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Abstract

We construct Cheeger-type bounds for the second eigenvalue of a substochastic transition
probability matrix in terms of the Markov chain’s conductance and metastability (and
vice versa) with respect to its quasistationary distribution, extending classical results for
stochastic transition matrices.
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1. Introduction

Let Z = (Zt , t = 0, 1, . . . ) be a time-homogeneous discrete-time Markov chain taking
values in a finite set � = {0, 1, 2, . . . , n} with transition matrix P̄ = (P̄ij ), where P̄ij =
P(Zt+1 = j | Zt = i) for i, j ∈ �. We suppose that X := � \ {0} with

P(Zt+1 = j | Zt = 0) = 0 for all j ∈ X,

and that ai := P(Zt+1 = 0 | Zt = i) > 0 for at least one i ∈ X. Thus, 0 is an absorbing state,
and we write P̄ in the canonical form

P̄ =
(

1 0
a P

)
. (1)

We assume that P is an irreducible matrix; that is, given i, j ∈ X, there is an m ≥ 1 such that
(P m)ij > 0. A quasistationary distribution p is a probability measure on X with the property
that if the distribution at time 0 is p then the distribution conditional on nonabsorption up until
time t > 0 is still p, i.e.

Pp(Zt = j | T > t) = pj , j ∈ X, (2)

where Pp(·) = ∑
i∈X piPi (·) and T := inf{t ≥ 0 : Zt = 0}. It is well known that in the

above setting there is a unique quasistationary distribution, given by the normalised leading left
eigenvector of P [7], [8].

The notion of modelling the long-term behaviour of absorbing Markov processes was first
explored by Bartlett [3] and Ewans [12], [13] in the context of population modelling. Subsequent
work developed conditions under which the quasistationary distribution is equal to the Yaglom
limit [38], where the latter is defined as the t → ∞ limiting probability of the Markov process
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generated by P̄ being in state i at time t , conditioned on the fact that the process has remained
in X until time t (see, e.g. [8]).

The equivalence of the quasistationary distribution and theYaglom limit has been developed
in the discrete-time, finite-state setting [8], [23]–[25], and for countable-state processes [32],
[35]. The continuous-time setting has been analysed in [9], [16], [29], [30]; in particular, [15]
states a necessary and sufficient condition for the existence of the Yaglom limit based on the
distribution of the absorption times. Yaglom limits for continuous-time Markov processes have
been analysed in [9], [16], [29], [30]. TheYaglom limit has also been studied via Fleming–Viot
processes [18] in the continuous-time Markov process setting [2], [14]. Here, a group of N

particles evolve independently according to the underlying Markov process, and when a particle
enters the absorbing state it chooses uniformly one of the other particles and immediately jumps
to its location. In the finite-state case, the authors in [2] show that the empirical profile of the
unique invariant measure of the Fleming–Viot process with N particles converges as N → ∞ to
the unique quasistationary distribution of the one-particle motion. Other settings that have been
considered include semi-Markov processes [1], [5], [17], continuous-state processes [34], and
settings where P may be reducible [36], [37]. Applications of substochastic Markov chains
include biological, environmental, and financial models, where frequently a path terminates
when it enters a death or valueless state.

Our particular focus in this paper is on conductance and metastability in Markov processes.
The conductance of a Markov chain (see Definition 2) is the minimum conditional probability
of leaving a set B in one step of the process, minimised over all sets B ⊂ X with probability no
greater than 1

2 . The conductance has many other names within the literature, such as the Cheeger
constant [4], the isoperimetric constant [26], and the bottleneck ratio [27]. The metastability
of a Markov chain (see Definition 2) is the maximum conditional probability of remaining in a
set B for one step of the process, maximised over all sets B ⊂ X with probability no greater
than 1

2 . The study of metastability has foundations in both Markov chain theory [26] and in the
study of dynamical systems, where it is also called almost-invariance [10], [19].

If P is stochastic (i.e. a = 0 in (1)) and satisfies the detailed balance condition piPij =
pjPji, i, j ∈ X, the second eigenvalue of P (and, therefore, the mixing rate) can be bounded by
expressions involving the conductance ϕp,P [26], [33], which can be rearranged and expressed
in terms of the metastability ωp,P , i.e.

1 − 2ϕp,P ≤ λP,2 ≤ 1 − ϕ2
p,P

2
, (3)

2ωp,P − 1 ≤ λP,2 ≤ 1 − (1 − ωp,P )2

2
. (4)

The upper bound for λP,2 is the deeper of the two inequalities in (3). It states that if there does
not exist a set B ⊂ X from which the conditional probability of escape in one step is small, the
Markov chain must have rapid convergence to equilibrium.

For stochastic matrices that are not time-reversible, the authors in [6] and [19] developed
identical bounds for λR,2, the second largest eigenvalue of the time-symmetrised Markov chain
with transition matrix R = (P + P̂ )/2, where P̂ij = pjPji/pi , i.e.

1 − 2ϕp,P ≤ λR,2 ≤ 1 − ϕ2
p,P

2
, (5)

2ωp,P − 1 ≤ λR,2 ≤ 1 − (1 − ωp,P )2

2
. (6)
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Simple estimates of conductance and metastability [6], [19] immediately provide bounds for
the mixing rate of P or its time-symmetrisation R. By switching the focus from bounding λP,2
or λR,2 to bounding conductance and metastability in terms of λP,2 or λR,2 (and lower eigenval-
ues [22]), the inequalities (3) and (4) can be exploited in Markov models of dynamical systems
to estimate the sets B ⊂ X that minimise the conductance and maximise the metastability [11],
[19], [20], [22].

