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Exact solutions are found for an N-fold rotationally symmetric, steadily rotating hollow
vortex where a continuous real parameter governs its deformation from a circular shape
and N ≥ 2 is an integer. The vortex shape is found as part of the solution. Following
the designation ‘V-states’ assigned to steadily rotating vortex patches (Deem & Zabusky,
Phys. Rev. Lett., vol. 40, 1978, pp. 859–862) we call the analogous rotating hollow vortices
‘H-states’. Unlike V-states where all but the N = 2 solution – the Kirchhoff ellipse – must
be found numerically, it is shown that all H-state solutions can be written down in closed
form. Surface tension is not present on the boundaries of the rotating H-states but the latter
are shown to be intimately related to solutions for a non-rotating hollow vortex with surface
tension on its boundary (Crowdy, Phys. Fluids, vol. 11, 1999a, pp. 2836–2845). It is also
shown how the results here relate to recent work on constant-vorticity water waves (Hur
& Wheeler, J. Fluid Mech., vol. 896, 2020, R1) where a connection to classical capillary
waves (Crapper, J. Fluid Mech., vol. 2, 1957, pp. 532–540) is made.

Key words: vortex dynamics

1. Introduction

The two most popular models of a distributed vortex structure – in which vorticity is
not concentrated at a single point as is the case for a point vortex – are the vortex patch
and the hollow vortex (Saffman 1992). In the vortex patch model vorticity is non-zero and
uniform in a bounded region, or patch, of fluid (Saffman 1992; Newton 2001). The circular
patch is known as the Rankine vortex and the rotating elliptical patch is the Kirchhoff
vortex (Newton 2001; Saffman 1992). Nowadays, a rotating vortex patch is commonly
given the name ‘V-state’ after an important paper by Deem & Zabusky (1978) which,
arguably, reinvigorated interest in the vortex patch model not only by identifying N-fold
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rotationally symmetric dispersive wave solutions of the two-dimensional Euler equations
(the ‘V-states’) but also by indicating how they may be computed numerically using
contour dynamics methods, which quickly became popular tools (Pullin 1992). Shortly
after the paper by Deem & Zabusky (1978), Saffman & Szeto (1980) computed the shapes
of a pair of corotating (like-signed) vortex patches. Studying vortex pairs is an important
paradigm in understanding basic vortex interactions (Meunier et al. 2002).

A hollow vortex is usually defined to be a finite-area constant pressure region having
a non-zero circulation around it (Michell 1890; Baker, Saffman & Sheffield 1976;
Saffman 1992). Although Pocklington (1895) solved the cotravelling (opposite-signed)
hollow-vortex pair problem in the 19th century, the basic problem of the corotating
(like-signed) hollow-vortex pair has only recently been treated by Nelson, Krishnamurthy
& Crowdy (2020). Indeed, there has been a resurgence of interest in the hollow-vortex
model. One reason is that it is a useful model for incorporating the effects of
compressibility (Ardalan, Meiron & Pullin 1995; Crowdy & Krishnamurthy 2017); another
is that free streamline theory (Lamb 1994) can be used to find analytical solutions.
Pocklington’s solution (Pocklington 1895) has been reappraised by Crowdy, Llewellyn
Smith & Freilich (2013) using a so-called prime function (Crowdy 2020). Baker et al.
(1976) gave an analytical solution for a periodic row of hollow vortices while Crowdy &
Green (2011) found analytical solutions for the hollow-vortex analogue of von Kármán’s
staggered point-vortex street. Analytical solutions for a steady hollow vortex in a linear
strain were found by Llewellyn Smith & Crowdy (2012); this was extended by Zannetti,
Ferlauto & Llewellyn Smith (2016) to hollow vortices in shear (analytical solutions appear
not to be available in this case). Crowdy & Roenby (2014) found exact solutions for a
steady hollow vortex surrounded by an N-fold polygonal array of point vortices thus
generalizing a point-vortex study by Morikawa & Swenson (1971). Those authors also
identified solutions for steadily translating water waves with a cotravelling submerged
point-vortex row (Crowdy & Roenby 2014).

