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ON REALS WITH Δ02-BOUNDED COMPLEXITY AND
COMPRESSIVE POWER

IAN HERBERT

Abstract. The (prefix-free) Kolmogorov complexity of a finite binary string is the length of the shortest
description of the string. This gives rise to some ‘standard’ lowness notions for reals: A is K-trivial if its
initial segments have the lowest possible complexity and A is low for K if using A as an oracle does not
decrease the complexity of strings by more than a constant factor. We weaken these notions by requiring
the defining inequalities to hold only up to all Δ02 orders, and call the new notions Δ

0
2-bounded K-trivial

and Δ02-bounded low for K . Several of the ‘nice’ properties of K-triviality are lost with this weakening. For
instance, the new weaker definitions both give uncountable set of reals. In this paper we show that the
weaker definitions are no longer equivalent, and that the Δ02-bounded K-trivials are cofinal in the Turing
degrees. We then compare them to other previously studied weakenings, namely infinitely-often K-triviality
and weak lowness for K (in each, the defining inequality must hold up to a constant, but only for infinitely
many inputs). We show that Δ02-bounded K-trivial implies infinitely-often K-trivial, but no implication
holds between Δ02-bounded low for K and weakly low for K .

§1. Introduction. The prefix-free Kolmogorov complexity, K(�), of a binary
string � is the length of the shortest self-delimiting program (in a given language)
whose output is �. We can extend this to a notion on reals by examining the com-
plexities of all finite initial segments of their binary expansions. We say a real is
Martin-Löf random if the complexities of its initial segments are as high as possible,
i.e., up to an additive constant c we have for all n,K(A� n) ≥ n−c, whereA� n is the
initial segment ofA of length n. In this way we capture a notion of randomness that
coincides with being difficult to describe. The Martin-Löf random reals are one of
the cornerstones of the field of Algorithmic Randomness. On the other end of the
spectrum, we have reals whose initial segment complexity is as low as possible. A
string of length n can always be used as a description of the number n, so the lowest
complexity we can achieve is K(n). We say real A is K-trivial if up to an additive
constant c we have for all n, K(A� n) ≤ K(n) + c (for an n ∈ �, we use K(n) to
mean the complexity of a string of n zeros). The K-trivials are another set of reals
that are well-studied and of great interest in this field.
Anotherway of comparing reals usingKolmogorov complexity is to examine their
compressive power. By allowing programs to have oracle access to reals, we get a
notion of relativized Kolmogorov complexity; the length of the shortest description
of � that can use A as an oracle. We can then compare the plain complexities
of strings with their complexities relative to a given real to get some idea of the
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additional power that the real is providing to compression. Some reals, for example
Martin-Löf randoms, have high compressive power, since used as an oracle they
can give very short descriptions of their own initial segments, which are impossible
to compress by an oracle-free program. However, we also get a concept of ‘lowness’
for reals for this measure. We say a real is low for K if up to an additive constant
c, for all finite binary strings �, K(�) ≤ KA(�) + c, that is, A provides no more
than a constant amount of additional compression to any string. It is a remarkable
fact due to Nies [11] that lowness for K coincides exactly with K-triviality; having
minimal complexity is the same as having minimal compressive power. However,
intensionally the definitions are quite different and as we weaken the definitions
slightly the notions come apart. We formalize some notation to be used throughout
this paper.
We use � to denote the least countable ordinal, identified with the set of natural
numbers. We use 2<� to denote the set of finite binary strings and 2� for the set
of infinite binary sequences, identified with the binary expansions of reals. We use
the symbol ‘�’ to denote the operation of concatenation on 2<�, omitting it where
there will be no confusion, and the symbol ‘≺’ to denote the initial segment relation
on 2<� × 2<� and 2<� × 2� . We denote the restriction of an element A ∈ 2� to its
finite initial segment of length n by A� n. In contexts that involve both finite binary
strings and natural numbers, we will use 〈�〉 to denote the string � as opposed
to the natural number with decimal expansion � (i.e., 〈10〉 is the binary string of
1 followed by 0, while 10 is the natural number ‘ten’), unless this can be omitted
without confusion. By a tree we mean a subset of 2<� that is closed downwards
under ≺. For such a tree T , we use [T ] to denote the set of infinite paths through
T , i.e., [T ] = {A ∈ 2� : ∀n A� n ∈ T}. As stated above, we use n to denote the
string consisting of n zeros. For computations or processes that may or may not
converge, we use ↓ to denote convergence and ↑ to denote divergence. We use the
symbol ‘≤+’ to denote that an inequality holds up to an additive constant. We will
use standard terminology and definitions for recursion theoretic concepts as given
in for example [14].
By a machine we mean a partial recursive functionM : 2<� → 2<� . A machine

M is prefix-free if for any � ≺ � in 2<�, if M(�) ↓ thenM(�) ↑. For a prefix-
free machineM, the prefix-free Kolmogorov complexity relative toM of a string
� is min{|�| :M(�) = �} and is denoted KM(�). Solomonoff, Kolmogorov, and
Chaitin each independently showed the existence of universal prefix-free machines,
that is,machinesMU such that for any other prefix-freemachineM, for all� ∈ 2<� ,
KMU (�) ≤+ KM(�). We fix some such universal prefix-free machine and denote
it U and the associated Kolmogorov complexity simply K . For many of our proofs
we will need to construct our own machines, and we will need the following result.
A Kraft-Chaitin set is a recursively enumerable subset W of 2<� × � such that∑
(�,n)∈W

2−n < 1. The Kraft-Chaitin Theorem, which appeared independently in

work of Levin, states that for any such setW there exists a prefix-free machineM
such that for any pair (�, n) ∈W there is a � ∈ 2<� such that |�| = n andM(�) = �.
Note that as long as this sum is finite there is some constant c such that the sum∑
(�,n+c)∈W

2−n−c is less than 1, so we will be able to find a machine that performs as
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requested, up to an additive constant. We call the sum
∑

(�,n)∈W
2−n the mass of the

Kraft-Chaitin setW .
In this paper themain objects of study are the weakenings of the standard lowness
notions discussed above derived from replacing the constants with slow-growing
functions.

Definition 1.1.

• For a function f : 2<� → �, a real A is low for K up to f if for all � ∈ 2<�

K(�) ≤+ KA(�) + f(�).

• For a function g : � → �, a real A is K-trivial up to g if for all n ∈ �

K(A� n) ≤+ K(n) + g(n).

Wewrite LK(f) for the set of reals that are low forK up tof, andKT (g) for the
set of reals that are K-trivial up to g. In this notation KT (0) is the set of standard
K-trivials and LK(0) is the set of standard lows for K (so KT (0) = LK(0)).
The question now arises as to which functions it will be fruitful to consider for
these f and g. Obviously some functions grow quickly enough that LK(f) or
KT (g) is all of 2<�. On the other hand, many functions (any with a finite lim sup)
will just give us KT (0) or LK(0) again. As these functions represent the rates of
growth of some quantities, it is natural to consider orders, that is, functions that
are unbounded and nondecreasing (some sources additionally require that orders
be recursive, but we make no such restriction). In principle we can consider orders
of arbitrarily high arithmetic complexity. However, Csima and Montalbán showed
that there is a Δ04 order f such that KT (f) = KT (0), that is, A is K-trivial if and
only if K(A� n) ≤+ K(n) + f(n) [5]. Later Baartse and Barmpalias improved this
by constructing a Δ03 order with this property [1], and showed that no such so-called
‘gap function’ could be Δ02. Thus, the Δ

0
2 order case is where these weakenings can

be interesting and can be handled in a general way. It will often be more convenient
in the proofs to work with a slightly more general notion than being a Δ02 order,
which we define below.
For a total function f : � → �, a recursive approximation is a uniformly recur-
sive series of functions (fs) such that for all x, lims→∞ fs(x) = f(x). By the
Schoenfield Limit Lemma and Post’s Theorem (both in, for example [14]) a func-
tion has a recursive approximation if and only if it is Δ02. We use some effective
listing of all partial recursive approximations and write φe,s for the sth stage of the
eth approximation.

Definition 1.2. A Δ02 function f : � → � is finite-to-one approximable if it is
total and has a recursive approximation fs → f such that for any n ∈ �, for all
but finitely many m ∈ �, for all s , fs(m) > n. Such an approximation is called a
finite-to-one approximation.

