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Dispersion quantifies the impact of subscale velocity fluctuations on the effective
movement of particles and the evolution of scalar distributions in heterogeneous
flows. Which fluctuation scales are represented by dispersion, and the very meaning
of dispersion, depends on the definition of the subscale, or the corresponding
coarse-graining scale. We study here the dispersion effect due to velocity fluctuations
that are sampled on the homogenization scale of the scalar distribution. This
homogenization scale is identified with the mixing scale, the characteristic length
below which the scalar is well mixed. It evolves in time as a result of local-scale
dispersion and the deformation of material fluid elements in the heterogeneous flow.
The fluctuation scales below the mixing scale are equally accessible to all scalar
particles, and thus contribute to enhanced scalar dispersion and mixing. We focus here
on transport in steady spatially heterogeneous flow fields such as porous media flows.
The dispersion effect is measured by mixing-scale dependent dispersion coefficients,
which are defined through a filtering operation based on the evolving mixing scale.
This renders the coarse-grained velocity as a function of time, which evolves as
velocity fluctuation scales are assimilated by the expanding scalar. We study the
behaviour of the mixing-scale dependent dispersion coefficients for transport in a
random shear flow and in heterogeneous porous media. Using a stochastic modelling
framework, we derive explicit expressions for their time behaviour. The dispersion
coefficients evolve as the mixing scale scans through the pertinent velocity fluctuation
scales, which reflects the fundamental role of the interaction of scalar and velocity
fluctuation scales in solute mixing and dispersion.

Key words: geophysical and geological flows, low-Reynolds-number flows, mixing and
dispersion

1. Introduction
Flow heterogeneity affects the spreading and mixing of particles and scalars.

Velocity fluctuations lead to increased spread and dispersion of a transported scalar
(Taylor 1953; Brenner 1980). The associated deformation of material fluid elements
steepens concentration gradients, which together with local-scale dispersive mass

† Email address for correspondence: marco.dentz@csic.es
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Dynamic mixing scale

Constant blockscale
Spreading scale

FIGURE 1. (Colour online) Illustration of the dispersion of a scalar transported in a
two-dimensional spatially variable steady flow field. The scalar field is characterized by
lacunarities and concentration heterogeneity on the spreading scale. The scalar distribution
is uniform below the dynamic mixing scale, but not necessarily on the constant blockscale.

transfer generates increased scalar mixing (Villermaux & Duplat 2003; Le Borgne,
Dentz & Villermaux 2013). These processes control the large-scale dynamics of scalar
transport and are key to the understanding of contaminant levels, chemical reaction
kinetics and bio-chemical activity in natural and engineered media (Tél et al. 2005;
Dentz et al. 2011). The impact of velocity fluctuations on effective particle motion
and the global evolution of a transported scalar have been quantified in terms of eddy
dispersion and macrodispersion coefficients (Dagan 1987; Rubin et al. 1999; Weiss
& Provenzale 2008). The rationale in such approaches is to coarse-grain the particle
motion by separating the Lagrangian velocity into a deterministic part and stochastic
fluctuations, which give rise to a macroscopic dispersion effect.

We focus here on transport in steady, that is, time-independent, spatially
heterogeneous velocity fields as realized for Darcy-scale flow and transport through
heterogeneous porous media (Bear 1972). Spatial variability in hydraulic conductivity
here gives rise to fluctuations in the flow velocity, which is described by the
Darcy equation (Bear 1972). As outlined above, the quantification of the impact of
velocity fluctuations on large-scale transport (this means larger than the characteristic
heterogeneity scale) in terms of macrodispersion coefficients has been the subject
of intense research over the last four decades (Gelhar & Axness 1983; Dagan
1987; Rubin et al. 1999). Alternatively, a coarse-graining scale may be defined by
a spatial resolution scale which is determined by sampling and characterization
strategies of spatial medium and flow heterogeneity, or by computational constraints,
which require coarse numerical grid blocks (Beckie 1996; Beckie, Aldama & Wood
1996; Mehrabi & Sahimi 1997; Rubin et al. 1999; de Barros & Rubin 2011). As
a consequence, large-scale velocity variability is deterministically captured on the
constant coarse-graining, or blockscale (see figure 1), whereas the subscale (below
the coarse-graining scale) variability remains unresolved and is modelled as a
(correlated) stochastic fluctuation. The impact of the coarse-graining scale on the
resulting macroscale dispersion coefficient has been studied both in the framework of
stochastic (Rubin et al. 1999) as well as volume averaging (Wood et al. 2003).