When a hollow vortex is steadily rotating an analytical treatment using free streamline
theory is not straightforward since, on moving to a corotating frame, uniform vorticity is
introduced. Nelson et al. (2020) instead devised a numerical method tailored to account
for the doubly connected nature of the fluid exterior to the two vortices. As the angular
velocity increases, each vortex is found to extend a thin finger towards the centre of rotation
until the vortices almost touch; this sequence is shown from left to right in figure 1.
Nelson et al. (2020) adapted their numerical scheme to compute the shape of a single
2-fold rotationally symmetric rotating hollow vortex. In that case, a thin waist forms in
the vortex shape which eventually collapses; this sequence is shown from right to left in
figure 1. Both sequences in figure 1 are found to approach the same limiting state. Nelson
et al. (2020) argue this to be evidence of a topological singularity since the same state is
approached from two topologically distinct directions but with no blow-up of any physical
quantities.

The purpose of this paper is to point out, first, that 2-fold rotationally symmetric
solutions for a single hollow vortex computed numerically by Nelson et al. (2020) can,
in fact, be written down analytically. It is then shown that this solution is just the N = 2
case of a family of solutions for N-fold rotationally symmetric rotating hollow vortices
where N ≥ 2 is an integer. Following Deem & Zabusky (1978), who used ‘V-states’ to
refer to steadily rotating vortex patches, the analogous rotating hollow vortices derived
here will be called ‘H-states’. For V-states, the N = 2 solution is the celebrated rotating
Kirchhoff ellipse which is a well-known exact solution of the two-dimensional Euler
equations (Saffman 1992; Newton 2001); none of the N > 2 V-states, however, can be
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‘H-states’: rotating hollow vortices

Figure 1. Shapes of two steadily rotating hollow vortices, in the corotating frame, as computed numerically
by Nelson et al. (2020). The present paper shows that the single rotating hollow vortices in the three right-most
images can in fact be described in analytical form: they are the N = 2 case of a class of N-fold-symmetric
‘H-states’.

written down in closed form and must be computed numerically (Deem & Zabusky 1978).
All H-state solutions, on the other hand, can be written down explicitly for any N ≥ 2 as
will be shown.

2. The H-state problem

The challenge is to find a single hollow vortex with unchanging shape, an ‘H-state’,
with non-zero circulation Γ in steady solid body rotation with angular velocity Ω . The
interior of the vortex is a constant pressure region. The flow u = (u, v) is incompressible
so to describe the flow exterior to the vortex in a corotating frame we can introduce a
streamfunction ψ(x, y) such that

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (2.1a,b)

Exterior to the vortex the streamfunction ψ satisfies

∇2ψ = −ω = 2Ω. (2.2)

The kinematic condition that the vortex boundary is a streamline in the corotating frame,
together with Bernoulli’s theorem (Saffman 1992; Batchelor 2000) and the condition that
the pressure is continuous imply that, on the vortex boundary,

u · n = 0, u · t = q, (2.3a,b)

where n is the outward normal to the vortex boundary and t is the tangent vector as the
boundary is traversed in an anticlockwise direction. The constant q is the fluid speed
around the boundary. On introducing the complex variable z = x + iy the two boundary
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conditions (2.3a,b) can be written in complex form as

u + iv = q
dz
ds
, (2.4)

where dz/ds is the complex tangent and ds is the arclength element that increases
anticlockwise around the boundary. Equation (2.2) takes the form

∂2ψ

∂z∂ z̄
= Ω

2
(2.5)

which allows an integration with respect to z and z̄

ψ = Ω

2
zz̄ + Im[w(z)], (2.6)

where the analytic function w(z) is the complex potential for an irrotational flow
component exterior to the vortex. From (2.1a,b) and (2.6) it can be deduced that

u − iv = 2i
∂ψ

∂z
= iΩ z̄ + dw

dz
. (2.7)

It follows from (2.4) and (2.7) that, on the H-state boundary,

iΩ z̄ + dw
dz

= q
dz̄
ds
. (2.8)

This boundary condition will determine both the H-state shape and the flow around it. The
total circulation Γ of the H-state is

Γ = qP + 2ΩA, (2.9)

comprising a contribution from the constant tangential velocity q around the perimeter P
and from the uniform vorticity 2Ω over the H-state area A. The relation (2.9) follows on
integrating (2.8) with respect to dz around the H-state boundary.