We note that this is a more restrictive notion than having an approximation that
is finite-to-one at each stage (any Δ02 function will have such an approximation). We
require rather that for a given output there are only finitely many inputs that are
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ever in its preimage (so the function is finite-to-one over the whole approximation).
With a simple diagonalization one can even construct a finite-to-one Δ02 function
that fails to have a finite-to-one approximation in the above sense, which necessitates
the complication of terminology.
Finite-to-one approximability may seem like an odd condition to impose, but in
some sense it is a generalization of being an order. Any Δ02 order is finite-to-one
approximable, by taking any recursive approximation and selecting only the stages
where it looks like an order on initial segments of increasing length (and replacing
the tail with the identity, if necessary). Moreover, any finite-to-one approximable
function pointwise dominates some Δ02 order. Since each n will only ever appear in
the output for finitely many inputs, each time it does so we can drop the value on all
smaller inputs to n to maintain monotonicity. Eventually we reach a point where n
never appears again, so our new function will have lim inf greater than n.
A central concept of this paper will be those reals that are K-trivial or low forK
up to every Δ02 order. We use

KT (Δ02) =
⋂

f a Δ02 order

KT (f),

to denote the set of reals that are K-trivial up to every Δ02 order and

LK(Δ02) =
⋂

f a Δ02 order

LK(f).

to denote the set of reals that are low for K up to every Δ02 order. By the discussion
above it should be clear that these coincide with the reals that are K-trivial or low
for K up to every finite-to-one approximable function.
Since noMartin-Löf random real can beK-trivial or low forK up to even log(n),
it is clear that both of these sets have measure 0. The reals in KT (Δ02) are within
every Δ02 order of being K-trivial. Another way to think of these reals is that, while
they may not be K-trivial, there is no Δ02 witness to their non-K-triviality. Any
function f : � → � such that f(c) gives an n with K(A� n) > K(n) + c cannot be
Δ02, and the analogous statement holds for LK(Δ02). To see this, note that from such
a function f, we can define the function g(n) = the smallest c with f(2c) ≥ n,
which will be a Δ02 order such that the inequality K(A� n) ≤ K(n) + g(n) + c will
fail to hold for any c (as witnessed by n = f(2c)). We use this observation to show
that among the Δ02 reals the only reals in KT (Δ02) or LK(Δ02) must be theK-trivials.
Proposition 1.3. IfA isΔ02 and notK-trivial, thenA /∈ KT (Δ02) andA /∈ LK(Δ02).
Proof. First, we note that the function K(n) is itself Δ02. To approximate K(n)
we can at stage s run s steps of the computation of the universal machine U on the
length-lexicographically first s-many strings and output the length of the shortest
string that we find working as a description of n so far. Eventually s will be large
enough that we find the actual shortest length, so this approximation converges.
Now, if A is also Δ02, then so is the function that sends n to K(A� n), since we can
approximate the complexity of our current approximation to A� n and eventually
these will both converge.
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SinceA is notK-trivial, for any c there will be an n such thatK(A� n) > K(n)+c,
and since these quantities have recursive approximations, we can recursively approx-
imate the smallest such n that works for a given c. This gives us a Δ02 f that witnesses
A’s non-K-triviality, as mentioned above, so A is not in KT (Δ02).
To see that A is also not in LK(Δ02) a similar argument will work, or we can
use the following proposition, which gives us that LK(Δ02) is in fact a subclass of
KT (Δ02). �
Proposition 1.4. If A ∈ LK(Δ02), then A ∈ KT (Δ02).
Proof. For any f : � → �, let f̂ : 2<� → � be given by f̂(�) = f(|�|). Clearly
if f is a Δ02 order then so is f̂. If A ∈ LK(Δ02), then for any Δ02 order f we have
A ∈ LK(f̂), i.e., for some c, for all � ∈ 2<� , we have K(�) ≤ KA(�) + f̂(�) + c.
In particular we get for all n, K(A� n) ≤ KA(A� n) + f(n) + c. Now, relative to A
there is a very short description of A� n: read off the first n bits of the oracle. All
this machine requires to produce this initial segment is a description of the number
n, so KA(A� n) ≤+ KA(n), and this can be no larger than K(n). Thus, for all n,
K(A� n) ≤+ K(n) + f(n), so A ∈ KT (f). Since this holds for any Δ02 order f, A
must be an element of KT (Δ02). �
In this paper we examine some properties of KT (Δ02) and LK(Δ02). In particular,
we are interested in how these sets compare to each other, to the standard notions
of lowness for K and K-triviality, and to some other weakenings of these notions.
We first review some results about the classic case and what is known about certain
weakenings.
In the classic case, as noted above it is a result of Nies that LK(0) = KT (0) [11].

LK(0) (and thus KT (0)) is clearly closed downwards under ≤T , since a real can
simulate the compression done by any real it can compute. Chaitin [4] showed that
KT (0) was countable and all its members are Δ02. Downey, Hirshfeldt, Nies, and
Stephan have shown that KT (0) is closed under effective join [7].
In contrast Baartse andBarmpalias [1] constructed for anyΔ02 order g a perfect set
of reals in KT (g), so this set is uncountable and has non-Δ02 elements. Hirschfeldt
and Weber, though they did not use this terminology, first showed that for any
finite-to-one approximable f, LK(f) contains an r.e. set that is not in LK(0) [9].
In an earlier paper [8], the author has shown that there is a perfect set of reals in
LK(f) for any finite-to-one approximable f, and in fact in LK(Δ02). Additionally,
the perfect set constructed in that paper has the property that for any real A there
are two elements B1 and B2 of the set such that B1⊕B2 ≥T A, so in general LK(f)
and LK(Δ02) are not closed under effective join (i.e., except for the trivial case when
LK(f) = 2�).
In Section 2 we discuss the downwards closure of KT (Δ02) under ≤T and impli-
cation between KT (Δ02) and LK(Δ02). In Section 3 we give some positive closure
results for KT (Δ02), and in Section 4 we compare these notions with other lowness
notions related toKolmogorov complexity and closures under weaker reducibilities.
We give further directions for study in Section 5.

§2. Downwards closure. It is easy to see that lowness for K as a property of
reals is closed downwards under ≤T , since a real can simulate the compression
algorithms of any real it can compute. From this and the Nies’s Theorem it follows
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that K-triviality is also closed downwards. The same argument shows that LK(f)
is closed downwards for any f, but we do not have an analog of Nies’s Theorem in
the weaker case, so it does not necessarily follow that KT (g) is closed downwards
in general. In fact, this is not the case. The downwards closure under ≤T fails in a
very strong sense, withKT (Δ02) (and hence eachKT (g) for any Δ02 order g) actually
being cofinal in the Turing degrees.

Theorem 2.1. For any real B there is an A ≥T B such that A ∈ KT (Δ02).

Proof. We wish to build an A that is Turing-above B and that is K-trivial up to
every finite-to-one approximation. We do not know a priori which φe,s are finite-
to-one approximations, and, since we need Kraft-Chaitin sets to be recursively
enumerable, we will have to build a tree T and use the branching nodes to mark
guesses as to the behaviors of the φe,s ’s. The tree we build will be independent of B
and will contain a witness A for every real B.
Placing the branching nodes in our tree will be a delicate operation. We will use
a system of markers �(α) to keep track of the values where corresponding φe,s ’s
are large enough to place another branching node, which we will use to guess the
behavior of the next φe+1,s . Additionally, we will use these markers to mark ‘coding
locations’ where the bits of a given real can be stored, which will make the behavior
of the tree around these nodes slightly more complicated. We will have to introduce
another kind of branching node which will keep track of which value is in the ith
bit of B. Once we put a marker �(α)s at a node to make it a guessing node, both
successors of that node, �(α)s�1 and �(α)s�0, will also both be in Ts , and a path
taking one or the other of these nodes will correspond to guessing whether φ|α| is
or is not a finite-to-one approximation. After this branching we will immediately
introduce another branching, so that �(α)s�11, �(α)s�10, �(α)s�01, and �(α)s�00
will all be in Ts . The value of a path through �(α) at |�(α)| + 2 will correspond
to the |α|th bit of B. We distinguish between the two kinds of branching nodes as
either guessing nodes or coding nodes. To kill a node is to make a commitment never
to add nodes to T above it, and a node that has not yet been killed is living.
We make some definitions for ease of bookkeeping. We say a path � through T
follows a string α through the branching nodes of T if at least |α|-many branching
nodes are initial segments of � and for each i < |α|, 	i�α(i) � �, where 	i is the ith
branching node with 	i ≺ � (note that here we count the branching nodes starting
with a 0th one). A path that follows α through the first |α|-many branching nodes is
only making guesses about the first |α|/2-many φe,s ’s, since only the even-numbered
branching nodes correspond to guesses. We say that the number e is a guessing
member of the string α if and only if α(e) = 1 and e is even. We denote this e ∈g α.
For each α ∈ 2<� , we use 
α,s(n) = min{φe,s(n) : e ∈g α} to denote the function
that makes all of α’s guesses. Note that 
α considers up to |α|/2 many φe,s ’s. We
will need to ensure we branch at a rate that forces these values to be large enough
that we can afford to pay for multiple initial segments of the same length into our
Kraft-Chaitin sets. We will want to ensure that each 
α,s takes values at least as
large as 2|α| before we add another branching.
We build a separate Kraft-Chaitin set Me to witness A’s K-triviality up to φe .
Me will only take requests to describe initial segments that are on the tree above
nodes that guess that φe,s is a total finite-to-one approximation, so for a correct path
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A through T theseMe together will witness thatA ∈ KT (Δ02). Recall that the mass
of the setMe is the sum

∑
(�,n)∈Me

2−n.