The literature on conductance and metastability is almost wholly concerned with Markov
chains over a single communicating class. A Markov chain with killing was treated in Lawler
and Sokal [26], and we will discuss their results in detail in Section 5. The metastability of
an absorbing Markov process was defined and bounded by means of ‘resurrecting’ the chain
whenever it is about to leave X [21]. Resurrection techniques (see [30] for general Markov
processes) nowadays play a fundamental role in the construction of the Fleming–Viot particle
systems approach to analysing long-term behaviour of Markov processes [2], [14]. In this paper
our main contribution is to extend the arguments of [33] to create bounds for second eigenvalues
in terms of conductance and metastability fo rthe general substochastic P .

In Section 2 we define flux, conductance, metastability, and reversibility for substochastic
transition matrices. Section 3 contains our main results: extensions of the bounds (3)–(6) to
the substochastic transition probability matrix case. The proofs of our main results appear in
Section 4, and concluding remarks are contained in Section 5.

2. Flux, conductance, metastability, and reversibility

Let P̄ be as in (1), and let p be the quasistationary distribution of the process conditioned to
remain on X. We define a cut to be a division of X into complementary sets B and Bc := X\B.

Definition 1. (Flux and invariance ratios.) Given subsets B, C ⊂ X, the p-flux from B to C

under P is the probability, according to p, that the process is in B at time t and in C at time
t + 1, i.e.

Qp,P (B, C) :=
∑

i∈B, j∈C

piPij .

We also define the p-flux ratio under P , as Qp,P (B, C)/p(B).

Definition 2. (Conductance and metastability.) With the restriction C = Bc, the minimal
p-flux ratio under P is called the conductance, i.e.

ϕp,P := min{B⊂X : p(B)≤1/2}
Qp,P (B, Bc)

p(B)
.

The conductance is the smallest p-flux ratio from a set B of p-measure no greater than 1
2 to Bc.

With the restriction B = C, the maximal p-flux ratio under P is called the metastability of P ,
defined by

ωp,P := max{B∈X : p(B)≤1/2}
Qp,P (B, B)

p(B)
.

The metastability is the largest conditional probability of the process remaining in a subset of
no greater than p-measure 1

2 for one time-step.

Definition 3. We say that P is p-reversible if piPij = pjPji .

If P were stochastic, Definition 3 would be the usual detailed balance condition, which
implies that the underlying random walk is identical if the time-direction of the walk is reversed
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(see, e.g. [23, p. 5, Theorem 1.2]). This corresponds to the usual definition of reversibility
for Markov chains, but we use the terminology p-reversible so that it is clear that we mean
reversible with respect to the probability distribution p. As P is substochastic, satisfying the
detailed balance condition does not imply that the random walk is identical when reversed.
Indeed, there are several possibilities for what a ‘reversed process’ might mean (see, e.g. [9]
and [31]). Hence, our use of the terminology ‘p-reversible’ only implies that piPij = pjPji

is satisfied, and does not necessarily correspond to a statement about the distribution of the
underlying random walk.

3. Main results

Define ρi := ∑
j∈X Pij and ρ := mini ρi ≤ ρi ≤ maxi ρi =: ρ̄. We have

ρ ≤ λP,1 ≤ ρ̄ (7a)

in the general case, and

ρ = λP,1 = ρ̄ (7b)

if and only if P 1 = λP,11, where 1 is the vector of all entries 1, both elementary results of linear
algebra (see, e.g. [28]). Furthermore, let pρ(B) := ∑

i∈B piρi and as a direct consequence
of (7a), we have, for all B ⊂ X,

ρp(B) ≤ pρ(B) ≤ ρ̄p(B)

in the general case, and

pρ(B) = λP,1p(B) ⇐⇒ P 1 = λP,11. (8)

We next note some basic properties of the p-flux and p-invariance.

Lemma 1. For a substochastic transition matrix P , the following facts hold.

(i) Qp,P (X, X) = λP,1.

(ii) Qp,P (B, B) = λP,1p(B) − Qp,P (Bc, B) for all B ⊂ X.

(iii) Qp,P (B, Bc) = Qp,P (Bc, B) + pρ(B) − λP,1p(B) for all B ⊂ X; if P 1 = λP,11,
Qp,P (B, Bc) = Qp,P (Bc, B) for all B ⊂ X.

(iv) ρ − ϕp,P ≤ ωp,P ≤ ρ̄ − ϕp,P ; if P 1 = λP,11, ωp,P = λP,1 − ϕp,P .

Proof. (i) The proof is obvious.

(ii) Write Qp,P (B, B) = ∑
i∈X, j∈BpiPij − ∑

i /∈B, j∈B piPij = λP,1p(B) − Qp,P (Bc, B).

(iii) To show the general case, note that

Qp,P (B, Bc) =
∑

i∈B, j∈X

piPij −
∑

i,j∈B

piPij

= pρ(B) − Qp,P (B, B)

= pρ(B) − λP,1p(B) + Qp,P (Bc, B),

where the last equality follows by using (ii). If P 1 = λP,11 then pρ(B) = λP,1p(B) by (8),
so the general case reduces to Qp,P (B, Bc) = Qp,P (Bc, B).
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(iv) The proof follows by combining (ii) and (iii) to obtain

Qp,P (B, B) = pρ(B) − Qp,P (B, Bc), (9)

which implies that

ρp(B) − Qp,P (B, Bc) ≤ Qp,P (B, B) ≤ ρ̄p(B) − Qp,P (B, Bc). (10)

If P 1 = λP,11 then by (8), we obtain

Qp,P (B, B) = λP,1p(B) − Qp,P (B, Bc). (11)

In the general (respectively P 1 = λP,11) case, dividing (10) (respectively (11)) by p(B) and
then taking the minimum of both sides over all sets B ⊂ X such that p(B) ≤ 1

2 yields the
result. �

Following the methodology used in the stochastic case, if P is not p-reversible, we construct
the adjoint of P in (R|X|, 〈·, ·〉p), given by P̂ij = pjPji/pi . Then R = (P +P̂ )/2 is self-adjoint
on (R|X|, 〈·, ·〉p). One can easily show that

Qp,R(B, Bc) = 1

2(Qp,P (B, Bc) + Qp,P (Bc, B))
(12)

holds for substochastic R. Substituting Qp,P (Bc, B) = Qp,P (B, Bc) + λP,1p(B) − pρ(B)

from Lemma 1(iii) into (12), one can derive the relationship

Qp,R(B, Bc) = Qp,P (B, Bc) + 1
2 (λP,1p(B) − pρ(B)). (13)

For j ∈ X, one has (pR)j = 1
2 (ρj + λP,1)pj and (R1)j = 1

2 (ρj + λP,1).