A key question here is whether the erratic subscale velocity fluctuations contribute
to increased particle and scalar dispersion and mixing, or rather contribute to advective
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spreading. This depends on the equal availability of the pertinent velocity fluctuations
to the solute particles. Recall that dispersive particle motion can be modelled by the
Langevin equation (Risken 1996),

dx(t)
dt
= v + v′(t), (1.1)

with v an average particle velocity and v′(t) the random velocity fluctuation. This
approach assumes that the particles have access to the full velocity fluctuation
spectrum and are thus statistically equal. The dispersion coefficients are given by the
Kubo formula as (Kubo, Toda & Hashitsume 1991)

Dii(t)=
∫ t

0
dt′〈vi(t)vi(t′)〉, (1.2)

where the angle brackets denote the average over all realizations of v(t). For the
particles to have equal access to the velocity fluctuations below the coarse-grained
scale, it is required that they are able to sample the pertinent velocity fluctuation
scales. This is equivalent to the requirement that the coarse-grained scale is well
mixed. The mixing time for a block scale λb due to local-scale dispersive mass transfer
may be estimated as τb = λ2

b/D, with D the dispersion coefficient. In heterogeneous
flows, there is competition between dispersive expansion and advective deformation
of material fluid elements with the opposite effect (Villermaux & Duplat 2006; Le
Borgne et al. 2011). Thus it can be expected that the mixing time is actually larger
than the dispersion time τb over a block scale. For times smaller than the mixing
time t < τb, the dispersion coefficients measure advective solute spreading, or the
advective deformation of the solute distribution, rather than mixing and dispersion.
The impact of advective heterogeneity scales above the well-mixed scale, however,
should be represented explicitly to adequately capture the impact of fluid deformation
on solute mixing (Villermaux 2012; Le Borgne et al. 2013).

Instead of a constant blockscale to coarse-grain the particle motion, we now focus
on the physical length scales below which the scalar is well mixed as natural coarse-
graining scales. As indicated above, the evolution of such a mixing scale is governed
by two processes: the advective deformation of material fluid elements, which steepens
concentration gradients due to compression, and local-scale dispersion, which seeks to
increase the volume occupied by the scalar. In order to illustrate these mechanisms
we first consider the expansion of a scalar due to dispersion only. The evolution of
the characteristic scale is given by dλ/dt = D/λ. If, on the other hand, we consider
the evolution of the width of a material element in the absence of diffusion, we
obtain from volume conservation dλ/dt = −γ λ, where γ is the stretching rate of
the material element. This relation is a direct consequence of volume preservation in
the divergence-free flow. Combining the two mechanisms, one may write heuristically
(Villermaux & Duplat 2006; Villermaux 2012)

1
λ(t)

dλ(t)
dt
∼−γ (t)+ D

λ(t)2
. (1.3)

The stretching rate γ (t) is in general a function of time. For chaotic flows, which are
characterized by exponential stretching, γ is constant. In this case, compression and
dispersive expansion equilibrate at the Batchelor scale λB = √D/γ (Batchelor 1959;
Villermaux & Duplat 2006). The steady flow fields under consideration in this paper
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are typically shear-dominated and characterized by algebraic stretching, which implies
that the stretching rate γ (t)∼1/t (Villermaux 2012; Le Borgne et al. 2013; Le Borgne,
Dentz & Villermaux 2015).

The different length scales, the constant blockscale λb, the dynamic mixing scale
λ(t) as well as the plume spreading scale are illustrated schematically in figure 1,
which shows a heterogeneous mixture evolving in a spatially fluctuating flow field.
The mixture is clearly not well mixed on the spreading scale and is characterized
by lacunarities and spatial concentration heterogeneity. For the chosen constant block
scale, we observe similar phenomena. At the time of the snapshot, the blockscale is
larger than the mixing scale, and not all velocity fluctuations below λb contribute to
solute mixing and dispersion. The mixing scale, on the other hand, marks the scale
below which the mixture can be assumed uniform. Thus it delineates the velocity
fluctuation scales that contribute to solute dispersion, and separates them from the
fluctuation scales that spread and deform the mixture into a laminar structure.

In this paper, we use the mixing scale to identify and quantify the fluctuation
scales that can be represented by and contribute to dispersive particle motion. We
contrast the distribution of velocity fluctuation scales with the evolution of the mixing
scale, and introduce a filtering operation to separate random subscale fluctuations
from deterministic large-scale variability. A stochastic model seems to be a natural
framework for the systematic quantification of mixing-scale dependent dispersion. We
derive explicit expressions for the average dispersion coefficients, and discuss their
evolution in the light of the assimilation of heterogeneity scales due to the evolving
mixing scale.

The following section provides some background on the flow and transport model
under consideration as well as the stochastic modelling approach to systematically
capture the impact of flow heterogeneity on particle and scalar dispersion. Section 3
discusses the distribution of velocity fluctuation scales in the light of the velocity
spectrum, and presents the evolution equation for the mixing scale as a result of
advective deformation and dispersive expansion. Section 4 describes the coarse-
graining of the particle motion using the evolving mixing scale and derives the
filtered dispersion coefficients, which account for the impact of sub-mixing-scale
velocity fluctuations on scalar and particle dispersion. Section 5 applies the developed
concept to the cases of dispersion in a random shear flow, and heterogeneous porous
media flows.

