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SUMMARY
Odometry errors, which occur during wheeled mobile robot
movement, are inevitable as they originate from hard-to-
avoid imperfections such as unequal wheels diameters, joints
misalignment, backlash, slippage in encoder pulses, and
much more. This paper extends the method, developed
previously by the authors for calibration of differential
mobile robots, to reduce positioning errors for the class of
mobile robots having omnidirectional wheels. The method
is built upon the easy to construct kinematic formulation
of omnidirectional wheels, and is capable of compensating
both systematic and non-systematic errors. The effectiveness
of the method is experimentally investigated on a prototype
three-wheeled omnidirectional mobile robot. The validations
include tracking unseen trajectories, self-rotation, as well as
travelling over surface irregularities. Results show that the
method is very effective in improving position errors by at
least 68%. Since the method is simple to implement and
has no assumption on the sources of errors, it should be
considered seriously as a tool for calibrating omnidirectional
mobile having any number of wheels.

KEYWORDS: Omnidirectional wheeled mobile robots;
Systematic errors; Non-systematic errors; Benchmark tests;
Error improvement; Performance analysis.

1. Introduction
Wheeled mobile robots (WMRs) are found in many
applications such as planetary exploration and surveillance
operations. The shape, dimension, and properties of WMRs
are usually specified by some input parameters during the
design process. Wheels used in WMRs belong to one of the
three types: standard, castor, or omnidirectional (see Fig. 1).

Standard wheels are powered to permit the robot to
move. They are simple to build and have good reliability.
Castor wheels are used along with the standard wheels
to facilitate balancing of the robot. They are capable of
steering around their vertical axes. Omnidirectional wheels,
on the other hand, are capable of acting as both castor and
standard wheels. Various types of omnidirectional mobile
robots have been reported in the literature such as universal
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wheels,1,2 ball wheels,3 and off-centered wheels.4 Mobile
robots with omnidirectional wheels are controllable with
reduced number of actuators, and are highly maneuverable
in narrow or crowded spaces.

Accuracy of motion in omnidirectional wheeled mobile
robots (OWMRs) is influenced by two types of errors:
systematic and non-systematic. Systematic errors are caused
by unavoidable imperfections in the control and mechanical
subsystems such as misalignment and friction in joints. Non-
systematic errors are caused by unpredictable phenomena
such as wheel slippage and surface irregularities. Both
systematic and non-systematic errors are needed to be
reduced or the robot should be calibrated to achieve
reasonable positioning errors.

Calibration is defined as a set of operations that establishes,
under specified conditions, the relationship between the
values of quantities indicated by a measuring instrument
and the corresponding values realized by standards.5 The
calibration approaches, used for calibrating WMRs, include
odometry,6 3D camera error detection,7 active beacons,8

gyroscope,9 and magnetic compasses.10 Odometry uses
data from the movement of actuators to estimate change
in position over time. As compared with other methods,
odometry provides a better short-term accuracy allowing
very high sampling rates at low cost.11,12 The odometry
method can be applied to correct errors of all types of WMRs.
As far as previous work on odometry applied to WMRs is
concerned, Borenstein and Feng13–15 introduced a method
for measuring odometry errors of differential drive mobile
robots. This method was called University of Michigan
Benchmark (UMBmark). They implemented the UMBmark
method to correct both systematic and non-systematic errors
for the class of differential drive mobile robots in which two
independent standard wheels are actively controlled. Mad-
dahi and Maddahi6 and Maddahi16 applied the UMBmark
method on different types of differential drive mobile robots
and proposed a new odometry method to correct systematic
errors of differential drive mobile robots.12 By applying their
method, which is built upon the robot kinematics, on six
prototyped differential drive WMRs, it was confirmed that
the proposed method is simpler and requires less time to
perform the calibration as compared with the UMBmark
method. The only literature identified by the authors that
relates to odometry-based calibration of OWMRs belongs
to Han et al.17 They identified three sources of position
errors in OWMRs: the slippage between the wheel and the
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Fig 1. (Colour online) Schematic view of various wheel types used in mobile robots.

floor surface, the mechanical effects of sub-roller bearings
and/or axles, and the rotational friction at the wheel contact
point. A simple calibration equation on the Cartesian velocity
elements was also developed.17 Other sources of errors such
as uncertainty in wheels diameters and differences in wheel
diameters were not considered in their work.