Ensuring that there is such an A that is Turing-above B will be handled after the
construction. Essentially, we will just show that the path through the ‘true subtree’
that contains the bits ofB in its coding locations can find these locations recursively.
The requirements we are trying to meet are

Bα : The path through T that follows α through the branching nodes branches

twice more at a level n where 
α(n) ≥ 2|α|

for all α ∈ 2<� with |α| even, and

Rei : For all n with 2i ≤ φe(n) < 2i + 2, K(A� n) ≤+ K(n) + 2i

for all i, e ∈ � with e ≤ i .
We order these requirements B〈〉, R00, B〈00〉, B〈01〉, B〈10〉, B〈11〉, R

0
1, R

1
1 , B〈0000〉, . . . .

The construction will be an injury construction, and we give the strategies for
meeting each of the requirements. Because some of the φe,s will not actually be
finite-to-one approximations, we may fail to satisfy some of these requirements in
the construction. We will need to organize the construction so that injuries caused
by the ill-behaved φe,s do not interfere with the satisfaction of requirements for the
well-behaved φe,s .
ABα requirementwill require attention at a stage s if there is not a living branching
node � above the path that follows α through Ts with 
α,s (|�|) ≥ 2|α|. The strategy
for satisfying Bα is

1. Search for an n such that 
α,s(n) ≥ 2|α|.
2. Extend the longest path that follows α with a string of 0s to a length n′ + 1
where n′ > n has not been used yet in the construction. Put themarker �(α)s+1
at the node on this branch of length n′+1. Put both extensions of length n′+2
and all four extensions of this node of length n′ + 3 into Ts+1.

An Rei requirement will require attention at a stage s if there is an n ≤ s with
2i ≤ φe,s(n) < 2i +2 and there is a living path � through Ts of length at least n and
there is an α such that e is a guessing member of α and �(α)s � � such that there
is not a request inMe,s for a description of �� n of length less than Ks (n) + 2i . The
strategy for satisfying Rei is

1. For all such n and �, for the longest α such that �(α)s � � and e is a guessing
member of α, put the request (�� n,Ks (n) + 2|α|) intoMe,s+1.

We now give the construction, which will call these subroutines as necessary.
Stage 0: T0 = ∅,M0 = ∅, �(〈〉)0 = 〈〉 and �(α)0 undefined for all other α.
Stage s + 1:

1. Compute φe,s+1(n) for e, n ≤ s + 1.
2. If there are an n and an α such that |�(α)s | < n and 
α,s+1(n) < 2|α|, then
�(α)s is no longer marking a point after which 
α is greater than 2|α|, so for
the length-lexicographically first α
(a) Kill all branches of the tree above �(α)s .
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(b) Let �(α)−s be the initial segment of �(α)s of length |�(α)s | − 1 and put
�(α)−s

�1 into Ts+1 as a living node. Note that again by construction �(α)s
always ends in a 0 and is always a node of length at least 2 longer than any
number seen earlier in the construction, hence �(α)−s

�1 will not have been
used before this point.

(c) Repeat 2a) and 2b) for all other such α with �(α)s still living, in length-
lexicographic order.

3. For the highest priority requirement that requires attention of the first s + 1
many requirements, run s + 1-many steps of its strategy.

4. Repeat 3.) for any of the first s + 1-many requirements that still require
attention, in order of decreasing priority.

This completes the construction. We let T =
⋃
s
Ts , Me =

⋃
s
Me,s , and �(α) =

lim
s
�(α)s . Unfortunately, in this construction, as in life, not all requirements can

be satisfied. We call a string α correct if for all n ≤ |α|, if n = 2m is even then
α(n) = 1 if and only if φm,s is a finite-to-one approximation. We need to show
that the requirements that are relevant to building correct paths through T are all
satisfied, and that themasswe put intoMe to satisfy theRei requirements is bounded.

Lemma 2.2. The requirements Bα for correct α and Rei for e such that φe,s is a
finite-to-one approximation are all eventually satisfied.

Proof. First we argue that each of these requirements can be subject to at most
finitely many injuries. An injury to any Bα requirement only occurs when for some
e ∈g α the value of φe,s(n) drops below 2|α| for some n > |�(α)s |. When this
happens, we respond by moving �(α)s+1 to a higher level. Now, since there are
only finitely many e ∈g α, if there were infinitely many such injuries then at least
one e ∈g α would be responsible for infinitely many. There would then have to
be infinitely many n such that for some t, φe,t(n) < 2|α|, so φe,s would not a
finite-to-one approximation. Then e ∈g α is a contradiction to α’s correctness.
For Rei requirements, since φe,s is a total finite-to-one approximation we will
eventually reach some stage s where φe,s has converged on all n such that φe(n) <
2i +2. At this stage all the n thatRei will ever be concerned about have been found.
We let the largest of these n be n′. Then injuries toRei can only occur either whenKs
changes for one of these n, but this happens only finitely often, or when there is a
change inT below n′ on some branch that is guessing thatφe,s is a total finite-to-one
approximation. Each of these changes moves some marker to a point larger than
n′, and, since there were only finitely many markers at positions lower than n′ at
stage s , this too can only happen finitely often.
Now we need to show that once these requirements are no longer injured they
will be able to act to satisfy themselves. For Bα requirements, the strategy waits
until it finds an n such that 
α,s(n) ≥ 2|α|, and then extends a path in the tree to
this height and branches twice. Since every e ∈g α is in fact a total finite-to-one
approximation, there will exist an n for which 
α(m) ≥ 2|α| for all m > n, and so
eventually Bα will find such anm and act and be satisfied. For Rei requirements, the
strategy puts requests intoMe . After it is no longer injured, it needs to act at most
once for each n with φe(n) < 2i + 2 and there are only finitely many of these so it
is eventually satisfied. �
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The Rei requirements for φe,s that are finite-to-one approximations will act until
satisfied, but this happens just by placing the relevant requests into Me . We now
need to find an upper bound on the mass put intoMe in this way, to ensure we get
a machine that serves our purpose.
Lemma 2.3. For all e, �(dom(Me)) ≤ 8.
Proof. Let us start by fixing an e. We will bound the amount paid intoMe for an
arbitrary n using some description � of n from U. For any path � of length n in T ,
while � is alive there is some maximal α such that �(α)s � �. We recall that �(α)’s
are placed based on the behavior of the e that are guessing members of α, so for a
given n the collection of strings that are maximal for some nodes of length n at some
stage s can include strings of different lengths. Now, a given α can be maximal for
at most 4 such �’s since Ts will branch twice immediately after �(α)s and then no
more until �(α′) for some α′ � α, at which point α′ would be maximal. Changes
in Ts below level n will kill off some of the nodes at that level and then later new
nodes will be added. Rather than keep track of the different �’s of length n that are
living at different points in the construction, it will be easier to keep track of the
α’s that are maximal in this sense for some nodes of length n as we go through the
construction.
An injury in the construction kills the tree above some �(α)s , and when Bα acts
again at a later stage t, the new �(α)t will be placed at a node of length n′ that is
larger than any number seen before in the construction, so clearly any � � α that
was maximal for nodes of length n will no longer be after the change (although it
will be maximal for some nodes of much longer lengths). In this way any change in
Ts below level n will make some new α′ maximal for some new nodes of length n,
where α′ will be an initial segment of some α that was maximal before the change.
Thus, a given α can only ever be maximal for 4 nodes of length n over the entire
course of the construction. Recall that �(α) are only placed for α of even length.
For each α of even length, we know that �(α)s is placed at a node such that

α,s(|�(α)s |) ≥ 2|α|, and so we know the rate at which we will pay intoMe for all
�’s for which α is maximal is 2−2|α|. Here we use the fact that we only pay for paths
with e ∈g α. Now all that remains is to add up the total mass that could be paid
intoMe when any α is maximal such that �(α) < n. This gives us the sum

∑

|α| even
0≤|α|<∞

4 · 2−|�|2−2|α|.

