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This paper studies optimal switching on and off of the entire service capacity of an
M/M/∞ queue with holding, running and switching costs. The running costs depend
only on whether the system is on or off, and the holding costs are linear. The goal is to
minimize average costs per unit time. The main result is that an average-cost optimal pol-
icy either always runs the system or is an (M, N)-policy defined by two thresholds M and
N , such that the system is switched on upon an arrival epoch when the system size accu-
mulates to N and is switched off upon a departure epoch when the system size decreases
to M . It is shown that this optimization problem can be reduced to a problem with a
finite number of states and actions, and an average-cost optimal policy can be computed
via linear programming. An example, in which the optimal (M, N)-policy outperforms the
best (0, N)-policy, is provided. Thus, unlike the case of single-server queues studied in the
literature, (0, N)-policies may not be average-cost optimal.

1. INTRODUCTION

This paper studies optimal control of a parallel M/M/∞ queue with Poisson arrivals and
an unlimited number of independent identical servers with exponentially distributed ser-
vice times. The cost to switch the system on is s1, and the cost to switch the system off is
s0. The other costs include the linear holding cost h for each unit of time that a customer
spends in the system, the running cost c1 per unit time when the system is on, and the
idling cost c0 per unit time when the system is off. It is assumed that s0, s1 ≥ 0, s0 + s1 > 0,
h > 0, and c1 > c0. Denote c = c1 − c0. Without loss of generality, let c0 = 0 and c1 = c > 0.
The goal is to minimize average costs per unit time.

The main result of this paper is that either the policy that always keeps the system
on is average-cost optimal or, for some integers M and N , where N > M ≥ 0, the so-called
(M,N)-policy is average-cost optimal. The (M,N)-policy switches the running system off
when the number of customers in the system is not greater than M and it switches the
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idling system on when the number of customers in the queue reaches or exceeds N. It is
shown in this paper that this optimization problem can be reduced to a problem with finite
number of states and actions and an average-cost optimal policy can be computed via linear
programming. An example, when the best (0, N)-policy is not optimal, is provided.

From an intuitive point of view, the reason that (M,N)-policies can outperform (0, N)-
policies for our problem is because the system running cost rate c does not depend on the
number of occupied servers. If there are n customers in the system, then the running cost
rate per customer is c/n. When n is small, it may be cost-inefficient to run the system
because the running cost rate per customer is high, and the system should be switched off.
Similarly to the single-server case, the non-zero switching costs cause hysteretic behavior of
an optimal policy and therefore M < N.

Studies of control problems for queues started around 50 years ago, and one of the first
papers on this topic, Yadin and Naor [38], dealt with switching on and off the server of
a single-server queue. Heyman [16] showed the optimality of a (0, N)-policy, which is usu-
ally called an N -policy, for M/G/1 queues. Sobel [37] studied (M,N)-policies for GI/G/1
queues. The early results on switching servers in single-server queues led to two relevant
research directions:

(i) Optimality of (0, N)-policies or their ramifications under very general assumptions
such as batch arrivals, start-up and shut-down times and costs, nonlinear holding
costs, known workload and so on; see Lee and Srinivasan [27],Federgruen and So [8],
Altman and Nain [1], Denardo, Feinberg, and Kella [7], and Feinberg and Kella [11];

(ii) Decomposition results for queues with vacations; see Fuhrmann and Cooper [12],
Hofri [17], Shanthikumar [36], Kella [21], and Kella and Whitt [22].

As for general multi-server parallel queues, switching on and off individual servers for a
parallel queue is a more difficult problem. Even for an M/M/n queue, there is no known
description of an optimal switching policy for individual servers when n > 2; see Bell [2,3],
Rhee and Sivazlian [34], and Igaki [19]. Studies of stationary distributions and performance
evaluations for parallel queues with vacations (Levy and Yechiali [28], Huang et al. [18],
Kao and Narayanan [20], Browne and Kella [4], Chao and Zhao [5] and Li and Alfa [29])
usually assume that vacations begin when the system is empty. Observe that, if vacations
start when the system becomes empty and end simultaneously for all the servers, the model
describes a particular case of switching the entire service capacity of the system on and off.
Browne and Kella [4] studied M/G/∞ queues with vacations and, for a model switching
and linear holding costs, described how to compute the best (0, N)-policy for switching on
and off the entire service capacity.

This research is motivated by two observations: (i) the problem of switching on and off
the entire service capacity of the facility has an explicit solution described in this paper,
while there is no known explicit solution for problems with servers that can be switched
on and off individually, and (ii) with the development of internet and high-performance
computing, many applications behave in the way described in this paper. For example,
consider a service provider that uses cloud computing and pays for the time the cloud is
used. When there are many service requests, it is worth paying for using the cloud, and
when there is a small number of service requests, it may be too expensive to use the cloud.
This paper analyzes such a situation and finds an optimal solution. Many papers model
cloud computing facilities as multi-server queues; see Mazzucco, Dyachuk, and Deters [30]
and Khazaei, Misic, and Misic [23]. Mazzucco et al. [30] studies the revenue management
problem from the perspective of a cloud computing provider and investigates the resource
allocation via dynamically powering the servers on or off. There can be a huge number of
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servers in a cloud computing center, typically of the order of hundreds or thousands; see,
e.g., Greenberg et al. [13]. Given that the number of servers is large and tends to increase
over time with the development of new technologies, it is natural to model controlling of
the facility as an M/M/∞ queue rather than an M/M/n queue if this leads to analyti-
cal advantages. Here we study a model based on an M/M/∞ queue and find an optimal
solution.

In addition to cloud computing, another example comes from the application to software
maintenance. Kulkarni et al. [26] studied the software maintenance problem as a control
problem for a queue formed by software maintenance requests generated by software bugs
experienced by customers. Once a customer is served and the appropriate bug is fixed in
the new software release or patch, it also provides solutions to some other customers in
the queue and these customers are served simultaneously. In Kulkarni et al. [26], it was
assumed that the number of customers leaving the queue at a service completion time has
a binomial distribution. This problem was modeled in Kulkarni et al. [26] as an optimal
switching problem for an M/G/1 queue in which a binomially distributed number of cus-
tomers depending on the queue size are served each time, and the best (0, N)-policy was
found. Here we observe that after an appropriate scaling, the software maintenance problem
with exponential service times and the optimal switching problem for an M/M/∞ queue
have the same fluid approximations. So, the result on average-optimality of (M,N)-policies
described here provides certain insights to the software maintenance problem studied in
Kulkarni et al. [26].

There are two main obstacles in the analysis of the M/M/∞ switching problem com-
pared to a single-server one. First, the service intensities are unbounded, and therefore the
standard reduction of continuous-time problems to discrete time via uniformization can
not be applied. Second, there are significantly more known decomposition and performance
analysis results for single-server queues than for parallel queues and, in particular, we are
not aware of such results for M/M/∞ queues with vacations that can start when the queue
is not empty. The first obstacle is resolved by reducing the discounted version of the prob-
lem to negative dynamic programming instead of to discounted dynamic programming. The
second obstacle is resolved by solving a discounted problem for the system that cannot be
switched off. This problem is solved by using optimal stopping, where the stopping decision
corresponds to starting the servers, and its solution is used to derive useful inequalities and
to reduce the problem for the originalM/M/∞ queue to a control problem of a semi-Markov
process with finite state and action sets representing the system being always on when the
number of customers exceeds a certain level.

The optimal switching problem for an M/M/∞ queue is modeled in Section 2 as a
Continuous-Time Markov Decision Process (CTMDP) with unbounded transition rates.
Such a CTMDP cannot be reduced to discrete time via uniformization; see, e.g., Guo,
Hernández-Lerma, and Prieto-Rumeau [15], Piunovskiy and Zhang [32]. We analyze the
problem by studying the total expected discounted costs and applying the vanishing discount
rate approach.

Section 3 studies expected total discounted costs. Such a CTMDP can be reduced to a
discrete-time problem with the expected total costs; see Feinberg [10], Piunovskiy and Zhang
[32]. Since transition rates are unbounded, expected total costs for the discrete-time problem
cannot be presented as expected total discounted costs with the discount factor smaller than
1. However, since all the costs are nonnegative, the resulting discrete-time problem belongs
to the class of negative MDPs that deal with minimizing expected total nonnegative costs,
which is equivalent to maximizing expected total non-positive rewards. For this negative
MDP we derive the optimality equation, show that the value function is finite, and establish
the existence of stationary discounted-cost optimal policies; see Theorem 1.
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Section 3.2 investigates the discounted total-cost problem limited to the policies that
never switch the running system off. By using the fact that the number of customers in
an M/G/∞ queue at each time has a Poisson distribution (see Ross [35, p. 70]), for this
problem we compute in Theorem 3 and in Corollary 1 the discounted-cost optimal policy
and the optimal value. This is done by analyzing the optimality equation for an optimal
stopping problem with stopping, in fact, corresponding to the decision to start the system.
The optimal policy is defined by an explicitly computed number nα, such that the system
should be switched on as soon as the number of customers is greater than or equal to
nα, where α > 0 is the discount rate. The function nα is increasing in α and therefore
bounded in α ∈ (0, α∗] for each α∗ ∈ (0,∞). In Section 3.3, the problem with the expected
discounted total costs is reduced to a problem with finite state and action sets by showing
in Lemma 7 that the system should always be on, if the number of customers is greater
than or equal to nα. In Section 4, by using the vanishing discount rate arguments, we prove
the existence of stationary average-cost optimal policies and describe the optimal (M,N)-
policies in Theorem 5. A linear program (LP) for their computation is provided in Section 5.
Section 6 deals with computing the best (0, N)-policies and showing that they may not be
optimal.