2. Flow and transport model
The spatio-temporal evolution of a scalar c(x, t) in the divergence-free flow field

v(x) through a Darcy-scale heterogeneous porous medium is governed by (Bear 1972)

∂c(x, t)
∂t

+ v(x) · ∇c(x, t)−∇ · D∇c(x, t)= 0. (2.1)

Porosity is assumed to be constant. It is set here equal to 1, which is equivalent
to rescaling time. The flow velocity v(x) is given by the Darcy equation, and the
local-scale dispersion tensor D quantifies the impact of molecular diffusion and pore-
scale velocity fluctuations on solute dispersion on the Darcy scale (Bear 1972). For
simplicity, we assume here that D is constant and isotropic, Dij=Dδij. The foundations
of the Darcy-scale transport model (2.1) can be found in the books by Bear (1972),
Hornung (1997) and Whitaker (1999), for example. For a discussion of its validity and
limitations, we refer the reader to the review by Dentz et al. (2011) and references
therein. We consider the normalized initial condition c(x, t= 0)= c0(x).
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The scalar transport problem (2.1) can be formulated equivalently in terms of the
Langevin equation

dx(t)
dt
= v[x(t)] + ξ(t). (2.2)

The initial particle positions are x(t= 0)= x′, with x′ distributed according to c0(x′).
The Gaussian white noise ξ(t) is characterized by zero mean and covariance

〈ξi(t)ξj(t)〉 = 2Dδijδ(t− t′), (2.3)

where the angle brackets denote the noise mean over all realizations of the random
noise ξ(t), δij is the Kronecker delta and δ(t) the Dirac delta distribution.

The heterogeneous velocity field v(x) is modelled as a stationary and ergodic
random field. The mean flow is aligned with the 1-direction of the coordinate system,
that is, v(x)= ve1. The ensemble mean in the following is represented by an overbar.
The flow fluctuations v′(x)= v(x)− v have the covariance Cij(x− x′)= v′i(x)v′j(x′). Its
Fourier transform is given by

C̃ij(k)= v2ψij(k)Ẽ (k), (2.4)

where k is the wave vector. The projectors ψij(k) are a consequence of ∇ · v(x)= 0.
They satisfy

∑
i kiψij(k) =

∑
j kjψij(k) = 0. The correlation spectrum, or power

spectrum of the velocity fluctuations, is denoted by Ẽ (k). Fourier-transformed
quantities in the following are marked by a tilde. We employ the definitions

f̃ (k)=
∫

dx exp(ik · x)f (x, t), f (x)=
∫

k
exp(−ik · x)f̃ (k), (2.5a,b)

for the Fourier transform and its inverse. Furthermore, we use the shorthand notation∫
k
=
∫

dk
(2π)d

, (2.6)

where d denotes spatial dimensionality. Note that the covariance of the Fourier-
transformed velocity fluctuations is given by

v′i(k)v′j(k
′)= (2π)dδ(k+ k′)C̃ij(k), (2.7)

where d denotes the dimensionality of space. The Dirac delta is a consequence of the
translation invariance of the covariance function.

For flow in heterogeneous porous media, the divergence-free flow velocity
v(x) is related to the medium heterogeneity through the Darcy equation v(x) =
−exp[f (x)]∇h(x), where h(x) is the hydraulic head and f (x) the log-hydraulic
conductivity. The latter is modelled here as a stationary and ergodic Gaussian random
field. A perturbation analysis in the fluctuations of log-hydraulic conductivity about
its constant ensemble mean, f ′(x)= f (x)− f , relates the Fourier-transformed velocity
fluctuation ṽ′i(k) to f̃ ′(k) as (Gelhar & Axness 1983; Dagan 1987)

ṽ′i(k)= v
(
δ1i − k1ki

k2

)
f̃ ′(k), (2.8)
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which implies that v(x) also follows Gaussian statistics. Correspondingly, the
covariance of ṽ

′
(k) is given by

v′i(k)v′j(k
′) = v2

(
δ1i − k1ki

k2

)(
δ1j − k1kj

k2

)
f̃ ′(k)f̃ ′(k′), (2.9)

which renders the projectors as ψij(k) = (δ1i − k1ki/k2)(δ1j − k1kj/k2). Thus the
correlation spectrum Ẽ (k) is equal to the Fourier transform of the covariance function
of the log-hydraulic conductivity. For illustration, in the following we employ the
isotropic Gaussian spectrum (Rubin 2003)

Ẽ (k)= σ 2
E (2π)d/2ld

c exp(−k2l2
c/2), (2.10)

with σ 2
E the disorder variance and lc the correlation length scale.

The characteristic transport time scales are given here by the characteristic
dispersion time over the correlation scale lc, which is defined by τD = l2

c/D, and
the advection time scale τv = lc/v, which quantifies the characteristic advection time
over the correlation distance lc. These time scales are compared by the Péclet number
Pe= τD/τv, which quantifies the relative strength of dispersive and advective transport.

3. Fluctuation and mixing scales
In this section, we discuss the characteristic velocity fluctuation scales in terms of

the velocity spectrum, and describe the evolution of the mixing scale as a result of
the competition between dispersive expansion and advective compression.