Using these relationships, and the fact that R is self-adjoint in (R|X|, 〈·, ·〉p), one can
construct bounds for λR,2 in terms of ϕp,P , ωp,P , and the basic fundamental properties of P .
Our main result is the following theorem.

Theorem 1. Let P be an irreducible and substochastic matrix and R = (P + P̂ )/2. Denote
by λP,1 the leading eigenvalue of P and by λR,2 the second largest eigenvalue for R. Define
ρ = mini∈X

∑
j∈X Pij and ρ̄ = maxi∈X

∑
j∈X Pij . We have

2λP,1k
2
1 − k1(λ

2
P,1 + ρ̄2 − 2λP,1ρ)

2(4ρ(ρ̄ − ρ) + k1(ρ̄ + λP,1 − 2ρ))
− 2ϕp,P ≤ λR,2

≤ ρ̄ + λP,1

2
− (ϕp,P − (ρ̄ − λP,1)/2)2

2
,

(14)

where k1 =
√

2((λP,1 − ρ)2 + (ρ̄ − ρ)2).
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Also

λR,2 ≤ ρ̄ + λP,1

2
− (ρ − ωp,P )2

2
+ (ρ̄ − λP,1)(3ρ̄ + λP,1 − 4ωp,P )

8
, (15)

and
λR,2 ≤ √

1 + ρ̄ + λP,1 − 2ωp,P − (1 − ωp,P ). (16)

Proof. Equations (14) and (16) are proved in Section 4. To show inequality (15), we use the
right-hand inequality of (14); thus,

λR,2 ≤ ρ̄ + λP,1

2
− ϕ2

p,P

2
+ ϕp,P (ρ̄ − λP,1)

2
− (ρ̄ − λP,1)

2

8

≤ ρ̄ + λP,1

2
− (ρ − ωp,P )2

2
+ (ρ̄ − ωp,P )(ρ̄ − λP,1)

2

− (ρ̄ − λP,1)
2

8
by Lemma 1(iv)

≤ ρ̄ + λP,1

2
− (ρ − ωp,P )2

2
+ (ρ̄ − ωp,P )(3ρ̄ + λP,1 − 4ωp,P )

8
. �

In situations where ρ and ρ̄ are substantially different, (16) may produce a tighter bound;
however, when ρ = ρ̄ (= λP,1), (15) is the stronger bound. In the case where P is p-reversible,
the bounds take more familiar forms.

Corollary 1. For an irreducible, substochastic, p-reversible matrix P with leading eigenvalues
λP,1 > λP,2, we have

λP,1 − 2ϕp,P ≤ λP,2 ≤ λP,1 − ϕ2
p,P

2
(17)

and

2ωp,P − λP,1 ≤ λP,2 ≤ λP,1 − (λP,1 − ωp,P )2

2
. (18)

Proof. Summing the equality piPij = pjPji over i ∈ X, we obtain λP,1pj = pj

∑
i∈X Pji .

This implies that
∑

i∈X Pji = λP,1 for all j , or that P 1 = λP,11, and so ρ = λP,1 = ρ̄ by (7b).
Making this substitution into the upper bound of (14), noting P = R and λR,2 = λP,2, yields
the upper bound of (17). To obtain the lower bound of (17) one can check that as ρ̄ → λP,1
and ρ → λP,1, the limit of the lower bound in (14) is λP,1 − 2ϕp,P . One can then obtain (18)
by substituting ωp,P = λP,1 − ϕp,P (as shown in Lemma 1(iv)) into (17). �

We note that if P is stochastic, (17) and (18) revert to the bounds (3) and (4), respectively.
Similarly, (14) and (15) become (5) and the right-hand side of (6), respectively, as P approaches
a stochastic non-p-reversible matrix.

To end this section, we remark that there is a vast literature of using Markov chain models as
convenient numerical approximations of differentiable dynamical systems arising from models
in fluid dynamics, molecular dynamics, astrodynamics, and physical oceanography. In these
settings the computation of λ2 is straightforward; the difficulty is in identifying a collection of
states that are maximally metastable or ‘almost-invariant’. The rewriting of the inequalities (3)–
(6) and (14)–(18) to bound φp,P and ωp,P provide rigorous ranges for these important dynamic
quantities. For completeness, we state a theorem for the nonreversible case. The upper bound
on ϕp,P and the lower bound on ωp,P are straightforward rearrangements of the corresponding
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upper bound in (14) and upper bound in (16). Furthermore, by introducing the additional
constraint that λP,1 > λR,2 we can derive a lower bound on ϕp,P and an upper bound on ωp,P .

Theorem 2. Under the conditions of Theorem 1,

ϕp,P ≤ √
ρ̄ + λP,1 − 2λR,2 + ρ̄ − λP,1

2
(19)

and

ωp,P ≥ max

(
λR,2,

2ρ − ρ̄ + λP,1

2

)
− √

ρ̄ + λP,1 − 2λR,2. (20)

In addition, if λP,1 > λR,2 then

ϕp,P ≥ 2ρ − ρ̄ − λR,2

2
− (ρ̄ − λP,1)

2

8(λP,1 − λR,2)
(21)

and

ωp,P ≤ ρ̄ + λR,2

2
+ (ρ̄ − λP,1)

2

8(λP,1 − λR,2)
. (22)

We do not prove (19) and (20) as the proof technique is identical to the one used to prove
the corresponding bounds in (14) and (16). A proof of (22) is contained in Section 4, and (21)
follows from combining the upper bound on ωp,P in (22) with Lemma 1(iv).

