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Degree gaps for multipliers and the
dynamical André–Oort conjecture

Patrick Ingram

Abstract. We demonstrate how recent work of Favre and Gauthier, together with a modification of

a result of the author, shows that a family of polynomials with infinitely many post-critically finite

specializations cannot have any periodic cycles with multiplier of very low degree, except those that

vanish, generalizing results of Baker and DeMarco, and Favre and Gauthier.

1 Introduction

Let f (z) ∈ C[z] have degree d ≥ 2. Much about the behaviour of f under iteration
can be gleaned from considering just the orbits of the critical points, and so post-
critically finite (PCF) polynomials, those whose critical orbits are all finite, have
garnered particular attention. A dimension count suggests the heuristic that, while
PCF polynomials ought to be Zariski-dense in the space of all polynomials of given
degree, there ought not to exist algebraic families of positive dimension (modulo
change-of-variables), and indeed this is known to be true. �e general philosophy of
unlikely intersections then suggests that any subvariety of this space in which the PCF
maps are Zariski-dense must be defined by conditions on critical orbits, a claim now
known as theDynamical André–Oort Conjecture. Several deep results in this direction
have been established in recent years [1, 2, 3, 5, 6, 7, 8], but one of the earliest is of
particular interest here.

For fixed λ ∈ C, Baker and DeMarco [1] considered the curve in the space of cubic
polynomials cut out by the existence of a fixedpoint f (P) = Pwithmultiplier λ f (P) ∶=
f ′(P) equal to λ. �is is a condition on critical orbits if and only if λ = 0 (in which
case it requires that some critical point is fixed), and Baker and DeMarco showed
that this is also exactly the curve in this family on which one sees infinitely many PCF
points.�is result was extended to cubic polynomials withmarked periodic points by
Favre andGauthier [3], and to quadratic rationalmaps byDeMarco,Wang, andYe [2].
Generalizing, one might suspect that any one-parameter family of polynomials with
a marked periodic point of multiplier λ witnesses infinitely many PCF specializations
only if λ = 0.�is is our main result, not just in the case where λ is constant, but even
if it varies with low degree as a function on the parametrizing curve.
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�eorem Let f be a family of polynomials parametrized over a curve X, with amarked
periodic point P of multiplier λ f (P) ∈ C(X), and suppose that ft is PCF for infinitely
many t ∈ X(C). If deg(λ f (P)) < hcrit( f ), then λ f (P) = 0 identically on X.

�e quantity hcrit( f ) ≥ 0 is a measure of complexity of the generic critical orbits
defined below, whose vanishing exactly coincides with isotriviality of the family. For
any non-isotrivial family, we have

0 ≤
deg(λ f (P))
hcrit( f ) ≤ d − 1,(1.1)

and every rational number in this range is realized by some example (see Proposition
4.2). In other words, our main result is that a gap appears at the le�-hand side of this
range once one restricts attention to families with infinitelymany PCF specializations,
with the ratio never falling below 1 (excepting examples with λ f (P) ≡ 0). While we
do not know if the theorem is sharp, we show in Remark 4.3 that the statement of the
theorem becomes false if, for any ε > 0, we replace the condition that deg(λ f (P)) <
hcrit( f ) with the weaker condition that deg(λ f (P)) < (2 + ε)hcrit( f ).

�e theorem follows from recent work of Favre and Gauthier [4] and a modifica-
tion of contributions of the author [12]. It implies a generalization of the aforemen-
tioned results of Baker and DeMarco [1] and Favre and Gauthier [3] on families of
cubic polynomials with marked periodic point of constant multiplier.

Corollary Let λ ∈ C, and let f be a non-isotrivial family of polynomials with a periodic
point of constant multiplier λ ∈ C, parametrized over a curve X. If ft is PCF for infinitely
many t ∈ X(C), then λ = 0.

�e reader will have noted that this corollary generalizes only one direction of the
results for cubic polynomials, but it is the non-trivial direction, and in general, the
converse to the corollary is false (see Remark 4.4).

�e theorem is proved by applying the main step in the proof of [4,�eoremG] of
Favre and Gauthier (whom the author thanks for comments on an earlier version of
this note), which shows that if f has infinitely many PCF specializations, then f has,
on the generic fibre and up to a natural equivalence, at most one infinite critical orbit.
�e author showed in [12] that a non-isotrivial family with amarked periodic point of
multiplier λ of sufficiently large degree has at least two independent, infinite critical
orbits, but the notion of dependence used there was not the same, and some work is
required to combine the results.

