) using an
in-house pseudo-spectral code previously detailed in Tilton et al. (2014). The code has
been successfully used to simulate tubular membrane filtration systems (Tilton et al.
2012), and steady (Tilton et al. 2010) and unsteady (Tilton & Martinand 2018) flows in
Taylor–Couette–Poiseuille cells with permeable inner cylinders and pure solvent, and has
been modified to include the resolution of the scalar equation and boundary conditions
(2.9). The code discretizes the radial and axial directions using Chebyshev polynomials,
and uses a second-order semi-implicit temporal scheme suggested by Vanel, Peyret &
Bontoux (1986). The pressure solver is based on the projection method introduced in
Raspo et al. (2002) and extended in Tilton et al. (2014) to satisfy the velocity–pressure
and velocity–concentration couplings on the semi-permeable membranes. We simulate a
domain of non-dimensional axial length L = 20 with 36 and 148 collocation points in the
radial and axial directions, respectively. Spatial convergence is confirmed by monitoring
the Chebyshev expansion coefficients. The base flow V b(r) in Appendix A is imposed
at both axial ends of the domain, so that no net axial flow exists and the conservation
of the total radial flux (2.10) is satisfied. Moreover, the concentration field satisfies
vanishing Neumann boundary conditions at those two axial ends, so that the average
concentration in the domain is conserved. The initial conditions are composed of a small
disturbance added to the analytical base state ((A1a,b)–(A4)). To reduce the simulation
time, the initial disturbance takes the form of the analytically computed marginal mode
[V crit

p , Pcrit
p , Ccrit

p ] with an arbitrarily small amplitude. This was implemented after first
verifying that disturbances in this form or in the form of white noise on the axial velocity
led to the same final flow. For the supercritical Taylor numbers considered, we found that
perturbation growth eventually saturated such that all simulations settled to steady states.

4. Taylor vortices and osmotic pressure

Using linear stability analysis and DNS, the dynamics of Taylor vortices is now addressed.
More specifically, we focus on the impact of osmosis on the critical conditions above which
the vortices develop, and on the velocity and concentration fields of the perturbation.

4.1. Numerical and analytical results at η = 0.85, Pe = 100 and χ = 10−3

Figure 6 shows the steady radial velocity U(r, z) and concentration field C(r, z) obtained
by DNS for a radial inflow of Re = −0.1, velocity–pressure coupling coefficient σ =
10−10, Schmidt number Sc = 1000 and velocity–concentration coupling coefficient χ =
10−3, in a narrow-gap cell with η = 0.85 at Ta = 90. A full analysis of the numerical flow
fields [V num, Pnum, Cnum] shows that these fields are composed of the base state and a
perturbation in the form of toroidal counter-rotating vortices with an axial wavelength λ ≈
2.5. These vortices present a non-zero radial velocity at the inner cylinder. The order of
magnitude of this transmembrane velocity is comparable to the order of magnitude of the
radial velocity of the vortices observed in the bulk of the flow. Together with these vortices,
the concentration field exhibits substantial fluctuations with the same aforementioned
axial wavelength. These fluctuations are mostly observed within the polarization layer,
whose width δ = 0.171 is computed from (2.15), and located between the inner cylinder
and the superimposed dashed curve in figure 6(b). A similar DNS at Taylor number
Ta = 78 (not shown here) retrieved the base state, free of any vortex. For this set of
parameters (η = 0.85, Re = −0.1, σ = 10−10, χ = 10−3), the linear stability analysis
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Figure 6. (a) Radial velocity field Unum and (b) concentration field Cnum as functions of r and z, obtained
by DNS for η = 0.85, Re = −0.1, σ = 10−10, Sc = 1000 and χ = 10−3, at Ta = 90. The black superimposed
curves highlight the fluctuations of radial velocity and concentration at the membrane. The dark grey (blue
online) frames on both surfaces are a reminder of the base state Ub and Cb and the dark grey (blue online)
dashed curve superimposed on the concentration field bounds the polarization layer, the thickness of which δ

is given by (2.15). Note that for the sake of clarity, the r-axis has been reversed between both surfaces.

predicts Tacrit = 79.1 and λcrit = 2.26, in good agreement with the DNS. The non-zero
critical Taylor number means that the centrifugal force remains the necessary ingredient
to the development of the vortices. If we remove osmotic pressure effects by setting
χ = 0 (by assuming, for instance, that the reference physical concentration C0 tends to
0), the stability analysis predicts for Taylor vortices slightly modified by the radial inflow
Tacrit = 106.9 and λcrit = 2.04: the presence of osmotic pressure dramatically decreases
the critical Taylor number, together with increasing the wavelength of the vortices.

To compare the numerical and analytical results for the perturbation velocity and
concentration, the DNS hereinafter is performed closer to critical conditions at Ta = 80,
and considered at a time before the steady state, shown in figure 6, is reached, so that the
growth of the instability is still in its linear dynamic. Figure 7 first shows the velocity and
concentration fields of the perturbation in a meridional plane, in the form of the numerical
velocity and concentration fields, (Unum

p (r, z), Wnum
p (r, z)) and Cnum

p (r, z), obtained by
removing the base state [V b, Pb, Cb] from the complete DNS fields [V num, Pnum, Cnum]
(panel a), together with the analytical fields, (Ucrit

p (r, z), Wcrit
p (r, z)) and Ccrit

p (r, z)
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(panel b). The focus being on the linear dynamic of the instabilities, the amplitudes of
the perturbations are reset so that the maxima of the analytical and numerical azimuthal
velocity components are both normalized to 1.

