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Boundary-layer analysis for effects of viscosity of
the irrotational flow on the flow induced by a
rapidly rotating cylinder in a uniform stream

By J. WANG AND D. D. JOSEPH
Department of Aerospace Engineering and Mechanics, University of Minnesota, 110 Union St SE,

Minneapolis, MN 55455, USA

(Received 13 March 2005 and in revised form 18 November 2005)

We study the streaming flow past a rapidly rotating circular cylinder. The starting
point is the full continuity and momentum equations without any approximations.
We assume that the solution is a boundary-layer flow near the cylinder surface with
the potential flow outside the boundary layer. The order of magnitude of the terms
in the continuity and momentum equations can be estimated inside the boundary
layer. When terms of the order of δ/a and higher are dropped, where δ is the
boundary-layer thickness and a is the radius of the cylinder, the equations used by
M. B. Glauert (Proc. R. Soc. Lond. A, vol. 242, 1957, p. 108) are recovered. Glauert’s
solution ignores the irrotational rotary component of the flow inside the boundary
layer, which is consistent with dropping δ/a terms in the governing equations.

We propose a new solution to this problem, in which the velocity field is decomposed
into two parts. Outside the boundary layer, the flow is irrotational and can be decom-
posed into a purely rotary flow and a potential flow past a fixed cylinder. Inside the
boundary layer, the velocity is decomposed into an irrotational purely rotary flow
and a boundary-layer flow. Inserting this decomposition of the velocity field inside
the boundary layer into the governing equations, we obtain a new set of equations
for the boundary-layer flow, in which we do not drop the terms of the order of δ/a or
higher. The pressure can no longer be assumed to be a constant across the boundary
layer, and the continuity of shear stress at the outer edge of the boundary layer is
enforced. We solve this new set of equations using Glauert’s method, i.e. to expand
the solutions as a power series of α = 2U0/Q, where U0 is the uniform stream velocity
and Q is the circulatory velocity at the outer edge of the boundary layer. The pressure
from this boundary-layer solution has two parts, an inertial part and a viscous part.
The inertial part comes from the inertia terms in the momentum equations and is
in agreement with the irrotational pressure; the viscous part comes from the viscous
stress terms in the momentum equations and may be viewed as a viscous pressure
correction, which contributes to both drag and lift. Our boundary-layer solution is
in reasonable to excellent agreement with the numerical simulation in the companion
paper by Padrino & Joseph (2006).

1. Introduction
The potential flow over a rotating cylinder in a uniform stream plays an important

role in classical airfoil theory in which the flow and airfoil shape is obtained by
conformal transformation, and the Kutta condition suppressing separation at the
trailing edge is obtained by adjusting the ratio of the rotational speed to the streaming
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Figure 1. The uniform streaming flow past a rotating cylinder.

speed. In our problem, the uniform flow is from right to left and the cylinder rotates
counterclockwise (see figure 1). The lift on the cylinder points upward and is defined
as positive. The drag on the cylinder is negative if it is in the uniform flow direction;
the drag is positive if it is opposite to the uniform flow direction.

The flow pattern depends critically on the ratio between the uniform stream
velocity U0 and the fluid circulatory velocity Q. Potential flow theory shows that
when 2U0/Q < 1, there is no stagnation point on the cylinder and a region of closed
streamlines exists near the cylinder. The fluid circulatory velocity Q is closely related
to the peripheral velocity of the cylinder q = Ωa, where Ω is the angular velocity of
the cylinder; Q and q are approximately equal for large values of q . Experiments
(Prandtl & Tietjens 1931) and simulations (see the companion paper Padrino &
Joseph 2006) confirm that separation is largely suppressed and a closed boundary
layer around the cylinder may be expected when q is much larger than U0.

A number of theoretical studies have been dedicated to this problem based on the
assumption that the ratio q/U0 is high, separation is suppressed, and a steady-state
solution of the problem exists. Glauert (1957) solved the steady-state two-dimensional
boundary-layer equations and obtained the solution in the form of a power series in
α = 2U0/Q, which is related to the speed ratio q/U0 by

α → 2U0/q =
2

q/U0

as q → ∞. (1)

He carried out the analysis up to and including boundary-layer functions associated
with α4 and obtained

Q

q
= 1 − 3

(
U0

q

)2

− 3.24

(
U0

q

)4

+ · · · . (2)

In his boundary-layer equations, the pressure was assumed to be a constant across
the boundary layer; thus the irrotational pressure is the only component in the
normal stress acting on the cylinder. The pressure does not contribute to the drag
and its contribution to the lift is the same as in the classical aerodynamics equation
Lp = ρU0Γ , where Γ = 2πaQ is the circulation. The coefficient for the pressure lift is

CLp
=

Lp

ρU 2
0 a

= 2π
Q

U0

= 2π
q

U0

[
1 − 3

(
U0

q

)2

− 3.24

(
U0

q

)4

+ · · ·
]
. (3)

The effect of the boundary-layer analysis on the pressure lift is through the value of
Q and it should be noted that CLp

is independent of the Reynolds number. Glauert
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did not consider the friction drag and lift, but they can be readily obtained from his
solution:

CDf
=

Df

ρU 2
0 a

= − 2π√
Re

√
Q

U0

, CLf
=

Lf

ρU 2
0 a

=
2π√
Re

√
Q

U0

, (4)

where

Re =
2aρU0

µ
(5)

is the Reynolds number based on the uniform streaming velocity. Glauert computed
the torque required to maintain the rotation

T = 2
√

2πρU
3/2
0 a3/2

√
ν

[(
U0

q

)1/2

− 0.522

(
U0

q

)5/2

+ · · ·
]

(6)

and the torque coefficient is

CT =
T

2ρU 2
0 a2

=
2π√
Re

[(
U0

q

)1/2

− 0.522

(
U0

q

)5/2

+ · · ·
]

. (7)

Wood (1957) studied a class of two-dimensional laminar boundary-layer flows with
closed streamlines. The velocity at the solid boundary was supposed uniform, and the
velocity in the boundary layer was supposed to differ only slightly from that of the
boundary. A formal solution of the boundary layer was then derived by expanding
the velocity in a power series in a small parameter representative of the small dif-
ferences of the speed through the boundary layer. He applied the theory to the uniform
streaming flow past a rotating cylinder and obtained a circulation which was equi-
valent to the first two terms of equation (2).

Moore (1957) also considered this problem assuming that the cylinder rotation
velocity was much greater than that of the uniform stream. He argued that the effect
of the uniform streaming flow could be regarded as a perturbation of the viscous
irrotational rotary flow induced by a rotating cylinder and obtained a uniformly
valid first approximation to the flow field by solving the streamfunction equation. In
the limit of large Reynolds number, Moore also obtained a circulation which was
equivalent to the first two terms of equation (2). Moore showed that the drag was
small, of the order of (U0/q)3 and the lift coefficient was

CL = 2π
q

U0

[
1 + O

(
U0

q

)2 ]
, (8)

which is comparable to Glauert’s pressure lift, (3), but Moore did not give the
coefficient of (U0/q)2. In the limit of large Reynolds number, Moore showed that the
torque was

T = 4πµaq

(
1 +

√
2

2

(
U0

q

)2 √
Re

)
, (9)

where the first term on the right-hand side 4πµaq is the torque when there is only
viscous irrotational rotary flow, but no streaming flow. The torque coefficient is

CT =
4π

Re

q

U0

+
2
√

2π√
Re

U0

q
, (10)
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170 J. Wang and D. D. Joseph

where the second term on the right-hand side is similar to Glauert’s torque coefficient,
(7), but the powers of U0/q are different.

Another problem of the flow past a rotating cylinder is the initial motion after an
impulsive start. Ece, Walker & Doligalski (1984) investigated the initial boundary-
layer development for an impulsively started translating and rotating cylinder. They
solved the time-dependent boundary-layer equations by two methods: an expansion
of the solution in a power series in time, and a fully numerical integration of the
governing equations. They showed a variety of complex boundary-layer separation
flow patterns and demonstrated how separation was affected by increasing rotation
rates and how it was ultimately suppressed by the rotation. The temporal development
of the drag, lift and torque was presented, but their boundary-layer solution gave no
contribution to the pressure drag and lift. They noted that a first-order correction
to the vorticity would contribute to the pressure drag and lift comparable to the
friction drag and lift; however, the correction was not computed. Their calculation
does not last to the time taken for the outer flow to acquire a steady circulation, thus
a comparison with the steady boundary-layer solutions, such as Glauert (1957) and
Moore (1957), is not possible.

Numerical simulations have been widely used to study the flow past a rotating
cylinder. A review of the numerical studies can be found in Padrino & Joseph (2006),
who studied flows with high Reynolds numbers (Re =200, 400, 1000) and high speed
ratios (q/U0 = 3, 4, 5, 6) using the commercial software Fluent. Their results show
that separation is largely suppressed and a steady-state solution can be obtained.
Their numerical simulation will serve as the benchmark for the analysis in this work.