This paper extends the previous work by the authors12 to
calibrate errors in OWMRs having both types of systematic
and non-systematic errors. The method presented here is
built upon the kinematic equations of omnidirectional robots.
Using this method, the robot is programmed to move
along a straight trajectory. The measured position errors
with respect to the desired destination are used within the
kinematic equations, and values of two corrective indices are
determined to properly correct the robot’s future movements.
The indices are: (i) lateral corrective matrix, which
compensates the lateral position error, and (ii) longitudinal
corrective factor, which eliminates the robot longitudinal
position error. As compared with the previous study by the
authors,12 the current method is applied to a different class
of mobile robot types for the first time. It is also constructed
symbolically facilitating its application to WMRs with
different number of wheels (standard or omnidirectional).
As compared with the work by Han et al.,17 which was
designed only to correct a limited number of error sources,
the proposed method uses symbolic kinematic equations
that helps the robot reduce position errors regardless of
error sources. The proposed method is offline and should
be considered as the first step in the calibration process to
correct positioning errors. It can be further augmented by
online calibration to achieve higher accuracy.18–21

The organization of this paper is as follows.
Section 2 describes the kinematic formulation of OWMRs.
Section 3 documents the proposed calibration method.
The electromechanical description of the prototyped
omnidirectional robot is described in Section 4, followed
by the experimental results and corresponding validations,
which include testing the robot along unseen double-square,
double-triangular, combined straight, and curved trajectories
as well as rotation around central axis (self-rotation).
Section 5 outlines conclusions and future work.

2. Kinematic Modelling
In order to obtain the corrective indices for proper
trajectory following, the proposed odometry method requires
kinematic formulation describing the contribution of each

omnidirectional wheel on movement. The kinematic diagram
of a general three-wheeled omnidirectional robot is
illustrated in Fig. 2(a). The total dimensionality of the mobile
robot on the horizontal plane is three: two for position (x and
y) and one for orientation (θ) of robot. Figure 2(b) shows a
typical wheel and associated parameters. Each wheel rotates
independently. The coordinate frames XRYR and XbYb define
the global (reference) and base frames, respectively.

In an omnidirectional wheel, there is pure rolling at the
contact point between the roller and the ground (non-slip
condition). This constraint is formulated by applying the
non-slip condition as follows22:

[sin(αi + βi + γi) − cos(αi + βi + γi) −li cos(βi + γi)]

R(θ) �̇μ − ri ϕ̇i cos γi = 0. (1)

The non-slip condition implies that the motion along the
roller axis must be equal to the motion accomplished by
spinning the wheel, ri ϕ̇i cos γi ,22 where i is the number of
wheels. The first term in Eq. (1) denotes the total motion
along the axis of roller. The three elements of the vector
represent the mapping from ẋ, ẏ, and θ̇ to corresponding
contribution along the roller axis. Term R(θ) �̇μ is used to
transform the motion parameters in the Cartesian coordinate
frame, XRYR , into motion parameters in the base frame,
{XbYb}. This transformation is considered because all wheel
parameters in Eq. (1) (βi, γi, li , and αi) are measured with
respect to the base frame. βi denotes the steering angle
(angle of wheel plane relative to the robot main body),
which is commonly constant. γi represents the angle between
the main wheel plane and the axis of rotation of the small
circumferential rollers. li is the distance from the geometrical
center of the robot to the center of the wheel (wheelbase).
αi is the angle between the wheel shaft and XR axis when
the robot is at home position. ϕ̇ and r are the angular
velocity and the radius of the wheel, respectively. Matrix
R(θ), which is a function of orientation angle (θ), is defined as
follows:

R(θ) =
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦ . (2)

Finally, �̇μ is the robot velocity vector (linear and angular
velocities) with respect to reference coordinate XRYR ,

https://doi.org/10.1017/S0263574713000210 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000210


Calibration of omnidirectional wheeled mobile robots 971

�̇μ = [
ẋ ẏ θ̇

]T
. (3)

The general form of Eq. (1), for an omnidirectional mobile
robot having n wheels, can be presented in following form:

�̇� = J−1 �̇μ, (4)

where the wheel velocity vector, �̇�, is defined as follows:

�̇� = [ϕ̇1 ϕ̇3 . . . ϕ̇n]T . (5)

By comparing Eqs. (1) and (4), for an omnidirectional
mobile robot with n wheels, the nominal inverse Jacobian
matrix, J−1

n×3, is obtained as follows:

J−1
n×3 = diag

[
1

r1 cos γ1
· · · 1

rn cos γn

]⎡
⎢⎣

sin(α1 + β1 + γ1) − cos(α1 + β1 + γ1) −l1 cos(β1 + γ1)
...