The numerical and analytical fields compare favourably and further ascertain the validity
of both approaches. Figure 7 also sheds light on the coupling between the vortices,
concentration boundary layer, and osmotic pressure. The non-zero boundary condition
at the inner cylinder for the radial velocity of the perturbation is obvious, and extra
extraction of fluid at the inner cylinder (related to the perturbation, in addition to the
radial mean flow) is found to coincide with the inward jets of the vortices in the bulk.
Symmetrically, extra injection of fluid at the inner cylinder is found to coincide with the
outward jets of the vortices in the bulk. Moreover, it can be seen that injections/outward jets
occur at the axial locations where the perturbation develops an excess of solute, whereas
extractions/inward jets occur at the axial locations where the perturbation depletes the
solute. From these observations, a mechanism by which osmotic pressure retroacts on
the vortices can be proposed. The regions of excess of solute act via osmotic pressure to
add extra injection of pure solvent in the bulk through the inner cylinder, thus reinforcing
the outward jets of the vortices. Similarly, regions of depleted solute add extra extraction
of pure solvent from the bulk, thus reinforcing the inward jets of the vortices. As far
as the perturbation [V p, Pp, Cp] is concerned, vortices and osmosis are found to work
in a cooperative fashion, and osmotic pressure hence reduces the critical conditions for
centrifugal instabilities. Moreover, owing to the non-zero boundary condition for the
radial velocity, the vortices ‘penetrate’ into the inner cylinder, and the increased perceived
radial characteristic size of a vortex induces an increased axial one to conserve a ‘round’
cross-section, explaining the observed increase of the axial wavelength.

A finer comparison between our numerical and analytical results is obtained by
assessing the radial profiles of the perturbation structures. The solid curves (green online)
in figure 7(c–f ) shows the analytical results for the critical eigenmode [vcrit

p , ccrit
p ]. The

dashed curves (blue online) show the corresponding DNS results for [V num − V b, Cnum −
Cb], at Ta = 80 and the axial location zoutward of an outward jet (and between two
neighbouring outward and inward jets for the axial component wp(r)). Beyond the
nearly identical radial profiles, the membrane boundary conditions (3.2b) and (3.2c) are
accurately captured by both the DNS and linear analysis, but a minute discrepancy, that
could not be explained so far, is observed between the two approaches.

4.2. Parametric study by linear stability analysis
The case shown in § 4.1 demonstrates that transmembrane flow, concentration polarization
and osmotic pressure can substantially decrease the critical Taylor number for the
appearance of vortices. The next question is to evaluate whether these phenomena always
favour the development of the centrifugal instabilities, and to what extent they impact
the critical Taylor number. For that purpose, we use the analytic approach presented
in § 3.1 to perform a parametric study considering wide to narrow-gap cases with
radius ratios varying in the range 0.25 ≤ η ≤ 0.95, radial Reynolds numbers varying
in the range −1 ≤ Re ≤ 1, Schmidt numbers varying in the range 0 ≤ Sc ≤ 20 000
and velocity–concentration coupling coefficients (scaling the magnitude of the osmotic
pressure) varying in the range 10−6 ≤ χ ≤ 1. In addition to tracking the critical Taylor
number, we explore the effects of osmotic pressure on the geometrical features of the
vortices, in terms of wavenumber and radial profiles.
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Figure 7. Velocity fields of the vortices V p,merid. = (Up, Wp) and concentration perturbation Cp in a
meridional plane (r, z), for η = 0.85, Re = −0.1, Sc = 1000, σ = 10−10 and χ = 10−3, obtained numerically
at Ta = 80 (a) and analytically at critical conditions Tacrit = 78.4 (b). Corresponding radial profiles of the
radial (c), azimuthal (d) and axial (e) components of the velocity and concentration ( f ) perturbations, obtained
by linear stability analysis (light grey, green online, solid curves) and DNS (dark grey, blue online, dashed
curves).
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Figure 8. Analytically obtained critical Taylor number Tacrit (a) and axial wavenumber kcrit (b), in the presence
of radial inflow with Re = −0.1, for η = 0.85, Sc = 103 and χ = 10−3, as functions of the velocity–pressure
coupling coefficient σ , in log scale. The dashed horizontal lines correspond to the case where σ = 0 in
boundary conditions (3.2b). Analytically obtained radial profiles of the radial component of the velocity
(c) and concentration (d) for Re = −0.1, η = 0.85, Sc = 103 χ = 10−3 and σ = 0 (dashed, blue online, curve),
σ = 10−3 (light grey, green online, solid curve) and σ = 10−2 (dark grey, red online, solid curve).

It might be surprising that the velocity–pressure coupling coefficient σ is disregarded
in the parametric study. Recall, however, that the base state [V b, Pb, Cb] computed
in § 2.2 does not depend on σ , because this latter only affects the operating pressure
�P. In the linear stability problem, σ thus only appears in boundary conditions (3.2b).
Figure 8 shows that, for Re = −0.1, Sc = 103, χ = 10−1 and η = 0.85, the critical Taylor
number Tacrit and axial wavenumber kcrit together with the radial profiles of the critical
perturbation ucrit

p (r) and ccrit
p (r) are barely affected by a non-zero velocity–pressure

coupling coefficient, up to σ ∼ 10−3. More specifically in figure 8(a,b), removing the
pressure term in boundary conditions (3.5b), i.e. setting σ = 0, leads to Tacrit = 79.1
and kcrit = 2.26 (the asymptotic dashed lines), whereas σ = 10−3 (the light grey, green
online, circles) leads to Tacrit = 78.4 and kcrit = 2.24. In figure 8(c,d), the radial profiles
of the radial velocity component and concentration of the perturbation (the dark grey,
blue online, dashed curves for σ = 0 and the light grey, green online, solid curves for σ =
10−3) are barely distinguishable. Beyond 10−3, σ noticeably impacts the critical conditions
and perturbation. With σ = 10−2 (the dark grey, red online, circles in figure 8a,b), Tacrit =
73.0, kcrit = 2.02 and the velocity–pressure coupling at the membranes also clearly affects
the radial profiles (the dark grey, red online, solid curves in figure 8c,d). For very weak
values of σ typical of RO, the pressure term in boundary conditions (3.2b) can be ignored.
As its boundary condition (3.5b) reduces then to

up(ri) = ±χcp(ri), (4.1)

the stability analysis is now completely independent of σ . We stress, however, that
the membrane permeance K also enters the velocity–concentration coupling coefficient
χ . Our approximation consequently amounts to neglecting the hydrodynamic pressure
compared with the osmotic pressure in the transmembrane flow of the perturbation. Our
DNS, however, implements the complete boundary conditions (2.9a).
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Figure 9. Critical Taylor number as a function of the Schmidt number Sc and coupling coefficient χ , in log
scale, for η = 0.85 and Re = −0.1 (a) and Re = 0.1 (b). The dark grey (blue online) solid curves correspond
to the locus of the boundary condition criterion on the inner cylinder χ1 (5.7) and the light grey (green online)
ones to the boundary condition criterion on the outer cylinder χ2 (5.11).