4. Proofs of Theorems 1 and 2

Starting with the proof of Theorem 1, the proofs build on techniques from [33], which treats
the stochastic p-reversible case.

4.1. Spectral properties of P , P̂ , and R

We present a brief collection of some important results concerning the spectra of P , P̂ ,
and R. Denote the leading left and right eigenvectors of R by u1 and r , respectively, and scale r

so that 〈r, 1〉p = 1. Denote the leading right eigenvector of P by v1, and form the vector
pv1 by elementwise multiplication, i.e. (pv1)i = piv1,i . The leading left and right eigenvector
properties are presented in Table 1.

Table 1: Spectra of P , P̂ , and R.

Matrix Left eigenvector Right eigenvector Other properties
property property

P pP = λP,1p Pv1 = λP,1v1 (P 1)i = ρi and ρ1 ≤ P 1 ≤ ρ̄1
P̂ (pv1)P̂ = λP,1(pv1) P̂ 1 = λP,11 (pP̂ )j = pjρj and ρp ≤ pP̂ ≤ ρ̄p

R u1R = λR,1u1 Rr = λR,1r (pR)j = λP,1 + pjρj

2
ρ + λP,1

2
p ≤ pR ≤ ρ̄ + λP,1

2
p

(R1)i = ρi + λP,1

2
ρ + λP,1

2
1 ≤ R1 ≤ ρ̄ + λP,1

2
1
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4.2. Upper bounds on λR,2

Since 〈Rx, y〉p = 〈x, Ry〉p (i.e. R is self-adjoint in (R|X|, 〈·, ·〉p), its top two left eigen-
vectors u1, u2 are orthogonal with respect to 〈·, ·〉1/p. Since 〈u1, u2〉1/p = 0 and u1 > 0, u2
must have both positive and negative values. Define xi = u2,i/pi and order x as x1 ≥
x2 ≥ · · · ≥ xk > 0 ≥ xk+1 ≥ · · · ≥ xn. Let B = {1, . . . , k}, and assume that

∑
i∈B pi ≤ 1

2 (if
not, switch the parity of u2). Define y as

yi =
{

xi if u2,i ≥ 0,

0 otherwise.
(23)

We now prove two preliminary auxiliary lemmas.

Lemma 2. For y defined by (23), we have

λR,2 ≤ 〈Ry, y〉p
〈y, y〉p .

Proof. Since u2 is a left eigenvector of R, we have

u2λR,2y = u2Ry. (24)

The left-hand side of (24) is

u2λR,2y = λR,2

∑
i∈B

piy
2
i = λR,2〈y, y〉p, (25)

while the right-hand side is

u2Ry =
∑

i∈X,j∈B

u2,iRij yj

=
∑

i∈X,j∈B

u2,iRij yj

≥
∑

i,j∈B

u2,iRij yj since u2,i ≤ 0 for i /∈ B

= 〈Ry, y〉p. (26)

Combining (24)–(26) yields the desired result. �
Lemma 3. For arbitrary z ∈ R

n, we have〈
z,

(
λP,1 + ρ̄

2
− R

)
z

〉
p

≥ 1

2

∑
i,j∈X

piRij (zi − zj )
2.

Proof. We have〈
z,

(
λP,1 + ρ̄

2
− R

)
z

〉
p

=
∑
i∈X

z2
i

(
λP,1 + ρ̄

2

)
pi −

∑
i,j∈X

ziRij zjpi

≥
∑

i,j∈X

z2
i Rjipj −

∑
i,j∈X

ziRij zjpi by Table 1

= 1

2

∑
i,j∈X

piRij (zi − zj )
2. �
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Since Lemma 3 holds for all z ∈ R
n, in particular it holds for y defined by (23). Thus,〈

y,

(
λP,1 + ρ̄

2
− R

)
y

〉
p

≥ 1

2

∑
i,j∈X

piRij (yi − yj )
2. (27)

Apply Lemma 2 to the left-hand side of (27) to obtain

λP,1 + ρ̄

2
〈y, y〉p − 〈y, Ry〉 ≤

(
λP,1 + ρ̄

2
− λR,2

)
〈y, y〉,

and rearrange to obtain

λR,2 ≤ ρ̄ + λP,1

2
−

∑
i,j∈X piRij (yi − yj )

2∑
i∈B piy

2
i

. (28)

Using the inequality (a + b)2 ≤ 2(a2 + b2), we have∑
i<j

piRij (yi + yj )
2 ≤ 2

∑
i<j

piRij (y
2
i + y2

j ).

= 2
∑
i<j

piRij y
2
i + 2

∑
j<i

piRij y
2
i (by p-reversibility)

= 2
∑
i 
=j

piRij y
2
i

≤ 2
∑
i∈B

piy
2
i .

Hence, ∑
i<j piRij (yi + yj )

2

2
∑

i∈B piy
2
i

≤ 1. (29)

We multiply the second term on the right-hand side of (28) by the left-hand side of (29) to
obtain

λR,2 ≤ ρ̄ + λP,1

2
−

∑
i<j piRij (yi − yj )

2∑
i∈B piy

2
i

∑
i<j piRij (yi + yj )

2

2
∑

i∈B piy
2
i

.