Since there are 22i -many α of length 2i this can be rewritten as

4 ·
∞∑

i=0

22i · 2−|�|−4i .

This sum reduces to 4 ·2−|�| ·
∞∑
i=0
2−2i , and the sum here is bounded by 2, so we can

bound the mass paid intoMe on behalf of n using � by 8 · 2−|�|. We now sum over
all � in the domain of the universal machine to find a bound of the mass paid into
Me for any n using any �. We get that this mass is bounded by

∑
�∈dom(U)

8 ·2−|�| ≤ 8,

and we are done. �
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This lemma gives us that a path through T that guesses correctly that φe,s is a
finite-to-one approximation will be K-trivial up to φe . Thus, paths through T that
guess correctly about the behavior of every φe,s (i.e., that are correct) will be K-
trivial up to every finite-to-one approximation. Now all that remains is to show that
given a real B we can find a path through this true subtree of T that computes B.

Lemma 2.4. For any B, there is an A ∈ [T ] such that A ≥T B and A is correct.
Proof. Suppose we are given B. We define a sequence of strings αi . Let αi be
such that |αi | = 2i and for all n < 2i , if n = 2m + 1 then αi(2m + 1) = B(m)
and if n = 2m then αi(n) = 1 if and only if φm,s is a finite-to-one approximation.
Since αi is correct and |αi | is even, Bαi is a requirement in our construction that
is eventually satisfied. This means that we will eventually place the marker �(αi)
on some node that follows αi through the first 2i many branching nodes, where it
will remain for the rest of the construction. Now αi ≺ αi+1 for all i , so �(αi) must
necessarily be an initial segment of �(αi+1) for all i . Then we can let A =

⋃
i

�(αi)

and this is well-defined. Now, A follows αi through T for every i , and each �(αi ) is
correct about its guesses, so Amust also be correct about its guesses. From this and
the previous lemma, we know that A ∈ KT (Δ02). All that remains is to show that
A ≥T B.
First, we know that the bits of B are encoded somewhere in A, since they are the
odd bits of theαi ’s.A followsαi through the branching nodes ofT , soA(|�(αi )|+2)
= B(i). A can simulate the construction of T and the approximation to �(α) for
each α. When we move a �(α) we first kill the tree above �(α)s and then start
building above �(α)−s

�1. Thus, A can tell when it finds a �(αi)s whether this will
be the location of �(αi) at the end of the construction. When it reaches a stage such
that �(αi)s ≺ A it knows this is the final location of �(αi), and so it can retrieve the
ith bit of B. �
This was the final step in the proof of Theorem 2.1. �
We end this section with a few remarks on the proof. First, we note that the
paths through T that we construct to compute B may have much higher Turing
degree than is necessary. By the same process that A uses to compute the bits of
B, A can deduce which φe,s are total finite-to-one approximations and the index
set {e : φe,s is a total finite-to-one approximation } is Π03-complete. Of course, for
certain B there may be much less complicated A (for example, if B is recursive then
A = B is in KT (Δ02)).
Turning to analogues of Nies’s Theorem (that K-triviality and lowness for K
coincide) with these weaker notions, we saw in Proposition 1.4 that one direction
still holds, i.e., that lowness for K up to Δ02 orders implies K-triviality up to Δ

0
2

orders. In the other direction, however, Theorem 2.1 gives a strong negative result.
While LK(Δ02) must be closed downwards in the Turing degrees, KT (Δ02) is cofinal
in this structure. This separates KT (Δ02) from LK(f) for any f, not just Δ02 orders.
Corollary 2.5. For any functionf : 2<� → � either LK(f) = 2� orKT (Δ02) �

LK(f).
Proof. If there is an B such that B /∈ LK(f), then by Theorem 2.1 there is an
A ≥T B such that A ∈ KT (Δ02). Now, since LK(f) is closed downwards under ≤T
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and B /∈ LK(f), A cannot be in LK(f). Thus, there is an A that is in KT (Δ02) but
not in LK(f). �
We know there are reals that are not in KT (Δ02), so in particular KT (Δ02) �= 2� .
This gives us the following corollary, which demonstrates that it is impossible to cap-
ture this notion of bounded initial segment complexity with any notion of bounded
compressive power.

Corollary 2.6. There is no collectionF of functions 2<� → � such thatLK(F ) =
KT (Δ02), where LK(F ) =

⋂
f∈F

LK(f).

In particular, since we know LK(Δ02) �= 2�, we have that KT (Δ02) � LK(Δ02).

§3. Other closures. Now, by Theorem 2.1 we know that in general KT (g) and
KT (Δ02) are not closed downwards under ≤T , so traditionally they would not be
considered ‘lowness’ notions. We examine some other reducibility notions under
which these sets are closed downwards. First we show that for a stronger computa-
tional reducibility KT (Δ02) is closed downwards. A is weak truth-table reducible to
B (denoted A ≤wtt B) if there is a Turing functional Φ and a recursive function f
such that ΦB = A and for any n, the use of the computation of the nth bit ofA from
B (the largest bit of B that is queried in the computation) is no more than f(n).
That is, not only can we useB to computeA, but we have a recursive bound on how
much of B is needed to compute a given amount of A. It follows easily from the
definition of K-triviality thatKT (0) is closed downwards under ≤wtt and we show
that this closure is preserved under the weakening to KT (Δ02).
Theorem 3.1. If A ≤wtt B and B ∈ KT (Δ02), then A ∈ KT (Δ02).
Proof. Suppose B can compute A via Turing functional Φ, with use φB . For
any recursive f, we can find a recursive function that majorizes f and that is
monotone increasing, so without loss of generality we can assume the we have
an increasing recursive bound f on the use of ΦB . Now, given B�f(n) we can
find n, since f is recursive and injective, and then we can run Φ on this initial
segment of B to get the initial segment of A of length n. Thus, to describe A� n
all we need is B�f(n) and some constant that is a code for the functional Φ, so we
have K(A� n) ≤+ K(B�f(n)). We wish to show that for an arbitrary finite-to-one
approximable function g,K(A� n) ≤+ K(n)+g(n). Given such a g, we define a new
function h, by h(n) = g(m), where m is the greatest number such that f(m) ≤ n.
Finding this m can be done recursively, so h is also finite-to-one approximable.
Thus, since B is K-trivial up to h, K(B�f(n)) ≤+ K(f(n)) + h(f(n)). Now f is
recursive, so K(n) =+ K(f(n)), and by definition h(f(n)) = g(n), so finally we
get K(A� n) ≤+ K(n) + g(n), as desired. �
Another closure property we get for KT (Δ02), in contrast to LK(Δ02) as in [8],
is that KT (Δ02) is closed under effective join (the effective join of reals A and B,
denoted A ⊕ B, is the real whose binary expansion is given by A ⊕ B(2n) = A(n)
andA⊕B(2n+1) = B(n)). The proof follows closely the proof thatKT (0) is closed
under effective join that was given by Downey, Hirschfeldt, Nies, and Stephan [7].