3.1. Fluctuation scales
The distribution of heterogeneity scales l is encoded in the correlation spectrum
Ẽ (k), which quantifies the amplitude associated with the wavenumber k. Note that
|k| is related to the fluctuation length scales l by l= 1/|k|. Thus we may obtain the
probability density function (p.d.f.) pl(l) of fluctuation length scale from the p.d.f. of
wave numbers pk(k) through the mapping l = 1/|k|. The p.d.f. of wave numbers is
given in terms of the correlation spectrum Ẽ (k) as

pk(k)= Ẽ (k)
/∫

dk Ẽ (k). (3.1)

Specifically, for the Gaussian spectrum (2.10), pk(k) is given by

pk(k)= ld
c exp(−k2l2

c/2)
(2π)d/2

. (3.2)

Thus we obtain from the mapping l= 1/|k| the explicit p.d.f. of fluctuation scales

pl(l)= ld
c

ld+1

Ωd exp[−l2
c/(2l2)]

(2π)d/2
, (3.3)

where Ωd is the surface area of the d-dimensional unit sphere. The scale distribution
of different correlation spectra can be determined in the same way. The scale
distribution (3.3) is illustrated in figure 2. It is cut off exponentially at scales l� lc
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FIGURE 2. Distribution pl(l) of fluctuation length scales given by (3.3) for d = 3
(solid line), d= 2 (dashed line) and d= 1 (dotted line) spatial dimensions.

and falls off algebraically for l � lc. It has a maximum at lmax = lc/
√

d+ 1. Note
that a scalar can be assumed to have sampled a representative part of the spatial
heterogeneity when it has swept about 10 heterogeneity length scales. Thus we now
define lm, the length l 6 lmax at which pl(lm) = pl(10lc), as a minimum heterogeneity
scale. For d= 3, we obtain lm= 0.18lc, for d= 2, lm= 0.2lc and for d= 1, lm= 0.26lc.
In the same way in which heterogeneity scales l> 10lc do not play a role in scalar
transport, scales below lm have only limited impact.

3.2. Mixing scale
The fluctuation scales l of the heterogeneous flow field are contrasted with the
mixing scale λ(t), which can be defined as the characteristic gradient scale of a
heterogeneous mixture (Villermaux & Duplat 2006; Le Borgne et al. 2011). Thus it
marks the scale below which the scalar mixture can be assumed homogeneous. The
temporal evolution of the mixing scale is governed by the competition of dispersion,
which tends to increase the mixing scale, and compression due to deformation of
material segments, which tends to decrease it. This can be illustrated by considering
solute transport in the coordinate system attached to the material fluid element that
deforms as it is transported in the flow field. The concentration ĉ(z, t) across a
material fluid element evolves according to the advection dispersion equation (Ranz
1979; Meunier & Villermaux 2010)

∂ ĉ(z, t)
∂t
− γ (t)z∂ ĉ(z, t)

∂z
−D

∂2ĉ(z, t)
∂z2

= 0. (3.4)

The spatial variance

κ(t)=
∫

dz z2ĉ(z, t)
/∫

dz ĉ(z, t) (3.5)

is a measure for the square width of the solute distribution across the deformed
material element. It satisfies the evolution equation (Tennekes & Lumley 1972; de
Barros et al. 2012)

dκ(t)
dt
=−2γ (t)κ(t)+ 2D. (3.6)
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FIGURE 3. Evolution of the mixing scale λ(t) for Pe= 103 and λ(t= 0)/lc = 10−1. The
dashed lines show the dispersive

√
2Dtfβ behaviour.

We now set the mixing scale λ(t) equal to the width of the scalar concentration in a
deformed material strip, which captures the competition between dispersive expansion
and advective compression, λ(t) = √κ(t). It satisfies the equation (Villermaux &
Duplat 2006; Villermaux 2012)

1
λ(t)

dλ(t)
dt
=−γ (t)+ D

λ(t)2
, (3.7)

which in the Introduction was phenomenologically motivated. For the steady
flow fields under consideration here, stretching and compression of a material
element is algebraic (Villermaux 2012) such that γ (t) ∼ βt−1. For the choice of
γ (t) = β/[τv(β + t/τv)], the evolution of the mixing scale is determined by solving
(3.7) subject to the initial condition λ(t= 0)= λ0. We obtain after a quick calculation

λ(t)=
√

2Dtfβ(1+ βτv/t)+
(

β

t/τv + β
)2β

(λ2
0 − 2Dβf−1

β τv) (3.8)

with fβ = 1/(1 + 2β). Figure 3 illustrates the evolution of λ(t) with time. At short
times, the mixing scale decreases as a result of compression until it assumes a
minimum at the mixing time τm = τv(λ2

0/Dτv)
1/(2β+1) (Villermaux 2012), at which

advective compression and dispersive expansion equilibrate. For times larger than
the mixing time, t > τm, dispersive expansion prevails and λ(t) evolves dispersively,
that is, λ(t) ∼ √2Dtfβ . Note that the dispersive long-time behaviour is affected
by compression through a reduction in the dispersion coefficient by the factor of
0< fβ 6 1.