We investigate the uniform streaming flow past a rotating cylinder adopting the
same assumption as in Glauert (1957), Moore (1957) and Wood (1957), i.e. the
cylinder rotation velocity is much greater than that of the uniform stream, separation
is suppressed, and a steady-state solution of the problem exists. Our work here is
intended to be an improvement of Glauert’s boundary-layer solution. The boundary-
layer equations used by Glauert can be recovered when terms of the order of δ/a and
higher are dropped from the unapproximated continuity and momentum equations.
To be consistent, we should have

Q
a + δ

r
∼ Q for a � r � a + δ,

which means that the irrotational rotary component of the flow inside the boundary
layer is ignored. The tangential velocity given by Glauert is

u = Q(1 + αf ′
1e

iθ + α2[f ′
2e

2iθ + g′
2] + · · ·), (11)

which is a perturbation about a uniform flow, not a perturbation about the viscous
irrotational rotary flow. It can be inferred from (11) that the shear stress at the
cylinder surface approaches zero when α approaches zero. In other words, Glauert’s
solution suggests that the shear stress at the cylinder surface approaches zero when the
streaming flow is extremely weak compared to the rotation of the cylinder. However,
the real limiting value for the shear stress is −2µq/a. This discrepancy carries on
to the computation of the torque. Glauert’s torque expression, (6), indicates that the
torque is zero when U0 = 0, however, the actual torque to maintain the rotation of the
cylinder in a viscous irrotational purely rotary flow is 4πµaq , which is also shown in
Moore’s torque expression, (9).
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We propose a new solution to this problem, in which the velocity is decomposed into
two parts. Outside the boundary layer, the flow is irrotational and can be decomposed
into a viscous irrotational purely rotary flow and a potential flow past a fixed cylinder.
Inside the boundary layer, the velocity field is decomposed into a viscous irrotational
purely rotary flow and a boundary-layer flow which is expanded as a power series of
α = 2U0/Q. This decomposition of the velocity field in the boundary layer is actually
a perturbation of the purely rotary flow with α being the perturbation parameter,
which is similar to Moore’s approach. The difference is that Moore tried to obtain
a uniformly valid solution for the flow, whereas we are seeking the solution valid
in the boundary layer. Inserting this decomposition of the velocity field inside the
boundary layer into the governing equations, we obtain a new set of equations for the
boundary-layer flow, in which we do not drop the terms of the order of δ/a or higher.
There are significant differences between our new equations and Glauert’s boundary-
layer equations. In Glauert’s study, the pressure is assumed to be a constant across
the boundary layer and the momentum equation in the radial direction is not used.
The direct result of this approximation by Glauert (and Prandtl), is that the normal
stress on a solid is imposed by the irrotational pressure, independent of the Reynolds
number. Viscous effects on the normal stress on a solid wall, which always exist at
finite-Reynolds number, no matter how large, are not available. In our new equations,
the pressure is an unknown and the momentum equation in the radial direction does
appear. Because we have an extra unknown, an extra boundary condition is required
and we choose to enforce the continuity of the shear stress at the outer edge of the
boundary layer. The technique to solve this new set of equations is almost the same
as that used by Glauert. The power series expansions are inserted into the new set of
equations and the coefficients of different powers of α are compared, then ordinary
differential equations for the functions in the power series are obtained and solved.
The inertia terms in the momentum equations give rise to the irrotational pressure
and the viscous terms lead to a viscous pressure correction, which contributes to both
drag and lift.

The idea of a viscous correction of the irrotational pressure has its origin in gas–
liquid problems approximated by irrotational flow solutions. One classical example
is the drag on a spherical gas bubble of radius a rising in a viscous liquid at high
Reynolds number. Levich (1949) obtained the value 12πaµU or equivalently the
drag coefficient 48/Re, by calculating the dissipation of the irrotational flow around
the bubble. Moore (1959) calculated the drag directly by integrating the pressure
and viscous normal stress of the potential flow and neglecting the viscous shear
stress (which physically should be zero), obtaining the value 8πaµU . The discrepancy
between these two values led G. K. Batchelor, as reported in Moore (1963), to suggest
the idea of a pressure correction to the irrotational pressure. It is generally assumed
that the pressure correction arises in the boundary layer induced by the discrepancy
of the non-zero irrotational shear stress and the zero shear stress at the gas–liquid
interface. Moore (1963) performed a boundary-layer analysis and demonstrated that
the pressure correction contributes to the drag on the bubble to the same order as the
viscous stresses. In his analysis, the lowest-order terms in the momentum equation in
the tangential direction involve only the boundary-layer velocity, but not the pressure.
Thus, he was able to solve for the boundary-layer velocity first, then insert it into
the momentum equation in the radial direction to obtain the pressure correction.
The common features of Moore’s boundary-layer analysis and our analysis here are
that the pressure is not assumed to be a constant across the boundary layer and the
momentum equation in the radial direction has to be considered; this is very different
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from the classical boundary-layer theory of Prandtl. Moore’s pressure correction is
readily obtained by setting y = 0 in his equation (2.37):

pv = (4/R)(1 − cos θ)2(2 + cos θ)/ sin2 θ, (12)

which is singular at the rear stagnation point where θ = π and cannot be used to com-
pute the drag. To obtain the drag coefficient, Moore calculated the momentum defect,
and obtained the Levich value 48/Re plus contributions of order Re−3/2 or lower. The
pressure correction which gives rise to the same drag on the bubble as the dissipation
calculation has been obtained by Kang & Leal (1988) and Joseph & Wang (2004) by
different approaches, neither of which relies on boundary-layer analysis. A boundary-
layer analysis which leads to the correct pressure and drag has not been accomplished
for the spherical bubble problem. Our analysis here gives rise to a viscous pressure
correction in the boundary layer on solids.

One of the key differences between our new boundary-layer analysis and the classical
boundary-layer theory of Prandtl is in the calculation of the pressure drag. In the
classical boundary-layer approximation, the pressure is constant across the layer and
the irrotational pressure of the outer flow is imposed on the surface of the body. This
approximation is not good enough for the purpose of the drag calculation and leads
to zero pressure drag. Lighthill (1963) remarked, ‘Errors, due to neglecting either the
pressure gradient across the layer, or the displacement-thickness effect on U , produce
a resultant pressure force (“form drag”) comparable with the whole viscous force on
the body (“skin-friction drag”). Accordingly, such errors cannot be neglected, as often
no drag is present from other causes, the pressure forces in pure irrotational flow
having zero resultant.’ Various techniques were developed to calculate the pressure
drag as a patch for Prandtl’s theory. Lighthill (1963) described these methods, ‘To get
round these difficulties, one does not in practice attempt to calculate surface pressure
more precisely, but uses a combination of arguments (Chapter X) in which drag is
inferred, from conservation of momentum for large masses of fluid, in terms of the
state of the boundary layer at the trailing edge.’ Schlichting (1960) reviewed methods
for the calculation of the profile drag (the sum of the friction drag and the pressure
drag) devised by Pretsch (1938) and Squire & Young (1938). These methods are tied
in with the boundary-layer calculation and the drag is obtained based on the principle
of momentum conservation. Schlichting remarked about these methods, ‘However, in
order to be in a position to calculate pressure drag it is necessary in each case to
make use of certain additional empirical relations.’ The method by which we treat
the drag is totally different. We solve for the pressure on the body from governing
equations. The pressure drag is computed by direct integration of the pressure over
the surface of the body, not by arguments of conservation of the momentum.

In our new set of equations for the boundary-layer flow and its boundary conditions,
we assume that the boundary-layer thickness δ/a is known, then we can compute the
solution. This is different from the problems such as the Blasius’ solution, in which the
boundary condition at the outer edge of the boundary layer can be stretched to infinity
and the solution is obtained without knowledge of the boundary-layer thickness. We
prescribe δ/a at different values, compute the solution, then compare them to the
results of numerical simulation; the value of δ/a which leads to the best agreement
with the simulation results may be viewed as a proper boundary-layer thickness.
The boundary-layer thickness determined in this way satisfies approximately (δ/a) ∝
(1/

√
Re) and decreases with increasing q/U0. Comparison of our solution using the

proper δ/a with the simulation results and Glauert’s and Moore’s solutions shows that
our lift and torque are in reasonable to excellent agreement with the simulation results
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and the agreement for the drag is less good if the speed ratio q/U0 is not high enough.
It is also demonstrated our solution is indeed an improvement of Glauert’s solution.