For the full range of parameters considered, the linear critical modes of instability
were always in the form of counter-rotating toroidal vortices, i.e. ncrit ≡ 0, as depicted
in figure 6. To reduce the CPU time, we consequently limit our DNS to axisymmetric
computations.

To explore the effect of the osmotic pressure induced by concentration polarization, we
begin by considering the impact of the Schmidt number Sc and the coupling coefficient χ ,
at fixed values of the radius ratio η and radial Reynolds number Re. The salient features
are summarized in figure 9, showing Tacrit as a function of the Sc and χ for η = 0.85 and
Re = −0.1 (panel a) and Re = 0.1 (panel b). As Sc and/or χ are increased, the critical
Taylor number Tacrit first substantially decreases, before eventually levelling off. Starting
from its value obtained in the case of pure solvent Tacrit

pure, the critical Taylor number tends
towards a limit value in conditions where osmosis performs its maximum effect to favour
the instabilities. This smooth decrease of Tacrit, and the fact that it never vanishes, support
the fact that these instabilities remain driven by the centrifugal force and take the form of
altered Taylor vortices, favoured by osmotic pressure.

This reinforcement is observed when polarization occurs at the inner cylinder (Re =
−0.1 in panel a), or at the outer cylinder (Re = 0.1 in panel b), but it is more pronounced
in the former. Although the critical Taylor number asymptotically tends towards a limit
value, we will assume that this limit is almost reached at the minimum of the critical
Taylor number Tacrit

min in the parameter range of this study, i.e. for Sc < 2000 and χ < 1.
The overall decrease of Tacrit can be quantified by introducing the ratio ε

ε = 1 − Tacrit
min

Tacrit
pure

. (4.2)

Quantitatively, for η = 0.85 and radial inflow Re = −0.1, the critical Taylor number
decreases up to Tacrit

min = Tacrit
∣∣
Sc=2000,χ=1 = 67.6, compared with Tacrit

pure = 108.4,
corresponding to ε ≈ 0.37. For η = 0.85 and radial outflow Re = 0.1, the critical Taylor
number decreases up to Tacrit

min = Tacrit
∣∣
Sc=2000,χ=1 = 79.0, compared with Tacrit

pure =
108.2, corresponding to ε = 0.27. Section 5 elaborates further on the mechanism by which
osmotic pressure, molecular diffusion and Taylor vortices couple and explain in a more
detailed fashion the variations of Tacrit with χ .

Figure 10 demonstrates the impact of the magnitude of the imposed radial flow,
quantified by the radial Reynolds number Re. Panel (a) shows the critical Taylor number
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Figure 10. Critical Taylor number as a function of the Schmidt number Sc and coupling coefficient χ , in log
scale, for η = 0.85 and Re = −1 (a) and Re = −0.01 (b). The dark grey (blue online) solid curves correspond
to the locus of the boundary condition criterion on the inner cylinder χ1 (5.7) and the light grey (green online)
ones to the boundary condition criterion on the outer cylinder χ2 (5.11).

obtained for η = 0.85 and a strong radial inflow Re = −1. The Schmidt number ranges
from 0 to 200 and the coupling coefficient χ ranges from 10−4 to 10. Panel (b) shows
the corresponding results for a weak radial inflow Re = −0.01, with Schmidt number
ranging from 0 to 20 000 and coupling coefficient χ ranging from 10−6 to 10−1. The
surfaces shown in figures 9(a), 10(a) and 10(b) clearly collapse under the rescaling
(Re, Sc, χ) → (a−1 Re, a Sc, a−1 χ), with a an arbitrary constant. The critical conditions
thus depend on combinations (Re Sc, χ Sc) rather than parameters (Re, Sc, χ).

Figure 11 demonstrates the influence of the radius ratio η on the critical conditions of the
vortices. Figure 11(a) shows Tacrit as a function of the Schmidt number Sc and coupling
coefficient χ , for a radial inflow Re = −0.1, in a narrow gap η = 0.95. Figure 11(b)
shows the corresponding results in a medium gap η = 0.55. Variations of η are known
to induce large changes in the critical Taylor number in the case of pure solvent. We
see these changes are also observed as solute and osmosis are present. In the medium
gap (η = 0.55 in panel b), Taylor vortices appear above Tacrit = 40.1 for Sc = 2000 and
χ = 1, compared with Tacrit

pure = 69.6 for pure solvent, corresponding to ε = 0.42. In the
narrow gap (η = 0.95 in panel a), the critical Taylor number exhibits a novel feature. At
fixed Schmidt number, as the coupling coefficient χ is increased, Tacrit first decreases
under the effect of osmotic pressure, but eventually increases to recover the value obtained
for pure solvent. In this narrow gap, the minimum critical Taylor number is reached for
χ = 0.023 instead of χ = 1 for the other cases. The critical Taylor number decreased up
to Tacrit

min = 131.0, compared with Tacrit
pure = 185.1, corresponding to ε = 0.29.

4.3. Velocity and concentration fields of the centrifugal instabilities
Above Tacrit, the centrifugal instabilities take the form of counter-rotating toroidal vortices,
with ncrit = 0. To investigate how osmotic pressure modifies the structure of these
centrifugal instabilities, figure 12 shows the critical axial wavelength λcrit = 2π/kcrit, as
a function of Sc and χ for η = 0.95 (panel a) and η = 0.55 (panel b). By comparing
figures 11 and 12, conditions for which the critical Taylor number is affected by osmosis
are readily found to also increase the characteristic size of the vortices along the axial
direction. Similarly, when the effect of osmosis plateaus and the critical Taylor number
tends to its limit Tacrit

osm, so does the axial wavelength. At its maximum, the axial wavelength
λcrit is increased by almost 50 %, in relation with a decreasing critical axial wavenumber
kcrit.

933 A51-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1101


Osmotic pressure and Taylor vortices

Ta
cr

it

25

75

125

175

Sc

0
500

1000
1500

2000 log 10
χ

0
−1

−2
−3

−4
−5

25

75

125

175

Sc

0
500

1000
1500

2000 log 10
χ

0
−1

−2
−3

−4
−5

(a) (b)

Figure 11. Critical Taylor number as a function of the Schmidt number Sc and coupling coefficient χ , in log
scale, for Re = −0.1 and η = 0.95 (a) and η = 0.55 (b). The dark grey (blue online) solid curves correspond
to the locus of the boundary condition criterion on the inner cylinder χ1 (5.7) and the light grey (green online)
ones to the boundary condition criterion on the outer cylinder χ2 (5.11).