Theorem 3.2. For any reals A and B, A, B ∈ KT (Δ02) if and only if A ⊕ B ∈
KT (Δ02).
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Proof. Given an A and B in KT (Δ02), we take an arbitrary finite-to-one
approximable function f and show that K(A⊕ B� n) ≤+ K(n) + f(n). With-
out loss of generality, we can assume that f(n) is monotonic. We note that
it suffices to show this inequality holds for just the even n, since for any �,
K(�) =+ K(��1) =+ K(��0) and for any n, K(n + 1) =+ K(n).
We define a new finite-to-one approximable function g(n) = �f(2n)/3�. Since
A and B are in KT (Δ02), in particular they are K-trivial up to this new g, so for
some constants bA and bB , for every n, we have K(A� n) ≤ K(n) + g(n) + bA
and K(B� n) ≤ K(n) + g(n) + bB . We let b = max{bA, bB}. It is a theorem of
Downey et al. (Theorem 5.5 in [7]) that there is a constant c such that for any k the
cardinality of the set Sn,k = {� : |�| = n&K(�) ≤ K(n)+k} is nomore than 2c2k .
Importantly, it does not depend on n. Thus, we know that A� n and B� n are both
elements of the set Sn,g(n)+b , which is relatively small. Moreover, the set Sn,g(n)+b is
uniformly recursively enumerable inK(n), g(n), and b, so we can describe A� n and
B� n relatively easily by giving their positions in the enumeration of this smallish set.
Formally, we define a prefix-free machine M that works as follows. On a string
� = 0k�1���α�� , where α and � are both strings of length k + c, M runs the
universalmachineU on � until it converges and then defines n = U(�).M interprets
α and � as binary representations of numbers between 1 and 2c+k (using 〈0c+k〉
for the number 1 and 〈1c+k〉 for the number 2c+k), and waits for the αth and �th
strings of length n to receive descriptions from the universal machine of lengths less
than |�|+ k. When it finds these two strings, it outputs their effective join.
M is clearly partial recursive and its prefix-freeness follows from the prefix-
freeness of U and the call to U on �. If we take a � = 0g(n)+b�1���α�� where � is
a shortest description of n, andA� n andB� n are the αth and �th strings of length n
to receive descriptions shorter than length n+g(n)+b, thenM (�) = A� n⊕B� n =
A⊕ B� 2n . This string � has length g(n) + b + 1 +K(n) + 2(c + g(n) + b). Thus,
by the universality of U, we get thatK(A⊕ B� 2n) ≤+ K(n) + 3g(n) + 2c +3b+1.
Since c and b are constants that do not depend on n, and K(n) =+ K(2n), we
can rewrite this as K(A⊕ B� 2n) ≤+ K(2n) + 3g(n) ≤+ K(2n) + f(2n), by the
definition of g. This suffices to show that A⊕ B is in KT (f).
For the other direction, for any A and B, K(A� n) ≤+ K(A⊕ B� 2n) and for all
n, K(n) =+ K(2n). Thus, if A⊕ B ∈ KT (Δ02), then K(A� n) ≤+ K(n) +f(2n) for
any finite-to-one approximablef. To show thatA ∈ KT (g) for a given finite-to-one
approximable g, we simply take an f such that f(2n) = f(2n + 1) = g(n) for all
n. This is clearly finite-to-one approximable if g is. By a symmetrical argument, B
must also be in KT (Δ02). �
By Theorems 3.1 and 3.2, we get that KT (Δ02) is an uncountable ideal in the
wtt-degrees, so it is not too far removed from being a legitimate ‘lowness notion.’
One rather interesting side note is that KT (Δ02) and LK(Δ02) exhibit exactly the
opposite behavior in terms of being Turing ideals.KT (Δ02) is closed under⊕ but for
any real A there is a real B ∈ KT (Δ02) with B ≥T A, while the set LK(Δ02) is closed
downwards under≤T but for anyA there areB andC in LK(Δ02) withB⊕C ≥T A
(so LK(Δ02) is cofinal in the T -degrees under ⊕). This goes some way to suggest
how each definition contributes to the various closure properties ofKT (0) = LK(0)
and demonstrates how important Nies’s Theorem is to our understanding of these
properties.
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§4. Weak reducibilities. We now consider these sets of reals under other, weaker
reducibility notions. A natural reducibility notion under which to consider the
reals in KT (Δ02) isK-reducibility, introduced by Downey, Hirschfeldt, and LaForte
in [6]. We say A is K-reducible to B (A ≤K B) if for all n, K(A� n) ≤+ K(B� n).
Equivalently, we often say that B is K-above A or that A is K-below B. From the
definition it is immediate that KT (g) for any g and KT (Δ02) are closed down-
wards under ≤K . Because a K-reduction does not need to have a concrete object
as a witness (the way a Turing-reduction needs a Turing functional), it is not
necessarily the case that the set of reals reducible to a given real will always
be countable. In fact this is often not the case, as every Martin-Löf random
real has an uncountable lower cone in the K-degrees[15]. The following theorem
shows that for reals in KT (Δ02) at least, this is the case. A precise characteriza-
tion of those reals with countable lower ≤K -cones is at this time still an open
problem.

Theorem 4.1 (with F. Stephan). If A is in KT (Δ02), then A has a countable lower
≤K -cone.
Proof. We show that if A ∈ KT (Δ02) then A is infinitely often K-trivial (i.e., for
some constant c there are infinitelymany n satisfyingK(A� n) ≤ K(n)+c). Infinitely
oftenK-trivial reals have been studied by Barmpalias andVlek [3], and in particular
they have shown that if A is infinitely often K-trivial, then any B ≤K A is Δ02 in A,
and so A’s lower ≤K -cone must be countable.
In fact, A ∈ KT (log log n) suffices to ensure that A is infinitely often K-trivial.
To show this, we assume A ∈ KT (log log n) and find infinitely many n where
K(A� n) ≤+ K(n).
Since A ∈ KT (log log n), for any m, K(A� 2m ) ≤+ K(2m) + log log 2m =+
K(m) + logm. Now, for any number m, K(m) is always up to a constant less than
logm+2 log logm (see, for example Chapter 2 of [12]), so we get thatK(A� 2m ) ≤+
2 logm + 2 log logm, and for large enough m this quantity is less than m. Thus,
there is some � ∈ 2<� with |�| < m such thatU(�) = A� 2m . Because |�| < m, � can
be interpreted as the binary representation of a natural number, num(�), with value
less than 2m. Now for this �, K(A� num(�)) ≤+ K(�), since from a description for �
one can run the universal machine on � to get A� 2m and then compute num(�) and
truncate this string toA� num(�). It is a recursive process to go from a binary string �
to the natural number it is a binary representation of, soK(�) =+ K(num(�)), and
so K(A� num(�)) ≤+ K(num(�)). For every sufficiently largem, such a � exists, and
they are necessarily distinct for distinct m, so A is infinitely often K-trivial. Thus,
by the result of Barmpalias and Vlek, the set {B : B ≤K A} is countable. �
Just as K-reducibility is a way to preorder reals by their relative initial segment
complexities, there is an analogous reducibility notion for relative compressive
power. We say a real A is LK-reducible to B (A ≤LK B) if for all � ∈ 2<� ,
KB (�) ≤+ KA(�), that is, A compresses strings at most as well asB does. It is clear
that the sets LK(f) and LK(Δ02) are closed downwards under ≤LK . Analogously
to infinitely often K-trivial reals, we have reals that are weakly low for K.

Definition 4.2. A real A is weakly low for K if there is a c ∈ � such that for
infinitely many � ∈ 2<� , K(�) ≤ KA(�) + c.
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Miller [10] showed that these reals correspond to the low for Ω reals defined by
Nies, Stephan, and Terwijn in [13]. A realA is called low forΩ if for there is a c ∈ �
such that for all n ∈ �, KA(Ω� n) ≥ n− c, where Ω is the measure of the domain of
the universal machineU. In the same paperMiller showed that these weakly low for
K reals had countable lower cones in the LK-degrees, and conjectured that these
were in fact the only reals that do. Barmpalias and Lewis [2] settled this question
in the affirmative. Following Theorem 4.1 we could hope to show that the reals in
LK(Δ02) all have countable lower LK-cones, but unfortunately this is not the case.
The rest of this section comprises a proof of the incomparability of LK(Δ02) and
weak lowness for K . One direction follows easily from the existence of Martin-Löf
random reals that are low for Ω, since none of these can be in LK(Δ02). The other
direction is more complicated.
Theorem 4.3. There are reals in LK(Δ02) that are not low forΩ, and so not weakly
low for K .
Proof. The construction will be similar to the one in the proof of Theorem 2.1.
The idea is to build a perfect binary branching tree whose branching nodes will rep-
resent guesses as to which of the φe,s are finite-to-one approximations and alongside
this to build a Kraft-Chaitin set to witness that each path is low for K up to those
φe,s which it guesses are finite-to-one approximations. To ensure that the path is not
low for Ω, we enumerate an oracle Kraft-Chaitin set using potential paths through
the tree as oracles and giving short descriptions to initial segments of Ω relative to
these paths. Ω is Δ02, so we can approximate its initial segments recursively. Tension
arises between trying to put short descriptions of initial segments of Ω onto paths
through our tree while also trying to match descriptions relative to paths through
the tree with almost-the-same-length descriptions by our oracle-free Kraft-Chaitin
sets. The construction will generate a lot of waste mass into all the Kraft-Chaitin
sets since we have at best an approximation to Ω and to the finite-to-one approx-
imable φe,s ’s. This part will be more difficult than the proof of Theorem 2.1, since
here we are trying to use an oracle-free Kraft-Chaitin set to pay for descriptions of
strings matching those relative to an oracle. As we change the tree the oracles will
change, so our opponent will get mass back with which to challenge us while the
mass we spent will have been wasted.
Branchings in the tree T will alternate between guessing nodes, which are associ-
atedwith guesses as to the behavior of someφe, and compression intervals, collections
of i-many branchings (so 2i -many top-level nodes) on which, for some n, we place
descriptions of possible Ω� n of length n− i .We distribute the descriptions as evenly
as possible among the top-level nodes of a compression interval, to ensure that the
measure of the domain of the machine we construct is finite with respect to each of
the paths as an oracle.
In the proof of Theorem 2.1 we waited till the various φe,s took values greater
than 2i ; here we will use the sequence ci = 80(i + 1)4 for the same purpose. We use
similar terminology to the previous proof.
For a given α ∈ 2<�, we will say e is a member of α if α(e) = 1 and denote
this e ∈ α. For each α ∈ 2<� we define a function that guesses that α is correct:

α,s(�) = min{φe,s(�) : e ∈ α}.
We will say a path � though T follows a string α through the guessing nodes of
T if for each i < |α|, 	i�α(i) � �, where 	i is the ith guessing node that is an
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initial segment of �. Such a path is minimal if it if minimal under the � relation
(i.e., |�| = |	|α||+ 1).
The requirements that we will try to meet are:

Rα : For all paths through T that follow α at the guessing nodes, there is a

level where they all branch (2|α|) + 1-many more times

for all α ∈ 2<� ,

Sei : For all � with ci ≤ φe(�) < ci+1, for all A ∈ [T ], K(�) ≤+ KA(�) + ci

for all i, e ∈ � with i ≥ e, and

Nα : For any minimal path � that follows α through the guessing nodes of T

there is an extension, �′ to an (|α|+ 1)st guessing node and an m such
thatK�

′
(Ω�m) ≤+ m − |α|

for all α ∈ 2<� with |α| ≥ 1.
Note that we only have Sei requirements for i ≥ e. This prevents φe from injuring
the tree below the guessing node for e.
We order the requirements R〈〉, S00 , R〈0〉, R〈1〉, N〈0〉, N〈1〉, S01 , S

1
1 , R〈00〉, R〈01〉,

R〈10〉, R〈11〉, N〈00〉, N〈01〉, N〈10〉, N〈11〉, S02 , S
1
2 , S

2
2 , . . . .

The various Sei requirements will be concerned with different � throughout the
construction as the approximations to the φe,s settle. We will say Sei is e-responsible
for � at stage s if at stage s we have ci ≤ φe,s(�) < ci+1 and � is one of the
length-lexicographically first s elements of 2<� . Note that for each e for a given
string � and stage s at most one Sei is e-responsible for � at s . As in the last
proof, we will want to keep track of our guessing levels and to this end we will use
a collection of markers nα,s . Each nα,s will mark the the end of the compression
interval where the paths that follow α through the first |α|-many guessing nodes of
Ts have descriptions of Ω�m that are shorter by |α|, and will be the next guessing
level. For clarity, we note that we start the count of branching nodes and guessing
nodes with 0, so that the eth guessing node up the tree guesses about the behavior
of φe,s ; the first time we branch is the 0th guessing node. As before, to kill a node is
to make a commitment to never add nodes above it into T . Nodes in Ts that have
not been killed are living. A node is a leaf node at stage s if neither of its successors
is in Ts .
In the constructionwewill build variousKraft-Chaitin sets towitness the inequal-
ities we are trying to achieve. First, for each e wewill be enumerating aKraft-Chaitin
set Le in order to satisfy the Sei requirements. When a new description of some �
that Sei is e-responsible for at s converges on some living path through the tree Ts ,
we will want to respond by putting a request into Le for a description of � that is
at most ci longer than the one we see using the path as an oracle, as long as doing
so will not put us at risk of adding too much mass to Le (we give a definition of
this case, and how we respond to it, below). In addition to all these Le , we will also
be enumerating an oracle Kraft-Chaitin set, M , as we try to show that some path
through T will compress initial segments of Ω. Oracle Kraft-Chaitin sets allow us
to build machines that query an oracle, and so we need to enumerate triples (�, n, α)

https://doi.org/10.1017/jsl.2015.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.68


848 IAN HERBERT

that request a description of the string � of length n, relative to an oracle with α
as an initial segment. A relativized version of the Kraft-Chaitin theorem will give
us an oracle machine that behaves as we request, as long as we ensure that for any
A, the sum

∑
(�,n,α)∈M,α≺A

is less than 1 (it suffices to show this is bounded, and our

machine will perform as we request up to an additive constant). For ourM ,Nα will
be enumerating requests for descriptions of initial segments of our approximation to
Ω that are shorter by |α|, relative to oracles that are paths through our compression
intervals.
We now give the strategies for satisfying each of our requirements.
An Rα requirement requires attention at a stage s if the guessing level nα,s is not
defined. The strategy for meeting Rα is

1. Let n be some number larger than any seen before in the construction.
2. For every living leaf node, 	, of Ts that follows α through the first |α|-many
guessing nodes, add the path 	���� to Ts to get Ts+1, where |	| + |� | = n,
�(i) = 0 for all i where it is defined, for every � ∈ 22|α|+1.

3. Let nα,s+1 = n + 2|α|. This is now a guessing level.
An Nα requirement requires attention at a stage s if one of the minimal nodes �
that follows α through the guessing nodes of Ts does not have an extension �′ ∈ Ts
to an |α|+1st guessing node for which the request (Ωs�mα,s , mα,s −|α|, �′) has been
put intoM , for the current mα,s . The strategy for meeting this requirement is

1. If mα,s is undefined, pick some m > 2|α|+ 1 that is also larger than anything
seen so far in the construction and let mα,s = m.

2. For the current mα,s , for the |α| + 1st guessing node, �′ in Ts that follows α
through the first|α|-many guessing nodes and is the leftmost that has had the
least amount ofmass put intoM so far, put the request (Ωs�mα,s , mα,s−|α|, �′)
intoMs+1.

An Sei requirement requires attention at a stage s if there is a � that it is e-
responsible for and there is a living partial path � in Ts that, if it goes through at
least e-many guessing nodes then it takes the ‘1’ branch after the eth one, and we
have K�s (�) + φe,s(�) is less than the shortest description of � in Le,s . This means
that the shorter description of � is on a path that either has not reached a guessing
node for φe,s or is guessing that it is a finite-to-one approximation, so we will need
to act. The strategy for meeting this requirement is

1. Find the length-lexicographically least � and for this � the length-lexico-
graphically least � that are causing Sei to require attention. By the choice
of these as length-lexicographically least, we must have that the use of the
computation U�s (�) ↓= � that is causing Sei to require attention is |�|, that is,
no initial segment of � yields the same computation.

2. For this �, let α be maximal such that � follows α through the guessing nodes
of Ts . In other words, α is the collection of guesses that are being made on the
path �.

3. If |α| ≤ e, then � has not guessed about the behavior of φe,s , but we know
i ≥ e, so we can afford to pay for a description of � on this part of the tree
anyway. Put a request (�,K�s (�) + ci) into Le,s to get Le,s+1.
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4. Otherwise, |α| > e, and since Sei requires attention, we must have α(e) = 1.
We now consider whether |α| ≤ i + 1, in order to check whether � has too
many guessing nodes and will cause us to injure the tree. If |α| ≤ i + 1, then
we have not yet branched (i +1)2− 1 times (where the (i +1)st guessing node
would be) so we can pay. Put a request (�,K�s (�) + ci) into Le,s to get Le,s+1.

5. Otherwise, |α| > i + 1, so � is longer than the (i + 1)st guessing level. Since
φe,s(�) < ci+1, putting a request into Le for a description of � up to φe,s(�)
longer could potentially cost us too much (not necessarily just for this �,
but we have allowed so many branchings that the same description could be
reused on many different oracles and we would have to meet all of them with
our oracle-free Le), so we
(a) Injure Rα� i+1 and run the Injury Subroutine for it.
(b) Let Ts+1 = Ts , Le,s+1 = Le,s .

The Injury Subroutine for an Rα strategy at stage s is

1. For every minimal path 	 that follows α through the guessing nodes of Ts ,
find the living leaf node 	′ � 	 such that

∑

�:U	
′
s (�)↓,U	s (�)↑

2−|�|

is maximal. If there is more than one, take 	′ to be the leftmost.
2. For every pair (	, 	′) found above, keep 	′ alive in Ts and kill all other
extensions of 	.