2. Unapproximated governing equations
Using the polar coordinate system (r, θ), the continuity equation is

∂vr

∂r
+

vr

r
+

1

r

∂vθ

∂θ
= 0, (13)

and the momentum equations for steady flows are(
vr

∂

∂r
+

vθ

r

∂

∂θ

)
vθ +

vrvθ

r
= − 1

rρ

∂P

∂θ
+ ν

(
∇2vθ − vθ

r2
+

2

r2

∂vr

∂θ

)
, (14)(

vr

∂

∂r
+

vθ

r

∂

∂θ

)
vr − v2

θ

r
= − 1

ρ

∂P

∂r
+ ν

(
∇2vr − vr

r2
− 2

r2

∂vθ

∂θ

)
, (15)

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

3. Boundary-layer approximation and Glauert’s equations
The flow may be approximated by a boundary layer near the cylinder surface and

a potential flow outside. Inside the boundary layer, we have the following estimations

vθ ∼ Q, r ∼ a,
∂

∂r
∼ 1

δ
,

∂

∂θ
∼ 1. (16)

With these estimates, the magnitude of the terms in (13) can be written as

vr

δ
+

vr

a
+

Q

a
= 0.

If we consider vr/a to be negligible compared to vr/δ, we have

vr

δ
+

Q

a
= 0 ⇒ vr ∼ Q

δ

a
, (17)

and the continuity equation may be written as

∂vr

∂r
+

1

r

∂vθ

∂θ
= 0. (18)

We estimate the magnitude of terms in equation (14):

Q2

a

(
1 + 1 +

δ

a

)
= − 1

rρ

∂P

∂θ
+ ν

Q

δ2

(
1 +

δ

a
+

δ2

a2
− δ2

a2
+

δ3

a3

)
. (19)

If we drop the terms of the order of δ/a and higher, equation (14) becomes

vr

∂vθ

∂r
+

vθ

r

∂vθ

∂θ
= − 1

rρ

∂P

∂θ
+ ν

∂2vθ

∂r2
. (20)

Now we estimate the magnitude of terms in (15):

Q2

a

(
δ

a
+

δ

a
− 1

)
= − 1

ρ

∂P

∂r
+ ν

Q

δ2

(
δ

a
+

δ2

a2
+

δ3

a3
− δ3

a3
+

δ2

a2

)
. (21)
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Thus, (15) becomes

v2
θ

r
=

1

ρ

∂P

∂r
, (22)

which indicates that the change of the pressure across the boundary layer is of the
order of δ and the pressure can still be assumed to be constant if δ/a is negligible
(Schlichting 1960).

Now if we use x for rθ , y for r , u for vθ and v for vr , equations (18) and (20) may
be written as

∂u

∂x
+

∂v

∂y
= 0, (23)

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂P

∂x
+ ν

∂2u

∂y2
, (24)

which are the two-dimensional boundary-layer equations used by Glauert (1957). If
δ/a terms are dropped, the irrotational rotary component of the velocity inside the
boundary layer will be ignored. In reality, the boundary-layer thickness is never zero
and is found to be rather large in numerical simulations. Therefore, dropping δ/a

terms can cause substantial error.

4. Decomposition of the velocity and pressure field
We propose a new solution, in which the total velocity and pressure are decomposed

into two parts

vθ = upθ + uθ , vr = ur, P = pp + p, (25)

where

upθ = Q
a + δ

r
, pp = p∞ − ρ

2

(a + δ)2

r2
Q2 (26)

are the irrotational purely rotary velocity and the pressure induced by rotation. It is
noted that vθ = upθ , vr = 0 and P = pp is a potential solution and is an exact solution
for the unapproximated governing equations and no-slip boundary condition.

Outside the boundary layer, the flow is irrotational and can be decomposed into
two potential flows: the irrotational purely rotary flow and the uniform flow past a
circle with the radius a + δ. The velocity from the second potential flow is

uθ = U0

[
1 +

(a + δ)2

r2

]
sin θ, ur = −U0

[
1 − (a + δ)2

r2

]
cos θ. (27)

At the outer edge of the boundary layer (r = a + δ), the tangential velocity is

vθ = 2U0 sin θ + Q. (28)

The total pressure at r = a + δ can be obtained from Bernoulli’s equation

P = p′
∞ + 1

2
ρU 2

0 (1 − 4 sin2 θ) − 2ρU0Q sin θ − 1
2
ρQ2. (29)

After subtracting pp from (29), we obtain the pressure p at r = a + δ

p = c+ 1
2
ρU 2

0 (1−4 sin2 θ)−2ρU0Q sin θ = c− 1
2
ρU 2

0 +ρU 2
0 cos 2θ −2ρU0Q sin θ, (30)

where c is a certain constant.
Inside the boundary layer, uθ , ur and p must be obtained from the governing

equations. We insert (25) into the governing equations (13), (14) and (15), subtract
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the equations satisfied by upθ and pp , and obtain

∂ur

∂r
+

ur

r
+

1

r

∂uθ

∂θ
= 0, (31)

ur

∂

∂r
(upθ + uθ ) +

upθ + uθ

r

∂uθ

∂θ
+

ur (upθ + uθ )

r

= − 1

rρ

∂p

∂θ
+ ν

(
∂2uθ

∂r2
+

1

r

∂uθ

∂r
+

1

r2

∂2uθ

∂θ2
− uθ

r2
+

2

r2

∂ur

∂θ

)
, (32)

ur

∂ur

∂r
+

upθ + uθ

r

∂ur

∂θ
− 2upθuθ + u2

θ

r

= − 1

ρ

∂p

∂r
+ ν

(
∂2ur

∂r2
+

1

r

∂ur

∂r
+

1

r2

∂2ur

∂θ2
− ur

r2
− 2

r2

∂uθ

∂θ

)
. (33)

5. Solution of the boundary-layer flow
We solve equations (31), (32) and (33) for uθ , ur and p. Three boundary conditions

are imposed on the velocities, uθ , ur at r = a and uθ at r = a + δ; these are the same
as in Glauert’s analysis. The fourth boundary condition is that the shear stress τBL

rθ

evaluated using the boundary-layer solution is equal to the shear stress τ I
rθ evaluated

using the outer irrotational flow at r = a + δ. The four boundary conditions are as
follows

Q
a + δ

a
+ uθ = q at r = a, (34)

ur = 0 at r = a, (35)

Q + uθ = Q + 2U0 sin θ at r = a + δ, (36)

τBL
rθ = τ I

rθ at r = a + δ. (37)

Because we are considering a single fluid, the viscosity is the same inside and outside
the boundary layer. The continuity of the shear stress (37) is equivalent to continuity
of velocity gradients. Glauert’s boundary-layer equations can give only solutions with
continuous velocity, but our new equations can give solutions with continuous velocity
and velocity gradients. We will use complex variables to solve the equations and (36)
is written as

uθ = Qα(−i)eiθ at r = a + δ. (38)

Note that only the real part of the equation has physical significance.
We follow Glauert and expand the solution as a power series of α. A streamfunction

can be written as

ψ = Q[αf1(r)e
iθ + α2(f2(r)e

2iθ + g2(r)) · · ·] (39)

and the velocities are

uθ =
∂ψ

∂r
= Q[αf ′

1(r)e
iθ + α2(f ′

2(r)e
2iθ + g′

2(r)) · · ·], (40)

ur = −1

r

∂ψ

∂θ
= −Q

r
[αif1(r)e

iθ + α22if2(r)e
2iθ + · · ·]. (41)

The continuity equation (31) is automatically satisfied. The pressure is assumed to be

p = pc + ρQ2[αs1(r)e
iθ + α2(s2(r)e

2iθ + t2(r)) · · ·], (42)

where pc is a constant.
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We evaluate τ I
rθ using the potential flow (27) and the irrotational rotary flow

τ I
rθ = − 2µQ

a + δ
+ µQα

2i

a + δ
eiθ . (43)

From the boundary-layer solutions, we obtain

τBL
rθ = − 2µQ

a + δ
+ µQα

[
f ′′

1 − f ′
1

a + δ
+

f1

(a + δ)2

]
eiθ

+ µQα2

[
(f ′′

2 e2iθ + g′′
2 ) − 1

a + δ
(f ′

2e
2iθ + g′

2) +
4

(a + δ)2
f2e

2iθ

]
+ · · · . (44)

Comparing the terms in (43) and (44) linear in α, we obtain

2i

a + δ
= f

′′

1 − f ′
1

a + δ
+

f1

(a + δ)2
at r = a + δ. (45)

Consideration of the terms quadratic in α gives

f ′′
2 − 1

a + δ
f ′

2 +
4

(a + δ)2
f2 = 0, g′′

2 − 1

a + δ
g′

2 = 0 at r = a + δ. (46)

In this study, one of the major objects is to determine the relation between the
cylinder velocity q and the fluid circulatory velocity Q. In the expansion of the
boundary-layer velocities (40) and (41), Q is used as the fundamental parameter
rather than q . As noted by Glauert, this approach is convenient for the study of
the boundary-layer equations because the velocity at the outer edge of the boundary
layer is completely specified. Though Q is an unknown quantity and q is prescribed,
the relationship between q and Q can be established via (34), giving Q in terms
of q . We also note that the boundary-layer thickness δ appears in the boundary
conditions and it must be prescribed to obtain the solution. It can be expected that
the boundary-layer thickness is a function of θ , but we are not able to determine the
shape of the boundary layer. We will assume that δ is a constant for given Re and
q/U0; it may be viewed as the average boundary-layer thickness. The choice of δ has
significant effects on the solution and will be discussed later.