By the Cauchy–Schwarz inequality,(∑
i<j

piRij (y
2
i − y2

j )

)2

≤
(∑

i<j

piRij (yi − yj )
2
)(∑

i<j

piRij (yi + yj )
2
)

,

and so

λR,2 ≤ ρ̄ + λP,1

2
− 1

2

(∑
i<j piRij (y

2
i − y2

j )∑
i∈B piy

2
i

)2

. (30)

We now examine the numerator of the squared term on the right-hand side of (30). Recall that
B := {1, . . . , k}. For l ≤ k, we define a new set Bl = {1, . . . , l}. Then

∑
i<j

piRij (y
2
i −y2

j ) =
∑
i<j

piRij

( ∑
i≤l<j

(y2
l −y2

l+1)

)
=

k∑
l=1

(y2
l −y2

l+1)
∑

i∈Bl, j∈Bc
l

piRij . (31)

We now split the proof into two subsections, one which establishes the upper bound on λR,2 in
terms of ϕp,P and one which establishes the upper bound on λR,2 in terms of ωp,P .
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4.2.1. Upper bound on λR,2 in terms of ϕp,P . Combining the expression for Qp,R(B, Bc) given
in (13) with (31), we obtain

∑
i<j

piRij (y
2
i − y2

j ) ≥
k∑

l=1

(y2
l − y2

l+1)

( ∑
i∈Bl, j∈Bc

l

piPij − p(Bl)(ρ̄ − λP,1)

2

)
.

Since l ≤ k, p(Bl) ≤ p(B) ≤ 1
2 , so Qp,P (Bl, B

c
l ) ≥ ϕp,P p(Bl). Therefore,

∑
i<j

piRij (y
2
i − y2

j ) ≥
k∑

l=1

(y2
l − y2

l+1)p(Bl)

(
ϕp,P − ρ̄ − λP,1

2

)

=
(

ϕp,P − ρ̄ − λP,1

2

) k∑
l=1

(y2
l − y2

l+1)

l∑
i=1

pi

=
(

ϕp,P − ρ̄ − λP,1

2

) k∑
i=1

pi

k∑
l=1

(y2
l − y2

l+1)

=
(

ϕp,P − ρ̄ − λP,1

2

) ∑
i∈B

piy
2
i .

Therefore, combining (30) with (27),

λR,2 ≤ ρ̄ + λP,1

2
−

(
(ϕp,P − (ρ̄ − λP,1)/2)

∑
i∈B piy

2
i

2
∑

i∈B piy
2
i

)2

= ρ̄ + λP,1

2
− (ϕp,P − (ρ̄ − λP,1)/2)2

2
.

4.2.2. Upper bound on λR,2 in terms of ωp,P . Returning to (31), we have

∑
i<j

piRij (y
2
i − y2

j ) =
k∑

l=1

(y2
l − y2

l+1)
∑

i∈Bl,j∈Bc
l

piRij

=
k∑

l=1

(y2
l − y2

l+1)
∑
i∈Bl

(∑
j∈X

piRij −
∑
j∈Bl

piRij

)

=
k∑

l=1

(y2
l − y2

l+1)

(∑
i∈Bl

pi

∑
j∈X

Rij − Qp,P (B, B)

)
.

Since l ≤ k, p(Bl) ≤ p(B) ≤ 1
2 , so Qp,P (Bl, Bl) ≤ ωp,P p(Bl). Therefore,

∑
i<j

piRij (y
2
i − y2

j ) ≥
k∑

l=1

(y2
l − y2

l+1)
∑
i∈Bl

pi

(∑
j∈X

Rij − ωp,P

)

=
k∑

i=1

pi

k∑
l=1

(y2
l − y2

l+1)

(∑
j∈X

Rij − ωp,P

)
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=
∑
i∈B

∑
j∈X

piy
2
i Rij − ωp,P

∑
i∈B

piy
2
i

≥
∑

i,j∈B

piy
2
i Rij − ωp,P

∑
i∈B

piy
2
i .

Since y is sorted in descending order and the sum is over i < j , we have y2
i ≤ yiyj and so∑

i<j

piRij (y
2
i − y2

j ) ≥
∑

i,j∈B

piyiyjRij − ωp,P

∑
i∈B

piy
2
i

= 〈y, Ry〉p − ωp,P

∑
i∈B

piy
2
i

≥ λR,2〈y, y〉p − ωp,P

∑
i∈B

piy
2
i (by Lemma 2)

= λR,2

∑
i∈B

piy
2
i − ωp,P

∑
i∈B

piy
2
i . (32)

Returning to (30) and substituting (32), we have

λR,2 ≤ ρ̄ + λP,1

2
− 1

2

(
λR,2

∑
i∈B piy

2
i − ωp,P

∑
i∈B piy

2
i∑

i∈B piy
2
i

)2

= ρ̄ + λP,1

2
− (λR,2 − ωp,P )2

2
.

Subtracting ωp,P from both sides and completing the square for (λR,2 − ωp,P ), we obtain

λR,2 ≤ √
1 + ρ̄ + λP,1 − 2ωp,P − (1 − ωp,P ).

4.3. Lower bounds on λR,2

For arbitrary x ∈ R
n, we have

〈Rx, x〉p =
∑

i,j∈B

piRij xixj + 2
∑

i∈B, j∈Bc

piRij xixj +
∑

i,j∈Bc

piRij xixj . (33)

Define pr(B) := ∑
i∈B piri , and let

xi =
{

pr(B
c) if i ∈ B,

−pr(B) otherwise.

We have 〈x, r〉p = 0 and 〈x, x〉p = p(B)pr(B
c)2 +p(Bc)pr(B)2. Substituting this specific x

into (33), and noting that Qp,R(B, Bc) = Qp,R(Bc, B), we obtain

〈Rx, x〉p = pr(B
c)2Qp,R(B, B) − 2pr(B

c)pr(B)Qp,R(B, Bc) + pr(B)2Qp,R(Bc, Bc).