3. For every � � α, setR� to requiring attention (i.e., set n�,s+1 to be undefined)
and set m�,s+1 = m�,s + 1. This injures all these R� and N� .

The skeleton of the construction is
Stage 0: Set T0 = ∅, M0 = ∅, Le,0 = ∅ and for every e, and nα,0 undefined for
all α.

Stage s + 1:

1. Compute φe,s+1(�) and K
	
s+1(�) for all living branches 	 in Ts , the first s +

1-many �’s, and e ≤ s + 1.
2. In order of priority, run the strategy for each of the first s + 1-many require-
ments that require attention, including executing the Injury Subroutine as
necessary.

3. For any nα,s ormα,s that were not affected, set nα,s+1 = nα,s andmα,s+1 = mα,s .

Now let T =
⋃
s
Ts , Le =

⋃
s
Le,s , nα = lim

s
nα,s ,M =

⋃
s
Ms , mα = lim

s
mα,s . This

completes the construction. The verification follows.
As in the proofs of Theorem 2.1,wewill not be able to ensure that all requirements
are satisfied, but only those that are correct about their guesses. We would like to
show that every path through the subtree of T generated by all the correct guesses
about the φe,s is in LK(Δ02) and at least one of them is not low for Ω. We call α
correct if for every e ≤ |α|, e ∈ α if and only if φe,s is a finite-to-one approximation.
Lemma 4.4. For all correct α, Rα andNα are injured only finitely often.

Proof. By construction, for any α, the requirements Rα and Nα can only be
injured by Sei requirements with e ∈ α and i < |α|, of which there are only
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finitely many. Assuming α is correct, the only φe that can cause these injuries are
then indeed total finite-to-one approximations. SinceRα andNα are always injured
together, it will suffice to show that Rα is injured only finitely often.
To derive a contradiction, first let us assume there is some Rα for a correct α
that is injured infinitely often, and take α to be a minimal such string. Each of the
Sei ’s that can injure Rα only ever has e-responsibility for finitely many � since φe is
a finite-to-one approximation, so there must be at least one � that is the cause of
infinitely many injuries to Rα . Let us take the length-lexicographically least such �
and fix an e such that Sei injures Rα infinitely often on this �’s account.
Let us assume we are at a stage s such that φe,s(�) and Ks (�) have settled and
such that no R� for � ≺ α will ever be injured again. Since � causes infinitely many
more injuries to Rα , it must be the case that Sei has e-responsibility for � for all
stages t ≥ s , for i = |α| − 1.
Now, each run of the Injury Subroutine for Rα at some stage t will, for each
minimal 	 that follows α through the guessing nodes of Tt , keep at least the most
massive branch (the branch on which a maximal amount of mass has converged,
as specified in step 1.) of the Injury Subroutine) above 	 alive and kill all other
branches above 	. There are always 1 · 4 · 16 · · · 22|α| many living nodes at height
nα,t that follow α through the guessing nodes, and a run of the Injury Subroutine
for Rα extends each of these to a leaf node in the way that maximizes the mass
placed along it. Since, by assumption, no earlier R� will ever be injured again, the
tree below these paths never change so this mass is never lost. We are at a stage t
such that Kt(�) has already converged, so each injury caused by � must be caused
by our finding a description of � of length less thanK(�) along one of these paths.
That is, at least 2−K(�) much mass must converge on one of the paths at height nα,t
that follow α through the guessing nodes. This is a fixed amount of mass that is
added infinitely often to a finite number of oracles, so the measure of the domain
of U relative to one of these oracles is infinite. This is a contradiction.
Thus, Rα (and so Nα) can only be injured finitely often. �

Lemma 4.5. For all correct α and all e such that φe,s is a total finite-to-one
approximation, the requirements Rα , Nα , and Sei are all eventually satisfied.

Proof. Some requirements may cause infinitely many injuries to requirements
above them in the ordering or require attention infinitely often. However, at any
stage s of the construction we allow any of the first s requirements to act, and
our actions affect different parts of the tree Ts (the paths that follow different α’s
through the guessing nodes), so the poorly behaved requirements will not interfere
with our actions in satisfying the correct ones.
By the above lemma, for correct α, the requirements Rα andNα are only injured
finitely often. After the last injury,Rα will need to act oncemore before it is satisfied,
while Nα may need to act several times as it waits for Ω�pα to converge (pα only
changes whenNα gets injured). Eventually this happens and after that stage we will
put a description of Ω�pα onto one of the relevant paths and satisfyNα permanently.
If φe,s is a finite-to-one approximation, then, also by the proof above, the require-
ment Sei can only cause finitely many injuries. Its actions that do not cause injuries
are just those in steps 3. and 4. of its strategy and these consist of putting a request
(�,K�(�) + ci) into Le , for some � it is e-responsible for and some partial path �
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through Ts . Since φe,s is a finite-to-one approximation, there are only finitely many
� for which Sei is ever e-responsible. For each of these, there are only finitely many
requests to put into Le , since we only need to put new ones in if the new K�(�) is
less than all previous ones. Thus, Sei will need to act only finitely often. �
Lemmas 4.4 and 4.5 give us that the strategies relevant to the construction of the
true subtree will eventually stop acting, but it remains to be shown that the Kraft-
Chaitin sets enumerated by these strategies have bounded mass (and so produce the
required machines). We start with themachineMwhose existence will be witnessed
byM .

Lemma 4.6. For every real A, the sum
∑

(�,p,	)∈M,	≺A
2−p < 2.

Proof. To prove this lemma we consider the amount of mass a givenNα require-
ment can contribute to M for an oracle A. It is clear that for different α of the
same length, the sets of oracles theNα ’s use will be disjoint, since they will be paths
through T that take different directions at at least one of the guessing nodes. Thus,
it suffices to show that a given Nα will add at most 2−|α|+1 to any oracle, and so a
path that receives mass from many Nα ’s will receive no more than 2 total mass.
Let us first fix an α of length at least 1 and let d = |α|. For any stage s in
the construction where Nα is active, we have some mα,s which is always larger
than 2|α| + 1. Now, there are naı̈vely 2mα,s many possible strings that could be
Ω�mα,s . When Nα requires attention, it puts a request (Ω�mα,s , mα,s − d, 	) into
Ms for a node 	 in Ts at level nα,s that follows α through the guessing nodes
which has had the minimum amount of mass already placed on it by Nα . This
contributes 2−mα,s+d much mass to that path. Without any injuries, this strategy
would distribute 2mα,s · 2−mα,s+d = 2d much mass evenly among the 22d many
branches in this compression interval, giving 2−d to each. Of course, injuries will
complicate matters. A run of the Injury Subroutine will fix an amount of this mass
onto each of the paths that follow α through the guessing nodes of Ts+1, which will
be initial segments of the new nodes at nα,s+1 (after Rα acts again). In principle,
this is fine. We now have 22d many nodes at the new nα,s+1 and Nα has put some
amount p of mass onto an initial segment of all of them and will continue by
sharing its remaining mass equally over them. In the ideal case this situation is no
different from continuing to share the mass over the nodes before the injury. They
each had (almost) p much mass already placed on them by Nα , and the fact that
Nα is continuing to act means whatever potential initial segments of Ω they paid
for have since been rejected.
The trouble, of course, is in the ‘almost’. If some node at nα,s had received
more mass than the others before the injury occurred, it is possible for the Injury
Subroutine to have picked a path through that node to keep, in which case slightly
moremass than has now converged on the initial segment of the new nodes at nα,s+1.
In the worst case, Nα may act only once between injuries, each of which keeps alive
the only path thatNα has added mass to. This will concentrate all the mass thatNα
has to distribute onto a single path. For this reason we increment mα,s by 1 every
time Nα is injured. We note that this does not affect the amount of mass that Nα
has left to distribute; once we see that � �= Ω�p we know that neither extension of �
is Ω�p+1. The difference in mass that Nα can have added to paths before an injury
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is always at most 2−mα,s+d , since it always seeks to distribute the mass evenly, and
it does so in quanta of 2−mα,s+d . Thus, even if injuries are selecting the paths with
slightly higher than average mass, no more than

∑
s 2

−mα,s+d can accumulate on a
path above the average of 2−d . This sum is bounded by 2d · 2−mα,s0+1, where s0 is the
stage at which Nα is initialized. Since we always choose our first mα,s0 to be larger
than 2d + 1, this term is less than 2−d . Thus, the total amount that Nα can have
contributed to a path is 2−d+1, and so the total mass inM for any oracle is bounded
by

∑
d 2

−d+1 = 2. �
Since M is a legitimate oracle Kraft-Chaitin set and the Nα requirements are
satisfied for all correct α, there will be an infinite path A through T that is not
low for Ω. A will be the path that always guesses correctly as to the behavior of
φe,s at the eth guessing node, and between guessing nodes follows the path through
the compression interval for which M has a short description of an actual initial
segment of Ω.
All that remains to be shown is that this path is actually in LK(Δ02), that is, that
the sets Le that we construct actually witness the existence of machines ensuring
that K(�) ≤+ KA(�) + φe(�) for all �, for all paths through T that guess that φe
is finite-to-one approximable. This is the most complicated part of the proof, since
the mass paid into Le can be wasted by injuries to the construction.
Lemma 4.7. For every e,

∑
(�,n)∈Le

2−n < 1.