λ
cr

it

1.5

2.0

2.5

3.0

Sc

2000
1500

1000
500

0 log 10 
χ

−5
−4

−3
−2

−1
0 1.5

2.0

2.5

3.0

Sc

2000
1500

1000
500

0 log 10 
χ

−5
−4

−3
−2

−1
0

(a) (b)

Figure 12. Wavelength at critical conditions λcrit, as a function of the Schmidt number Sc and coupling
coefficient χ in log scale, for Re = −0.1 and η = 0.95 (a) and η = 0.55 (b). Note the axes orientation differs
from figure 11.

We further explore the structure of the vortices by considering the perturbation fields
V crit

p and Ccrit
p , obtained analytically at Tacrit. In addition to figure 7(b) showing those

fields in a meridional plane for η = 0.85, α = −0.1, χ = 10−2 and Sc = 1000, figure 13
shows them for Sc = 500 (panel a) and Sc = 2000 (panel b). Whereas the vortices are
only marginally impacted as molecular diffusion is decreased, the patches of solute
accumulation and depletion are found to get thinner along the radial direction, following
the similar evolution of the boundary layer thickness δ, as shown in figure 4.

Figure 14 shows the perturbation for η = 0.85, α = −0.1 and Sc = 1000, at χ = 5 ×
10−5 (panel a) and χ = 10−1 (panel b). As osmosis is weak in figure 14(a), the vortices
are almost identical to Taylor vortices, and the radial transmembrane flow associated
with boundary condition (3.2c) is barely observed. The advection of the concentration
boundary layer by the vortices generates patches of solute depletion and accumulation, but
these only weakly retro-act on the vortices. As osmosis kicks in in figure 7(b), boundary
condition (2.9a) now drives a noticeable extra radial transmembrane flow. This causes
the axial wavelength of the vortices to increase. Although five full vortices are observed
in figure 14(a), only four are observed along the same axial length in figures 7(b) and
14(b). As the effect of osmosis is further increased between figures 7(b) and 14(b), we
also observe a modification of the patches of solute depletion and accumulation, such that
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Figure 13. Velocity fields of the vortices V p,merid. = (Up, Wp) and concentration perturbation Cp in a
meridional plane (r, z), for η = 0.85, Re = −0.1, χ = 10−3 and Sc = 500 (a) and Sc = 2000 (b), obtained
analytically at critical conditions. The dark grey (blue online) dashed lines above the inner cylinder bound the
polarization layer, the thickness of which is given by (2.15).

the local extrema of these patches detach from the inner cylinder. Together with these
detached extrema, the radial transmembrane flow does not further increase. The evolution
of the perturbation of concentration and radial velocity fields is further addressed in the
next section.

5. How solute rejection favours (or not) the vortices

Here, we further investigate the perturbation flow fields to clarify the mechanism by which
the advection of the polarization layer and the related fluctuations of osmotic pressure act
on the dynamics of Taylor vortices. This mechanism explains why increasing osmosis
first decreases the critical Taylor number, and why this decrease eventually plateaus. In
the process, we find an algebraic criterion producing the range of parameters for which
osmosis acts on the instability and effectively reduces the critical Taylor number.

For the sake of clarity, we focus on cases of radial inflow Re < 0, with polarization
occurring at the inner cylinder. From the numerical results observed in figure 6, we
surmised that in the outward (inward) jets, osmosis favours the Taylor vortices by injecting
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Figure 14. Velocity fields of the vortices (Up, Wp) and concentration perturbation Cp in a meridional plane
for η = 0.85, Re = −0.1, Sc = 1000 and χ = 5 × 10−5 (a) and χ = 10−1 (b), obtained analytically at critical
conditions.

(extracting) solvent through the inner cylinder. To put this assumption on firmer grounds,
we need to identify the mechanism(s) affecting the radial velocity perturbation at the
inner cylinder, up(r1). Moreover, we now focus on the axial locations zoutward of the
radial outward jets where, as in figure 7, the radial velocity perturbation Up(r, zoutward)
and concentration perturbation Cp(r, zoutward) are positive and identify to their respective
radial profiles up(r) and cp(r).

We first recall that in the boundary condition (3.5b) for the radial velocity perturbation,
the pressure term is usually weak compared with that due to concentration, such that we
can simplify this condition to (4.1), repeated below for convenience

up (ri) = ±χ cp (ri) , (5.1)

where ri = r1 or r2, and the positive sign is used when r = r1. In addition to the above,
cp(r) also satisfies the scalar transport equation linearized about the base state. At critical
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conditions for which the growth rate s vanishes, this equation reads

−Sc Ub(r)
dcp

dr︸ ︷︷ ︸
①

+�cp(r)︸ ︷︷ ︸
②

−Sc up(r)
dCb

dr︸ ︷︷ ︸
③

= Sc s cp(r) = 0, (5.2)

with Δ = d2
r + (1/r)dr − k2 and dr = d/dr. Considering (5.2) as the governing equation

for cp(r), term 1© represents advection of the scalar by the base flow, term 2© represents
molecular diffusion and term 3© is a source term due to advection of the base-state
boundary layer by the Taylor vortices. The concentration perturbation also satisfies the
solute rejection condition (3.5c) at both cylinders. Injecting boundary condition (5.1) in
the solute rejection condition (3.5c) at the inner cylinder produces the following Robin
boundary condition:

Sc [Ub (ri) ± χ Cb (ri)] cp (ri) − dcp

dr
(ri) = 0, (5.3)

where ri = r1 or r2, and the positive sign is used when r = r1. This condition
represents the balance between molecular diffusion and advection of cp by an effective
transmembrane flow Ub(r1) ± χ Cb(r1).

5.1. Coupling in the polarization layer
Figure 15 shows how the increase of the coupling coefficient χ affects the Taylor
vortices, the concentration perturbation and its dynamics. To compare the perturbations
[vp(r), cp(r)] at different χ , they are normalized by the maximum of their azimuthal
velocity component vp(r), which is found to be barely affected by osmosis. First,
figure 15(a) is a reminder that Tacrit decreases as χ increases, at specific conditions
Sc = 1000 and Re = −0.1, in the case of a narrow gap (η = 0.85). In these conditions,
the thickness of the base-state polarization layer is δ ≈ 0.171. Figure 15(b,c) shows how
the increase of the coupling coefficient impacts the radial velocity perturbation up(r) and
concentration perturbation cp(r), respectively. Figure 15(d,e) shows how advection terms
in the scalar transport equation (5.2), −Sc up(r)drCb and −Sc Ub(r)drcp, respectively,
evolve with the coupling coefficient.