(34)
First note that

Qp,R(Bc, Bc) = λP,1 − 2Qp,R(B, Bc) − Qp,R(B, B),
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and that by (9) and (13), we have

Qp,R(Bc, Bc) = λP,1 − 2(Qp,P (B, Bc) + 1
2 (λP,1p(B) − pρ(B))) − pρ(B) + Qp,P (B, Bc)

= λP,1 − λP,1p(B) − Qp,P (B, Bc). (35)

Substituting (9), (13), and (35) into (34), we obtain

〈Rx, x〉p = pr(B
c)2(pρ(B) − Qp,P (B, Bc))

− pr(B)pr(B
c)(2Qp,P (B, Bc) + λP,1p(B) − pρ(B))

+ pr(B)2(λP,1 − λP,1p(B) − Qp,P (B, Bc))

= −Qp,P (B, Bc) − λP,1p(B)pr(B) − pρ(B)pr(B) + pρ(B) + pr(B)2λP,1

≥ −Qp,P (B, Bc) − p(B)pr(B)(λP,1 + ρ̄) + ρp(B) + pr(B)2λP,1.

We divide both sides of this inequality by 〈x, x〉p. Maximising over x, we obtain

λR,2 ≥ −Qp,P (B, Bc) − p(B)pr(B)(λP,1 + ρ̄) + ρp(B) + pr(B)2λP,1

p(B)pr(Bc)2 + p(Bc)pr(B)2

= −Qp,P (B, Bc)/p(B)

1 − 2pr(B) + pr(B)2/p(B)
+ λP,1pr(B)2/p(B) − pr(B)(λP,1 + ρ̄) + ρ

1 − 2pr(B) + pr(B)2/p(B)
. (36)

We have

−1

1 − 2pr(B) + pr(B)2/p(B)
≥ −1

minpr (B)∈[0,1]{1 − 2pr(B) + pr(B)2/p(B)} . (37)

The denominator of the right-hand side of (37) is equal to 1 at endpoint pr(B) = 0, and
p(Bc)/p(B) ≥ 1 at endpoint pr(B) = 1. By differentiation, there is a critical point at
pr(B)∗ = p(B) which is a minimum; it is straightforward to verify that this attains the global
minimum of p(Bc). Furthermore, since p(Bc) ≥ 1

2 , we have

λR,2 ≥ −2
Qp,P (B, Bc)

p(B)
+ λP,1pr(B)2/p(B) − pr(B)(λP,1 + ρ̄) + ρ

1 − 2pr(B) + pr(B)2/p(B)
.

Since this holds for all B with p(B) ≤ 1
2 , in particular it holds for the set B∗ that attains ϕp,P .

Hence,

λR,2 ≥ −2ϕp,P + λP,1pr(B
∗)2p(B∗) − pr(B

∗)(λP,1 + ρ̄) + ρ

1 − 2pr(B∗) + pr(B∗)2/p(B∗)

≥ −2ϕp,P + min{B : p(B)∈[0,1/2], pr (B)∈[0,1]}
λP,1pr(B)2/p(B) − pr(B)(λP,1 + ρ̄) + ρ

1 − 2pr(B) + pr(B)2/p(B)
.

(38)

We now evaluate the second term in (38).

Endpoint of (38) with p(B) = 0. The limit of the second term on the right-hand side of (38)
as p(B) → 0 is λP,1 + ρ/pr(B)2, which tends to a minimal value of λP,1 as pr(B) → 0.
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Endpoint of (38) with p(B) = 1
2 . The second term on the right-hand side of (38) evaluates

to
2λP,1pr(B)2 − pr(B)(λP,1 + ρ̄) + ρ

1 + 2(pr(B)2 − pr(B))
. (39)

Endpoint of (39) with pr(B) = 0. This evaluates to ρ.

Endpoint of (39) with pr(B) = 1. This evaluates to λP,1 − ρ̄ + ρ < ρ.

Critical point of (39). We obtain the following equation for the value of pr(B) at the critical
points of (39), i.e.

(ρ̄ − λP,1)pr(B)2 + 2(λP,1 − ρ)pr(B) − λP,1 + ρ̄ − 2ρ

2
, (40)

which gives two critical points

pr(B)∗ = ±k − 2(λP,1 − ρ)

2(ρ̄ − λP,1)
,

where k =
√

2((λP,1 − ρ)2 + (ρ̄ − ρ)2).
Noting that

k = 2

√
1

2((λP,1 − ρ)2 + (ρ̄ − ρ)2)
≥ 2

√
(λP,1 − ρ)2 = 2(λP,1 − ρ),

we have −k − 2(λP,1 − ρ)

2(ρ̄ − λP,1)
< 0 and 0 ≤ k − 2(λP,1 − ρ)

2(ρ̄ − λP,1)
≤ 1.

Noting that the derivative (40) evaluates to −(λP,1 + ρ̄ − ρ)/2 < 0 at pr(B) = 0 and to
(λP,1 + ρ̄ − ρ)/2 > 0 at pr(B) = 1, we conclude that

pr(B)∗ = k − 2(λP,1 − ρ)

2(ρ̄ − λP,1)

attains the global minimum on [0, 1]. Substituting this into (38), we obtain

λR,2 ≥ −2ϕp,P + 2λP,1k
2 − k(λ2

P,1 + ρ̄2 − 2λP,1ρ)

2(4ρ(ρ̄ − ρ) + k(ρ̄ + λP,1 − 2ρ))
.

Critical point of (38) with respect to p(B). Differentiating the second term in (38) with
respect to p(B), we obtain the following equation for the value of p(B) at the critical points of
the quotient, i.e.

pr(B)2(λ1 − ρ − λ1pr(B) + ρ̄pr(B)) = 0.

The only possible critical point is at pr(B) = 0 (the other possibility has pr(B) < 0, which
cannot happen). We have already examined this possibility and have shown that this is not the
global minimum.