Proof. We consider separately mass that is put into Le by the actions of each
Sei requirement. First, we fix an e and i in � with i ≥ e. We note that we do not
require φe,s to be a finite-to-one approximation; in the event that it is not, actions of
Sei strategies may cause infinitely many injuries to the part of the tree that guesses
that it is, and then Le will witness that the finitely many infinite branches on this
part of the tree are all low for K .
Now, Sei requires attention if for some � for which it has e-responsibility, it sees
a new shorter description of � converge on some path � through Tes (let us take �
minimal to cause this). However, Sei only puts a request into Le if � goes through
no more than i + 1 guessing nodes, and otherwise it causes an injury. Therefore,
when examining the mass contributed by Sei it suffices to consider the finite initial
segment of Ts given by

Ti,s = {� ∈ Ts : � goes through no more than i + 1-many guessing nodes}.
We only put requests into Le is response to computations converging on parts of
the tree that are either below the eth guessing level, or follow the ‘1’ path at the eth
guessing node itself, but for getting a rough upper bound on the mass of Le , we can
ignore this and consider the full subtree Ti,s .
The subtree Ti,s contains the guessing nodes at nα,s for every α ∈ 2<� with

|α| ≤ i + 1, and all the compression intervals between these nodes. For a given α
with |α| ≤ i + 1, for each minimal 	 that follows α through Ti,s , there are 22|α|
branches in the compression interval above 	 that reach level nα,s .
We will consider these branches as ‘reservoirs’ of mass, and descriptions con-
verging using one of these branches as an oracle as mass getting added to the
corresponding reservoir. If the use of a computation is exactly one of these minimal
	’s, we can consider that much mass being added to each of 	’s reservoirs. An injury
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will cause many of these branches to be killed, so the mass will be spilled out, but
the most massive branch will be kept alive and, after enough R requirements act
again, the mass from that branch will end up in a lower reservoir for a shorter α′.
It is important to note that for any α the reservoirs corresponding to α are all end
extensions of reservoirs for α−, the immediate predecessor of α, and so the total
mass in any collection of nested reservoirs must be no more than 1.
The number of reservoirs associated with an α is fixed throughout the construc-
tion, although we may have to wait for R requirements to act to replace reservoirs
that were emptied. For α with |α| = 1, there are 4 reservoirs above α, since the
compression interval has length 2, so there are 8 total reservoirs at this level. Above
each of these reservoirs the tree branches once immediately, and then reaches a
compression interval of length 4, so each of the level 1 reservoirs has 2 · 24 = 32
reservoirs above it at level 2, for 28 level 2 reservoirs total. In general there will be

i∏

j=1

22j+1 = 2

i∑
j=1
2j+1
= 2(i+1)

2−1

reservoirs at level i . Note that there is a single reservoir at level 0, the stem of the
tree before n〈〉, but since R〈〉 is never injured, no mass is ever poured down into this
reservoir, so we need not worry about it in our computations.
When considering the contributions of Sei to Le it suffices to consider only the
reservoirs at level i+1 (for instance,S00 putsmass into the level 1 reservoirs, after the
guessing node for φ0,s). For any descriptions that converge lower in the tree Ti,s for
� that Sei has e-responsibility for, we can instead put the corresponding amount of
mass into each of the i +1-level reservoirs above the actual use of the computation,
since this has the same effect on the subsequent amount of mass that can be put
into these reservoirs. Then to attain a rough bound on the amount of mass that Sei
puts into Le , we can make the simplifying assumption that Sei will pay for all the
mass that passes through the reservoirs at level i + 1, at a rate of 2−ci (the largest
this can be without causing an injury). Now all that remains is to find a bound for
the amount of mass that can pass through these reservoirs.
As we said above, any injury to a relevant Rα will spill the mass from all but the
most massive reservoir, and pour this saved mass into a reservoir below. Thus, in
the worst, impossible, case, Sei could have to pay for all the i + 1-level reservoirs
being filled with 1 total mass each, then an injury could empty all but one of these,
and pass that 1 down to the i-level ones, and this could repeat till all the i-level
reservoirs are full. Then an injury could pour out all but one of these and fill one of
the i − 1-level reservoirs, and this larger process could repeat till all the i − 1-level
reservoirs are filled. Continuing like this, Sei could be forced to pay for the mass that
is used to fill all the reservoirs at all levels up to and including the i +1st one, while
spilling as much as possible at every step. For each 1st level reservoir, we would have
to fill every 2nd level one, and for each of these we would have to fill every 3rd level
one, continuing until level i + 1. This gives us that the mass required, just to fill all
the 1st level reservoirs is

i+1∏

j=1

2(j+1)
2−1,
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and thus to fill all the reservoirs up to level i + 1 would require
i+1∑

k=1

i+1∏

j=k

2(j+1)
2−1

much mass to pass through the i + 1-level reservoirs.
We approximate a very rough upper bound for this:

i+1∑

k=1

i+1∏

j=k

2(j+1)
2−1 ≤

i+1∑

k=1

i+1∏

j=1

2(j+1)
2−1 ≤ i + 1 · 2

∑i+1
j=1(j+1)

2−1

≤ 2(i+1) · 2[(2i
3+15i2+37i+24)/6]−i−1

≤ 22i3+15i2+37i+24.

Thus, the amount of mass the Sei puts intoLe is bounded by 2
2i3+15i2+37i+24 ·2−ci .

Since we have taken ci = 80(i+1)4, this is the same as 22i
3+15i2+37i+24−80(i+1)4 , which

is always no more than 2−i−1. Since this is the contribution for each Sei , the total
mass of requests that go into Le for all i is less than

∑
i 2

−i−1 = 1. �
This completes the proof of Theorem 4.3 �

§5. Further questions. Theorem 4.3 and the result of Barmpalias and Lewis [2]
show that not every Δ02-bounded low forK real has a countable lower≤LK -cone, but
the question of which of these reals do have a countable lower ≤LK -cone remains
open. At present, the only reals in the intersection are the K-trivials themselves.

Question 5.1. Can we characterize the reals that are both Δ02-bounded low for K
and weakly low for K , i.e., that have countable lower ≤LK -cones? Are there any that
are notK-trivial?
The analysis carried out in this paper was entirely in terms of prefix-free Kol-
mogorov complexity, but there are analogous notions in terms of plain Kolmogorov
complexity (where the domains of decoding machines are not required to be prefix-
free) that can also be weakened to Δ02-bounded versions. In the case of C -triviality
and lowness for C , we know by results of Chaitin [4] that these notions coincide
with each other and contain only the recursive sets. So far we know nothing about
the Δ02-bounded versions.

Question 5.2. What can we say about Δ02-bounded lowness for C or C -triviality?
Finally, we have considered here reals with initial segment complexity or compres-
sive power bounded by all Δ02 orders. It may be interesting to consider the internal
structure of the various bounded notions, i.e., LK(f) andKT (g) for variousf and
g. Many of the results for the Δ02-bounded notions carry over trivially, for instance,
the cofinality in the Turing degrees of KT (g) for any Δ02 order g, but the theorems
in Section 3 do not necessarily carry over, as the proofs depended on applying
bounded initial segment complexity for different bounds. Clearly for some choices
of f we have LK(f) = 2� and for others it is much smaller (and similarly with
KT (g)), but it is open whether there is a strict cutoff between the two cases.
Question 5.3. What can we say about the sets LK(f) and KT (g) for single Δ02
orders f and g? What is the structure of these sets under ≤K or ≤LK ?
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