...
...

sin(αn + βn + γn) − cos(αn + βn + γn) −ln cos(βn + γn)

⎤
⎥⎦ R(θ). (6)

For a three-wheeled omnidirectional mobile robot (n = 3),
for example, the nominal inverse Jacobian matrix (J−1

n×3)
is obtained by defining α1 = π/2, α2 = 7π/6, and α3 =
11π/6,

J−1
3×3 =

⎡
⎢⎣

1
r1 cos γ1

0 0
0 1

r2 cos γ2
0

0 0 1
r3 cos γ3

⎤
⎥⎦

⎡
⎢⎣

sin(π
2 + β1 + γ1 + θ) − cos(π

2 + β1 + γ1 + θ) −l1 cos(β1 + γ1)

sin( 7π
6 + β2 + γ2 + θ) − cos( 7π

6 + β2 + γ2 + θ) −l2 cos(β2 + γ2)

sin( 11π
6 + β3 + γ3 + θ) − cos( 11π

6 + β3 + γ3 + θ) −l3 cos(β3 + γ3)

⎤
⎥⎦ . (7)

3. Proposed Calibration Method
Figure 3 illustrates the defined trajectory and related variables
for the proposed calibration method. With reference to Fig. 3,
the robot is directed to move along the desired straight
line (trajectory A) in Cartesian coordinate frame{XRYR}.
Due to various errors (systematic or non-systematic) and
regardless of the sources, the robot follows a different
trajectory (trajectory B). As shown in Fig. 3, the position error
consists of two lateral and longitudinal error components. For
calibration purpose, we define two corrective indices, namely
lateral corrective matrix and longitudinal corrective factor.

The lateral corrective matrix (Flat) is applied to kinematic
equations of robot to ensure that the robot stays along the
desired trajectory. This matrix is calculated using nominal

( �̇�) and error-driven ( �̇�e) wheel angular velocities based on
the error angle θe, measured during the test (see Fig. 3). Using

Eq. (4), the error-driven wheels’ angular velocity vector ( �̇�e)
is calculated using the following formulation:

�̇�e = J−1 �̇μe (8)

or

⎡
⎢⎢⎣

ϕ̇e,1

ϕ̇e,2
...

ϕ̇e,n

⎤
⎥⎥⎦ = J−1

⎡
⎣ 0

0
−θ̇e

⎤
⎦ . (9)

In Eq. (9), ϕ̇e,i(i = 1, 2, . . . , n) represents the angular
velocity errors, which should be added to the wheel nominal

angular velocity ϕ̇i(i = 1, 2, . . . , n). θ̇e is obtained by
dividing the measured error angle, θe, to the time taken for the
robot to travel the entire trajectory B. Note that θe is measured
using a protractor tool and the robot is commanded to move
at a constant speed.

The lateral corrective matrix, Flat, which constrains the
robot to move along the desired straight trajectory (trajectory
A), is now expressed as follow:

Flat = diag

[
1 + ϕ̇e,1

ϕ̇1
· · · 1 + ϕ̇e,n

ϕ̇n

]
. (10)

By applying the lateral corrective matrix to equations of
omnidirectional robot, the error angle, θe, becomes small,
i.e., the robot maintains to stay along trajectory A. However,

even if the robot is aligned with the desired trajectory, it
is still required to reach the desired location, i.e., having
no longitudinal error. This is done by defining longitudinal
corrective factor (Flon), which compensates the robot’s
longitudinal position error occurring along trajectory A. Flon

is obtained by equally adjusting the speed of the wheels and
defined as follows:

Flon = L√
(L + x̄e)2 + (ȳe)2

, (11)

where L is the length of trajectory A, which is the
distance between OR and Od

R, x̄e = 1
N

∑N
k=0 (xe,k), ȳe =

1
N

∑N
k=0 (ye,k), and N is the number of trial runs. Note that

in Eq. (11), the denominator represents the length of the
average actual trajectory travelled by the mobile robot over
N trials. The significance of the proposed method is that it is
built on simple and easy-to-understand kinematic equations.
In addition, the method does not make any assumption on
the sources of error in robot motion.