This concludes the proof of Theorem 1. �
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4.4. Proof of Theorem 2

We only prove (22). Return to (36) and use the lower bound from (10) to obtain

λR,2 ≥ Qp,P (B, B) − (ρ̄ + λP,1)pr(B)p(B) + λP,1pr(B)2

p(B)pr(Bc)2 + p(Bc)pr(B)2 .

Rearranging, we obtain

Qp,P (B, B)

≤ λR,2(p(B)pr(B
c)2 + p(Bc)pr(B)2) + (ρ̄ + λP,1)pr(B)p(B) − λP,1pr(B)2

= λR,2(p(B) − 2p(B)pr(B) + pr(B)2) + (ρ̄ + λP,1)pr(B)p(B) − λP,1pr(B)2.

Dividing through by p(B),

Qp,P (B, B)

p(B)
≤ λR,2

(
1 − 2pr(B) + pr(B)2

p(B)

)
+ (ρ̄ + λP,1)pr(B) − λP,1pr(B)2

p(B)

= λR,2(1 − 2pr(B)) + (λR,2 − λP,1)pr(B)2

p(B)
+ (ρ̄ + λP,1)pr(B).

The right-hand side is a monotonic function of p(B), which lies in the interval (0, 1
2 ].

If λR,2 − λP,1 > 0, the right-hand side is a decreasing function of p(B), which approaches
+∞ as p(B) → 0. On the other hand, if λR,2 − λP,1 < 0 as per the conditions of Theorem 2
then the right-hand side is an increasing function of p(B). The global maximum on the interval
(0, 1

2 ] occurs when p(B) = 1
2 , at which value the second term equals 2(λR,2 − λP,1)pr(B)2.

Hence,

Qp,P (B, B)

p(B)
≤ λR,2(1 − 2pr(B)) + 2(λR,2 − λP,1)pr(B)2 + (ρ̄ + λP,1)pr(B).

We differentiate the right-hand side with respect to pr(B) to find a maximum at pr(B)∗ =
(λP,1 + ρ̄ − 2λR,2)/4(λP,1 − λR,2) > 0. Thus,

Qp,P (B, B)

p(B)

≤ − (λP,1 + ρ̄ − 2λR,2)
2

8(λP,1 − λR,2)
+ (λP,1 + ρ̄ − 2λR,2)

2

4(λP,1 − λR,2)
+ λR,2

= (λP,1 + ρ̄ − 2λR,2)
2

8(λP,1 − λR,2)
+ λR,2

= (λ2
P,1 + 2ρ̄λP,1 − 4λP,1λR,2 − 4ρ̄λR,2 + ρ̄2 + 4λ2

R,2) + 8λR,2(λP,1 − λR,2)

8(λP,1 − λR,2)

= λ2
P,1 − 2ρ̄λP,1 + ρ̄2 + 4ρ̄(λP,1 − λR,2) + 4λR,2(λP,1 − λR,2)

8(λP,1 − λR,2)

= (ρ̄ − λP,1)
2 + 4(ρ̄ + λR,2)(λP,1 − λR,2)

8(λP,1 − λR,2)

= ρ̄ + λR,2

2
+ (ρ̄ − λP,1)

2

8(λP,1 − λR,2)
.

This concludes the proof of Theorem 2 �
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5. Discussion

We contrast our results with the conductance-based bounds for Markov processes with
killing investigated by Lawler and Sokal [26] for continuous-time Markov processes defined
on a measurable set of states. We briefly recap their results and translate them to our finite-
state setting. Consider a continuous-time Markov process with transition rate matrix Āij = ηij ,
where ηii := − ∑

j 
=i ηij . Lawler and Sokal considered processes that are positive-recurrent
and irreducible; these two conditions ensure there is a unique finite invariant probability measure
for the process [23], denoted here by p̄. Next suppose that the process at state i is killed (i.e.
exits the set of states permanently) at rate ki ≥ 0, and define the killing matrix K with entries ki

on the diagonal and 0 elsewhere. The rate matrix A = Ā − K for the process with killing is
given by

Aij =
{

ηii − ki if i = j,

ηij otherwise,

for 1 ≤ i, j ≤ n. The definition of the minimal p̄-flux rate under A for the process with killing
is given in [26, Equations (3.3) and (3.4)], as φp̄,A := minB∈X, p̄(B)>0 φp̄,A(B), where

φp̄,A(B) : =
∑

i∈B, j /∈B p̄iηij + ∑
i∈B p̄iki

p̄(B)

= − ∑
i,j∈B p̄iηij + ∑

i∈B p̄iki

p̄(B)

= −
∑

i,j∈B p̄iAij

p̄(B)
. (41)

The numerator in (41) measures both the rate of flow to Bc := X \ B and the rate of killing.
Bounds on the largest eigenvalue of A in terms of φp̄,A are given in [26, Theorem 3.1].

Theorem 3. (Lawler and Sokal [26].) LetA = Ā−K and suppose that the invariant probability
measure p̄ for the process without killing satisfies p̄iηij = p̄j ηji for all i, j ∈ X. Denote the
largest eigenvalue of A by λA,1. Choose M so that

M ≥ 1

p̄j

(∑
i∈X

p̄iηij + 1

2
kj

)
for all j ∈ X.

Then

−φ2
p̄,A

2M
≤ λA,1 ≤ −φp̄,A.

Theorem 3 bounds the leading eigenvalue of the Markov process in the reversible setting,
while our Corollary 1 bounds the second eigenvalue, which is concerned with the mixing
rate. Furthermore, Theorem 3 considers the conditional probability of points leaving B ⊂ X

according to p̄ (the stationary distribution for the process without killing), whereas Corollary 1
considers the conditional probabilities according to p (the quasistationary distribution for the
process with killing).