3. Exact solutions for H-states

It will be shown that the class of conformal mappings from the interior of the unit disc in
a complex ζ -plane to the region exterior to an H-state in the corotating z-plane is

z = Z(ζ ) = −R
ζ

[
1 + 4N

(N − 1)2
ζN

ζN − aN

]
, 1 < a(N)crit < a, N ≥ 2, (3.1)

where R > 0 is a real normalization parameter that sets the size of the H-state. The
limit a → ∞ retrieves the circular hollow vortex of radius R. For each N ≥ 2 there is
a minimum critical value of a, denoted by a(N)crit , below which the shapes described by
(3.1) are not univalent and are therefore not physically admissible; this loss of univalency
is brought about by distinct parts of the vortex boundary coming into contact at a =
a(N)crit as will be seen later in figure 2. Actually, the class of conformal mappings (3.1)
was first written down by Crowdy (1999a) for N = 2, and for N > 2 (in a modified
but equivalent form using the exterior of the unit disc as the preimage domain) by
Wegmann & Crowdy (2000). The same mappings (3.1) are also used by Crowdy &
Roenby (2014). All this will be discussed in § 4. Crowdy (1999a) reports a(2)crit = 3.000.
The values a(3)crit = 1.690, a(4)crit = 1.400, a(5)crit = 1.277 can be derived using the formula
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a(N)crit = [(N − 1)1/Nã(N)crit ]
−1 where ã(N)crit are the critical values of Wegmann & Crowdy

(2000) who found numerically that ã(3)crit = 0.4696, ã(4)crit = 0.5426 and ã(5)crit = 0.5934.
Formula (3.1) implies that on the H-state boundary, or |ζ | = 1,

Z̄(ζ−1) = −Rζ
[

1 + 4N
(N − 1)2

1
1 − ζNaN

]
, (3.2)

where Z̄(ζ ) = Z(ζ̄ ) denotes the Schwarz conjugate function. It can also be verified, by
direct differentiation, that

ζZ′(ζ ) = R
(N − 1)2ζ

[
(N + 1)ζN + (N − 1)aN

(ζN − aN)

]2

, Z′(ζ ) ≡ dZ
dζ
,

ζ−1Z̄′(ζ−1) = Rζ
(N − 1)2

[
(N + 1)+ (N − 1)ζNaN

(1 − ζNaN)

]2

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.3)

and consequently that

ζ−1Z̄′(ζ−1)

ζZ′(ζ )
= ζ 2

[
(N + 1)+ (N − 1)ζNaN

(1 − ζNaN)
× (ζN − aN)

(N + 1)ζN + (N − 1)aN

]2

. (3.4)

Note from (3.3) the interesting features that dZ/dζ is a square of a rational function of
ζ , and has a rational function primitive. The boundary condition (2.8) valid on |ζ | = 1
implies that, on the H-state boundary,

dw
dz

= q
dz̄
ds

− iΩ z̄ = iq
[
ζ−1Z̄′(ζ−1)

ζZ′(ζ )

]1/2

− iΩZ̄(1/ζ ), (3.5)

where we have used the fact that ζ̄ = 1/ζ on this boundary. On use of (3.2) and (3.4),

dw
dz

= iqζ
[
(N + 1)+ (N − 1)ζNaN

(1 − ζNaN)
× (ζN − aN)

(N + 1)ζN + (N − 1)aN

]

+ iΩRζ
[

1 + 4N
(N − 1)2

1
1 − ζNaN

]
, on |ζ | = 1, (3.6)

where we can think of the right-hand side as a function of z using the inverse function,
ζ = Z−1(z), of the conformal mapping (3.1). Both sides of (3.6) are analytic functions of
z that can be continued off the H-state boundary into the fluid domain exterior to it, or
equivalently, inside the unit ζ -disc. Remarkably, the right-hand side is a rational function
of ζ . Since we require dw/dz to be free of singularities in the fluid region, and hence in
|ζ | < 1, it is necessary to remove the N simple poles of the right-hand side of (3.6) at the
roots of ζN = 1/aN which are inside the unit ζ -disc because a > 1. This can be done, by
virtue of the N-fold rotational symmetry, by the single condition