4. Mixing-scale dependent dispersion

We separate the velocity fluctuations below and above the mixing scale λ(t) in order
to determine the dispersion effect of flow fluctuations below the homogenization scale
of the transported scalar. The coarse-grained velocity field v>(x, t) is defined by spatial
filtering as

v>(x, t)=
∫

dr F (x− r, t)v(r), (4.1)
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where F (x, t) is a suitably chosen filter (Beckie et al. 1996; Rubin et al. 1999). This
approach is similar to the large eddy simulation methodology used in geophysical
fluid dynamics (Beckie et al. 1996; Ferziger & Perić 2002), which, however, uses
a constant filter. It is interesting to note that through the use of the time-dependent
filtering scale λ(t), the coarse-grained velocity field v>(x, t) is a function of time,
even though the underlying v(x) is steady. The time-dependence reflects the fact that
v>(x, t) acquires additional fluctuation modes as the mixing scale λ(t) evolves. The
coarse-graining operation reads in Fourier space as

ṽ>(k, t)= F̃ (k, t)ṽ(k). (4.2)

In the following, we employ the isotropic Gaussian filter

F (x, t)=
exp

[
− x2

2λ(t)2

]
[2πλ(t)2]d/2 , F̃ (k, t)= exp

[
−k2λ(t)2

2

]
. (4.3a,b)

The subscale velocity fluctuations are defined by v<(x, t)= v(x)− v>(x, t). Note that
the ensemble mean of the coarse-grained flow velocity v>(x, t) is equal to the mean
flow velocity

v>(x, t)=
∫

dr F (x− r, t)v(r)= v, (4.4)

because the filter F (x, t) is normalized. As an immediate consequence, we obtain that
v<(x, t)= 0.

We now write the fine-scale Langevin equation (2.2) tautologically in the form

dx(t)
dt
= v>[x(t), t] + ζ (t), (4.5)

where the effective noise ζ (t)= v<[x(t), t]+ ξ(t) represents the subscale heterogeneity.
The noise mean of ζi(t) can be expanded as

〈ζi(t)〉 =
∫

k
A (k, t)ṽi(k)c̃(k, t | x0), (4.6)

where c̃(k, t | x0) = 〈exp[−ik · x(t)]〉 is equal to the Fourier transform of scalar
concentration evolving from a point source at x(t = 0) = x0. For convenience we
define

A (k, t)= 1− F̃ (k, t). (4.7)

Analogously, we obtain for the noise cross-moments

〈ζi(t)ζj(t′)〉 = 2Diiδijδ(t− t′)+
∫

dx′
∫

k

∫
k′

∫
k′′

A (k, t)A (k′, t′)

× ṽi(k)ṽj(k′)c̃(−k, t− t′ | x′) exp(ik′′ · x′)c̃(−k′ − k′′, t′ | x0). (4.8)

The coarse-scale particle trajectory x>(t) in a single disorder realization is defined by

x>(t)=
∫ t

0
dt′ v>[x(t′), t′]. (4.9)
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Following (4.6), the noise mean of the mesoscopic noise term ζ (t) is in general
non-zero, and therefore the noise mean trajectory and the coarse-scale noise mean
trajectories do not coincide. Their difference δ〈x(t)〉 ≡ 〈x(t)〉 − 〈x>(t)〉 is given by

δ〈x(t)〉 =
∫ t

0
dt′〈ζ (t′)〉. (4.10)

The effect of fine-scale fluctuations on particle dispersion can be quantified in terms
of the mesoscale noise correlation by using the Kubo formula as (Kubo et al. 1991)

Dii(t)=
∫ t

0
dt′ [〈ζi(t)ζi(t′)〉 − 〈ζi(t)〉〈ζi(t′)〉]0, (4.11)

where Dii(t) are the single-realization mixing-scale dependent dispersion coefficients.
The square brackets with subindex 0 denote the averaging over the normalized
distribution c0(x) of initial particle positions x(t= 0)= x0,

[c̃(k, t | x′)]0 =
∫

dx′c0(x′)c̃(k, t | x′). (4.12)

The stochastic approach defines dispersion coefficients as suitably chosen ensemble
averages. The effective dispersion coefficient is given by the ensemble average of
(4.11) as

Deff
ii (t)≡Dii(t). (4.13)

Alternatively, we define the ensemble dispersion coefficient, which measures the
dispersion effects of velocity fluctuations relative to the ensemble mean noise 〈ζ (t)〉.
Due to the translation invariance of v(x), the ensemble average over the mesoscale
noise ζ (t) is zero, 〈ζ (t)〉 = 0. Thus the ensemble dispersion coefficient is given by

Dens
ii (t)=

∫ t

0
dt′ [〈ζi(t)ζj(t′)〉]0. (4.14)

Notice that the difference between the ensemble and effective dispersion coefficients
quantifies the rate of change of the variance of the trajectory fluctuations (4.10)

1
2

d[δ〈xi(t)〉2]0
dt

=
∫ t

0
dt′[〈ζi(t)〉〈ζj(t′)〉]0 =Dens

ii (t)−Deff
ii (t). (4.15)

Thus it is also a measure for the uncertainty in the coarse-grained particle positions.
The difference between the unfiltered effective and ensemble-averaged dispersion
coefficients has been discussed in the past (Kitanidis 1988; Dagan 1991; Fiori 1998;
Dentz et al. 2000).