As described in this section, the proposed method
compensates for the robot error using lateral corrective
matrix (Flat) and longitudinal corrective factor (Flon). The
most integrated approach to incorporate these indices in the
robot equations of motion is to use them within Jacobian
matrix that relates the robot trajectory variables (position
and orientation) to the joints’ (wheels) variables, as shown
in Eq. (4). This relationship is expressed as follows:

�̇�c = J−1
c

�̇μ. (12)

In Eq. (12), �̇�c denotes that the corrected wheel angular
velocity vector should be applied on motors to ensure the

https://doi.org/10.1017/S0263574713000210 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000210


972 Calibration of omnidirectional wheeled mobile robots

 

 

 

 

 
 

Main wheel plane 

Roller axis 
of rotation 

γi = π/4 

γi 
 

(c) 
 

(b) 
 

wheel 3 

3ϕ&  

YR 

θ 

yb 
wheel 1: α1 = π/2 

wheel 3: α3 = 11π/6 

wheel 2: α1 = 7π/6 
(a) 

XR 
x 

y 

xb OR 

xb 

yb 

XR 

YR 

x1 

x2 
y1 

y2 

θ 
OR 

xb 

yb 

l3 

β3 

Fig 2. (Colour online) (a) Coordinate frames of three-wheeled
omnidirectional mobile robot in 2D workspace; (b) close-up view
of wheel 3 assembly. The generalized coordinate systems and
parameters of the third wheel, including wheelbase (l3), steering
angle (β3), and angular velocity (ϕ̇3) are shown in (b); (c) typical
example of the angle between the main wheel plane and the roller
axis of rotation (γ i).

robot moves along the proper trajectory and reaches the
desired destination. J−1

c (corrected inverse Jacobian matrix)
is expressed as follows:

J−1
c = FlonFlatJ

−1diag

[(
1 + ϕ̇e,1

ϕ̇1

)
1

r1 cos γ1
· · ·

(
1 + ϕ̇e,n

ϕ̇n

)
1

rn cos γn

]

×

⎡
⎢⎣

Flon sin(α1 + β1 + γ1) −Flon cos(α1 + β1 + γ1) −Flonl1 cos(β1 + γ1)
...

...
...

Flon sin(αn + βn + γn) −Flon cos(αn + βn + γn) −Flonln cos(βn + γn)

⎤
⎥⎦ R(θ), (13)

where �̇μ, Flat, and Flon are defined by Eqs. (3), (10),
and (11), respectively. Also, J−1 is defined based on the
omnidirectional mobile robot mechanism using Eq. (6).

The calibration steps based on the odometry method
described above are summarized as follows:

i. Prepare the robot at a start position. Set orientation angle
of omnidirectional mobile robot to zero.

ii. Run the vehicle through a straight trajectory, making
sure to stop after a predetermined length of travelling.

iii. Upon completion of motion, measure the absolute
position of the robot body with respect to the reference
coordinate.

iv. Repeat steps (i) to (iii) for a number of times. The
number of the tests depends on the expected positioning
accuracy in calibration.

v. Calculate the lateral and longitudinal errors (xe and ye)
and error angle (θe) of robot for each trial.

vi. Calculate the lateral corrective matrix (Flat) and
longitudinal corrective factor (Flon) using Eqs. (10) and
(11), respectively.

vii. Apply corrective indices to symbolic form of kinematic
equation using Eqs. (12) and (13).

4. Experimental Results

4.1. Prototype robot
The prototype three-wheeled omnidirectional mobile robot
was designed with high maneuverability. As shown in
Fig. 4, the robot is composed of three omnidirectional
driving wheels with their own transmission systems,
which are independently driven by three DC motors. The
omnidirectional wheels are centered on the longitudinal
axis of the robot. These wheels are driven by non-steering
wheels powered by independent mechanisms and have
single-row roller arrangement. The axis of each wheel is
parallel to the horizontal plane from the pivot point in the
direction perpendicular to the wheel axis (β1,2,3 = 0). Also,

Table I. Specifications of prototype robot.