q = 2ΩR
(N − 1)2

[
(N − 1)a2N + N + 1

a2N − 1

]
(3.7)

obtained by setting the coefficient of (1 − ζNaN)−1 evaluated at ζ = 1/a on the right-hand
side of (3.6) equal to zero. Since, for the univalency of the mapping, dZ/dζ must not vanish
inside the unit disc, the right-hand side of (3.6) has no other singularities in this disc and
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therefore dw/dz is analytic there, as required. Since as ζ → 0, or equivalently as z → ∞,
it follows from (3.6) and (3.1) that

dw
dz

∼ − iR
z

[
−q

(
N + 1
N − 1

)
+ΩR

(
1 + 4N

(N − 1)2

)]
, (3.8)

and since it is required that

dw
dz

∼ − iΓ
2πz

, as z → ∞, (3.9)

then a comparison of (3.8) and (3.9) shows it is necessary to pick parameters satisfying

Γ

2πR
= −q

(
N + 1
N − 1

)
+ΩR

(
1 + 4N

(N − 1)2

)
. (3.10)

Substitution of condition (3.7) into (3.10) produces

Ω = Γ

2πR2

/[
1 + 4N

(N − 1)2
− 2(N + 1)
(N − 1)3

(
(N − 1)a2N + N + 1

a2N − 1

)]
, (3.11)

which, for a given value of Γ , is an explicit expression for the angular velocityΩ in terms
of the geometrical parameters R, a and N. WithΩ thus determined, (3.7) gives q. With all
parameters now known the velocity field follows, as an explicit function of ζ , from (2.7)
and the analytic continuation of (3.6) as

u − iv = iΩZ(ζ )+ iqζ
[
(N + 1)+ (N − 1)ζNaN

(1 − ζNaN)
× (ζN − aN)

(N + 1)ζN + (N − 1)aN

]

+ iΩRζ
[

1 + 4N
(N − 1)2

1
1 − ζNaN

]
. (3.12)

The solution is complete and the H-states have been determined parametrically as explicit
functions of ζ for any N ≥ 2. Conveniently, from the integral expressions

P =
∮

|ζ |=1

∣∣∣∣dZ
dζ

∣∣∣∣ dζ
iζ
, A = − 1

2i

∮
|ζ |=1

Z̄(ζ−1)
dZ
dζ

dζ (3.13a,b)

and use of residue calculus, it is easy to show that

P = 2πR
[

2N
(N − 1)2

(
(N − 1)a2N + N + 1

a2N − 1

)
− N + 1

N − 1

]
,

A = πR2

(1 − a2N)2(N − 1)2

[(
N + 1
N − 1

)2

(N2 − 6N + 1)

−2
(

N + 1
N − 1

)
(N2 + 4N − 1)a2N + a4N(N − 1)2

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)

Such formulas are useful since, if one seeks H-states with fixed area A = π, say, then
the second formula in (3.14) gives an explicit expression for R in terms of N and a. With
parameters q,Ω,P and A determined by (3.7), (3.11) and (3.14), a consistency check on
the solution is provided by confirming that (2.9) holds.

A purely numerical method to compute the H-state for N = 2 was given in Nelson et al.
(2020) where the values of q and Ω associated with the critical state, corresponding to
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‘H-states’: rotating hollow vortices

Figure 2. H-states for A = π and (from left to right) N = 2, 3, 4 and 5. Parameter values are: N =
2, a = a(2)crit(= 3.000), 3.5, 5, 10; N = 3, a = a(3)crit(= 1.690), 1.8, 2, 5; N = 4, a = a(4)crit(= 1.400), 1.5, 1.8, 5;
N = 5, a = a(5)crit(= 1.277), 1.3, 1.5, 5.

a = a(2)crit = 3.000, are reported for Γ = 2 and A ≈ 2 × 0.311. As a check on the above
analysis, we can compute q and Ω using (3.7) and (3.11) with Γ = 2, and R calculated
from the second formula in (3.14) with A = π, to find q ≈ 0.236 and 4πΩ ≈ 1.347 which
coincide, to within numerical tolerance, with the (suitably rescaled) values reported by
Nelson et al. (2020). A comparison of the shapes given by formula (3.1) for N = 2 with
those calculated numerically by Nelson et al. (2020) reveals them to be indistinguishable
for arbitrary parameter values.