We insert (40), (41) and (42) into (32) and (33) and compare the coefficients
of different powers of α, to obtain ordinary differential equations for f1(r), f2(r),
g2(r) . . . . The terms linear in α in (32) and (33) satisfy, respectively,

Q(a + δ)

r
f ′

1 = −Qs1 +
ν

i

(
rf ′′′

1 + f ′′
1 − 2f ′

1

r
+

2f1

r2

)
, (47)

Q(a + δ)

r3
f1 − 2Q(a + δ)

r2
f ′

1 = −Qs ′
1 +

ν

i

(
f ′′

1

r
+

1

r2
f ′

1 − 1

r3
f1

)
. (48)

After eliminating s1 from (47) and (48), we obtain a fourth-order ordinary differential
equation for f1

Q(a + δ)

ν
i

(
f ′′

1

r
+

f ′
1

r2
− f1

r3

)
= rf ′′′′

1 + 2f ′′′
1 − 3

r
f ′′

1 +
3

r2
f ′

1 − 3

r3
f1, (49)

where Q(a + δ)/ν is a Reynolds number and we write

k =
ν

Q(a + δ)
. (50)
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The solution of (49) is

f1(r) =
c1

r
+ c2r

2−β + c3r
2+β + c4r, (51)

where c1, c2, c3 and c4 are constants to be determined by boundary conditions and

β =

√
1 +

i

k
. (52)

Three boundary conditions for f1 are obtained from (34), (35) and (38)

f1(a) = 0, f ′
1(a) = 0, f ′

1(a + δ) = −i. (53)

The fourth condition is the continuity of the shear stress (45), which can be written
as

i

a + δ
= f ′′

1 +
f1

(a + δ)2
at r = a + δ. (54)

With these four boundary conditions, we can determine c1, c2, c3 and c4 and the
function f1. The expression for f1 is long and will not be shown here.

After we obtain f1(r), we can compute s1(r) using equation (47)

s1 = −a + δ

r
f ′

1 +
ν

Q
ζ, (55)

where

ζ =
1

i

(
rf ′′′

1 + f ′′
1 − 2

r
f ′

1 +
2

r2
f1

)
. (56)

The two parts of s1, (−((a + δ)/r) f ′
1) and (ν/Q)ζ come from the inertia term and

viscous stress term in the momentum equation, respectively.
Next we carry out the calculation for terms quadratic in α. As pointed out by

Glauert, care should be taken when computing the product of two complex numbers
A and B ,

Re(A)Re(B) = Re(A(B + B)/2), (57)

where the overbar denotes a complex conjugate. We collect terms quadratic in α

from (32) and they can be divided into two groups, terms proportional to e2iθ and
terms independent of θ . The two groups of terms satisfy the following equations,
respectively

1

r

Qi

ν

(
1
2
f

′2
1 − 1

2
f1f

′′
1 − 1

2r
f1f

′
1 +

2(a + δ)

r
f ′

2

)
= −Qi

ν

2s2

r
+

(
f ′′′

2 +
f ′′

2

r
− 5f ′

2

r2
+

8f2

r3

)
,

(58)

− 1

2r

Qi

ν

(
f1f

′′
1 + f ′

1f
′
1 +

f1

r
f ′

1

)
= g′′′

2 +
g′′

2

r
− g′

2

r2
. (59)

Consideration of terms in (33) quadratic in α also yields two equations

1

r

Qi

ν

(
1

2r2
f 2

1 − 1
2
f

′2
1 +

4(a + δ)

r2
f2 − 2(a + δ)

r
f ′

2

)
= −Qi

ν
s ′
2 −

(
8

r3
f2 − 2

r2
f ′

2 − 2

r
f ′′

2

)
,

(60)

1

r

(
1

2r
f1f

′
1 +

1

2r
f ′

1f1 − 1

2r2
f1f1 − 1

2
f ′

1f
′
1 − 2(a + δ)

r
g′

2

)
= −t ′

2. (61)
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We can first solve g2(r) from (59), then eliminate s2(r) from (58) and (60) and solve
for f2(r), finally obtain t2(r) from (61).

Equation (59) is a third-order ordinary differential equation for g2. We prescribe
the streamfunction at r = a to be zero, which gives the condition

g2(a) = 0. (62)

The boundary condition (38) leads to

g′
2(a + δ) = 0. (63)

The continuity of the shear stress (46) leads to

g′′
2 (a + δ) = 0. (64)

No condition can be applied to g′
2(r = a), because it is only known that the surface

velocity is independent of θ . Thus we have three boundary conditions (62), (63) and
(64) for the third-order ordinary differential equation (59). A closed-form solution for
g2(r) can be obtained, but it is long and tedious and will not be shown here.

We eliminate s2 from (58) and (60) and obtain a fourth-order ordinary differential
equation for f2

Qi

ν

(
− 1

2
f1f

′′′
1 + 1

2
f ′

1f
′′
1 − 1

2r
f1f

′′
1 +

1

2r
f ′

1f
′
1 +

1

2r2
f1f

′
1 − 1

r3
f 2

1

)

= rf ′′′′
2 + 2f ′′′

2 − 9

r
f ′′

2 +
9

r2
f ′

2 − Q(a + δ)i

ν

(
2

r
f ′′

2 +
2

r2
f ′

2 − 8

r3
f2

)
. (65)

Three boundary conditions for f2(r) are obtained from (34), (35) and (38)

f2(a) = 0, f ′
2(a) = 0, f ′

2(a + δ) = 0, (66)

and the fourth condition comes from the continuity of the shear stress (46)

f ′′
2 +

4

(a + δ)2
f2 = 0 at r = a + δ. (67)

Equation (65) and the boundary conditions are solved by numerical integration.
After f2(r) is obtained, we compute s2(r) using (58)

s2 = − 1
4
f

′2

1 + 1
4
f1f

′′
1 +

1

4r
f1f

′
1 − a + δ

r
f ′

2 +
ν

2Q
ξ, (68)

where

ξ =
1

i

(
rf ′′′

2 + f ′′
2 − 5

r
f ′

2 +
8

r2
f2

)
. (69)

The function s2 can be divided into two parts, the term (ν/2Q)ξ comes from the
viscous stress and other terms in s2 come from the inertia terms in the momentum
equation.

The last step in the calculation of terms quadratic in α is to integrate (61) to obtain
t2(r). There will be an undetermined constant in the process of integration, which can
be absorbed into the pressure constant pc.
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With the functions s1 and s2, we can write the pressure as

p = pc + ρQ2αs1e
iθ + ρQ2α2

(
s2e

2iθ + t2
)

+ O(α3)

= pc + 2ρU0Q

(
−a + δ

r
f ′

1 +
ν

Q
ζ

)
eiθ

+ 4ρU 2
0

[(
−1

4
f

′2

1 +
1

4
f1f

′′
1 +

1

4r
f1f

′
1 − a + δ

r
f ′

2 +
ν

2Q
ξ

)
e2iθ + t2

]
+ O(α3). (70)

The pressure at the outer edge of the boundary layer is of interest, because it can be
compared to the irrotational pressure (30) at r = a+δ and the difference between them
gives the pressure correction. From (53), f ′

1(a + δ) = −i and from (66), f ′
2(a + δ) = 0,

the pressure at r = a + δ is

p = pc + 2ρU0Q

(
i +

ν

Q
ζ

)
eiθ + ρU 2

0

[(
1+f1f

′′
1 − i

a + δ
f1 +

2ν

Q
ξ

)
e2iθ + 4t2

]
+ O(α3).

(71)

The real part of the above equation is

p = Re(pc)+4ρU 2
0 Re(t2)−2ρU0Q sin θ +ρU 2

0 cos 2θ +ρU 2
0 Re

[(
f1f

′′
1 − i

a+δ
f1

)
e2iθ

]

+ 2µU0 [Re(ζ ) cos θ − Im(ζ ) sin θ] + 2µ
U 2

0

Q
[Re(ξ ) cos 2θ − Im(ξ ) sin 2θ] + O(α3).