Specification Dimension

Dimension (L × W × H) 29 × 29 × 12 cm3

Weight 1.250 kg
Stall torque of drive motors 0.2 Nm
Maximum speed 7.30 m/min
Wheel radius 0.07 m
Wheelbase 0.138 m
Encoder resolution 360 pulse/rev
Wheel steering angle (β) 0◦
Roller axis angle (γ ) 0◦
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Fig 4. (Colour online) Prototype three-wheeled omnidirectional
mobile robot.

the angle between rollers axis of rotation and wheel plane
(γ1,2,3 = 0) is zero. Table I shows specifications of this
prototyped robot.

4.2. Evaluation criteria
The index used to facilitate the comparison is the radial error
(δre), which is defined as

δre = 1

N

N∑
k=1

√
x2

e,k + y2
e,k, (14)
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Fig 5. (Colour online) Radial systematic error of prototype three-
wheeled OWMR before and after calibration.

where xe and ye are given in Fig. 3, and N represents
the number of trial runs. The effectiveness of the
proposed method is measured by comparing the mean error
improvement index (δrm):

δrm =
(
δre,BF − δre,AF

)
δre,BF

× 100% (15)

where δre,BF and δre,AF are the mean values of radial errors
before (BF) and after (AF) calibration, respectively.

4.3. Calibration of systematic errors
4.3.1. Calibration process. The method was applied to
the robot, shown in Fig. 4, over 10 trial runs (N = 10).
Figure 5 illustrates the position errors for the robot before
and after calibration. In this test, the robot was programmed
to travel along the x-axis. The initial configuration of robot,

Table II. Indices for systematic tests before (BF) and after (AF) calibration.

Flat Flon δre (mm) δrm Kurtosis Skewness

diag
[

0.991 1.092 1.083
]

1.104 55.7 (BF) 84.38% 0.58 (BF) −0.24 (BF)
8.7(AF) −0.23 (AF) −0.06 (AF)
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Fig 6. (Colour online) Unseen trajectories to test the performance
of calibrated robot. Trajectories were designed to allow robot to
move along three paths: (a) double-square, (b) double-triangular,
and (c) combined straight and curved.

at which the robot started to move, is shown in Fig. 2(a),
and is defined by considering α1 = π/2, α2 = 7π/6, and
α3 = 11π/6. The wheels rotated by nominal angular velocity

vector is defined as �̇�c = [ 171.90◦/s 85.95◦/s 85.95◦/s ].
The angular velocities, in all tests, were calculated using the
kinematic equations defined in Eq. (7). As seen, the robot
motion was corrected with the proposed method, i.e., the
errors became small after calibration.

Table II illustrates the amount of average errors for this
robot before and after calibration as well as estimates of
the standard values of skewness and kurtosis using the
measured data. The lateral corrective matrix and longitudinal
corrective factor are also shown in this table. From Table II,
the percentage of error improvement (δrm) to the variability
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Fig 7. (Colour online) Typical travelled paths along (a) double-
square, (b) double-triangular, and (c) combined straight and curved
paths.

of data over 10 trials is noticeable (over 84%). The
last two columns show the kurtosis and skewness of
measured position error. Kurtosis is the measure of the
“peakedness” of the probability distribution of a real-valued
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Fig 8. (Colour online) Position of robot in (a) double-square,
(b) double-triangular, and (c) combined straight and curved tests.

random variable.23 Higher kurtosis means more of the
probability distribution of a real-valued random variable.23

The calculated values for the skewness and kurtosis confirm
that the derived data satisfy the normal distributions criteria.
Note that to justify the normal distribution, calculated
absolute values of kurtosis and skewness for certain data
group must be less than 2.12
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Fig 10. (Colour online) Stop points of robot before and after
applying corrective indices in self-rotation.