2. PROBLEM FORMULATION

We model the above described control problem for an M/M/∞ queue as a CTMDP with a
countable state space and a finite number of actions; see Kitaev and Rykov [24] and Guo and
Hernández-Lerma [14]. In general, such a CTMDP is defined by the tuple {Z,A,A(z), q, c},
where Z is a countable state space, A is a finite action set, A(z) are sets of actions available
in states z ∈ Z, and q and c are transition and cost rates, respectively. A general policy can
be time-dependent, history-dependent, and at a jump epoch the action that controls the
process is the action selected at the previous state; see Kitaev and Rykov [24, p. 138].

Without going into details, recall that a trajectory of a CTMDP is a sequence
ω= {(Tn,Xn)}∞n=0, where 0 = T0 < T1 ≤ · · · ≤ Tn+1 ∈ (0,∞], and Tn < Tn+1, if Tn <∞,
are jump epochs and Xn ∈ Z is the state at time t ∈ [Tn, Tn+1), n = 0, 1, . . . . In particular,
for our problem Tn are either arrival or departure epochs, n = 0, 1, . . . . For an M/M/∞
queue, arrivals occur according to a Poisson process, and the number of departures by time
t is bounded from above by the number of arrivals plus the number of customers in the
system at time 0. Therefore, the number of jumps n(t) up to time t is a.s. finite, where
n(t) = sup{n : Tn < t}, 0 < t <∞. Let H = ∪∞

n=1(Z × (0,∞])n. A policy π is a function
π(ω, t) with values in A such that for each t > 0

π(ω, t) = π∗(X0, T1,X1, . . . , Tn(t),Xn(t), t− Tn(t)), (1)

where π∗ : H → A such that π∗(X0, T1,X1, . . . , Tn,Xn, s) ∈ A(Xn), and the function π∗

is Borel in (T1, . . . , Tn, s) for each n = 1, 2, . . . , and Borel in s for n = 0. As is usual in
probability theory and in the theory of stochastic processes, we often omit the variable ω.
For example, we write π(t) instead of π(ω, t).

An initial state z ∈ Z and a policy π define a stochastic process zt. Expectations for
this stochastic process are denoted by Eπz . Let C(t) be the cumulative costs incurred during
the time interval [0, t]. For α > 0, the expected total discounted cost is

V πα (z) = Eπz

∫ ∞

0

e−αtdC(t), (2)
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and the average cost per unit time is

vπ(z) = lim sup
t→∞

t−1Eπz C(t). (3)

Let

Vα(z) = inf
π
V πα (z), (4)

v(z) = inf
π
vπ(z). (5)

A policy π is called discounted-cost optimal if V πα (z) = Vα(z) for all initial states z ∈ Z. A
policy π is called average-cost optimal if vπ(z) = v(z) for all initial states z ∈ Z.

For our problem the states of the system change only at arrival and departure epochs,
which we call jump epochs. The state of the system at time t ≥ 0 is zt = (xt, δt), where
xt is the number of customers in the system at time t, and δt is the status of the servers
that an arrival or departure saw at the last jump epoch. If δt = 0, the servers at the last
jump epoch during the interval [0, t] were off, and, if δt = 1, they were on. In particular, if
the last jump epoch was a departure, δt = 1. If the last jump epoch was an arrival, then
δt = 1, if the last arrival saw the servers being on, and δt = 0 otherwise. The initial state
z0 = (x0, δ0) is given, and t = 0 is assumed to be a jump epoch. According to the definition
of δt, the functions xt and δt are right-continuous.

The state space is Z = N × {0, 1}, where N = {0, 1, . . .}, and the action set is A = {0, 1},
with 0 meaning that the system is off and 1 meaning that the system is on. At time t the
state is zt = (xt, δt) with the variables xt and δt described in the previous paragraph. The
action sets A(z) = A for all z ∈ Z. A stationary policy chooses actions deterministically at
jump epochs and follows them until the next jump. In addition, the choice of an action
depends only on the state of the system z = (x, δ), where x is the number of customers in
the system and δ ∈ {0, 1} is the status of the system prior to the last jump.

The transition rate from a state z = (i, δ) with an action a ∈ A to a state z′ = (j, a),
where j �= i, is q(z′|z, a) = q(j|i, a), with

q(j|i, a) =

⎧⎪⎨
⎪⎩
λ, if j = i+ 1;
iμ, if i > 0, a = 1, j = i− 1;
0, otherwise;

(6)

where λ is the intensity of the arrival process and μ is the service rate of individ-
ual servers. At state z = (i, δ), define q(z, a) = q(i, a) =

∑
j∈N\{i}q(j|i, a) and q(z|z, a) =

q(i|i, a) = −q(i, a).
The costs include the linear holding cost h per unit time that a customer spends in the

system, the running cost c per unit time when the system is on, the start-up cost s1, and the
shut-down cost s0, where h, c > 0, s0, s1 ≥ 0, and s0 + s1 > 0. At state z = (i, δ), if action
1 is taken, the cost rate is hi+ c; if action 0 is taken, the cost rate is hi. At state z = (i, δ),
if action 1 is taken, the instantaneous cost (1 − δ)s1 is incurred; if action 0 is taken, the
instantaneous cost δs0 is incurred. The presence of instantaneous switching costs s0 and s1
complicates the situation because standard models of CTMDPs deal only with cost rates.
However, since s0 + s1 > 0, the cost function C(t) can be written explicitly for this problem.
Let N(t) be the number of times the system’s status (on or off) changes during the time
interval [0, t].

Fix a policy π and an initial state z. If with positive probability N(t) = ∞ for
some t<∞, then with positive probability C(t) = ∞ since s0 + s1 > 0 and the number
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of switching times is infinite with positive probability. Thus, in view of (2) and (3),
V πα (z) = vπ(z) = ∞ for all α > 0.

Suppose that N(t) <∞ a.s. for some t <∞. Let 0 ≤ t1 < t2 < . . . < N(t) be the times,
when the system is switched on or off during the time interval [0, t]. The function π(u) is
a.s. piecewise constant on [0, t]; here we write the argument u instead of the argument t
used in (1). It is impossible that π(u−) = π(u+) �= π(u). Such a possibility would mean
that the system is switched on and off at time u, but at most one switching is allowed
at each time instance. For each trajectory ω, it does not matter whether π(u) = π(u−) or
π(u) = π(u+) at the points u of discontinuity of π(u) for u ∈ [0, t]. The values of π(u) at
discontinuity points do not affect the costs and future states of the system, except for the
discontinuity points of π(u) at which the process jumps (that is, arrivals or departures take
place). However, the probability of an arrival or departure at any time instance u > 0 is 0.
Therefore, without loss of generality, we define the piecewise constant function π(u) in u to
be left continuous in u. Then

C(t) =
∫ t

0

(hxu + cπ(u)) du+
N(t)∑
n=1

sπ(tn+)|π(tn+) − π(tn)|.

As explained in Section 3.1, it is sufficient to use policies that change actions only at
arrival and departure times, and for such policies N(t) <∞ a.s. when t <∞.

3. DISCOUNTED-COST CRITERION

In this section, we study the expected total discounted cost criterion. In Section 3.1, we
reduce the CTMDP to the discrete-time MDP with the expected total costs, provide the
optimality equation, and prove the existence of stationary optimal policies. In Section 3.2,
we explicitly solve the version of the problem when the running servers cannot be switched
off. For this version of the problem, the question is: when should the servers be switched on, if
they are off at time 0? Theorem 3 and Corollary 1 describe for each discount rated α > 0 the
number nα, such that an optimal decision is to switch the inactive system on, if the number
of waiting customers is greater than or equal to nα. This solution is used in Section 3.3
to provide estimates for the discounted version of the original problem and establish the
properties of its optimal policies. Theorem 4 states several properties of discounted-cost
optimal policies. In particular, it is optimal to keep or turn the servers on, if the number of
customers in the system is greater than or equal to nα. This theorem reduces the discounted
problem to a problem with a finite number of states. Since the function nα is bounded in
α ∈ (0, α′] for each α′ ∈ (0,∞), Theorem 4 is useful for the reduction of the average-cost
problem to a problem with a finite number of states. Other properties of discounted-cost
optimal policies stated in Theorem 4 are used in Section 4 to describe the structure of
average-cost optimal policies.