H-state shapes are shown for N = 2, 3, 4 and 5 in figure 2. At a = a(N)crit the H-states
show an N-fold rotationally symmetric pinch-off where different parts of the boundary
come into contact. These are quite different to the critical V-state shapes which are known
to exhibit 90◦ corner formation (Overman 1986; Saffman 1992).

Figure 3 shows graphs ofΩ and q against a for N = 2, 3, 4 and 5 for Γ = 1 and A = π.
A bifurcation analysis from the circular state – that is, setting Z(ζ ) = −ζ−1 + εζN−1 in
(3.5) and expanding for small ε � 1 with Γ = 1 – leads to

Ω ∼ N − 1
2π(N + 1)

, q ∼ 1
π(N + 1)

. (3.15a,b)

The curves in figure 3 tend to the values in (3.15a,b) as a → ∞ which corresponds to
the near-circular state. As a decreases from infinity Ω and q remain close to the values
(3.15a,b) until a gets close to a(N)crit when they typically decrease monotonically (although
a small increase in q for N = 5 is observed before it decreases).

4. Perspectives

It is surprising that these exact solutions for such a basic class of distributed vortex
structures have escaped notice for so long. This is likely due to the aforementioned
observation that classical free streamline theory is unavailable as a route to their
derivation. Like the Rankine vortex and the Kirchhoff ellipse, the results are valuable
pedagogically in providing mathematically explicit desingularizations of an isolated point
vortex.
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Figure 3. Graphs of (a) Ω and (b) q against a for N = 2, 3, 4 and 5 and Γ = 1,A = π.

The class of conformal mappings (3.1) was used first by Crowdy (1999a) and Wegmann
& Crowdy (2000) to find solutions for a non-rotating hollow vortex but with the important
difference that surface tension acts on its boundary. The boundary conditions are then
more complicated because the fluid pressure is no longer constant on the vortex boundary
but is balanced by a curvature-dependent surface tension term. As has been shown here,
the class of shapes solving that quite different free boundary problem coincides with the
H-state shapes. Indeed there is yet another distinct free boundary problem also solved by
the same class of mappings (3.1): Crowdy & Roenby (2014) found that they also solve the
free boundary problem of a central hollow vortex, without surface tension, in equilibrium
with an N-polygonal array of satellite point vortices.

The work of Crowdy (1999a) and Wegmann & Crowdy (2000) emerged from insights
gained from a new approach to free surface Euler flows with surface tension propounded by
Crowdy (2000). There the author proposed a conformal mapping approach to understand
why the classic problem of pure capillary waves on deep water studied by Crapper
(1957) admits exact solutions; he also sought to understand how Crapper’s solution
relates to analytical observations made by Tanveer (1996) on the functional form of
conformal mappings to the region exterior to a translating bubble with surface tension,
another example of a free surface Euler flow with surface tension. Crapper (1957) used
hodograph variables but it is not clear from his approach why his proposed solution
ansatz works. Crowdy (2000) gained more insight by observing a Riccati-type structure
to the analytically continued boundary condition that allowed deductions to be made on
the functional form of the conformal mapping. He showed why Crapper’s 2π-periodic
solution must be given by the following log-rational mapping, from the unit η-disc, to a
physical Z plane

Z = Z̃(η) = i
[

log η − 4â
η − â

]
, â > 1. (4.1)

The arguments of Crowdy (2000) can be adapted to the present H-state problem to justify
why the relevant conformal mappings must have the functional form (3.1).