4.3.2. Validation. In order to validate the workability of the
proposed method to correct robot errors, a set of new tests
was applied. In this set of tests, the robot was programmed
to move along some trajectories consisting of double-square
and double-triangular paths, combined straight and curved
path, as well as self-rotation. These experiments were done
for two different conditions: (i) when the corrective indices
(Flat and Flon) were not applied to robot’s equations (before
calibration), and (ii) when the corrective indices (see Table II)
were used (after calibration). In all double-square, double-
triangular, and combined straight and curved paths, the length
of each straight leg was chosen at 1.5 m and divided into
three equal sub-paths used to measure the robot position
error during the movement along that path. By marking these
points, the position coordinates of robot were measured with
respect to the global reference frame, and compared with the
ideal values to determine and compare error improvements.

In the following tests, the robot was programmed to follow
three unseen trajectories as shown in Fig. 6. Trajectories were
designed to allow the robot moving along paths shown in
Fig. 6. The robot started at the origin of XRYR coordinate
(OR), labeled “start point,” then travelled along the
sub-paths to finally return to “OR.” The robot errors,
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Table III. Nominal and corrected wheel angular velocity vectors
in double-square test. The nominal velocity vector was applied
to robot before calibration. Corrected angular velocity vector was

used after calibration.

Sub- Nominal angular velocity Corrected angular velocity
paths (deg/s) (deg/s)

1 & 8
[

171.9 −85.9 −85.9
]T [

170.3 −93.9 −93.1
]T

2 & 7
[

0 114.6 −114.6
]T [

0 125.0 −124.1
]T

3 & 6
[−171.9 85.9 85.9

]T [−170.3 93.9 93.1
]T

4 & 5
[
0 −114.6 114.6

]T [
0 −125.0 124.1

]T

along the sub-paths, are measured with respect to fiducial
measurement stations (see solid circles in Fig. 6). The test
procedure was done for the prototyped robot and the position
coordinates in X- and Y-directions were recorded.

Figures 7(a)–(c) illustrate the desired paths as well as
typical actual paths travelled by the robot before and after
calibration. These paths are plotted based on the position
coordinates recorded in error measurement stations during
the robot’s motion. As shown, the movement of the robot was
corrected for given trajectories after applying the corrective
indices. In addition to reduce the radial errors, the proposed
method was capable of correcting the path travelled by
robot as expected because the test procedure is based on the
robot kinematic equations and influences the robot movement
along entire path.

Figures 8(a)–(c) depict the actual coordinates of the robot’s
destinations before and after calibration. As illustrated in all
double-square, double-triangular, and combined straight and
curved paths, the position error of robot was improved using
the proposed calibration method. Using the data from the
experiments, it is seen that the root mean square (RMS)
values of positioning error were reduced up to 85%, 91%,
and 68% in double-square, double-triangular, and combined
straight and curved tests, respectively.

Table III illustrates the angular velocity vectors of wheels
during travelling along double-square path (as a typical case)
before and after applying the corrective indices.

In next test, the robot was programmed to simply
rotate about its central axis for five complete turns. In
this experiment, all wheels rotated simultaneously with an
angular velocity of 1.5 rad/s; therefore, the test investigated
the effectiveness of the proposed calibration method when
the robot turned about the axis that passed through its center
of geometry. As shown in Fig. 9, the uncalibrated robot stops
in Ob instead of OR having three deviations: two longitudinal

Table IV. RMS values of radial position error in systematic test
unseen trajectories before (BF) and after (AF) calibration.

δre (mm)
RMS

Path BF AF improvement (%)

Double-square 610.9 86.7 85.8
Double-triangular 823.7 67.9 91.8
Combined straight and curved 275.7 86.7 68.6
Central rotation 11.1 0.7 93.7

−100

0

100

200

−200 −100 0 100 200
X (mm)

Y
 (

m
m

)

Before calibration

After calibration

Desired destination

Fig 12. (Colour online) Coordinates of robot’s stop point in non-
systematic test before and after calibration.

deviations (xe and ye) and one orientation deviation (θ).
Thus, we should apply the corrective indices, obtained from
Table II, to correct the robot motion. Figure 10 shows the
final robot position after five times complete rotation.

Table IV illustrates RMS values of the radial position
errors of robot along the double-square, double-triangular,
combined straight and curved, and self-rotation paths before
and after calibration. The RMS values are obtained using
the calculated radial position errors during N tests (for all
four tests N = 5). Also, this table shows the RMS error
improvement during the calibration after and before the
calibration. As shown in Table IV, the RMS values of position
error were improved by at least 85%, 91%, 68%, and 93%
along double-square, double-triangular, combined straight
and curved paths, and self-rotation, respectively.