3.1. Reduction to Discrete Time and Existence of Stationary Discounted-Cost
Optimal Policies

In this subsection, we formulate the optimality equation and prove the existence of a sta-
tionary discounted-cost optimal policy. This is done by reducing the problem to discrete
time by using the results from Feinberg [10]. After the reduction is described, Theorem 1
provides the optimality equations and the upper bound on the value function. Lemma 1 is
needed to establish this bound.
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When the system is on and there are i customers, the time until the next jump has
an exponential distribution with intensity q(i, 1) = λ+ iμ→ ∞ as i→ ∞. Since the jump
rates are unbounded, it is impossible to present the problem as a discounted MDP in
discrete-time with a discount factor smaller than 1. Thus, we shall present our prob-
lem as minimization of the expected total costs. If the decisions are chosen only at
jump times, the expected total discounted sojourn time until the next jump epoch is

τα(z, a)=
∫∞
0

(
∫ t
0
e−αudu)q(z, a)e−q(z,a)tdt =

∫∞
0
e−αte−q(z,a)tdt =

1
α+ q(z, a)

, and the one-

step cost is Cα(z, a) = |a− δ|sa + (hi+ ac)τα(z, a) with z = (i, δ). For α = 0, we denote
τ0(z, a) and C0(z, a) as τ(z, a) and C(z, a), respectively.

By Feinberg [10, Theorem 5.5.6], there exists a stationary discounted-cost optimal
policy, the value function Vα(z) satisfies the optimality equation

Vα(z) = min
a∈A(z)

{Cα(z, a) +
∑
z′∈Z

q(z′|z, a)
α+ q(z, a)

Vα(z′)}, z ∈ Z, (7)

and a stationary policy φ is discounted-cost optimal if and only if

Vα(z) = Cα(z, φ(z)) +
∑
z′∈Z

q(z′|z, φ(z))
α+ q(z, φ(z))

Vα(z), z ∈ Z. (8)

In view of Feinberg [10, Theorem 5.5.6], these conclusions also hold for the CTMDP
with actions that can be changed at any time, but with switching cost rates s(z, a) =
sa|a− δ|(α+ q(z, a)), where z = (i, δ), charged instead of instantaneous switching costs
s0 and s1. Formulae (7) and (8) imply that the discounted version of the problem is
equivalent to finding a policy that minimizes the expected total costs for the discrete-
time MDP {Z,A,A(z), pα, Cα} with substochastic transition probabilities pα(z′|z, a) =
q(z′|z, a)/ (α+ q(z, a)) and with one-step costs Cα(z, a), where α > 0.

As mentioned above, classic CTMDPs do not deal with instantaneous switching costs
described in the previous section. However, if we replace the instantaneous cost rates sa,
a ∈ {0, 1}, with the cost rates s(z, a) defined above, then a stationary optimal policy for
the problem with switching cost rates s(z, a) is also optimal for the original problem with
instantaneous switching costs sa. To see that this is true, first observe that the expected
total discounted cost until the next jump are the same for models with cost rates s(z, a) and
instantaneous costs sa. In both cases, this cost is sa|a− δ|, where δ is the status of servers
(on or off) and a is the chosen action. For an arbitrary policy, the expected total discounted
cost until the next jump can either decrease or remain unchanged, if instantaneous switching
costs sa are replaced with the switching cost rates s(z, a).

Indeed, let a policy use an action a during the first s units of time it spends at
state z = (x, δ), then it switches to action b, and then it either uses action b or switches
between actions a and b. The total expected discounted switching cost until the first jump
is sa|a− δ| + sbe

−(α+q(z,a))s or higher. Recall that each state has two actions: 0 and 1. Thus
{a, b} = {0, 1}.

To compute switching costs incurred until the first jump for a model with switching cost
rates s(z, a), let us interpret discounting as a jump intensity to the absorbing state. So, the
first jump can be caused either by a transition to an absorbing state or a transition to the
next state. As follows from Feinberg [9, Theorem 1], the total expected discounted switching
cost until the next jump is sa|a− δ|pa + sb|b− δ|pb, where pa (pb) is the probability that
the first jump takes place when the CTMDP is controlled by the action a (b). Since 1 ≥ pa,
e−(α+q(z,a))s ≥ pb, and |b− δ| ∈ {0, 1}, the expected discounted costs until the next jump
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for the model with instantaneous switching costs are greater than or equal to the similar
costs for the model with cost rates. Thus, a stationary discounted-cost optimal policy for the
problem with the switching cost rates s(z, a) is also discounted-cost optimal for the original
problem with instantaneous switching costs, and the optimality equation (7) is also the
optimality equation for the original problem with the goal to minimize the expected total
discounted costs.

The following lemma introduces the formula for the expected total discounted costs
under the policy that always runs the system. This formula provides an upper bound for
the value function Vα and, in addition, it shows that the value function takes finite values.

Lemma 1: Let φ be a policy that always runs the system. For all i = 0, 1, . . .,

V φα (i, δ) = (1 − δ)s1 +
hi

μ+ α
+

hλ

α(μ+ α)
+
c

α
<∞. (9)

Proof: V φα (i, 0) = s1 + V φα (i, 1), or equivalently, V φα (i, δ) = (1 − δ)s1 + V φα (i, 1).
Observe that

V φα (0, 1) = E

[∫ ∞

0

e−αt (hX0(t) + c) dt
]

= hE

[∫ ∞

0

e−αtX0(t) dt
]

+
c

α
=

hλ

α(μ+ α)
+
c

α
,

(10)

where X0(t) is the number of busy servers at time t if at time 0 the system is empty. The
last equality in (10) holds because, according to Page 70 in Ross [35], X0(t) has a Poisson

distribution with the mean λ
∫ t
0
e−μudu =

λ

μ

(
1 − e−μt

)
. Thus,

E

[∫ ∞

0

e−αtX0(t) dt
]

=
∫ ∞

0

e−αt
λ

μ

(
1 − e−μt

)
dt =

λ

α(μ+ α)
.

If at time 0 there are i customers in an M/M/∞ queue and the servers are always on,
the total discounted cost is the sum of the total discounted holding cost to serve these i
customers and the total discounted cost to run the system and serve future arrivals. Thus,

V φα (i, 1) = Gα(i) + V φα (0, 1) = iGα(1) + V φα (0, 1), (11)

where Gα(i) is the expected total discounted holding cost incurred by i customers served
in parallel. Since service times are exponential,

Gα(1) = E

[∫ ξ

0

e−αthdt

]
=

h

μ+ α
,

where ξ ∼ exp(μ). Formulae (10), (11), and V φα (i, 0) = s1 + V φα (i, 1) imply (9). �

We follow the conventions that Vα(−1, δ) = 0,
∑

∅ = 0, and
∏

∅ = 1. The following
theorem is the main result of this subsection.

Theorem 1: For any α > 0 the following statements hold:

(i) For all i = 0, 1, . . . ,

Vα(i, δ) ≤ (1 − δ)s1 +
hi

μ+ α
+

hλ

α(μ+ α)
+
c

α
; (12)
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(ii) For all i = 0, 1, . . . and for all δ = 0, 1, the value function Vα(i, δ) satisfies the
discounted-cost optimality equation

Vα(i, δ) = min
a∈{0,1}

{
Cα((i, δ), a)+

q(i− 1|i, a)
α+ q(i, a)

Vα(i− 1, a)+
q(i+ 1|i, a)
α+ q(i, a)

Vα(i+ 1, a)
}

= min
{

(1 − δ)s1 +
hi+ c

α+ λ+ iμ
+

λ

α+ λ+ iμ
Vα(i+ 1, 1)

+
iμ

α+ λ+ iμ
Vα(i− 1, 1), δs0 +

hi

α+ λ
+

λ

α+ λ
Vα(i+ 1, 0)

}
; (13)

(iii) There exists a stationary discounted-cost optimal policy, and a stationary policy φ
is discounted-cost optimal if and only if for all i = 0, 1, . . . and for all δ = 0, 1,

Vα(i, δ) = min
φ(i,δ)∈{0,1}

{
Cα((i, δ), φ(i, δ)) +

q(i− 1|i, a)
α+ q(i, φ(i, δ))

Vα(i− 1, φ(i, δ))

+
q(i+ 1|i, a)

α+ q(i, φ(i, δ))
Vα(i+ 1, φ(i, δ))

}
.

Proof: Consider the policy φ that always runs the system. Then Vα(i, δ) ≤ V φα (i, δ), and
(12) follows from Lemma 1. Statements (ii) and (iii) follow from (7) and (8). �

In view of Theorem 1(iii), we consider only stationary policies in the remaining parts
of this paper, unless the opposite is specified for a particular policy.