To conclude, we derived new bounds on the second eigenvalue of a substochastic transition
probability matrix in terms of the conductance and metastability. Our results extend existing
analogous results for stochastic transition probability matrices, and are consistent with these
well-known results when the transition matrix is stochastic. If P is p-reversible, the bounds
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on the second eigenvalue (Corollary 1) rely only on the largest eigenvalue and either the
conductance or the metastability. If P is not p-reversible, the second largest eigenvalue of
a p-symmetrised chain is bounded (Theorem 1) in terms of the maximal and minimal row sums
of P , the leading eigenvalue of P , and either the conductance or metastability. The bounds for
the non-p-reversible case reduce to the bounds for the p-reversible case if P is p-reversible.
Finally, we note that the ‘inverse problem’ of determining metastable subsets of states from
dominant eigenvectors of P is also of interest because it reveals important information on the
mixing properties of the system. The connection between the spectra of Markov chain transition
matrices and the existence of metastable sets is well established for stochastic Markov chains;
in Theorem 2 we extended this relationship to the substochastic setting, which is relevant for
open dynamical systems.
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[14] Ferrari, P. A. and Marić, N. (2007). Quasi-stationary distributions and Fleming–Viot processes in countable

spaces. Electron. J. Prob. 12, 684–702.
[15] Ferrari, P. A., Kesten, H., Martinez, S. and Picco, P. (1995). Existence of quasi-stationary distributions.

A renewal dynamical approach. Ann. Prob. 23, 501–521.
[16] Flaspohler, D. C. (1974). Quasi-stationary distributions for absorbing continuous-time denumerable Markov

chains. Ann. Inst. Statist. Math. 26, 351–356.
[17] Flaspohler, D. C. and Holmes, P. T. (1972). Additional quasi-stationary distributions for semi-Markov

processes. J. Appl. Prob. 9, 671–676.
[18] Fleming, W. H. and Viot, M. (1979). Some measure-valued Markov processes in population genetics theory.

Indiana Univ. Math. J. 28, 817–843.
[19] Froyland, G. (2005). Statistically optimal almost-invariant sets. Phys. D 200, 205–219.

https://doi.org/10.1017/apr.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.20


Cheeger inequalities for absorbing Markov chains 647

[20] Froyland, G. and Padberg, K. (2009). Almost-invariant sets and invariant manifolds—connecting prob-
abilistic and geometric descriptions of coherent structures in flows. Phys. D 238, 1507–1523.

[21] Froyland, G., Pollett, P. K. and Stuart, R. M. (2014). A closing scheme for finding almost-invariant sets
in open dynamical systems. J. Comput. Dynamics 1, 135–162.

[22] Huisinga, W. and Schmidt, B. (2006). Metastability and dominant eigenvalues of transfer operators. In New
Algorithms for Macromolecular Simulation (Lecture Notes Comput. Sci. Eng. 49), Springer, Berlin, pp. 167–182.

[23] Kelly, F. P. (1979). Reversibility and Stochastic Networks. John Wiley, Chichester.
[24] Kelly, F. P. (1983). Invariant measures and the q-matrix. In Probability, Statistics and Analysis (London Math.

Soc. Lecture Notes Ser. 79), Cambridge University Press, pp. 143–160.
[25] Kingman, J. F. C. (1969). Markov population processes. J. Appl. Prob. 6, 1–18.
[26] Lawler, G. F. and Sokal, A. D. (1988). Bounds on the L2 spectrum for Markov chains and Markov processes:

a generalization of Cheeger’s inequality. Trans. Amer. Math. Soc. 309, 557–580.
[27] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. American Mathematical

Society, Providence, RI.
[28] Meyer, C. (2000). Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA.
[29] Nair, M. G. and Pollett, P. K. (1993). On the relationship between μ-invariant measures and quasi-stationary

distributions for continuous-time Markov chains. Adv. Appl. Prob. 25, 82–102, 717–719.
[30] Pakes, A. G. (1993).Absorbing Markov and branching processes with instantaneous resurrection. Stoch. Process.

Appl. 48, 85–106.
[31] Pollett, P. K. (1988). Reversibility, invariance and μ-invariance. Adv. Appl. Prob. 20, 600–621.
[32] Seneta, E. and Vere-Jones, D. (1966). On quasi-stationary distributions in discrete-time Markov chains with

a denumerable infinity of states. J. Appl. Prob. 3, 403–434.
[33] Sinclair, A. and Jerrum, M. (1989). Approximate counting, uniform generation and rapidly mixing Markov

chains. Inf. Comput. 82, 93–133.
[34] Steinsaltz, D. and Evans, S. N. (2004). Markov mortality models: implications of quasistationarity and

varying initial distributions. Theoret. Pop. Biol. 65, 319–337.
[35] Tweedie, R. L. (1974). Some ergodic properties of the Feller minimal process. Quart. J. Math. Oxford Ser. (2)

25, 485–495.
[36] Van Doorn, E. A. and Pollett, P. K. (2008). Survival in a quasi-death process. Linear Algebra Appl. 429,

776–791.
[37] Van Doorn, E. A. and Pollett, P. K. (2009). Quasi-stationary distributions for reducible absorbing Markov

chains in discrete time. Markov Process. Relat. Fields 15, 191–204.
[38] Yaglom, A. M. (1947). Certain limit theorems of the theory of branching random processes. Doklady Akad.

Nauk SSSR (N.S.) 56, 795–798.

https://doi.org/10.1017/apr.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.20

	1 Introduction
	2 Flux, conductance, metastability, and reversibility
	3 Main results
	4 Proofs of Theorems 1 and 2
	4.1 Spectral properties of P, , and R
	4.2 Upper bounds on R,2
	4.2.1 Upper bound on R,2 in terms of p,P.
	4.2.2 Upper bound on R,2 in terms of p,P.

	4.3 Lower bounds on R,2
	4.4 Proof of Theorem 2

	5 Discussion
	Acknowledgements
	References