4.4. Calibration of non-systematic errors
4.4.1. Calibration process. Non-systematic errors are caused
by unpredictable phenomenon such as slippery floors, over
acceleration and fast turning, external forces/torques, and
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Fig 13. (Colour online) Unseen trajectories for non-systematic error
correction tests.

non-point wheel contact on the floor. Examples are moving
on ice, inaccurate controllers, irregularities on the surface,
such as bumps and cracks, and rubber wheels. These
phenomena cause the robot wheels to rotate differently with
respect to the desired rotation. Thus, the trajectory length
travelled by robot changes. These errors are the utmost
important problems in real applications. Since it is almost
impossible to predict or simulate the exact nature of surface
irregularities to which the robot will be exposed, it is difficult
to present a general quantitative test procedure for non-
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Fig 14. (Colour online) Typical paths: (a) double-square, (b) double-
triangular, and (c) combined straight and curved.

systematic errors.13 Due to the significance of non-systematic
error effects on omnidirectional mobile robot’s movement,
in this section, the compensation of non-systematic errors
is investigated by following the methodology described in
Section 3. Non-systematic errors are usually modelled by
introducing surface irregularities using artificial obstacles

https://doi.org/10.1017/S0263574713000210 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000210


978 Calibration of omnidirectional wheeled mobile robots

Table V. Indices for non-systematic tests before (BF) and after (AF) calibration.

F′
lat F′

lon δre (mm) δrm Kurtosis Skewness

diag[ 1.067 0.963 0.979 ] 0.909 180.4 (BF) 72.30% −0.47 (BF) 0.19 (BF)
49.9 (AF) −0.87 (AF) 0.15 (AF)

which can be selected based on the geometry of real
working environment of robot.13 The chosen obstacles for
experiments are common electrical cable, such as the ones
used in the following experiments, with 5-mm diameter,
rounded shape, and plastic coating. The distance between
the wires should be chosen based on the condition of real
environment. In this work, the cables are evenly placed along
the trajectories (see Fig. 11). In the following experiments,
the distance is chosen to be 30 mm in each straight leg with
no obstacle located on the vertices. The process implemented
here is in line with previous study on calibration of non-
systematic errors13 by other researchers. Upon completion
the test bed, the sequences described in Section 3, steps
(i) to (vii), are implemented. Finally, the non-systematic
test corrective indices (F ′

lat and F ′
lon) are calculated and the

robot is programmed to reduce non-systematic errors. If
the environment changes, then values of lateral corrective
matrix (F ′

lat) and longitudinal corrective factor (F ′
lon) must be

adjusted. Towards this goal, the tests should be performed
on a platform with the same characteristics of the desired
surface on which the robot will be programmed to move
after calibration. For instance, if the robot is supposed to
move on the carpet, the calibration process should be done
on the carpet, or a similar platform.

Figure 12 depicts the coordinate of robot’s final position
in non-systematic test. The initial configuration of robot is
the same as the one described in Fig. 2. As seen, the final
position of robot is modified as opposed to position before
calibration test.

Table V shows the amount of non-systematic average
errors for this robot before and after calibration as well as the
non-systematic lateral corrective matrix (F ′

lat), longitudinal
corrective factor (F ′

lon), and improvement (δrm). Table V also
shows the standard values of skewness and kurtosis using
the measured data. The obtained values of skewness and
kurtosis indicate that the derived data satisfy the normal
distribution criteria. It is obvious that by changing the
artificial obstacles geometry or arrangement, the robot’s final
position and corresponding corrective matrix, and factor
might be affected. Consequently, the new lateral corrective
matrix and longitudinal corrective factor will be achieved.
As shown, the positioning error of the robot was reduced by
72% for the environment with considered obstacles.

4.4.2. Validation . In this set of tests, double-square, double-
triangular, and combined straight and curved paths were
used to validate the proposed non-systematic test method.
The robot travelled along three unseen trajectories using the
procedure described in Section 4.3.2 (see Fig. 13). As shown
in Fig. 13, the obstacles (thick lines) were made from the
rounded shape plastic coating wires, with 5-mm diameter,
similar to the calibration tests.