In the case of no osmotic pressure, χ = 0 (the dashed horizontal black line in
figure 15(a) and black solid curves in figure 15b–e), the solute has no impact on the
centrifugal instabilities, which take the form of the classical Taylor vortices, with no
velocity at the inner cylinder up(r1) = 0. More specifically, figure 15(b) shows that the
radial velocity of these vortices vanishes at the inner cylinder. Due to this boundary
condition, the base-state polarization layer and the radial velocity of the vortices barely
overlap, such that the source term 3© in (5.2), shown as a black curve in figure 15(d),
is nearly zero. The transport of the concentration perturbation is thus mostly a balance
between its advection by the base-flow Ub(r) and molecular diffusion. For χ = 0, the
solute rejection condition (5.3) further reduces to

dcp

dr
(r1) = Sc Ub (r1) cp (r1) . (5.4)

Axial diffusion being much weaker than radial diffusion in term 2©, the concentration
perturbation satisfies the same equation and boundary conditions as the base-state
concentration, and cp(r) is similar, up to a scaling factor, to Cb(r). This can be seen in
figure 15(c). Although weak, the positive source term −Sc up drCb triggers the coincidence
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Figure 15. (a) Critical Taylor number Tacrit as a function of the coupling coefficient χ in log scale, for
η = 0.85, Re = −0.1 and Sc = 1000. (b) Radial velocity perturbation up, (c) concentration perturbation cp,
the dashed black vertical line bounding the polarization layer, the thickness of which δ is given by (2.15),
(d) advection of the bases-state concentration by the radial velocity perturbation (term 3© of (5.2)) and (e)
advection of the concentration perturbation by the base-state radial flow (term 1© of (5.2)), as functions of
r, obtained analytically at χ = 0 (solid black curves), 10−4 (dotted curves, magenta online), 10−3 (dashed
curves, blue online), 10−2 (dashed-dotted curves, red online) and 10−1 (solid light grey curves, green online),
the circles in (a) correspond to the four last cases, whilst the black horizontal dashed line corresponds to the
osmosis-free χ = 0 case. The dashed vertical (blue online) line in (a) corresponds to the limit value χ1 inferred
from (5.7).

of the radial outward jet with an excess of concentration, or equivalently, a positive
radial perturbation velocity up(r) (the black curve in figure 15b) corresponds to a positive
concentration perturbation cp(r) (the black curve in figure 15c).

As χ departs from zero, the radial velocity perturbation no longer vanishes at the
inner cylinder and boundary condition (5.1) implies up(r1) > 0. This is illustrated in
figure 15(b), where the dotted (magenta online) curve is obtained at χ = 10−4. Osmosis,
via this injection of fluid at the inner cylinder, fosters the Taylor vortices and the critical
Taylor number decreases accordingly, as recalled in figure 15(a). As the radial velocity
perturbation up(r) and the base-state concentration Cb(r) now overlap, source term 3©
acts in the polarization layer (the dotted, magenta online, curve in figure 15d). The
concentration perturbation in the polarization layer is also affected by the modification
of the solute rejection condition (5.3), where the negative effective transmembrane
flow [Ub(r1) + χ Cb(r1)] increases. Outside the polarization layer, the concentration
perturbation remains unaffected by osmosis, and similar to the case with χ = 0. Matching
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the concentration perturbation inside and outside the polarization layer forces cp(r1) to
decrease and drcp(r1) to increase as χ increases, as seen in figure 15(c).

For large values of χ , the perturbation tends to a limit solution for which the radial
profiles and the critical Taylor number are no longer χ -dependent. This is demonstrated
by the asymptotic regime for large values of χ in figure 15(a), and the dash-dotted (red
online) and solid light grey (green online) curves in figure 15(b,c), obtained at χ = 10−2

and χ = 10−1, respectively. As χ increases, figure 15(b) shows that up(r1) tends to a limit
value u∞

p (r1), and figure 15(c) shows that cp(r) now presents a maximum concentration
detached from the inner cylinder, while cp(r1) tends to 0. Outside the polarization layer,
cp(r) remains unaffected by osmosis.

To explain this limit regime, first note that at large χ , the solute rejection condition at
the inner cylinder (5.3) simplifies to

dcp

dr
(r1) ≈ χ Sc Cb(r1) cp(r1), (5.5)

and drcp(r1) is now positive. Matching boundary condition (5.5) to the concentration
perturbation outside the polarization layer forces cp(r) to reach its maximum in the
polarization layer instead of at the inner cylinder. Furthermore, as χ increases, the solute
rejection condition (5.5) forces the concentration perturbation at the inner cylinder cp(r1)
to decrease and tend to 0, to avoid up(r1) diverging. The concentration perturbation cp(r)
is now a solution of the transport equation (5.2) with boundary conditions (5.1) and (5.3)
rewritten as

cp(r1) = 1
χ

u∞
p (r1) and

dcp

dr
(r1) = Sc Cb(r1)u∞

p (r1), (5.6a,b)

respectively. The small value of cp(r1) excepted, these solutions are independent of χ .
The extra injection of pure solvent at the inner cylinder up(r1) levels off, and no further
decrease of Tacrit is observed as χ increases, as seen in figure 15(a).