3.2. Discounted-Cost Optimal Policies, when Running Servers Cannot be Switched off

In this subsection, we explicitly solve the problem of finding discounted-cost optimal policies
within the class of policies that never turn the running system off. This solution is used later
to study the original problem. If each action set A(i, 1) is reduced to the singleton {1}, the
class of policies that never turn the system off is the set of all policies for the model with
the reduced action sets. Let Uα(i, δ), i = 0, 1, . . ., be the optimal expected total discounted
cost under the policies that never switch the system off.

Theorem 2: For any α > 0 the following statements hold:

(i) For all i = 0, 1, . . .,

Uα(i, 1) =
hi

μ+ α
+

hλ

α(μ+ α)
+
c

α
;

(ii) For all i = 0, 1, . . ., the value function Uα(i, 0) satisfies the optimality equation

Uα(i, 0) = min
{
s1 +

hi+ c

α+ λ+ iμ
+

λ

α+ λ+ iμ
Uα(i+ 1, 1)

+
iμ

α+ λ+ iμ
Uα(i− 1, 1),

hi

α+ λ
+

λ

α+ λ
Uα(i+ 1, 0)

}
. (14)

Proof: (i) For a policy φ, that never switches the running system off, Uα(i, 1) = V φα (i, 1),
and the rest follows from Lemma 1. (ii) Since Uα(i, 0) is the optimal discounted cost for
the sub-model of the original MDP, it satisfies the discounted-cost optimality equation (7),
which implies (14). �
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Definition 1: For an integer n ≥ 0, a policy is called an n-full-service policy, if it never
switches the running system off, and switches the inactive system on if and only if there
are n or more customers in the system. In particular, the 0-full-service policy switches the
system on at time 0, if it is off, and always keeps it on. A policy is called a full-service
policy, if it is an n-full-service policy for some n ≥ 0.

The following theorem implies that a full-service policy is discounted-cost optimal within
the class of policies that never switch the running system off.

Theorem 3: A policy φ is discounted-cost optimal within the class of the policies that never
switch off the running system if and only if for all i = 0, 1, . . .,

φ(i, 0) =

{
1, if i > A(α);
0, if i < A(α);

where

A(α) =
(μ+ α)(c+ αs1)

hμ
. (15)

From an intuitive point of view, A(α) defines the discounted-cost optimal threshold for
switching on the system within the class of the policies that never switch off the running
system; see Corollary 1. This threshold increases with the increase of the service cost rate c,
discount rate α, and cost of switching on the system s1, and it decreases with the increase of
the holding cost rate h and service rate μ. In addition, A(α) → c/h as α→ 0. The explicit
computation of A(α) is possible because the expected total discounted costs for the policy
that always runs the system has an explicit form; see Lemma 1. Before proving Theorem 3,
we introduce the definition of passive policies and some lemmas. In particular, the passive
policy never changes the status of the system.

Definition 2: The policy ϕ, with ϕ(i, δ) = δ for all i = 0, 1, . . . and for all δ = 0, 1, is called
passive.

According to the following lemma, the passive policy is not discount-cost optimal.

Lemma 2: For any α > 0, the passive policy ϕ is not discounted-cost optimal within the
class of policies that never switch off the running system. Furthermore, V ϕα (i, 0) > Uα(i, 0)
for all i = 0, 1, . . . .

Proof: For the passive policy ϕ,

V ϕα (i, 0) =
∞∑
k=0

(
λ

λ+ α

)k
h(i+ k)
λ+ α

=
hi

α
+
hλ

α2
.

For the policy φ that always runs the system, in view of Lemma 1,

V φα (i, 0) = s1 +
hi

μ+ α
+

hλ

α(μ+ α)
+
c

α
. (16)

Thus

V ϕα (i, 0) − V φα (i, 0) =
(
hi

α
+
hλ

α2

)
−
(
s1 +

hi

μ+ α
+

hλ

α(μ+ α)
+
c

α

)

=
hiμ

α(μ+ α)
+

hλμ

α2(μ+ α)
− s1 − c

α
> 0,
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when i is large enough. Let i∗ be the smallest natural integer such that the last inequality
holds with i = i∗. Let the initial state be (i, 0) with i < i∗. Consider a policy π that keeps the
system off in states (j, 0), j < i∗, and switches to a discounted-cost optimal policy, when the
number of customers in the system reaches i∗. Then V ϕα (i, 0) > V πα (i, 0) ≥ Uα(i, 0), where
the first inequality holds because, before the process hits the state (i∗, 0), the policies ϕ and
π coincide, and, after the process hits the state (i∗, 0), the policy π, which starting from
that event coincides with φ, incurs lower expected total discounting costs than the passive
policy ϕ. �

Lemma 3: Let ψ be the policy that switches the system on at time 0 and keeps it on forever,
and π be the policy that waits for one arrival and then switches the system on and keeps it
on forever. Then ⎧⎪⎨

⎪⎩
V πα (i, 0) > V ψα (i, 0), if i > A(α);
V πα (i, 0) < V ψα (i, 0), if i < A(α);
V πα (i, 0) = V ψα (i, 0), if i = A(α);

where A(α) is as in (15).

Proof:

V πα (i, 0) − V ψα (i, 0) =
(

hi

λ+ α
+

λ

λ+ α
(s1 + Uα(i+ 1, 1))

)
− (s1 + Uα(i, 1))

=
[

hi

λ+ α
+

λ

λ+ α

(
s1 +

h(i+ 1)
μ+ α

+
hλ

α(μ+ α)
+
c

α

)]
−
[
s1 +

hi

μ+ α
+

hλ

α(μ+ α)
+
c

α

]

=
hi

λ+ α

μ

μ+ α
− α

λ+ α

(
s1 +

c

α

)
=

hμ

(λ+ α)(μ+ α)
(i−A(α)) ,

where the second equality holds in view of Theorem 2(i) and the rest is straightforward. �

Proof of Theorem 3: Let φ be a stationary discounted-cost optimal policy within the
class of the policies that never switch off the running system. Let ψ be the policy that
switches the system on at time 0 and keeps it on forever, and π be the policy that waits for
one arrival and then switches the system on and keeps it on forever. By (14),

V φα (i, 0) = min
{
s1 + Uα(i, 1),

hi

λ+ α
+

λ

λ+ α
Uα(i+ 1, 0)

}
. (17)

First, consider the case i > A(α). Then φ(i, 0) = 1. Assume φ(i, 0) = 0 for some i > A(α).
By Lemma 2, φ(j, 0) = 1 for some j > i. Thus, there exists an i∗ ≥ i such that φ(i∗, 0) = 0
and φ(i∗ + 1, 0) = 1. This implies that V ψα (i∗, 0) ≥ V πα (i∗, 0), where i∗ > A(α). By Lemma
3, this is a contradiction. Thus φ(i, 0) = 1 for all i > A(α).

Second, in the case that i < A(α), Lemma 3 implies V πα (i, 0) < V ψα (i, 0). Thus φ(i, 0) = 0
for all i < A(α).

In the case that A(α) = i, Lemma 3 implies V ψα (i, 0) = V πα (i, 0). From (14), V ψα (i, 0) =
V πα (i, 0) = Uα(i, 0) = min

{
V ψα (i, 0), V πα (i, 1)

}
. Thus φ(i, 0) = 1 or φ(i, 0) = 0. �

Corollary 1: Let
nα = 
A(α)�, (18)

where A(α) is as in (15). Then the following statements hold:
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(i) If A(α) is not an integer, then the nα-full-service policy is the unique station-
ary discounted-cost optimal policy within the class of policies that never switch the
running system off;

(ii) If A(α) is an integer, then there are exactly two stationary discounted-cost optimal
policies within the class of policies that never switch the running system off, and
these policies are nα- and (nα + 1)-full-service policies;

(iii)

Uα(i, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

nα−i−1∑
k=0

(
λ

λ+ α

)k
h(i+ k)
λ+ α

+
(

λ

λ+ α

)nα−i
,

(
s1 + hnα

μ+α + hλ
α(μ+α) + c

α

)
, if i < nα;

s1 +
hi

μ+ α
+

hλ

α(μ+ α)
+
c

α
, if i ≥ nα.

(19)

Proof: Statements (i) and (ii) follow directly from Theorem 3 and Definition 1. Statements
(i) and (ii) imply that V φα = Uα, where φ is the nα-full-service policy. The first line of (19)
is the discounted cost to move from state (i, 0) to state (nα, 0), when the system is off, plus
the discounted cost Uα(nα, 0). The second line of (19) follows from (16). �

Corollary 2: Let n = �(c/h) + 1. Then there exists α∗ > 0 such that, for every discount
rate α ∈ (0, α∗], the n-full-service policy is discounted-cost optimal within the class of the
policies that never switch the running system off.