5. Dispersion behaviour

In this section we illustrate the behaviour of the mixing-scale dependent dispersion
coefficients for transport in a random shear flow and in the flow through a
heterogeneous porous medium.
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5.1. Random shear flow
We first consider the problem of dispersion in a random shear flow, as occurs in a
randomly stratified porous medium (Matheron & de Marsily 1980). It is characterized
by the flow velocity v(x) = e1v(x2) with e1 the unit vector in the 1-direction. We
assume that the hydraulic gradient is aligned with the direction of stratification and
points in the 1-direction of the coordinate system. For this case, the projectors ψij(k)=
δ1iδ1j, and thus the velocity covariance function (2.4) reduces to

C̃ (k2)= v2Ẽ (k2). (5.1)

As outlined in § 3, for the Gaussian spectrum (2.10), the fluctuation spectrum is
given by (3.3) for d = 1. Transport in random shear flows such as the one under
consideration here (Matheron & de Marsily 1980) has been studied in the literature
as an exactly solvable model for heterogeneous aquifers (Zavala-Sanchez, Dentz
& Sanchez-Vila 2009, and references therein) characterized by stratification in the
horizontal plane. Both steady and unsteady random shear flows have been studied
in the physics literature as simplified models for heterogeneous and turbulent flows
(Bouchaud & Georges 1990).

The stretching of a material fluid element in random shear flow is a non-sequential
process (Duplat, Innocenti & Villermaux 2010), in the sense that the shear properties
are constant in a given stratum but vary between strata. The elongation of a material
fluid element due to the random shear σ = ∂v(x2)/∂x2 relative to its initial length is
given by

ρ(t)=
√

1+ σ 2t2. (5.2)

Note that the shear rate depends on the vertical position, and is a random space
function as the stratified flow velocity v(x2). The stretching rate γ (t) = d ln ρ(t)/dt
is now given by

γ (t)= σ 2t
1+ σ 2t2

. (5.3)

At times t� σ−1 it is γ (t)≈ 1/t. Inserting (5.3) into the evolution equation (3.7), we
obtain the mixing scale

λ(t)=
√

2D(t+ σ 2t3/3)+ λ2
0

1+ σ 2t2
. (5.4)

For times t > (λ2
0/Dσ

2)1/3, it behaves like λ(t) ≈ √2Dt/3. It is independent of the
random shear rate σ .

In order to derive explicit expressions for the filtered dispersion coefficients, we
substitute ṽi(k) = δi1ṽ(k2) into (4.6) and (4.8). For the noise mean 〈ζi(t)〉 and the
cross-moment 〈ζi(t)ζj(t′)〉 this gives

〈ζi(t)〉 = δi1

∫
k2

A (k2, t)ṽ(k2)c̃(k2, t | a) (5.5)

〈ζi(t)ζj(t′)〉 = 2Diiδijδ(t− t′)+ δi1δj1

∫
da′
∫

k2

∫
k′2

∫
k′′2

A (k2, t)A (k′2, t′)

× ṽ(k2)ṽ(k′2)c̃(−k2, t− t′ | a′) exp(ik′′2a′)c̃(−k′2 − k′′2, t′ | a), (5.6)
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where c̃(k2, t | a)=〈exp[ik2x2(t)]〉 is the Fourier transform of the scalar distribution for
the random walk

dx2(t)
dt
= ξ2(t), (5.7)

with the initial position x2(t= 0)= a. It is given by

c̃(k2, t | a)= exp(−Dk2
2t+ ik2a). (5.8)

Using (5.6) together with (5.8) and (5.1) in (4.14) gives

Dens
11 (t)=D+ v2

∫ t

0
dt′
∫

k2

A (k2, t)A (k2, t′)Ẽ (k2) exp[−Dk2
2(t− t′)] (5.9)

for the longitudinal ensemble dispersion coefficient. The trajectory fluctuations (4.15)
are obtained by using (5.5) together with (5.8) and (5.1):

1
2

dδ〈xi(t)〉2
dt

= v2
∫ t

0
dt′
∫

k2

A (k2, t)A (k2, t′)Ẽ (k2) exp[−Dk2
2(t+ t′)]. (5.10)

Further, using the definition (4.7) of A (k2, t) and the Gaussian filter (4.3) with
the mixing scale λ(t) = √2Dt/3, the integrals in (5.9) and (5.10) can be evaluated
explicitly. Thus we obtain for Dens

11 (t) the explicit expression

Dens
11 (t)=D+ σ 2

E

v2l2
c

2D

(√
1+ 8t

3τD
+ 5

√
1+ 2t

3τD
− 3

√
1+ 4t

3τD
−
√

1+ 2t
τD
− 2

)
.

(5.11)
For the trajectory fluctuations, we obtain

1
2

dδ〈xi(t)〉2
dt

= σ 2
E

v2l2
c

7D

(
12

√
1+ 14t

3τD
+
√

1+ 7t
3τD

+ 7

√
1+ 4t

τD
− 13

√
1+ 13t

3τD
−
√

1+ 2t
τD

)
. (5.12)

The effective dispersion coefficient Deff
11 (t) is obtained from (5.11) and (5.12) according

to (4.13). For comparison, the unfiltered effective dispersion coefficient, i.e. for
λ→∞, is given by (Clincy & Kinzelbach 2001)

Deff
11 (t)=D+ σ 2

E

v2l2
c

D

(
2

√
1+ 2t

τD
−
√

1+ 4t
τD
− 1

)
. (5.13)

Note that the ensemble and effective dispersion coefficients are independent of the
distribution c0(x) of initial particle positions.