Figure 15 thus highlights two obvious regimes of coupling between osmosis and Taylor
vortices. For small χ , drcp(r1) is negative, cp(r1) is large and up(r1) increases with χ .
For large χ , drcp(r1) is positive, cp(r1) is almost zero and up(r1) is independent of
χ . The distinction between these two regimes is imposed by the sign of the effective
transmembrane velocity Ub(r1) + χ Cb(r1) in the solute rejection boundary condition
(5.3). This velocity is negative for small values of χ , and becomes positive when χ > χ1,
where

χ1 =
∣∣∣∣Ub(r1)

Cb(r1)

∣∣∣∣ =
∣∣∣∣∣2Re (1 − η)

(
1 − η−Re Sc−2)

(Re Sc + 2)
(
η−2 − 1

)
η

∣∣∣∣∣ . (5.7)

This limit value χ1 is inferred from the base state alone. It is shown as a dashed vertical
(blue online) line at χ1 ≈ 9.38 × 10−4 in figure 15(a) for η = 0.85, Re = −0.1 and Sc =
1000. This limit almost corresponds to the dashed, blue online, curves in figure 15(b–e) at
χ = 10−3. For χ < χ1, osmosis favours vortices by injecting pure solvent in the outward
jets and extracting pure solvent from the inward jets. In this regime, Tacrit decreases as
χ increases. For χ > χ1, this mechanism subsides, such that Tacrit plateaus to its limit
minimal value. The limit value χ1 has been added as dark grey (blue online) curves on
figures 9–11. For sufficiently large Péclet numbers, it indeed coincides, for cases with a
radial inflow base-state, to the value of χ beyond which Tacrit is no longer affected by
increasing the coupling coefficient.
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5.2. Coupling on the depleted side
The solute rejection boundary condition explains another feature of the impact of χ on
Tacrit, observed in figures 11(a) and 16(a). For η = 0.95, Re = −0.1 and Sc = 1000, Tacrit

is found to be a decreasing then increasing function of χ . Concerning the base state, η =
0.95 yields a thicker polarization layer δ ≈ 0.57 than for η = 0.85. Accordingly, the solute
is less depleted at the outer cylinder for η = 0.95 than for η = 0.85. As explained above,
in the case of no osmotic pressure, cp(r) recovers the base-state concentration Cb(r) up
to a multiplicative constant and cp(r2) noticeably departs from zero for cases with thick
polarization layers.

As χ remains limited, the radial velocity perturbation up(r) and concentration
perturbation cp(r) and their evolution with χ at η = 0.95 are similar to the case η = 0.85,
and governed by osmosis and the advection of the polarization layer at the inner cylinder.
This is demonstrated in figure 16(b,c), where the solid (green online) curves are obtained
at χ = 10−4 and dashed (blue online) curves at χ = 10−2. As χ is further increased, the
radial velocity perturbation at the outer cylinder, up(r2), substantially departs from 0, to
be negative. This is illustrated in figure 16(b) where the dash-dotted (red online) curve
is obtained at χ = 5 × 10−1. This counter-flow acts against the outward jet and explains
the increase of the critical Taylor number, as recalled in figure 16(a). This counter-flow is
induced by the boundary condition for up(r) at the outer cylinder

up (r2) = −χcp (r2) . (5.8)

Moreover, as the source term 3© in the transport equation (5.2) vanishes outside the
polarization layer, drcp(r2) must be independent of χ . In the solute rejection condition
at the outer cylinder

Sc [Ub (r2) − χ Cb (r2)] cp (r2) − dcp

dr
(r2) = 0, (5.9)

the (negative) effective transmembrane velocity Ub(r2) − χ Cb(r2) decreases with χ , and
forces cp(r2) to tend to zero as χ increases.

For large values of χ , the solute rejection condition further reduces to

dcp

dr
(r2) ≈ −χ Sc Cb (r2) cp(r2), (5.10)

and forces up(r2) = −χ cp(r2) to tend to a negative limit value u∞
p (r2). The limit regime

at the outer cylinder occurs as χ exceeds

χ2 =
∣∣∣∣Ub(r2)

Cb(r2)

∣∣∣∣ =
∣∣∣∣∣2Re (1 − η)

(
1 − ηRe Sc+2)

(Re Sc + 2)
(
η2 − 1

)
∣∣∣∣∣ , (5.11)

and −χ Cb(r2) becomes dominant over Ub(r2) in boundary condition (5.9). The limit
value (5.11) has been added as light grey (green online) curves in figures 9–11. It roughly
coincides, for cases with a radial inflow base state, to the value of χ beyond which the
decrease of Tacrit due to osmosis at the inner cylinder is no longer observed.

6. Range of parameters where osmosis favours the vortices

The parametric study in § 4.2 has shown that the critical conditions Tacrit of the centrifugal
instabilities eventually depend on three parameters: the Péclet number Pe = Re Sc, the
velocity–concentration coupling coefficient renormalized by the Schmidt number χ Sc and
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Figure 16. (a) Critical Taylor number Tacrit as a function of the coupling coefficient χ , in log scale, for η =
0.95, Re = −0.1 and Sc = 1000. (b) Radial velocity perturbation up(r) and (c) concentration perturbation
cp(r) , obtained analytically at χ = 10−4 (solid curves, green online), 10−2 (dashed curves, blue online) and
5 × 10−1 (dashed-dotted curves, red online), the circles in (a) correspond to these three cases.

the radius ratio η. More specifically, combining the limit values (5.7) and (5.11) found in
§ 5, osmosis is found to impact the centrifugal instabilities and decreases Tacrit for χ Sc in
the range

2Pe
(
1 − η−Pe−2) η

(Pe + 2) (1 + η)︸ ︷︷ ︸
χ1 Sc

< χ Sc <
2Pe

(
ηPe+2 − 1

)
(Pe + 2) (1 + η)︸ ︷︷ ︸

χ2 Sc

, for Pe < 0, (6.1)

in terms of (negative) Péclet number, for radial inflow base states and η. For cases with
radial outflow base states, as in figure 9(b), the inner and outer cylinders exchange their
roles. For χ Sc > Sc Ub(r2)/Cb(r2), osmotic pressure at the outer cylinder no longer
further favours the outward and inward jets of the vortices and Tacrit tends to its limit
minimal value. For χ Sc > Sc Ub(r1)/Cb(r1), osmotic pressure at the inner cylinder
hampers the outward and inward jets of the vortices, and Tacrit increases with χ . Osmosis
consequently decreases Tacrit for χ Sc in the range

2Pe
(
1 − ηPe+2)

(Pe + 2) (1 + η)︸ ︷︷ ︸
χ2 Sc

< χ Sc <
2Pe

(
η−Pe−2 − 1

)
η

(Pe + 2) (1 + η)︸ ︷︷ ︸
χ1 Sc

, for Pe > 0, (6.2)

in terms of (positive) Péclet numbers and η.
Figure 17 shows χ Sc-ranges (6.1) (panel a) and (6.2) (panel b), between the two surfaces

χ1 Sc and χ2 Sc as functions of η and Pe. In configurations with (Pe, η, χ Sc) between
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Figure 17. Limit values χ1 Sc and χ2 Sc, bounding the χ Sc range where osmosis lessens the critical Taylor
number, as functions of η and Pe, shown for (a) radial inflows (Pe < 0) and (b) radial outflows (Pe > 0).

the two surfaces, instabilities are affected by osmosis. The larger this χ Sc-range between
the two surfaces is, the more the enhancement of the vortices by osmosis accommodates
variations of χ due, for instance, to variations of the mean concentration C0. Figure 17
shows that a higher Péclet number enlarges the χ Sc-range. Figure 17 also shows that a
narrow gap (large η) presents a limited χ Sc-range compared with a wide gap (small η).
For osmosis to enhance the Taylor vortices over a substantial χ Sc-range, a higher Péclet
number must therefore be reached in a narrow gap than in a wide gap.