(72)

Because the radial component ur of the velocity is small in the boundary layer,
we may neglect f1, then compare (72) to the irrotational pressure (30). The terms
−2ρU0Q sin θ and ρU 2

0 cos 2θ are the same in the two pressure expressions, and the
terms proportional to µ in (72) are the extra pressure arising in the boundary layer.
This comparison demonstrates that the inertia terms in the momentum equations give
rise to the irrotational pressure and the viscous stress terms give rise to a viscous
pressure correction. In general, the pressure correction can be expanded as a Fourier
series

pv =

∞∑
m=0

[hm(r) cos mθ + jm(r) sin mθ].

Here we determine the coefficients of sin θ , cos θ , sin 2θ and cos 2θ up to O(α2) terms.
These coefficients may be modified and more coefficients in the Fourier series can be
obtained if calculations for O(α3) terms are carried out. The cos θ and sin θ terms in
the pressure correction contribute to the drag and lift, respectively.

Up to this point, our solutions are in terms of the fluid circulatory velocity Q. We
shall solve for Q in terms of the prescribed quantities using an iterative method. There
are two prescribed dimensionless parameters in this problem, the Reynolds number
Re and the speed ratio q/U0. Our first guess of Q comes from the irrotational purely
rotary flow

Q(1) = q
a

a + δ
⇒ Q(1)

q
=

1

1 + δ/a
,

where the superscript (1) indicates the value for Q in the first iteration. Using Q(1)/q ,
the value of k is computed in equation (50) and f1(r) is subsequently obtained. Then
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we solve for g2(r) from equation (59) and obtain g′
2. The velocity uθ at r = a is then

uθ = Q(1)α2Re[g′
2(r = a, Q(1)/q)] + O(α3). (73)

Inserting (73) into (34), we obtain

Q(2)

q

a + δ

a
+ 4

U 2
0

q2

q

Q(1)
Re

[
g′

2

(
r = a, Q(1)

/
q
)]

= 1, (74)

from which we can solve for Q(2), which is the value for Q in the second iteration.
We repeat the calculation using Q(2) to obtain the value for Q in the next iteration,
until the value of Q converges.

The functions s1, f2, s2 and t2 are computed following the procedure described
above and the solution of the boundary-layer equations are determined up to O(α2).
We can compute the pressure and shear stress at the cylinder surface and integrate
to obtain the drag, lift and torque. The drag and lift by the pressure are

Dp =

∫
A

ex · (−P1) · er dA =

∫ 2π

0

(−P ) cos θ a dθ = −ρQ2α Re(s1)πa, (75)

Lp =

∫
A

ey · (−P1) · er dA =

∫ 2π

0

(−P ) sin θ a dθ = ρQ2α Im(s1)πa. (76)

The friction drag and lift by the shear stress are

Df =

∫
A

ex · (τθr eθ er ) · er dA =

∫ 2π

0

τθr (−sin θ) a dθ = µQα Im(f ′′
1 )πa, (77)

Lf =

∫
A

ey · (τθr eθ er ) · er dA =

∫ 2π

0

τθr cos θ a dθ = µQα Re(f ′′
1 )πa. (78)

We call the readers’ attention to the fact that in our problem, the drag on the cylinder
is negative if it is in the uniform flow direction; the drag is positive if it is opposite to
the uniform flow direction (see figure 1). The drag and lift coefficients are defined as

CDp
=

Dp

ρU 2
0 a

, CDf
=

Df

ρU 2
0 a

, CD =
Dp + Df

ρU 2
0 a

, (79)

CLp
=

Lp

ρU 2
0 a

, CLf
=

Lf

ρU 2
0 a

, CL =
Lp + Lf

ρU 2
0 a

. (80)

The torque is

T = −a2

∫ 2π

0

τθr dθ = 2πµa2

(
2Q

a + δ

a2
− Qα2g′′

2 +
Qα2

a
g′

2

)
, (81)

with the dimensionless torque defined as

CT =
T

2ρU 2
0 a2

. (82)

In tables 1–6, we give the drag, lift and torque computed from our boundary-layer
solutions and compare them to the results of numerical simulation from Padrino &
Joseph (2006) for six cases, (Re, q/U0) = (200, 4), (200, 5), (400, 4), (400, 5), (400, 6)
and (1000, 3). The boundary-layer thickness δ/a is prescribed at different values; when
the value of δ/a falls into a certain range (highlighted in bold type in tables 1–6), our
analysis gives rise to lift and torque in good agreement with the simulation results.
The agreement for the drag is less good, which is partly due to the fact that the
absolute value of the drag is small and the relative error is apparent. Nevertheless,
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δ/a q/Q CDp
CDf

CD CLp
CLf

CL CT

0.1 1.114 −13.551 −1.388 −14.939 21.563 0.414 21.978 0.277
0.15 1.221 −5.090 −1.010 −6.100 21.303 0.587 21.891 0.328
0.2 1.409 −1.669 −0.848 −2.517 20.153 0.697 20.850 0.400
0.23 1.580 −0.620 −0.788 −1.408 18.938 0.725 19.663 0.446
0.24 1.649 −0.381 −0.770 −1.152 18.444 0.729 19.173 0.461
0.25 1.726 −0.188 −0.754 −0.942 17.907 0.729 18.636 0.476
0.26 1.812 −0.0351 −0.737 −0.772 17.329 0.727 18.056 0.490
0.27 1.907 0.0815 −0.721 −0.639 16.710 0.722 17.432 0.504
0.28 2.012 0.166 −0.704 −0.538 16.055 0.714 16.769 0.517

Simulation results 0.728 −0.604 0.124 16.961 0.621 17.582 0.453

Table 1. The comparison of the coefficients for the drag, lift and torque with the simulation
results for Re= 200 and q/U0 = 4. The lift and torque computed using δ/a = 0.24, 0.25 or 0.26
are in reasonable agreement with the results of numerical simulation. The drag, especially the
drag due to the pressure, does not agree well with the simulation results. When δ/a = 0.28,
the value of q/Q is such that α = 2U0/Q > 1, which makes the power series expansions of the
solutions in terms of α divergent. The calculation can be performed, but cannot be expected
to converge to the true result.

δ/a q/Q CDp
CDf

CD CLp
CLf

CL CT

0.1 1.114 −13.061 −1.400 −14.461 27.039 0.517 27.556 0.346
0.15 1.218 −4.157 −1.044 −5.201 27.007 0.730 27.736 0.407
0.19 1.350 −0.988 −0.928 −1.916 26.414 0.845 27.259 0.473
0.2 1.392 −0.468 −0.909 −1.377 26.164 0.866 27.029 0.490
0.21 1.437 −0.0296 −0.893 −0.922 25.870 0.883 26.752 0.507
0.22 1.486 0.337 −0.878 −0.541 25.531 0.896 26.428 0.524
0.25 1.659 1.089 −0.841 0.248 24.243 0.920 25.163 0.574
0.3 2.072 1.531 −0.779 0.752 21.111 0.903 22.014 0.650
0.35 2.804 1.318 −0.690 0.628 16.512 0.813 17.324 0.714

Simulation results 0.824 −0.835 −0.0107 26.183 0.846 27.029 0.514

Table 2. The comparison of the coefficients for the drag, lift and torque with the simulation
results for Re= 200 and q/U0 = 5. The lift and torque computed using δ/a = 0.2, 0.21 or 0.22
are in excellent agreement with the results of numerical simulation. The agreement of drag,
especially the drag due to the pressure, is not good. When δ/a = 0.35, α = 2U0/Q > 1, and the
power series expansions of the solutions in terms of α are divergent.

δ/a q/Q CDp
CDf

CD CLp
CLf

CL CT

0.1 1.155 −5.629 −0.724 −6.352 21.104 0.396 21.499 0.173
0.13 1.277 −2.249 −0.610 −2.859 20.292 0.470 20.762 0.215
0.15 1.398 −1.008 −0.565 −1.572 19.357 0.498 19.855 0.246
0.16 1.472 −0.582 −0.547 −1.129 18.766 0.506 19.272 0.261
0.17 1.558 −0.258 −0.530 −0.788 18.094 0.509 18.603 0.276
0.18 1.657 −0.0178 −0.514 −0.532 17.343 0.509 17.852 0.291
0.2 1.906 0.260 −0.483 −0.223 15.613 0.497 16.110 0.318
0.23 2.466 0.316 −0.432 −0.116 12.551 0.453 13.004 0.352

Simulation results 0.534 −0.451 −0.0836 17.609 0.447 18.057 0.275

Table 3. The comparison of the coefficients for the drag, lift and torque with the simulation
results for Re= 400 and q/U0 = 4. The lift and torque computed using δ/a = 0.17 or 0.18 are in
excellent agreement with the results of numerical simulation. The agreement of drag, especially
the drag due to the pressure, is not good. When δ/a =0.23, α = 2U0/Q > 1, and the power
series expansions of the solutions in terms of α are divergent.
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δ/a q/Q CDp
CDf

CD CLp
CLf

CL CT

0.1 1.153 −4.803 −0.746 −5.550 26.670 0.491 27.187 0.215
0.13 1.266 −1.190 −0.650 −1.840 26.140 0.582 26.722 0.263
0.14 1.315 −0.457 −0.631 −1.089 25.816 0.602 26.419 0.280
0.15 1.370 0.112 −0.617 −0.504 25.420 0.618 26.038 0.297
0.16 1.431 0.548 −0.604 −0.056 24.952 0.630 25.582 0.314
0.2 1.750 1.386 −0.565 0.821 22.366 0.641 23.007 0.374
0.25 2.502 1.313 −0.493 0.820 16.923 0.577 17.500 0.440

Simulation results 0.591 −0.601 −0.010 26.415 0.597 27.011 0.297

Table 4. The comparison of the coefficients for the drag, lift and torque with the simulation
results for Re= 400 and q/U0 = 5. The lift and torque computed using δ/a = 0.14 or 0.15,
and the drag computed using δ/a = 0.16 are in good agreement with the results of numerical
simulation. When δ/a = 0.25, α = 2U0/Q > 1, and the power series expansions of the solutions
in terms of α divergent.