Proof: In view of (15), the function A(α) is strictly monotone when α > 0. In addition,
A(α) ↘ c

h
when α↘ 0. This implies that nα = n for all α ∈ (0, α∗], where α∗ can be found

by solving the quadratic inequality A(α) ≤ n. The rest follows from Corollary 1 (i) and (ii).
�

We remark that Corollary 2 describes a policy that is Blackwell optimal within the
class of policies that never switch the running server off. In general, the topic of Blackwell
optimality lays outside of the scope of this paper.

3.3. Properties of Discounted-Cost Optimal Policies and Reduction to a Problem with
a Finite State Space

This subsection introduces the properties of the discounted-cost optimal policies, formulated
in Lemmas 4 and 5, and describes the inequalities between the major thresholds in Lemma 7
that lead to the reduction of the original infinite-state problem to a finite-state problem. This
reduction essentially follows from Corollary 4. Certain structural properties of discounted-
cost optimal policies are described in Theorem 4. These properties are used in Section 4 to
describe the structure of average-cost optimal policies.

Lemma 4: Let φ be a stationary discounted-cost optimal policy. Then φ(i, 1) = 1 for
i ≥ (hλ+ (c− s0α)(μ+ α))/hμ.

Proof: Let φ(i, 1) = 0. Then V φα (i, 1) > s0 + hi/α, since the number of customers in the
system is always greater or equal than i and after the first arrival it is greater than i.

https://doi.org/10.1017/S0269964815000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000157


OPTIMAL SWITCHING ON AND OFF THE ENTIRE SERVICE CAPACITY 495

Observe that V φα (i, 1) = Vα(i, 1) ≤ Uα(i, 1). From (9),

s0 +
hi

α
<

hi

μ+ α
+

hλ

α(μ+ α)
+
c

α
.

This inequality implies i <
hλ+ (c− s0α)(μ+ α)

hμ
. Thus, φ(i, 1) = 1 otherwise �

Let V 1
α (i, δ) and V 0

α (i, δ) be the expected discounted total costs for policies that switch
the system on or off respectively at time 0, keep the system status unchanged until the next
jump, and then follow the discounted-cost optimal policy,

V 1
α (i, δ) = (1 − δ)s1 +

hi+ c

α+ λ+ iμ
+

λ

α+ λ+ iμ
Vα(i+ 1, 1) +

iμ

α+ λ+ iμ
Vα(i− 1, 1),

V 0
α (i, δ) = δs0 +

hi

α+ λ
+

λ

α+ λ
Vα(i+ 1, 0).

Let M∗
α be the largest number of customers in the system, for which it is optimal to

switch the running system off,

M∗
α =

{
max{0 ≤ i <∞ : V 0

α (i, 1) ≤ V 1
α (i, 1)}, if {0 ≤ i <∞ : V 0

α (i, 1) ≤ V 1
α (i, 1)} �= ∅;

−1, otherwise.
(20)

Corollary 3: For all α > 0

M∗
α ≤ λ

μ
+

(c+ s0μ)2

4s0hμ
<∞. (21)

Proof: According to Lemma 4, M∗
α ≤ f(α), where

f(α) =
hλ+ (c− s0α)(μ+ α)

hμ
.

For α > 0, the maximum of f(α) equals to the expression in the middle of (21). �

Lemma 5: Let φ be a stationary discounted-cost optimal policy. Then for each integer j ≥ 0
there exists an integer i ≥ j such that φ(i, 0) = 1.

Proof: By contradiction. Fix an arbitrary integer j ≥ 0. If φ(i, 0) = 0 for all i ≥ j then,
by Lemma 2, V φα (j, 0) > Uα(j, 0) ≥ Vα(j, 0). This contradicts the optimality of φ. �

Let N∗
α be the smallest number of customers in the system exceeding M∗

α, for which it
is optimal to switch the servers on, if they are off,

N∗
α = min{i > M∗

α : V 1
α (i, 0) ≤ V 0

α (i, 0)}. (22)

Lemma 5 implies that N∗
α is well defined and N∗

α <∞ for all α > 0.
To prove that N∗

α ≤ nα, we introduce the following lemma.
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Lemma 6: The following properties hold for the function Vα(i, δ):

(i) if Vα(i, 0) = V 1
α (i, 0), then V 1

α (i, 1) < V 0
α (i, 1);

(ii) if Vα(i, 1) = V 0
α (i, 1), then V 0

α (i, 0) < V 1
α (i, 0);

(iii) −s1 ≤ Vα(i, 1) − Vα(i, 0) ≤ s0.

Proof: (i) If Vα(i, 0) = V 1
α (i, 0), then V 1

α (i, 0) ≤ V 0
α (i, 0). Hence Vα(i, 1) = Vα(i, 0) − s1 <

Vα(i, 0) + s0 = V 0
α (i, 1), where the inequality follows from the assumption that s0 + s1 > 0.

This implies V 1
α (i, 1) < V 0

α (i, 1).
(ii) If Vα(i, 1) = V 0

α (i, 1), then V 0
α (i, 1) ≤ V 1

α (i, 1). Hence Vα(i, 0) = Vα(i, 1) − s0 <
Vα(i, 1) + s1 = V 1

α (i, 0).
(iii) Vα(i, 0) ≤ s1 + Vα(i, 1) because Vα(i, 0) = min

{
s1 + Vα(i, 1), V 0

α (i, 0)
} ≤ s1 +

Vα(i, 1), and Vα(i, 1) ≤ s0 + Vα(i, 0) because Vα(i, 1) = min
{
V 1
α (i, 1), s0 + Vα(i, 0)

} ≤ s0 +
Vα(i, 0). �

The following lemma shows the orders among M∗
α, N∗

α and nα. This leads to the descrip-
tion of the properties of discounted-cost optimal policies in Corollary 4 that essentially
reduces the problem to a finite state-space problem.

Lemma 7: M∗
α < N∗

α ≤ nα for all α > 0.

Proof: The definition (22) of N∗
α implies that M∗

α < N∗
α. Thus, we need only to prove that

N∗
α ≤ nα.

If M∗
α = −1, according to (20), a discounted-cost optimal policy should never switch the

running system system off and therefore Vα = Uα. In view of Corollary 1, V 0
α (i, 0) < V 1

α (i, 0),
when i = 0, . . . , nα − 1, and V 0

α (nα, 0) = V 1
α (nα, 0). Thus, in this case, N∗

α = nα.
Let M∗

α ≥ 0. Consider a stationary discounted-cost optimal policy ϕ that switches the
system on at state (N∗

α, 0). Such a policy exists in view of the definition ofN∗
α. It follows from

the definition of M∗
α that V 1

α (i, 1) < V 0
α (i, 1) for i>M∗

α. Thus, the discounted-cost optimal
policy ϕ always keeps running the active system at states (i, 1), when i>M∗

α. Observe that

V 0
α (N∗

α − 1, 0) < V 1
α (N∗

α − 1, 0). (23)

If M∗
α < N∗

α − 1, (23) follows from the definition of N∗
α. If M∗

α = N∗
α − 1, (23) follows from

V 0
α (M∗

α, 1) ≤ V 1
α (M∗

α, 1) and from Lemma 6 (ii). Thus, starting from the state (N∗
α − 1, 0),

the discounted-cost optimal policy ϕ waits until the next arrival, then switches the system
on and runs it until the number of customers in queue becomes M∗

α ≤N∗
α − 1. For i =

0, 1, . . . , let F 1
α(i) be the expected total discounted cost incurred until the first time θ(i)

when the number of customers in the system is i and the system is running, if at time
0 the system is off, there are i customers in queue, and the system is switched on after
the first arrival and is kept on as long as the number of customers in system is greater
than i. Let θ = θ(N∗

α − 1). Since ϕ is the discounted-cost optimal policy, Vα(N∗
α − 1, 0) =

F 1
α(N∗

α − 1) + [Ee−αθ]Vα(N∗
α − 1, 1).

Let π be a policy that switches the system on in state (N∗
α − 1, 0) and then follows

a discounted-cost optimal policy. Then, in view of (23), the policy π is not discounted-
cost optimal at the initial state (N∗

α − 1, 0). Thus, V πα (N∗
α − 1, 0) > Vα(N∗

α − 1, 0). Since

https://doi.org/10.1017/S0269964815000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000157


OPTIMAL SWITCHING ON AND OFF THE ENTIRE SERVICE CAPACITY 497

V πα (N∗
α − 1, 0) = s1 + Vα(N∗

α − 1, 1),

F 1
α(N∗

α − 1) + [Ee−αθ]Vα(N∗
α − 1, 1) < s1 + Vα(N∗

α − 1, 1),

and this is equivalent to(
1 − [Ee−αθ]

)
Vα(N∗

α − 1, 1) > F 1
α(N∗

α − 1) − s1. (24)

Assume that nα < N∗
α. Then nα ≤ N∗

α − 1 and, in view of Theorem 3, ψ(N∗
α − 1, 0) = 1

for a stationary discounted-cost optimal policy ψ within the class of policies that never
switches the system off. Thus, Uα(N∗

α − 1, 0) = V ψα (N∗
α − 1, 0) = s1 + Uα(N∗

α − 1, 1). In
addition, Uα(N∗

α − 1, 0) ≤ V ϕα (N∗
α − 1, 0) = F 1

α(N∗
α − 1) + [Ee−αθ]Vα(N∗

α − 1, 1). Thus,

(1 − [Ee−αθ])Uα(N∗
α − 1, 1) ≤ F 1

α(N∗
α − 1) − s1. (25)

Since θ ≥ 0 and Uα(N∗
α − 1, 1) ≥ Vα(N∗

α − 1, 1), (25) contradicts (24). Thus N∗
α ≤ nα. �

Lemma 8: For each α > 0, the inequality V 1
α (i, 0) ≤ V 0

α (i, 0) holds when i ≥ nα.