The dependence of critical conditions with Pe, χ Sc and η is eventually recast into a
simpler but cruder form. Within the χ Sc-ranges (6.1) and (6.2) as shown in figure 17, the
critical Taylor number Tacrit is approximated by its asymptotic value for large χ Sc and Pe,
Tacrit

min, as defined in § 4.2. Outside these ranges, Tacrit is approximated by the critical Taylor
number for Taylor vortices in pure solvent Tacrit

pure. Both Tacrit
min and Tacrit

pure are functions of
the radius ratio η only.Figure 18 shows Tacrit

pure (the dashed curves in panels a,b) and Tacrit
min

(the solid curves in panels a,b), as functions of η, in the case of a radial inflow (panel a)
and radial outflow (panel b). Figure 18(c,d) shows the corresponding ratio ε as defined in
(4.2). As figure 11 showed that Tacrit reached a minimum at Sc = 2000 and χ = 0.023
for η = 0.95 and Re = −0.1, we approximate the asymptotic critical Taylor number as
Tacrit

min ≈ Tacrit
∣∣|Pe|=200,χ Sc=46. For both in- and outflows, variations of Tacrit

min are found to

mostly follow those of Tacrit
pure. The absolute difference Tacrit

pure − Tacrit
min is fairly constant and

larger for inflows than for outflows, due to the fact that a radial inflow develops a steeper
concentration boundary layer at the inner cylinder than the corresponding radial outflow
does at the outer cylinder. In terms of relative difference, the ratio ε is thus substantially
larger for the inflow than for the outflow. Moreover, a maximum value εmax = 0.271 is
reached for a narrow gap at η = 0.78 in the cases of outflows. In the cases of inflows, ε

is found to increase as η decreases over almost the whole covered range 0.25 ≥ η ≥ 0.95,
and a maximum εmax = 0.457 is reached for a wide gap at η = 0.265.

7. Conclusions and outlook

This study has shown by linear stability analyses and DNS that the coupling of Taylor
vortices with the osmotic pressure associated with concentration polarization near a
semi-permeable membrane tends to reduce the critical Taylor number above which vortices
appear by up to 40 %. The reduction of Tacrit matches the increase of the effective size
of the vortices and they are both outcomes of the non-zero boundary condition for the
perturbation of transmembrane velocity (3.2a). By injections and extractions of fluid
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Figure 18. Asymptotic critical Taylor number Tacrit
min approximated by the critical Taylor number

Tacrit
∣∣|Pe|=200,χ Sc=46 at Péclet number |Pe| = 200 and coupling coefficient χ Sc = 46 (solid curves) and

critical Taylor number for pure solvent Tacrit
pure (dashed curves), as functions of the radius ratio η, for radial

outflows (a) and inflows (b). (c,d) Corresponding ratio ε = 1 − Tacrit
min/Tacrit

pure.

coinciding with outward and inward jets of the vortices, respectively, in the case of a mean
radial inflow, this condition promotes the hydrodynamic instabilities. This condition also
allows vortices to ‘penetrate’ the permeable boundary (as seen in figure 14) and increase
their effective radial extension. To limit their viscous dissipation, the vortices also increase
their axial extension, and the decrease of Tacrit observed in figure 11 thus corresponds to
the increase of λcrit in figure 12. These instabilities remain driven by centrifugal forces, but
are fostered by osmotic pressure. It has never been found so far that osmosis alone could
sustain the growth of instabilities.

Besides the Taylor number, this mechanism is eventually governed by three physical
parameters: the radial Péclet number Pe = Re Sc = U|r=r1r1/D governing the steepness
of concentration polarization, a coupling coefficient χ Sc = KRTdC0/D scaling the
retroaction of the osmotic pressure on the transmembrane velocity with respect to the
damping effects of molecular diffusion and the radius ratio η = r1/r2. Based on these
three physical parameters, the reduction of Tacrit is observed in a χ Sc-range, given by
((6.1)–(6.2)), and is a function of Pe and η. Within this range, Tacrit plateaus at a limit value
Tacrit

min, shown in figure 18 as a function of η. At this point, it remains unclear, however, if
Tacrit

min is truly independent of Pe or a slowly varying function of this parameter.
Despite the Reynolds number Re = U|r1r1/ν being introduced as one of the physical

parameters to conform with previous studies, the imposed radial flow remains limited
in this study, in consistency with the weak transmembrane velocities observed in real
RO (|Re| ∼ 10−2–10−1). In itself, this radial flow has a very limited effect on the
hydrodynamic instabilities. Larger radial Reynolds numbers, however, are known to
directly alter these instabilities (see Martinand et al. 2017) and addressing set-ups with
larger radial throughflow should reconsider the Reynolds number as a relevant parameter.
The velocity–pressure coupling coefficient σ = Kρν/d has also been found to be of
limited impact for typical RO set-ups where it is very weak (σ ∼ 10−12–10−13). Beyond
such cases with very weak permeance K, the effect of σ on the hydrodynamic instabilities
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has been found, for η = 0.85, to be negligeable up to σ ∼ 10−3, a value hardly reached in
any filtration set-up.