δ/a q/Q CDp
CDf

CD CLp
CLf

CL CT

0.1 1.151 −3.860 −0.773 −4.633 32.48 0.585 33.06 0.256
0.12 1.216 −1.031 −0.714 −1.744 32.48 0.660 33.14 0.290
0.13 1.254 −0.0650 −0.697 −0.762 32.42 0.690 33.11 0.308
0.135 1.274 0.331 −0.691 −0.361 32.37 0.703 33.07 0.316
0.14 1.296 0.676 −0.686 −0.0105 32.31 0.714 33.03 0.325
0.145 1.317 0.975 −0.682 0.293 32.24 0.725 32.97 0.333
0.15 1.340 1.233 −0.679 0.554 32.16 0.734 32.90 0.342
0.2 1.577 2.318 −0.678 1.641 31.31 0.788 32.10 0.408

Simulation results 0.668 −0.681 −0.0136 33.09 0.682 33.77 0.316

Table 5. The comparison of the coefficients for the drag, lift and torque with the simulation
results for Re = 400 and q/U0 = 6. The drag, lift and torque computed using δ/a = 0.14 are
in excellent agreement with the results of numerical simulation. The calculation is reasonably
accurate in the range 0.135 � δ/a � 0.145.

δ/a q/Q CDp
CDf

CD CLp
CLf

CL CT

0.08 1.217 −3.185 −0.362 −3.547 14.72 0.220 14.94 0.0801
0.1 1.418 −1.509 −0.310 −1.819 13.20 0.237 13.44 0.106
0.12 1.755 −0.755 −0.273 −1.028 11.08 0.232 11.31 0.130

Simulation results 0.213 −0.197 0.0155 10.41 0.192 10.60 0.118

Table 6. The comparison of the coefficients for the drag, lift and torque with the simulation
results for Re= 1000 and q/U0 = 3. The lift and torque computed using δ/a = 0.1 or 0.12 are
close to the results of numerical simulation. However, it should be noted that α = 1.17 > 1
when δ/a = 0.12 and the power series expansions of the solutions in terms of α divergent. This
is caused by the relatively low value of the speed ratio q/U0 = 3. If Glauert’s solution is used
for this case, α = 1.064 and Glauert’s solution also diverges.

good agreement for the drag is obtained in the cases (Re, q/U0) = (400, 5) and (400,
6), which are the ones with relatively large values of Re and q/U0 in the six cases. This
indicates that the agreement for the drag becomes better as the prescribed parameters
move toward the range in which the theory is supposed to work better. Our solution
for (Re, q/U0) = (400, 6) using δ/a = 0.14 (see table 5) is in excellent agreement with
the results of numerical simulation.
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We highlight the range of δ/a in which the lift and torque are in good agreement
with the simulation results in tables 1–6. We choose one value from this range
(typically the median) as a proper boundary-layer thickness: δ/a = 0.25, 0.21, 0.17,
0.15, 0.14 and 0.12 for (Re, q/U0) = (200, 4), (200, 5), (400, 4), (400, 5), (400, 6)
and (1000, 3), respectively. As expected, the boundary-layer thickness decreases with
increasing Reynolds number and the relation (δ/a) ∝ (1/

√
Re) seems to hold when

q/U0 is fixed. The boundary-layer thickness also decreases with increasing q/U0,
because the rotary flow suppresses the boundary layer induced by the streaming flow.

The choice of δ/a is vital in our calculation. If δ/a is much smaller than the proper
boundary-layer thickness, the flow there cannot match the potential flow outside,
which breaks the assumptions of our calculation. If δ/a is much larger than the
proper boundary-layer thickness, the value of Q is small and α = 2U0/Q could be
close to 1 or even larger than 1, which makes the power series expansion of the
solutions in terms of α slow to converge or even divergent. On the other hand, there
are a range of δ/a values which can lead to lift and torque in good agreement with
simulation results, because there is no clear-cut boundary-layer edge physically. The
calculation is reasonably accurate when δ/a falls in this range.

We compare the drag, lift and torque given by our solution using the proper δ/a,
by Glauert’s solution, by Moore’s solution and by the numerical simulation in table 7.
Equations (3), (4) and (7) are used to compute the lift, drag and torque coefficients
given by Glauert’s solution. Equation (10) is used to compute the torque given by
Moore’s solution; the drag and lift are not computed since Moore did not give the
necessary coefficients. The comparison demonstrates that Moore’s torque is relatively
close to the simulation results, and Glauert’s solution gives reasonable approximations
for the friction drag and lift, but poor approximation for the torque. It also confirms
that our solution is indeed an improvement of Glauert’s solution, especially in the
category of torque.

A key feature of this boundary-layer analysis is that the variation of the pressure
across the boundary layer is obtained. We integrate the drag and lift components of
the pressure over circles concentric with the cylinder but with different radii, then
CDp

and CLp
become functions of r . We compare these functions computed from our

boundary-layer analysis and from numerical simulation by Padrino & Joseph (2006)
in figures 2 and 3.

The functions CDp
(r) for three cases, Re = 400 and q/U0 = 4, 5 and 6 are shown in

figures 2(a), 2(b) and 2(c), respectively. Two curves computed from our boundary-layer
analysis using different values of δ/a are compared to the numerical simulation for
(Re, q/U0) = (400, 4) in figure 2(a). The dashed line gives the results using δ/a = 0.17,
which is the boundary-layer thickness leading to the best fit for the lift and torque
(see table 3). The dashed line correctly predicts that CDp

decreases with increasing r ,
but the values of CDp

are not close to the results of numerical simulation. The solid
line gives the results using δ/a = 0.2, which are much closer to the simulation results
and correctly predict that CDp

changes sign across the boundary layer. Figure 2(b)
shows the comparison for the case (Re, q/U0) = (400, 5). Again, the dashed line gives
the results from our boundary-layer analysis using the value of δ/a leading to the
best fit for the lift and torque (see table 4). The solid line gives the results using a
larger δ/a, which are in excellent agreement with the simulation results. Figure 2(c)
shows the comparison for the case (Re, q/U0) = (400, 6). We plot only one curve from
the boundary-layer analysis using δ/a = 0.14. This value leads not only to the best
fit for the lift and torque (see table 5), but also to excellent agreement for CDp

in
figure 2(c). This comparison demonstrates that our boundary-layer analysis can be
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Solution Re q/U0 α CDp
CDf

CD CLp
CLf

CL CT

Numerical simulation 200 4 − 0.728 −0.604 0.124 16.961 0.621 17.582 0.453
This work 200 4 0.863 −0.188 −0.754 −0.942 17.907 0.729 18.636 0.476
Glauert’s solution 200 4 0.625 0 −0.795 −0.795 20.102 0.795 20.897 0.215
Moore’s solution 200 4 – – – – – – – 0.408

Numerical simulation 200 5 – 0.824 −0.835 −0.0107 26.183 0.846 27.029 0.514
This work 200 5 0.575 −0.0296 −0.893 −0.922 25.870 0.883 26.752 0.507
Glauert’s solution 200 5 0.457 0 −0.929 −0.929 27.483 0.929 28.412 0.195
Moore’s solution 200 5 – – – – – – – 0.440

Numerical simulation 400 4 – 0.534 −0.451 −0.0836 17.609 0.447 18.057 0.275
This work 400 4 0.779 −0.258 −0.530 −0.788 18.094 0.509 18.603 0.277
Glauert’s solution 400 4 0.625 0 −0.562 −0.562 20.102 0.562 20.664 0.152
Moore’s solution 400 4 – – – – – – – 0.237