2 Notation and Conventions

Let F be a field, and let ∣ ⋅ ∣ be an absolute value on the algebraic closure F. For f (z) ∈
F[z] of degree d ≥ 2, a point of period n is a solution to f n(Q) = Q (with nminimal),
and themultiplier of this point is

λ f (Q) = ( f n)′(Q) = n−1∏
i=0

f ′( f i(Q)).
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For P ∈ F, we define, as usual,

G f (P) = lim
n→∞

d−n log+ ∣ f n(P)∣,
where log+ x = logmax{1, x} for x ∈ R. �is limit always exists and vanishes at
preperiodic points. We will set

gcrit( f ) = max
f ′(c)=0

G f (c),
where we take solutions in the algebraic closure. It is straightforward to show that
gcrit( f ) is independent of coordinates, in that if ϕ is an affine transformation with
coefficients in F,

gcrit(ϕ−1 ○ f ○ ϕ) = gcrit( f ).
For most of our argument, we will restrict attention to a certain normal form for

polynomials, namely,

fc(z) = 1

d
zd −

1

d − 1
(c1 +⋯+ cd−1)zd−1 +⋯± c1c2⋯cd−1z(2.1)

=

d∑
i=1

(−1)d−i
i

σd−i ,d−1(c)z i ,
just as in [10], where σ j,k is the fundamental symmetric polynomial of degree k in j
variables. Note that fc(0) = 0 and

f ′c(z) = (z − c1)⋯(z − cd−1),
so that c1 , . . . , cd−1 are the critical points of fc.

Now let X/C be a curve, assumed without loss of generality to be smooth and
projective, and let ∣ ⋅ ∣ be a non-trivial absolute value on the function field C(X) that
is trivial onC.�ese all have the form ∣a∣ = e−C ordz=v(a) for someC > 0 and v ∈ X(C).
We will normalize these by taking C = 1, and so with each v ∈ X(C), we identify the
absolute value

∣a∣v = e− ordz=v(a).

It is possible to extend ∣ ⋅ ∣v (non-uniquely) to the algebraic closure of C(X).
Note that for a ∈ C(X) non-zero,

∑
v∈X(C)

log ∣a∣v = 0,(2.2)

∑
v∈X(C)

log+ ∣a∣v = deg(a).(2.3)

In this setting, degree is the appropriate notion of height, and for a tuple a =(a1 , . . . , ak) ∈ C(X)k , we will set
h(a) = ∑

v∈X(C)

log+ ∥a∥v .(2.4)
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Notice that h(a) = 0 if and only if all a i are constant.�e critical height of a polynomial
f (z) with coefficients in C(X) is defined here as

hcrit( f ) = ∑
v∈X(C)

gcrit,v( f ),
where gcrit,v is defined as above relative to the absolute value ∣ ⋅ ∣v . Note that the critical
height is independent of the choice of coordinates.�is is not the same critical height

ĥcrit( f ) as used in [10, 11, 13], but one sees from the non-negativity of G f that

hcrit( f ) ≤ ĥcrit( f ) ≤ (d − 1)hcrit( f ).
Finally, note that if π ∶ Y → X is a finite branched cover, then π∗ gives an embed-

ding of C(X) into C(Y), and
∣π∗a∣w = ∣a∣eπ(a)π(w)

,(2.5)

where eπ(a) is the degree of π locally at a. If a ∈ C(X)k , we can pull back the
components to obtain a tuple π∗a ∈ π∗C(X)k ⊆ C(Y)k , and it is easy to check from
the definitions above that

h(π∗a) = deg(π)h(a).
Similarly, if f (z) ∈ C(X)[z], we can pull back coefficients to obtain a polynomial
π∗ f ∈ C(Y), and we have

hcrit(π∗ f ) = deg(π)hcrit( f ).(2.6)

Finally, note that since any finite extension of C(X) is of the form C(Y) as above,
(2.5) allows us to choose an extension of any absolute value on C(X) to any finite
extension, and hence to the algebraic closure, as claimed above.

3 Local Lemmas

In this section, we work overC(X) relative to some fixed absolute value ∣ ⋅ ∣. We note,
though, for interest, that we can replace C(X) with any field of characteristic 0 or
greater than d, with a non-archimedean, non-p-adic absolute value ∣ ⋅ ∣, so that

∣x + y∣ ≤max{∣x∣, ∣y∣}
for all x , y ∈ F, and ∣m∣ = 1 for any non-zero integer m. �is setting gives us a
particularly strong variant of the results in [10].