Proof: Fix any α > 0. Consider two cases: in case (i) the best full-service policy is
discounted-cost optimal, and in case (ii) the best full-service policy is not discounted-cost
optimal.

Case (i). According to Corollary 1, the nα-full-service policy is discounted-cost optimal.
This implies that V 1

α (i, 0) ≤ V 0
α (i.0) for all i ≥ nα.

Case (ii). Let φ be a stationary discounted-cost optimal policy. Assume that there exists
an integer j ≥ nα such that φ(j, 0) = 0. Then, in view of Lemma 5, there is i ≥ j such that
φ(i, 0) = 0 and φ(i+ 1, 0) = 1. As shown in Lemma 7, nα > M∗

α and therefore φ(, 1) = 1
for all  > M∗

α. Thus, φ(, 1) = 1 for all  > i. We have

V φα (i, 0) = F 1
α(i) + [Ee−αθ(i)]Vα(i, 1) ≤ s1 + Vα(i, 1) ⇒ F 1

α(i) − s1

≤ (1 − [Ee−αθ(i)])Vα(i, 1), (26)

where the stopping time θ(i) and the expected total discounted cost F 1
α(i) are defined in the

proof of Lemma 7. On the other hand, since i ≥ nα, under nα-full-service policy π we have

V πα (i, 0) = s1 + Uα(i, 1) ≤ F 1
α(i) + [Ee−αθ(i)]Uα(i, 1)

⇒ (1 − [Ee−αθ(i)])Uα(i, 1) ≤ F 1
α(i) − s1. (27)

By (26) and (27), we have Uα(i, 1) ≤ Vα(i, 1). Since the best full-service policy is not
discounted-cost optimal, Uα(i, 1) > Vα(i, 1). This contradiction implies the correctness of
the lemma. �

Corollary 4: Let α > 0 and α′ ∈ (0, α]. For a stationary discounted-cost optimal policy φ
for the discount rate α′, consider the stationary policy φ′,

φ′(i, δ) =

{
φ(i, δ), if i < nα;
1, if i ≥ nα.

Then the policy φ′ is also discounted-cost optimal for the discount rate α′.
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Proof: Let α′ = α. By the definition (20) of M∗
α, the inequality V 1

α (i, 1) ≤ V 0
α (i, 1) holds

for all i > M∗
α. By Lemma 8 and by Corollary 1, V 1

α (i, 0) ≤ V 0
α (i, 0) for all i ≥ nα. In view of

Lemma 7, M∗
α < nα. Thus, V 1

α (i, δ)≤V 0
α (i, δ) for all i ≥ nα and for all δ = 0, 1. This implies

the discounted-cost optimality of φ′ for the discount rate α′ = α. Now let α′ ∈ (0, α). Since
α > α′ > 0, then nα′ ≤ nα, and 1 is an optimal decision for the discount rate α′ at each
state (i, δ) with i ≥ nα′ and thus with i ≥ nα. �

Corollary 4 implies that it is optimal to turn and keep the system on, if there are nα
or more customers and the discount rate is not greater than α. This essentially means that,
in order to find a discounted-cost optimal policy for discount rates α′ ∈ (0, α], the decision
maker should find such a policy only for a finite set of states (i, δ) with i = 0, 1, . . . , nα − 1
and δ = 0, 1. Thus, Corollary 4 reduces the original problem of optimization of the total
discounted costs to a finite-state problem, and for every α > 0 this finite-state set is the
same for all discount factors between 0 and α. The following theorem describes structural
properties of a discounted-cost optimal policy for a fixed discount factor.

Theorem 4: For each α > 0, either the nα-full-service policy is discounted-cost optimal, or
there exists a stationary discounted-cost optimal policy φα with the following properties:

φα(i, δ) =

{
1, if i > M∗

α, δ = 1 or i = N∗
α, δ = 0 or i ≥ nα, δ = 0;

0, if i = M∗
α, δ = 1 or M∗

α ≤ i < N∗
α, δ = 0.

(28)

Proof: Consider a stationary discounted-cost optimal policy ψ for the discount rate α > 0.
If M∗

α = −1, then ψ never switches the servers off. Therefore, the nα-full-service policy is
discounted-cost optimal. If M∗

α ≥ 0, change ψ to φα according to (28) on the set of states
specified on the right-hand side of (28). The optimality of the new policy, denoted by φα,
follows from the definitions of M∗

α and N∗
α, and from Corollary 4. �

4. THE EXISTENCE AND STRUCTURE OF AVERAGE-COST OPTIMAL POLICIES

In this section, we study the average-cost criterion, prove the existence of average-cost
optimal policies, and describe their properties.

Definition 3: For two nonnegative integers M and N with N > M , a stationary policy is
called an (M,N)-policy if

φ(i, δ) =

{
1, if i > M, δ = 1 or i ≥ N, δ = 0;
0, if i ≤M, δ = 1 or i < N, δ = 0.

Theorem 5: There exists a stationary average-cost optimal policy and, depending on the
model parameters, either every full-service policy is average-cost optimal or an (M,N)-policy
is average-cost optimal for some N > M ≥ 0 and N ≤ n∗, where

n∗ = � c
h

+ 1. (29)

In addition, the optimal average-cost value v(i, δ) is the same for all initial states (i, δ); that
is, v(i, δ) = v.

https://doi.org/10.1017/S0269964815000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000157


OPTIMAL SWITCHING ON AND OFF THE ENTIRE SERVICE CAPACITY 499

Proof: We first prove that either the n∗-full-service policy is average-cost optimal or an
(M,N)-policy is average-cost optimal for some N > M ≥ 0 and N ≤ n∗. For the initial
CTMDP, consider a sequence αk ↓ 0 as k → ∞. Let φk be a stationary discounted-cost
optimal policy for the discount rate αk. According to Theorem 4, for each k this policy
can be selected either as an nαk

-full-service policy or as a φαk
policy satisfying (28). Since,

in view of (15) and (18), nαk
≤ nα1 < (μ+ α1)(c+ α1s1)/hμ+ 1 <∞ for all k = 1, 2, . . .,

there exists a subsequence {αk�
},  = 1, 2, . . . , of the sequence {αk}, k = 1, 2, . . . such that

all the policies φk� = φ, where φ is a stationary policy such that either (i) the policy φ is
the n∗-full-service policy for some integer n or (ii) the policy φ satisfies the conditions on
the right-hand side of (28) with the same M∗

α = M and N∗
α = N for α = αk�

.
Observe that the values of vφ(i, δ) do not depend on the initial state (i, δ). Indeed,

in case (i), when the policy φ is the n∗-full-service policy, the stationary policy φ
defines a Markov chain with a single positive recurrent class {(i, 1) ∈ Z : i = 0, 1, . . .},
and all the states in its complement {(i, 0) ∈ Z : i = 0, 1, . . .} are transient. The same is
true for case (ii) with the positive recurrent class Z∗ = {(i, 1) ∈ Z : i = M,M + 1, . . .} ∪
{(i, 0) ∈ Z : i = M,M + 1, . . . , N} and with the set of transient states Z \ Z∗. In each case,
the Markov chain leaves the set of transient states in a finite expected amount of time incur-
ring a finite expected cost until the time the chain enters the single positive recurrent class.
Thus, for all initial states (i, δ), in each case vφ(i, δ) = vφ does not depend on (i, δ), and

vφ = lim
t→∞ t−1Eφ(i,δ)C(t) = lim

α↓0
αV φα (i, δ),

where the second equality and the existence of the second limit follow from the Tauberian
theorem; see, e.g., Korevaar [25]. In addition, if α > 0 is sufficiently close to 0, then, in view
of (15) and (18), nα = 
c/h�, if c/h is not integer, and nα = c/h+ 1, if c/h is integer. This
explains why n∗ = � c

h
+ 1 in Theorem 5. In conclusion, v(i, δ) = v, since vφ(i, δ) = vφ. In

addition, as follows from (9), vσ = (λh/μ) + c for each full-service policy σ. Thus, if the
n∗-full-service policy is average-cost optimal, then every full-service policy is average-cost
optimal. �

5. COMPUTATION OF AN AVERAGE-COST OPTIMAL POLICY

In this section, we show how an optimal policy can be computed via linear program-
ming. According to Theorem 5, there is an optimal policy φ with φ(i, δ) = 1 when
i ≥ n∗ = �(c/h) + 1. Thus, the goal is to find the values of φ(i, δ) when i = 0, 1, . . . , n∗ − 1
and δ = 0, 1. To do this, we truncate the state space Z to Z ′ = {0, 1, . . . , n∗ − 1} × {0, 1}. If
the action 1 is selected at state (n∗ − 1, 1), the system moves to the state (n∗ − 2, 1), if the
next change of the number of the customers in the system is a departure and the system
remains in (n∗ − 1, 1), if an arrival takes place. In the latter case, the number of customers
increases by one at the arrival time and then it moves according to the random work until
it hits the state (n∗ − 1, 1) again. Thus the system can jump from the state (n∗ − 1, 1) to
itself. Furthermore, the distributions of the sojourn times at this state are not exponential.
Therefore, the truncated problem cannot be described as a CTMDP. However, it can be
described as a semi-Markov Decision Process (SMDP); see Mine and Osaki [31, Chapter 5]
and Puterman [33, Chapter 11].

We formulate our problem as an SMDP with the state set Z ′ and the action set A(z) =
A = {0, 1}. If an action a is selected at state z ∈ Z ′, the system spends an average time τ ′

in this state until it moves to the next state z′ ∈ Z ′ with the probability p(z′|z, a). During
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this time the expected cost C ′(z, a) is incurred. For z = (i, δ) with i = 0, 1, . . . , n∗ − 2 and
δ = 0, 1, these characteristics are the same as for the original CTMDP and are given by

p(z′|z, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if a = 0, z′ = (i+ 1, 0);
λ

λ+ iμ
, if a = 1, z′ = (i+ 1, 1);

iμ

λ+ iμ
, if a = 1, z′ = (i− 1, 1);

0, otherwise;

(30)

τ ′((i, δ), a) =

⎧⎪⎨
⎪⎩

1
λ
, if a = 0;

1
λ+ iμ

if a = 1;
(31)

and C ′((i, δ), a) = |a− δ|sa + (hi+ ac)τ ′((i, δ), a). The transition probabilities in states
(n∗ − 1, δ) with δ = 0, 1 are defined by p((n∗ − 2, 1)|(n∗ − 1, δ), 1) = (n∗ − 1)μ/(λ+ (n∗ − 1)
μ), p((n∗ − 1, 1)|(n∗ − 1, δ), 1) = λ/(λ+ (n∗ − 1)μ), and p((n∗ − 1, 1)|(n∗ − 1, δ), 0) = 1. In
the last case, the number of customers increases by 1 to n∗, the system switches on, and
eventually the number of customers becomes n∗ − 1.

Let Ti be the expected time between an arrival seeing i customers in an M/M/∞ queue
and the next time when a departure leaves i customers behind, i = 0, 1, . . . . Applying
the memoryless property of the exponential distribution, Ti = Bi+1 −Bi, where Bi is the
expected busy period for M/M/∞ starting with i customers in the system and B0 = 0. By
formula (34b) in Browne and Kella [4],

Bi =
1
λ

⎛
⎝eρ − 1 +

i−1∑
k=1

k!
ρk

⎛
⎝eρ − k∑

j=0

ρj

j!

⎞
⎠
⎞
⎠ , (32)

where ρ = (λ/μ). Thus

Tn∗−1 = Bn∗ −Bn∗−1 =
1
λ

∞∑
k=0

ρk+1

n∗(n∗ + 1) . . . (n∗ + k)
.

The expected time τ ′((n∗ − 1, δ), 1), where δ = 0, 1, is the expected time until
the next arrival plus Tn∗−1, if the next event is an arrival. Thus, τ ′((n∗ −
1, δ), 1) = (λ/(λ+ (n∗ − 1)μ)) ((1/λ) + Tn∗−1) , δ = 0, 1. In addition τ ′((n∗ − 1, δ), 0) =
(1/λ) + Tn∗−1, δ = 0, 1.

To compute the one-step cost C ′((n∗ − 1, 1), 1), we define mi as the average number of
visits to state (i, 1) starting from state (n∗ − 1, 1) and before revisiting state (n∗ − 1, 1), i =
n∗ − 1, n∗, . . . . And define mi,i+1 as the expected number of jumps from (i, 1) to (i+ 1, 1),
i = n∗ − 1, n∗, . . ., and mi,i−1 as the expected number of jumps from (i, 1) to (i− 1, 1),
i = n∗, n∗ + 1, . . . . Then mi,i+1 = (λ/(λ+ iμ))mi, mi,i−1 = (iμ/(λ+ iμ))mi and mi,i+1 =
mi+1,i. Since mn∗−1 = 1,

mi =
i−n∗∏
j=0

λ

λ+ (n∗ − 1 + j)μ
λ+ (n∗ + j)μ

(n∗ + j)μ
, i = n∗, n∗ + 1, . . . . (33)
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Thus,

C ′((n∗ − 1, 1), 1) =
∞∑

i=n∗−1

miC((i, 1), 1) =
∞∑

i=n∗−1

mi
hi+ c

λ+ iμ
,

where C((i, 1), 1) = ((hi+ c)/(λ+ iμ)), i = n∗ − 1, n∗, . . . is the cost incurred in state (i, 1)
under action 1 for the original state space model; see Section 3.1. The one-step cost C ′((n∗ −
1, 0), 1) = s1 + C ′((n∗ − 1, 1), 1).

Let Cn∗ be the expected total cost incurred in an M/M/∞ system until the number
of customers becomes (n∗ − 1), if at time 0 there are n∗ customers in the system and the
system is running. Then

C ′((n∗ − 1, 1), 1) =
h(n∗ − 1) + c

λ+ (n∗ − 1)μ
+

λ

λ+ (n∗ − 1)μ
Cn∗ ,

and this implies

Cn∗ =
(

1 +
(n∗ − 1)μ

λ

)
C ′((n∗ − 1, 1), 1) − h(n∗ − 1) + c

λ
.

We also have C ′((n∗ − 1, 0), 0) =
h(n∗ − 1)

λ
+ s1 + Cn∗ , C ′((n∗ − 1, 0), 1) = s1 + C ′((n∗ −

1, 1), 1), and C ′((n∗ − 1, 1), 0) = s0 + C ′((n∗ − 1, 0), 0).
With the definitions of the transition mechanisms, sojourn times, and one-step costs

for the SMDP, now we formulate the LP according to Section 5.5 in Mine and Osaki [31]
or Theorem 11.4.2 and formula (11.4.17 ) in Puterman [33] as

Minimize
∑
z∈Z′

∑
a∈A

C ′(z, a)xz,a

s.t.
∑

a∈A(z)

xz,a −
∑
z′∈Z′

∑
a∈A(z)

p(z|z′, a)xz,a = 0, z ∈ Z ′,

∑
z∈Z′

∑
a∈A(z)

τ ′(z, a)xz,a = 1,

xz,a ≥ 0, z ∈ Z ′, a ∈ A.

(34)

Let x∗ be the optimal basic solution of (34). According to general results on SMDPs
in Denardo [6, Section III], for each z ∈ Z ′, there exists at most one a ∈ {0, 1} such that
x∗z,a > 0. If x∗z,a > 0, then for the average-cost optimal policy φ, φ(z) = a, for a = 0, 1. If
x∗z,0 = x∗z,1 = 0, then φ(z) can be either 0 or 1. For our problem, Theorem 6 explains how
x∗:= {x∗z,a : z ∈ Z ′, a ∈ A} can be used to construct a stationary average-cost optimal policy
φ with the properties stated in Theorem 5.

Theorem 6: For an optimal basic solution x∗ of (34), the following statements hold:

(i) if x∗(0,1),1 > 0, then every full-service policy is average-cost optimal;

(ii) If x∗(0,1),0 > 0, then the (0, N)-policy is average-cost optimal with

N =

{
n∗, if min{i = 1, . . . , n∗ − 1 : x∗

(i,0),1 > 0} = ∅;
min{i = 1, . . . , n∗ − 1 : x∗

(i,0),1 > 0}, if min{i = 1, . . . , n∗ − 1 : x∗
(i,0),1 > 0} �= ∅;

(35)
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(iii) if x∗(0,1),0 = x∗(0,1),1 = 0, then the (M,N)-policy is average-cost optimal with
M = min{i = 1, . . . , n∗ − 1 : x∗(i,1),0 > 0} > 0 and N being the same as in (35).