The behaviours for the filtered effective and ensemble dispersion coefficients in the
early-time regime (6D2/l2

cv
2σ 2

E )
1/3τD � t� τD are Dens

11 (t) ∼ Deff
11 (t) ∼ (t/τD)

3. In the
long-time regime t� τD, they show the characteristic scaling as (t/τD)

1/2 (Matheron
& de Marsily 1980). The unfiltered effective dispersion coefficient (5.13) behaves
at t � τD as (t/τD)

2, which is characteristic of dispersion in a linear shear flow
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FIGURE 4. Mixing-scale dependent effective (solid lines) and longitudinal ensemble
(dashed lines) dispersion coefficients for Pe = 103 in a d = 2 dimensional stratified flow.
The dash-dotted line represents the unfiltered effective dispersion coefficient. The dotted
vertical line indicates the time scale τc= l2

m/6D, and the solid vertical line the time scale
τ̂D= (10lc)

2/2D. The thin solid lines indicate the early-time t3 and late-time t1/2 behaviours
of the filtered effective dispersion coefficient, respectively, as well as the t2 behaviour of
the unfiltered effective dispersion coefficient. The dispersion coefficients are normalized by
σ 2

E v
2l2

c/D. The inset illustrates the scale distribution pl(l), and the horizontal axis denotes
l/lc. The vertical lines indicate lm = 0.26lc and 10lc.

(Bolster, Dentz & Le Borgne 2011). Thus the unfiltered effective coefficient
incorporates dispersion effects due to shear deformation, while its filtered counterparts
are at the same time of the order of the local dispersion coefficient, i.e. unaffected
by advective heterogeneity. Figure 4 illustrates the evolution of the filtered effective
and ensemble dispersion coefficients as well as the unfiltered effective dispersion
coefficient (5.13). The effective and ensemble dispersion coefficients are almost
indistinguishable, i.e. the trajectory fluctuations are small compared to the ensemble
dispersion coefficient. The evolution of the mixing-scale dependent dispersion
coefficients reflects the sampling of the pertinent heterogeneity length scales. The
dispersion coefficients are of the order of the local-scale dispersion coefficient
until the mixing scale λ(t = τc) = lm is of the order of the minimum heterogeneity
scale defined in § 3. For the activation time scale this gives τc = l2

m/(2Dfβ), where
β = 1. The dispersion coefficients increase for t> τc as the solute scans through the
distribution of heterogeneity scales as indicated in the inset in figure 4. For times
t > (10lc)

2/(2Dfβ) the mixing scale comprises 10 characteristic heterogeneity lengths
lc and the filtered dispersion coefficients assume the characteristic correlation-induced
t1/2 scaling (Matheron & de Marsily 1980; Bouchaud & Georges 1990).

5.2. Heterogeneous porous media flow
We now consider dispersion in the flow through heterogeneous media as described in
§ 2. The transport problem does not possess a closed-form solution for the dispersion
coefficients, so we study the dispersion behaviour in the frame of a second-order
perturbation expansion in the fluctuations of the random velocity field ṽ

′
(k).
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This implies the substitution of c̃(k, t | x′) in (4.6) and (4.8) by c̃0(k, t | x′)=〈exp[ik ·
x0(t)]〉, where the ‘unperturbed’ particle trajectory is given by

x0(t)= x′ + vt+
∫ t

0
dt′ξ(t′). (5.14)

Executing the noise average gives, for the propagator c̃0(k, t | x′),
c̃0(k, t | x′)= exp(−k · Dkt− iv · kt+ ik · x′). (5.15)

Using this approximation in (4.8), we obtain for the ensemble dispersion coefficients
(4.14) the perturbation expression

Dens
ii (t)=D+

∫ t

0
dt′
∫

k
A (k, t)A (k, t′)Cii(k)c̃0(−k, t− t′), (5.16)

which is similar to the one derived by Rubin et al. (1999) for a constant ideal filter.
For the trajectory fluctuations, we derive by using (5.15) in (4.6) and (4.15) the
expression

1
2

dδ〈xi(t)〉2
dt

=
∫ t

0
dt′
∫

k
A (k, t)A (k, t′)Cii(k)c̃0(k, t)c̃0(−k, t′). (5.17)

The mixing scale λ(t) is set to λ(t)=√2Dtfβ in the filter (4.3).
Notice that the scalar may start sampling the flow heterogeneity earliest when it

has been transported advectively over a disorder correlation length. Thus we focus
our analysis on times larger than the advection time scale τv. Furthermore, in most
practical applications transport is advection-dominated, that is, the Péclet number is
Pe� 1. Under these conditions, we obtain for the longitudinal ensemble dispersion
coefficient the compact expression

Dens
11 (t)=D+

√
π

2
σ 2

E vlc

[
1+

(
1+ 4tfβ

τD

)−(d−1)/2

− 2
(

1+ 2tfβ
τD

)−(d−1)/2
]
. (5.18)

The approximation method leading to this expression is outlined in Dentz et al.
(2000). The first term in the square brackets quantifies the unfiltered ensemble
dispersion coefficient. Note that lowest-order perturbation theory renders the transverse
dispersion coefficients of the order of the inverse Péclet number. Thus we focus here
on the longitudinal coefficients only. Note that at times t � τD, the mixing-scale
dependent ensemble dispersion coefficient is significantly reduced compared to its
unfiltered counterpart, which evolves to its asymptotic value on the advection time
scale τv (Dagan 1991).