Figures 14(a)–(c) show the desired path and the typical
actual paths (before and after calibration) of robot using
double-square, double-triangular, and combined straight and
curved paths, respectively. As illustrated, the movement
of robot was corrected for given paths after applying the
corrective parameters (i.e., F ′

lat and F ′
lon). It was found that in

addition to reduce the final radial error, the proposed method
could keep the robot close to desired path. The nominal
(before calibration) and corrected (after calibration) angular
velocities, in double-square path, are illustrated in Table VI.
The RMS values of the position error of the robot are given in
Table VII. As shown in Table VII, the RMS values of position
error were improved by at least 85%, 86%, and 74% along
double-square, double-triangular, and combined straight and
curved paths, respectively.

The results show that, in addition to correcting the
systematic errors (see Table IV), the method was also able to
reduce the non-systematic errors. However, the percentage
of error corrections depended on the type of the chosen path,
which can be seen from Table VII.

Overall, with reference to Tables IV and VII, it is observed
that the proposed method could reduce position errors by at
least 68%. The results also show that unseen tests along the
combined straight and curved paths are less accurate than
any path in which the robot moves along straight trajectory.

Table VIII shows values of the end-point coordinates of
robot (in XRYR plane) for tests depicted in Figs. 7 and 14.
From the result, for these typical trajectories, position errors
were improved in all three unseen paths by at least 70%.
Comparing the last column of Table VIII with the ones in

Table VI. Nominal and corrected angular velocities of wheels in
double-square path.

Sub- Nominal angular velocity Corrected angular velocity
paths (deg/s) (deg/s)

1 & 8
[

171.9 −85.9 −85.9
]T [

183.4 −82.8 −84.2
]T

2 & 7
[

0 114.6 −114.6
]T [

0 110.4 −112.2
]T

3 & 6
[−171.9 85.9 85.9

]T [−183.4 82.8 84.2
]T

4 & 5
[

0 −114.6 114.6
]T [

0 −110.4 112.2
]T

Table VII. RMS values of radial position error along unseen
trajectories for non-systematic test before (BF) and after (AF)

calibration.

δre (mm)
RMS

Path BF AF improvement (%)

Double-square 808.2 121.0 85.0
Double-triangular 795.67 105.1 86.8
Combined straight and curved 731.4 187.2 74.4
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Table VIII. End-point coordinates and error improvement along unseen trajectories before and after calibration for typical trajectories
shown in Figs. (7) and (14).

Test Path Before calibration After calibration δrm (%)

Systematic test Double-square (−560, 670) (−80, −55) 88.9
Double-triangular (−510, 605) (65, −50) 89.6
Combined (−415, 290) (−110, 105) 70.0

Non-systematic test Double-square (−295, 755) (100, −80) 84.2
Double-triangular (−260, 745) (105, −55) 85.0
Combined (−645, 350) (−165, 110) 73.0

Tables IV and VII, the radial error improvements in both
systematic and non-systematic tests are seen within ± 5% of
each other.

5. Conclusions
This paper presented a calibration technique for position
error reduction of omnidirectional WMR movement. The
proposed method was built upon the kinematic equations
and Jacobian matrices of omnidirectional mobile robots.
The method was implemented to correct positioning errors
of a prototyped three-wheeled omnidirectional mobile
robot. The calibrated robot was then tested along a
number of unseen trajectories. The trajectories were
double-square and double-triangular paths, combination of
straight and curved paths, as well as self-rotation about
central axis. Using statistical indices, it was shown that
the proposed method of calibration leads to reasonable
error improvement. Specifically, experimental results, using
unseen test trajectories, showed that the measured systematic
and non-systematic error improvement percentages were
enhanced by over 68% and 74%, respectively. The proposed
method exhibited more error improvement along double-
square and double-triangular paths as compared with
curved paths. Specifically, the position errors were reduced
by at least 85%, 86% and 68% along double-square,
double-triangle, and combined straight and curved paths,
respectively. The standard values of skewness and kurtosis
from measured data for each test were estimated showing
that the derived data satisfy normal distributions criteria.
The proposed method is constructed based on the easy-to-
understand equations and does not need any knowledge about
the sources of robot errors. Furthermore, the method can be
used for calibration of mobile robots having omnidirectional
wheels as well as all types of WMRs with various numbers
of active wheels.
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