The capacity of the hydrodynamic instabilities to reduce the osmotic counter-pressure
and improve the performance of filtration devices is the key point of dynamic filtration,
and assessing this capacity is the next step of our work. More precisely, dynamic filtration
assumes that for a given mean transmembrane flow, hydrodynamic instabilities abate
the mean concentration boundary layer, thus reducing the related osmotic pressure and
power required to drive solvent across the membrane. The question can be equivalently
reformulated to determine if, at given working pressure �P, the mean transmembrane flow
increases in the presence of instabilities. Analytically, this question cannot be addressed
by linear stability analysis, as the sinusoidal axial variations of the transmembrane flow
perturbation lead to a zero mean value for this extra transmembrane flow. The nonlinear
retroaction of the instabilities on the base state must therefore be considered. Our set-up
and approach offer two ways to address the question. First, DNS have been found to
work well and can be used to explore the nonlinear dynamics of the flow, including the
extra transmembrane flow. A closer look at figure 6(a,b) already reveals some aspects
of this nonlinearity, even though the DNS at Ta = 90 only slightly departs from the
critical conditions (Tacrit = 79.1). The radial component of the velocity Unum and the
concentration Cnum exhibit an unbalance between the crests and troughs, the latter being
more pronounced. Moreover, averaging these fields along the axial direction shows that the
presence of the vortices decreases the mean concentration at the membrane and increases
(in absolute value) the mean radial fluid flux across the cell accordingly, by ∼50 % with
respect to the corresponding base state (the dark grey, blue online, frames). This test case
hence supports the hypothesis that vortices improve filtration. Next, a weakly nonlinear
stability analysis, by including a modification of the mean radial flow, could also help
explain how transmembrane flow is affected by the instabilities. A parametric study based
on this weakly nonlinear stability analysis could hence provide a framework for optimizing
the configuration of filtration devices. We are currently working along both lines.

Extending the study of the coupling between concentration polarization, osmotic
pressure and hydrodynamic instabilities to more realistic geometries is another outlook.
First, a configuration in which a net flux of solvent is extracted requires the addition
of a mean axial flow and complicates the stability analysis. The development of global
modes of instability in such an open system has been addressed for pure solvent flows
in Tilton & Martinand (2018). Whereas no direct extension of this theoretical analysis to
cases with solutes and osmosis has been found so far, due to a lack of analytical base
state, we are currently working to adapt the DNS to take into account a mean axial flow.
Next, the coupling between osmosis and vortices described here does not seem specific to
centrifugal instabilities, and other types of flows and instabilities, such as Dean vortices,
Görtler vortices, boundary layers and Tollmien–Schlichting waves, could be addressed, as
they are more relevant to industrial filtration devices.

The base state computed in this Taylor–Couette set-up shows that the maximum
concentration in the boundary layer grows with the Péclet number Pe, and rapidly
experiences an increase over several orders of magnitude (see figure 4). Moreover,
on top of the base state, hydrodynamic instabilities generate supplemental peaks of
concentration (see figure 6). This study has solely focused on the effect of concentration
polarization on osmotic pressure. Nevertheless, concentration polarization causes several
other phenomena. Changes in the base state and in the critical conditions of the instabilities
are induced by the concentration-related variations of the physical properties of the
solution (see Nayar, Sharqawy & Lienhard 2018, for seawater). Doubling the solubility
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from 35 g kg−1 of typical seawater to 70 g kg−1 increases its dynamic viscosity μ by ∼8 %
and its density ρ by ∼3 % so the Taylor number Ta decreases by ∼5 %. Simultaneously,
assuming the Stokes–Einstein relation Dμ = cste, the molecular diffusivity D decreases
by ∼8 % so both the Péclet number Pe and χ Sc increase by ∼8 %. Furthermore, the
increase of the concentration above the maximum solubility induces the precipitation
of the solute, which can form a gel layer changing the rheology of the fluid. In
seawater, whereas sodium chloride does not precipitate for total solubilities up 350 g kg−1,
magnesium hydroxide is already in the form of a suspension at 35 g kg−1. Moreover, high
concentrations also impact the properties of the membrane by adsorption of the solute
or clogging by precipitates. This generally decreases the membrane permeance K and
rejection rate, which has been assumed to be 1 in this study.

Sorting out the relative importance of all these mechanisms would require careful
experiments. By its precise controls of the concentration polarization and hydrodynamic
instabilities, the present Taylor–Couette set-up could prove useful, albeit requiring extra
cares to handle the radial flow and large operating pressures, together with the rotating
cylindrical, usually opaque, membranes.
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Appendix A. Base state

Solving (2.7) with boundary conditions (2.9) produces the following steady, axially and
azimuthally invariant, base flow [V b(r), Pb(r), Cb(r)]

Wb(r) = 0 and Ub(r) = Re
r

, (A1a,b)

Vb(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ta r1

r
1 − (r/r2)

Re+2

1 − ηRe+2 , for Re /=−2,

Ta r1

r
log (r/r2)

log (η)
, for Re = −2,

(A2)

Pb(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ta2 r2
1

r2
(
1 − ηRe+2

)2

(
(r/r2)

2(Re+2)

2Re + 2
− 2(r/r2)

Re+2

Re
− 1

2

)

−Re2

2r2 + cste, for Re /=−2,

Ta2 r2
1

2r2 log2 (η)

(
− log2 (r/r2) − log (r/r2) − 1

2

)
− 2

r2 + cste, for Re = −2,

(A3)
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Cb(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Re Sc + 2)(r2
2 − r2

1)

2(rRe Sc+2
2 − rRe Sc+2

1 )
rRe Sc, for Re Sc /=−2,

r2
2 − r2

1
2 log(r2/r1)

r−2, for Re Sc = −2.

(A4)

Appendix B. Stability operator

The linear stability analysis in the form of the generalized eigenproblem (3.4) uses the
operators

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ubdr + inVb

r+drUb

−� − 1
r2

−2
Vb

r
0 dr 0

drVb + Vb

r

Ubdr + inVb

r
+Ub

r
−� − 1

r2

0
in
r

0

0 0 Ubdr + inVb

r−�
ik 0

dr + 1
r

in
r

ik 0 0

Sc drCb 0 0 0 Sc
(

Ubdr + inVb

r

)
−Δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B1)

where � = d2
r + (1/r)dr − k2 − n2/r2 and dr = d/dr, and

B =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 Sc

⎤
⎥⎥⎥⎦ (B2)

Recall that the coupling between the velocity and concentration fields occurs through
boundary conditions (3.5b) and (3.5c). Although these boundary conditions do not appear
in operators A and B, they are nonetheless part of the linear stability eigenproblem (3.4).
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