In view of these analytical connections (Crowdy 2000) between Crapper’s capillary
waves and hollow vortices with surface tension (Crowdy 1999a; Wegmann & Crowdy
2000), and since the same mappings (3.1) used in the latter problem also solve the
H-state problem, it is natural to ask if the new H-state results in this ‘radial geometry’
might produce analogous exact solutions to some problem in Crapper’s periodic water
wave geometry. It turns out that such solutions have very recently been discovered by
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‘H-states’: rotating hollow vortices

Hur & Wheeler (2020), whose work was motivated by a string of other recent contributions
(Hur & Dyachenko 2019a, b; Hur & Vanden-Broeck 2020) where it was noticed that
Crapper’s capillary wave profiles were emerging in numerical simulations of rotational
water waves. A similar thing happened here: noticing that the critical shape from Nelson
et al. (2020) as shown in figure 1 is indistinguishable from the critical shape shown in
figure 1 of Crowdy (1999a) led to the new H-state solutions. On making the identifications

Z = −i log zN, η = ζN, â = aN (4.2a--c)

with z related to ζ via (3.1) it can be shown that (4.1) is retrieved (to within unimportant
additive constants) as N → ∞. That is, the N → ∞ limit of the H-states reproduces the
water wave solutions of Hur & Wheeler (2020).

Actually, the surprising reappearance of Crapper’s profiles in a problem different from
the original problem of capillary water waves was noticed earlier by Crowdy & Roenby
(2014) who found exact solutions, given by Crapper’s profiles (4.1), for steady water waves
with vorticity: in their problem, the vorticity in each period window is concentrated in a
submerged cotravelling point vortex. In view of the recent results of Hur & Wheeler (2020)
the potential theoretic concept of ‘balayage’ (Shapiro 1992) comes to mind: one imagines
that the uniform vorticity in each period window in the Hur & Wheeler (2020) solutions
is ‘swept’ into a single point vortex to give the solutions of Crowdy & Roenby (2014) and
without changing the wave profile.

It is intriguing that the same classes of mapping functions – the radial geometry shapes
embodied in (3.1) and the Crapper-type periodic waves encoded in (4.1) – appear to be
‘canonical’ in that they recur in at least three physically distinct problems. As discussed by
Crowdy & Roenby (2014), this is likely due to the fact that (3.1) and (4.1) are the conformal
mappings to so-called double quadrature domains which form an important class having
their own mathematical significance; this is related to the features, noted in § 3, that dZ/dζ
is both a square of a rational function of ζ and has a rational function primitive. A recent
monograph (Crowdy 2020) makes the case that the class of quadrature domains should be
known more widely in the applied and physical sciences. They occur in various guises in
fluid dynamics as surveyed by Crowdy (2005). We mention here that other classes of exact
solutions – also viewable as quadrature domains – for steadily translating water waves with
vorticity have been found by Crowdy & Nelson (2010).

The results here point to the intriguing possibility that other analytical solutions exist
for rotating hollow-vortex equilibria or those with background vorticity. In the corotating
frame the H-states have a combination of uniform vorticity and concentrated boundary
vorticity. They share these features with Sadovskii vortices (Saffman 1992) which have
also received renewed attention (Freilich & Llewellyn Smith 2017). Zannetti et al. (2016)
computed the steady shapes of a hollow vortex in simple shear numerically, but it is
conceivable that the analytical observations here are extendible to that problem which
has many elements in common. Of course, whether the corotating hollow-vortex pair
calculated numerically by Nelson et al. (2020) – i.e. the detached vortex pairs shown
on the left in figure 1 – also admits analytical solutions is an open problem. In this
regard it should be mentioned that, using the prime function for a concentric annulus
(Crowdy 2020), the author has extended the work of Crowdy (1999a) and Wegmann
& Crowdy (2000) to find exact solutions for capillary waves on a fluid annulus with
two free surfaces (Crowdy 1999b, 2001). Crowdy (1999b) also offered alternative forms,
generalizing (4.1), of the capillary wave solutions on fluid sheets found by Kinnersley
(1977) who used Jacobi elliptic functions to generalize Crapper’s solution. A similar
approach using the prime function (Crowdy et al. 2013) also obviated the need for Jacobi
elliptic functions in describing Pocklington’s cotravelling hollow-vortex pair (Pocklington
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1895) and facilitated the calculation of its linear stability properties. The novel prime
function approach to Kinnersley’s solutions in Crowdy (1999b) might similarly uncover
new solutions for water waves with vorticity on fluid sheets thereby generalizing the results
of Hur & Wheeler (2020).

The stability of the H-states is clearly of interest, and can be studied using techniques
similar to those used by Llewellyn Smith & Crowdy (2012) and Crowdy et al. (2013). This
matter remains to be investigated.
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