The evolution of the trajectory fluctuations, which quantify the difference between
them (see (4.15)), is obtained as

1
2

dδ〈x1(t)〉2
dt

=
√

π

2
σ 2

E vlc

{(
1+ 4t

τD

)−(d−1)/2

+
[

1+ 4t(1+ fβ)
τD

]−(d−1)/2

− 2
[

1+ (4+ 2fβ)t
τD

]−(d−1)/2
}
. (5.19)
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FIGURE 5. Mixing-scale dependent effective (solid lines) and longitudinal ensemble
(dashed lines) dispersion coefficients for Pe = 103 and d = 3 spatial dimensions. The
dash-dotted line represents the unfiltered effective dispersion coefficient. The dotted
vertical lines indicate the time scale τc= l2

m/2Dfβ for β= 1/2 and β= 4. The solid vertical
lines denote the time scale τ̂D = (10lc)

2/2Dfβ . The dispersion coefficients are rescaled by
σ 2

E vlc. The inset illustrates the scale distribution pl(l), and the horizontal axis denotes l/lc.
The vertical lines indicate lm = 0.18lc and 10lc.

The expression on the first line quantifies the trajectory fluctuations with respect to the
ensemble average flow velocity v (Dentz et al. 2000). As in the previous section, both
the effective and ensemble dispersion coefficients are independent of the distribution
of initial particle positions c0(x).

Figure 5 illustrates the evolution of the mixing-scale dependent effective and
ensemble dispersion coefficients. The mixing-scale dependent effective and ensemble
dispersion coefficients evolve much more slowly than their unfiltered effective
counterpart. The unfiltered effective dispersion coefficient picks up for times smaller
than the advection time scale τv. This behaviour can be traced back to advective
spreading of the scalar distribution as its size increases due to dispersion. The
filtered dispersion coefficients, in contrast, remain essentially at the value of the local
dispersion coefficient until the time τc, which depends on the compression factor fβ
and the smallest heterogeneity scales. As above, it is set by the heterogeneity scale lm

through λ(τc)= lm, and equivalently τc = l2
m/(2Dfβ). For t< τc, i.e. for scales smaller

than lm, the mixing scale is smaller than the minimum heterogeneity scale. Thus
the flow field is homogeneous, and therefore dispersion is equal to local dispersion.
For t > τc, heterogeneity is activated as a dispersion mechanism. As the mixing
scale increases, it scans through the distribution of heterogeneity scales, illustrated
in the inset in figure 5, and incorporates fluctuations of increasing scale into the
dispersion process. For times t� τc, the dispersion coefficients evolve towards their
asymptotic long-time value. For times t� τD, that is, as the mixing scale λ(t)� lc,
the full spectrum of velocity values is available and the velocity fluctuations that
cause dispersion are statistically equal in all realizations.
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6. Conclusions
The impact of velocity fluctuations on scalar dispersion in heterogeneous flow

fields has been quantified in terms of macroscale dispersion coefficients. The concept
of macrodispersion assumes that all velocity fluctuation scales are equally available
for solute dispersion, while blockscale dispersion quantifies the impact of velocity
fluctuations below a fixed coarse-graining scale on effective scalar transport.

We propose a dispersion approach for transport in spatially heterogeneous steady
flow fields that integrates only velocity fluctuations below the mixing scale. The
mixing scale aligns the physical length scales below which the scalar mixture can
be assumed to be well mixed. It delineates the fluctuation length scales to which
solute particles have statistically equal access. The mixing scale evolves through the
competition of dispersive expansion and compression due to deformation of material
fluid elements, which provide the support for scalar transport.

The behaviour of the mixing-scale dependent dispersion coefficients reflects the
assimilation of heterogeneity scales through the evolving mixing scale. It is determined
on one hand by the competition between local-scale dispersion and the compression
of material fluid elements, which govern the mixing-scale behaviour, and on the
other hand by the distribution of velocity scales, which are encoded in the velocity
power spectrum. We study this behaviour for dispersion in random shear flow and
in heterogeneous porous media using a stochastic modelling approach. The filtered
dispersion coefficients are of the order of the local-scale dispersion coefficients as
the mixing scale is smaller than a characteristic minimum fluctuation length scale.
Then, as the scalar scans through the distribution of velocity scales, i.e. as more
of the variability of the flow field becomes available for dispersive particle motion,
the filtered dispersion coefficients increase towards their asymptotic behaviour, which
is approximated at times for which the mixing scale λ(t) is much larger than the
characteristic fluctuation scale lc.

The interaction of scalar and heterogeneity length scales plays a fundamental role
in the understanding of mixing and dispersion processes in heterogeneous media,
and thus in the quantification of scalar fluctuations and fast mixing-limited reactions
(De Simoni et al. 2005) in heterogeneous porous media. The proposed mixing-scale
dependent dispersion concept may provide an operational tool to quantify these
processes for transport in heterogeneous flows in the context of effective large-scale
transport models.
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