Numerical simulation 400 5 – 0.591 −0.601 −0.010 26.415 0.597 27.011 0.297
This work 400 5 0.548 0.112 −0.617 −0.504 25.420 0.618 26.038 0.297
Glauert’s solution 400 5 0.457 0 −0.657 −0.657 27.483 0.657 28.140 0.138
Moore’s solution 400 5 – – – – – – – 0.246

Numerical simulation 400 6 – 0.668 −0.681 −0.0136 33.09 0.682 33.77 0.316
This work 400 6 0.432 0.676 −0.686 −0.0105 32.31 0.714 33.03 0.325
Glauert’s solution 400 6 0.365 0 −0.736 −0.736 34.46 0.736 35.20 0.126
Moore’s solution 400 6 – – – – – – – 0.263

Numerical simulation 1000 3 – 0.213 −0.197 0.0155 10.41 0.192 10.60 0.118
This work 1000 3 1.17 −0.755 −0.273 −1.028 11.08 0.232 11.31 0.130
Glauert’s solution 1000 3 1.06 0 −0.273 −0.273 11.81 0.273 12.08 0.108
Moore’s solution 1000 3 – – – – – – – 0.131

Table 7. The comparison of the solution in this work, using δ/a =0.25, 0.21, 0.17, 0.15, 0.14
and 0.12 for (Re, q/U0) = (200, 4), (200, 5), (400, 4), (400, 5), (400, 6) and (1000, 3) respectively,
with the simulation results and Glauert’s and Moore’s solutions. Note that in our problem,
the drag on the cylinder is negative if it is in the uniform flow direction; the drag is positive
if it is opposite to the uniform flow direction (see figure 1). We call the readers’ attention to
the fact that α > 1 in our solution and in Glauert’s solution when (Re, q/U0) = (1000, 3); the
solutions are not expected to converge to the true results.

used to compute the variation of the pressure drag across the boundary layer and the
agreement with the numerical simulation becomes better as q/U0 increases.

The functions CLp
(r) for three cases, Re= 400 and q/U0 = 4, 5 and 6 are shown in

figure 3. In all the three cases, CLp
computed from our boundary-layer analysis are in

excellent agreement with the numerical simulation. The theory correctly predicts the
variation of CLp

with r inside the boundary layer, which is a significant improvement
on the irrotational theory and the classical boundary-layer theory of Prandtl. The
lift force L = ρU0Γ from the irrotational theory is a constant at any r � a because
the circulation is a constant. In the classical boundary-layer theory, the pressure is
a constant across the boundary layer and the variation of CLp

(r) shown in figure 3
cannot be obtained.

6. Higher-order boundary-layer theory
Glauert’s analysis is a first-order boundary-layer approximation for the flow past a

rotating cylinder. Our analysis here is intended to be an improvement of his boundary-
layer solution. Another possible way to improve Glauert’s solution is the higher-order
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Figure 2. Comparison of the coefficient for the pressure drag CDp
as a function of the radial

position. (a) Re= 400, q/U0 = 4. Our boundary-layer analysis: dashed line, using δ/a =0.17;
solid line, using δ/a = 0.2. The results of numerical simulation: �. (b) Re= 400, q/U0 = 5.
Our boundary-layer analysis: dashed line, using δ/a = 0.15; solid line, using δ/a = 0.16. The
results of numerical simulation: �. (c) Re =400, q/U0 = 6. Our boundary-layer analysis using
δ/a = 0.14: solid line. The results of numerical simulation: �. CDp

from our boundary-layer
analysis can be computed only inside the boundary layer: a � r � a + δ; CDp

from numerical
simulation is plotted up to r = 2a.

boundary layer theory based on the method of matched asymptotic expansions
(Lagerstrom & Cole 1955; Van Dyke 1962a, 1969; Maslen 1963). We discuss the
differences between our approach and the higher-order boundary-layer theory.

The basic idea of the higher-order boundary-layer theory is to construct outer
and inner asymptotic expansions, by iterating the Navier–Stokes equations about the
outer solution and about the boundary-layer solution, respectively, and to match the
two expansions in their overlap regions of validity. Tani (1977) remarked, ‘Higher
approximations have thus been found only for flows without separation. In such
cases the first term of the outer expansion is the inviscid irrotational flow, from which
the first term of the inner expansion is determined by Prandtl’s approximation. The
second term of the outer expansion is the irrotational flow due to an apparent source
distribution representing the displacement effect of Prandtl’s boundary layer. This then
determines a correction to the boundary-layer solution, yielding the second term of
the inner expansion.’ The second-order corrections are terms proportional to 1/

√
Re

and the third-order terms are proportional to 1/Re. Since the viscous term in the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

96
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006009670


186 J. Wang and D. D. Joseph
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Figure 3. Comparison of the coefficient for the pressure lift CLp
as a function of the radial

position for Re= 400. Our boundary-layer analysis: dash-dotted line, q/U0 = 4; dashed line,
q/U0 = 5; solid line, q/U0 = 6. Numerical simulation: �, q/U0 = 4; ∇, q/U0 = 5; �, – q/U0 = 6.
CLp

from our boundary-layer analysis can be computed only inside the boundary layer:
a � r � a + δ; CLp

from numerical simulation is plotted up to r = 2a.

Navier–Stokes equations for the outer flow is of the order of 1/Re, the higher-order
theory must compute the third-order corrections to account for the viscous effects
of the outer flow. Van Dyke (1969) remarked, ‘Definite results in the literature
are restricted mostly to laminar boundary layer, to steady motion, to plane or
axisymmetric flows, and to the second approximation.’ We are not aware of any
third-order corrections in the literature. For incompressible fluids, the first- and
second-order terms for the outer expansion are irrotational (Panton 1984; Tani
1977); it is not clear whether the third-order term is irrotational or not. Suppose
the outer flow is irrotational at all orders and the fluid is incompressible, the viscous
term µ∇2u disappears identically, which indicates that the viscous effects of the outer
potential flow do not enter the higher-order boundary-layer theory if only velocity
is matched but stress is not considered. Suppose the third-order term for the outer
flow is rotational, the viscous term is then proportional to 1/Re, which should give
viscous effects to the inner solution at the third order.

Our new approach to boundary-layer flow is different from the higher-order
boundary-layer theory and is not based on the method of matched asymptotic expan-
sions. The matching conditions at the outer edge of the boundary layer are for the ve-
locity in higher-order boundary-layer theory; shear stress has not been considered. We
enforce the continuity of the shear stress at the outer edge of the boundary layer. Be-
cause we are considering a single fluid, the viscosity is the same inside and outside the
boundary layer. The continuity of the shear stress is equivalent to continuity of velocity
gradients. Since the velocity gradients for the outer flow are of order 1, our approach
is not the same as the third-order corrections of the higher-order boundary theory.

Glauert’s analysis is a first-order boundary-layer approximation. He ignored the
irrotational rotary flow component of the flow in the boundary layer, which is
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justifiable because the irrotational rotary flow is a second-order effect in the boundary
layer. The torque coefficient by Glauert is of the order of 1/

√
Re, and the torque

coefficient in a purely irrotational rotary flow (without forward flow) is of the order
of 1/Re. However, numerical simulation shows that the higher-order correction is not
negligible in this case. When Re = 400 and q/U0 = 6, the torque coefficient by Glauert
is only 40 % of the result of numerical simulation. It is conceivable that higher-order
boundary-layer theory using the method of matched asymptotic expansions can be
applied to this problem and yield corrections for Glauert’s solution; but this has
not been done. Our analysis is compared to the numerical simulation and good
to excellent agreement is observed. Admittedly, the outer flow in our analysis is a
first-order approximation and can be improved by higher-order corrections.

The pressure across the boundary layer can no longer be taken as a constant in
higher-order theory. On a curved wall, centrifugal force produces a pressure gradient
across the boundary layer, which is a second-order effect. Van Dyke (1969) inserted
the irrotational surface speed with a correction due to the surface curvature into
Bernoulli’s equation for the external flow to compute the pressure at the outer edge
of the boundary layer and it has no viscous terms. The pressure inside the boundary
layer can be computed using this condition and the equation

∂p2

∂n
= κu2

1, (83)

where p2 is the second-order correction for the pressure, n is normal to the surface, κ

is the surface curvature and u1 is the first-order velocity from Prandtl’s boundary-layer
theory. Because u1 has viscous terms, the pressure at the wall computed from (83)
should have viscous terms. However, in the applications of the higher-order theory
to problems of leading edges and parabolas in uniform stream by Van Dyke (1962b,
1964), the second-order correction for the pressure was not computed; the drag is
computed only using skin friction and the pressure is not considered.