Proof: Let φ∗ be a stationary average-cost optimal policy defined by the optimal basic
solution x∗ of LP (34). Since at most one of the values {x∗(0,1),0, x∗(0,1),1} is positive
and they both are nonnegative, cases (i)–(iii) are mutually exclusive and cover all the
possibilities.

(i) If x∗(0,1),1 > 0, then the state (0, 1) is recurrent under the policy φ∗ and φ∗(0, 1) = 1.
Since the state (0, 1) is recurrent, φ∗(n, 1) = 1 for all n = 1, 2, . . . . This is true
because, if φ∗(n, 1) = 0 for some n = 1, 2, . . . , then in the long-run the number of
customers will be always greater than or equal to n, and the state (0, 1) cannot be
recurrent. Thus, vφ(j, 0) = vφ

∗
(i, 0) = v = c+ hλ/μ for every full-service policy φ,

for all i, j = 1, 2, . . . , and each full-service policy is average-cost optimal.
(ii) If x∗(0,1),0 > 0, then the state (0, 1) is recurrent under the policy φ∗, and φ∗(0, 1) = 0.

Since the state (0, 1) is recurrent, the policy φ∗ always keeps the running system on as
long as the system is nonempty. By Lemma 6 (ii), φ∗(0, 0) = 0. The first constraint in
LP (34) implies that x∗(1,0),0 + x∗(1,0),1 > 0. In general, if x∗(i,0),0 + x∗(i,0),1 > 0 for some
i = 1, . . . , n∗ − 1, then φ∗(j, 0) = 0 if x∗(j,0),1 = 0 for j = 0, . . . , i− 1, and φ∗(i, 0) = 1
if x∗(i,0),1 > 0. Otherwise, if x∗(i,0),0 + x∗(i,0),1 = 0 for all i = 1, . . . , n∗ − 1, φ∗(i, 0) can
be arbitrary and we define φ∗(i, 0) = 0 for i = 0, 1, . . . , n∗ − 1. Thus, formula (35)
defines the minimal number N of customers in the system, at which the inactive
system should be switched on by the average-cost optimal policy φ∗. We recall that
the SMDP is defined for the LP in the way that the system always starts on in state
(n∗, 0). Thus, the policy φ∗ always keep running the active system if the system
is not empty, switches it off when the system becomes empty, and switches on the
inactive system when the number of customers becomes N . If there are more than
N customers when the system is inactive, the corresponding states are transient.
The defined (0, N)-policy starts the system in all these states, and therefore it is
average-cost optimal.

(iii) If x∗(0,1),0 = x∗(0,1),1 = 0, then the state (0, 1) is transient under the policy φ∗. In
transient states the average-cost optimal policy φ∗ can be defined arbitrary. First
observe that x∗(i,1),0 > 0 for some i = 1, . . . , n∗ − 1 and therefore M is well-defined
in the theorem. Indeed, if x∗(i,1),0 = 0 for all states i = 0, . . . , n∗ − 1, we can set
φ∗(i, 1) = 1 for all these values of i. This means that in the original Markov chain,
where the running system is always kept on when the number of customers in the
system is greater or equal than n∗, the system is always on. Since the birth-and-death
for an M/M/∞ system is positive recurrent, we have a contradiction. Since the state
(M, 1) is recurrent for the Markov chain defined by the policy φ∗, this policy always
keeps the running system on when the number of the customers in the system is
M or more. Since x∗(i,δ),a = 0 for i < M and for all δ, a = 0, 1, we can define φ∗(i, δ)
arbitrarily when i < M. Let φ(i, δ) = 0, when i < M and δ = 0, 1. Similar to case
(i), the policy φ∗ prescribes to keep inactive system off as long as the number of
customers in the system is less than N , switches it on when this number becomes
N , and it can be prescribed to switch the inactive system on when the number of
customers is greater than N , because all such states are transient. Thus, the defined
(M,N)-policy is optimal.

�
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Similar to (34), the LP can be formulated to find the discounted-cost optimal policy.
However, we do not elaborate on the LP for the expected total discounted costs because
they are not used in this paper either for computing or for studying average-cost optimal
policies.

6. FINDING THE BEST (0, N)-POLICY AND ITS NON-OPTIMALITY

In this section we explain how to compute the best (0, N)-policy and show that it may not
be average-cost optimal. To do the latter, we consider an example.

Before providing the example, we show how to find the best (0, N)-policy. This problem
was studied by Browne and Kella [4] for an M/G/∞ queue without running costs. Here we
extend the solution from Browne and Kella [4] to a problem with a running cost rate c > 0.
Let ψN be a (0, N)-policy. The average cost under ψN can be found by formula (26) in
Browne and Kella [4] by replacing the setup cost there with the sum of switching costs and
running costs s0 + s1 + cBN , where BN is the expected busy period for an M/G/∞ queue
that starts with N busy servers; see formula (6a) in Browne and Kella [4]. This implies

vψN = hlN +
s0 + s1 + cBN
N/λ+BN

, (36)

where lN is the expected long-run average number of customers in the system under (0, N)-
policy. By formulae (22), (23) in Browne and Kella [4],

lN = ρ+
N − 1

2
N

N + λBN
. (37)

The optimal N∗ for the best (0, N)-policy is found by

N∗ = arg min
N

vψN . (38)

The following theorem extends Theorem 3 on p. 874 in Browne and Kella [4] to a non-
negative running cost rate c ≥ 0.

Theorem 7: For an M/G/∞ queue, let

Ñ = min
{
N >

c

h
:
N(N + 1)

2λ
≥ s0 + s1

h

}
. (39)

Then vψN < vψN+1 , when N ≥ Ñ . Thus N∗ = arg min1≤N≤Ñ v
ψN .

Proof: Let bn = (1/λ) + Tn, n = 0, 1, . . . , where Tn = Bn+1 −Bn. Fotmula (29) in Browne
and Kella [4] provides an explicit expression for bn. Note that

∑N−1
i=0 bi = BN + (N/λ) is

the expected duration of a cycle for an M/G/∞ queue controlled by a (0, N)-policy ψN ,
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N = 1, 2, . . . . By (36) and (37),

vψN = h

(
ρ+

N − 1
2

N/λ∑N−1
i=0 bi

)
+
s0 + s1 + c

(∑N−1
i=0 bi −N/λ

)
∑N−1
i=0 bi

.

Straightforward and somewhat lengthy calculations imply that vψN < vψN+1 , if hN −
c > 0 and

(
h(N − 1)

2λ
+
s0 + s1
N

− c

λ

)
/

(
hN

λ
− c

λ

)
<

∑N−1
i=0 bi
NbN

. (40)

As follows from (39), if N ≥ Ñ , the left hand side in (40) is not greater than 1. The right
hand side is greater than 1 since the sequence {bi}i=0,1,... is decreasing. Thus vψN < vψN+1

for N ≥ Ñ . �

We remark that, if c = 0, then (40) becomes

N − 1
2N

+
λ

h

(s0 + s1)
N2

<

∑N−1
i=0 bi
NbN

. (41)

Inequality (41) is equivalent to inequality (30) in Browne and Kella [4], which in
notations of this paper is

1
2

+
λ

h

(s0 + s1)
N(N + 1)

<

∑N
i=0 bi

(N + 1)bN
. (42)

Indeed, if (41) is written as AN < BN , then (42) is (AN + (1/N))(N/N + 1) < (BN +
(1/N))(N/N + 1).

Theorem 7 implies that an average-cost optimal (0, N)-policy can also be found by
solving the LP (34) with the state space Z ′′ = {(i, δ) : i = 0, 1, . . . , Ñ − 1, δ = 0, 1} and
with the new action set A′′(·) defined as A′′(0, 1) = {0}, A′′(i, 1) = {1} for i = 1, . . . , Ñ − 1,
and A′′(i, 0) = {0, 1} for i = 1, . . . , Ñ − 1. The following example demonstrates that the
best (0, N)-policy may not be optimal.

Example 1: Consider an M/M/∞ queue with the arrival rate λ = 2, each server’s rate
μ = 1, holding cost rate h = 1, service cost rate c = 100, and switching costs s0 = s1 = 100.
Then n∗ = �(c/h) + 1 = 101 and Z ′ = {(i, δ) : i = 0, 1, . . . , 100, δ = 0, 1}. We solved the
LP (34) with CPLEX in MatLab. The value of the objective function is approximately equal
to 43.39. For the found solution, x∗(39,0),1 > 0, x∗(i,0),0> 0 for i = 4, . . . , 38, x∗(i,1),1> 0 for
i = 5, . . . , 100, x∗(4,1),0 > 0, and x∗z,a = 0 for all the other z ∈ Z ′, a ∈ A = {0, 1}. In view of
Theorem 6, the average-cost optimal policy φ is the (4, 39)-policy. Thus vφ ≈ 43.39. The best
average-cost (0, N)-policy was found by using Theorem 7, and N∗ = 47. The corresponding
average cost is vψN∗ ≈ 51.03 > vφ.
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