In summary, the higher-order boundary-layer theory has not yet been applied to
determine (1) the effect of the viscous dissipation of the outer irrotational flow; (2)
the effect generated by a mismatch between the shear stress at the effective edge of
the boundary layer and the irrotational shear stress there; (3) the drag and lift on the
body due to normal stress associated with the viscous contribution to the pressure.

The numerical simulations of Padrino & Joseph (2006) show that the region in which
the vortical effects are important is thick around the rotating cylinder. For example,
the thickness of the vortical region determined using 1 % of the maximum vorticity
magnitude criterion is 26 % of the cylinder radius for Re= 400 and q/U0 = 5. The
higher-order boundary-layer theory might encounter difficulty when treating such pro-
blems. Weinbaum et al. (1976) proposed an approximate method, which is not based
on asymptotic analysis, to improve Prandtl’s boundary-layer theory. They focused
on flows with the Reynolds-number range O(1) < Re <O(102), where the boundary
layer is thick and a steady laminar wake is present. They remarked, ‘It is not surprising
in view of the large changes in effective body shape which the external inviscid flow
must experience at these Reynolds numbers that a theory of successive approximation
which is based on the potential flow past the original body shape will converge very
slowly. This would appear to be the basic difficulty encountered in extending the results
of second-order boundary-layer theory (Van Dyke 1962a, b) to flows with Reynolds
numbers less than about 103.’ The method of Weinbaum et al. is based on a pressure
hypothesis which enables us to take account of the displacement interaction and centri-
fugal effects in thick boundary layers using conventional first-order boundary-layer
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equations. Weinbaum et al. neglected the viscous term in the pressure which we have
mentioned in the discussion of equation (83). They solved the momentum integral of
the boundary-layer equations using the fourth-order Pohlhausen profile to obtain the
displacement thickness. They treated the flows past parabolic and circular cylinders
and obtained results in excellent agreement with numerical Navier–Stokes solutions.
The method of Weinbaum et al. shares the common feature with ours that the
boundary-layer thickness must be taken into account in the solution. However, like
the higher-order boundary-layer theory, the method of Weinbaum et al. does not
consider the shear stress discrepancy at the effective edge of the boundary layer, or
the viscous contribution to the pressure.

7. Discussion and conclusion
The dependence of the lift on Re and q/U0 is a key problem in the study of the flow

past a rotating cylinder. Our work here and numerical simulations (Mittal & Kumar
2003; Padrino & Joseph 2006) show clearly that the lift force increases with increasing
q/U0; the major contribution to the lift is from the pressure, and the friction lift is
much smaller than the pressure lift. The results of Padrino & Joseph (2006) show
that the influence of the Reynolds number on the pressure lift is small; the friction
lift seems to decrease with increasing Reynolds number (table 7). Glauert’s prediction
that the pressure lift is independent of Re, is a good approximation to the results of
numerical simulation; our solution which considers the viscous effects on the pressure
is in even better agreement with the results of numerical simulation. Kang, Choi &
Lee (1999) simulated the flows with Re = 40, 60, 100 and 160 and q/U0 between 0
and 2.5. The temporal-averaged values of pressure lift, pressure drag, friction lift and
friction drag, computed after the flow becomes fully developed, were presented in
their paper. They showed that the friction lift decreases with increasing Re and the
pressure lift is nearly independent of Re. These results are consistent with Padrino
& Joseph (2006) and our work, despite the fact that most of the flows studied by
Kang et al. (1999) do not satisfy the assumptions that the separation is suppressed
and steady-state solution exists.

The dependence of the drag on Re and q/U0 is more complicated than the lift.
Mittal & Kumar (2003) simulated the flows with Re= 200 and q/U0 between 0 and
5; they presented the total drag coefficients CD for the fully developed flows. The
results show that when q/U0 < 1.91, the flow is unsteady and the drag is oscillating;
but the drag on the cylinder is always in the direction of the uniform flow. When
2 <q/U0 < 4.34 or 4.75 <q/U0 < 5, separation is suppressed and steady-state drag
coefficients are obtained. The magnitude of CD decreases with q/U0 first, from about
0.3 at q/U0 = 2 to about 0 at q/U0 = 3.25. If q/U0 is higher than 3.25, the magnitude
of CD is very close to zero; CD could be slightly positive or negative. Kang et al. (1999)
presented the temporal-averaged values for the total drag, pressure drag and friction
drag. They showed that the magnitude of the total drag decreases with increasing
q/U0, but the total drag is in the same direction as the uniform flow for all the flows
they studied. The magnitude of the pressure drag also decreases with increasing q/U0;
when 0 <q/U0 < 2, the pressure drag is in the same direction as the uniform flow, but
when q/U0 = 2.5, the pressure drag becomes opposite to the uniform flow. Similar
results were obtained by Padrino & Joseph (2006), who showed that the pressure
drag is opposite to the uniform flow for q/U0 = 3, 4, 5, 6 and it is in competition with
the friction drag, resulting in a total drag which is close to zero (see tables 1–6). The
reason why the pressure drag becomes opposite to the uniform flow is not understood.
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The pressure drag is a viscous effect. It cannot be studied using the classical
boundary-layer theory, in which the irrotational pressure is imposed on the solid. Our
boundary-layer solution is able to give a pressure drag. The agreement between this
pressure drag and the result of numerical simulation depends on the choice of the
boundary-layer thickness in our calculation. When q/U0 is not high enough (q/U0 = 4
or 5), it seems that the value of δ/a which gives rise to a good agreement for the
pressure drag is larger than the value of δ/a which leads to good agreements for the
lift and torque (see tables 1–4 and figure 2). In the case (Re, q/U0) = (400, 6), we can
find a single value of δ/a which leads to good agreement for all the three quantities
lift, torque and drag (see table 5), demonstrating that the agreement between our
solution and numerical simulation becomes better as q/U0 increases.

We have presented a comprehensive comparison for the drag, lift and torque on
the cylinder given by our solution, by Glauert’s (1957) solution, by Moore’s solution
(1957) and by the numerical simulation (Padrino & Joseph 2006). The comparison
demonstrates that Moore’s torque is relatively close to the simulation results, and
Glauert’s solution gives reasonable approximations for the friction drag and lift, but
poor approximation for the torque. Our solution gives the best approximation to the
numerical simulation when the value of δ/a is chosen to fit the numerical data. We
also compared the profiles of the pressure drag and lift inside the boundary layer
given by our solution and given by numerical simulation. The agreement of the lift
profile is good (figure 3); the agreement of the drag profile is less good for small values
of q/U0, but improves as q/U0 increases (figure 2). Such profiles are not available
in Prandtl’s boundary-layer theory, in which the pressure is equal to the irrotational
pressure throughout the boundary layer.

The accuracy of our solution is affected mainly by the values of α = 2U0/q and
δ/a. Since we only carried out the calculation up to terms quadratic in α, the solution
can be accurate only when α is very small. From table 7, we can see that the smallest
value of α corresponds to (Re, q/U0) = (400, 6); other values of α in our work are all
larger than 0.5. This is one of the reasons why the agreement between our solution
and the numerical simulation is best for the case (Re, q/U0) = (400, 6). The boundary-
layer thickness depends on the azimuthal angle θ , but we are not able to determine
this dependence. We assume that δ is a constant for given Re and q/U0 and the
value of δ/a used in our calculation may be viewed as an average boundary-layer
thickness. Padrino & Joseph (2006) determined δ/a at different azimuthal angle using
the criterion that the vorticity magnitude at r = a + δ is approximately 1 % of the
maximum magnitude of the vorticity field. They plotted δ/a as a function of θ (figure 6
in Padrino & Joseph 2006). The figure shows that the deviation of δ/a from its average
is large when Re or q/U0 is small, and the deviation is small when Re and q/U0 are
large. This result may explain why the agreement between our solution and numerical
simulation becomes better when Re and q/U0 increase.

The problem confronted in this work is that there is no precise end to the boundary
layer, although most of the vorticity is confined to a region near to the spinning
cylinder when the ratio of cylinder rotating speed to uniform stream speed q/U0 is
large. We have addressed this problem using the idea of an effective boundary-layer
thickness, which is determined by matching with the results of numerical simulation.
The thickness depends on the choice of quantities for the matching. We are able
to match lift, drag and torque from our boundary-layer analysis for large values of
q/U0 and Re. In the companion paper, Wang & Joseph (2006), an effective boundary
layer thickness was found which gave rise to reasonable matching for the pressure
lift and torque on the cylinder computed from a simple modification of Glauert’s
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solution (1957), and for the pressure drag computed from the method of viscous
correction of viscous potential flow (VCVPF). The values of the effective thickness in
Wang & Joseph (2006) are about 1/2 or 1/3 of the values in this work. A method
to determine the boundary-layer thickness without the aid of numerical simulation
should be developed.

This work was supported in part by the NSF under grants from Chemical Transport
Systems.
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