Lemma 3.1 For c ∈ C(X)d−1 and fc as in (2.1), we have

gcrit( fc) = log+ ∥c∥.
Proof �is follows from [10], but, briefly, we have f nc (c i) ∈ C[c] of degree dn , so
d−n log+ ∣ fc(c i)∣ ≤ log+ ∥c∥, fromwhichG fc(c i) ≤ log+ ∥c∥, establishing an inequality
in one direction.

In the other direction, it is shown in [10] that the homogeneous forms fc(c i) (for
1 ≤ i ≤ d − 1) have no common root, and by Hilbert’s Nullstellensatz, there is an i
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with log ∥ fc(c i)∥ = d log ∥c∥. If log ∥c∥ > 0, then by induction, we have log+ ∣ f nc (c i)∣ =
dn log+ ∥c∥, giving a bound in the opposite direction. In the case log ∥c∥ ≤ 0, this
direction is trivial by the non-negativity of G f . ∎

�e following is a stronger form of [12, Lemma 7].

Lemma 3.2 If log ∣c1∣ < log ∥c∥, then either log+ ∥c∥ = 0 or else there exists an index
i ≠ 1 with

G fc(c i) > G fc(c1).
Proof Suppose that log ∣c1∣ < log ∥c∥ and that log+ ∥c∥ ≠ 0, or in other words,
log ∥c∥ > 0. Choose 0 < ε < 1 so that log ∣c1∣ ≤ (1 − ε) log ∥c∥.

First, note that fc(c1) ∈ c21C[c1 , . . . , cd−1], and so

log ∣ fc(c1)∣ ≤ 2 log ∣c1∣ + (d − 2) log+ ∥c∥ ≤ (d − 2ε) log+ ∥c∥.
Now, suppose that log ∣ f kc (c1)∣ ≤ (d − 2ε)dk−1 log+ ∥c∥. For σi the degree-i symmetric
function in d − 1 variables, we then have for i < d − 1,

log ∣ 1
i
σd−i(c1 , . . . , cd−1)( f kc (c1))i ∣ ≤ (d − i) log+ ∥c∥ + i log ∣ f kc (c1)∣

< (d − i) log+ ∥c∥ + i(d − 2ε)dk−1 log+ ∥c∥
< (d − 2ε)dk log+ ∥c∥

just because 1 < (d − 2ε)dk−1. So

d−(k+1) log ∣ f k+1c (c1)∣ ≤ max
1≤i≤d−1

{d log ∣ f kc (c1)∣, log ∣ 1i σd−i(c1 , . . . , cd−1)( f kc (c1))i ∣}
< (1 − 2ε

d
) log+ ∥c∥,

and by induction,

G fc(c1) ≤ (1 − 2ε

d
) log+ ∥c∥ < log+ ∥c∥.

But we have already seen that there is some index i with G fc(c i) = log+ ∥c∥. ∎

4 Proof of the Theorem

Wemaintain the notation of the last section, but now vary the absolute value onC(X).
For each v ∈ X(C), quantities from the previous sections relative to the absolute value∣ ⋅ ∣v defined in Section 2 acquire a subscript v.

Note that by Lemma 3.1, we have

hcrit( fc) = ∑
v∈X(C)

gcrit,v( fc) = ∑
v∈X(C)

log+ ∥c∥v = h(c),(4.1)

and so hcrit( fc) = 0 if and only if the c i , and hence coefficients of fc, are all constant.
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On the other hand, for any polynomial f (z) ∈ C(X), there is a finite extension
C(Y)/C(X) and amap ϕ(z) = az + b defined overC(Y)with ϕ−1 ○ f ○ ϕ in the form
of (2.1). �en from (2.6), we have hcrit( f ) = 0 if and only if ϕ−1 ○ f ○ ϕ has constant
coefficients, showing that the vanishing of hcrit is equivalent to isotriviality.

�e following lemma shows that in the normal form (2.1), quantity hcrit( f ) can be
estimated using information from only a subset of the points of X, and is a variant of
[12, Lemma 9]. We define

S = S(c) = {v ∈ X(C) ∶ log ∣c1∣v < log ∥c∥v}.(4.2)

In other words, S is the finite set of places of X at which one of the functions
c2/c1 , c3/c1 , . . . , cd−1/c1 has a pole. Intuitively, as we approach a point of S on X(C),
some other critical point becomes arbitrarily-much larger than the critical point
marked by c1, but the reader will also notice that S is precisely the set of places at
which the condition in Lemma 3.2 is met.

Lemma 4.1 If λ fc(0) ≠ 0, then
(d − 1)∑

v∈S

log+ ∥c∥v ≥ hcrit( fc) − deg(λ fc(0)).

Proof Since∏d−1
i=1 c i = (−1)d−1λ fc(0), we have both

log ∥c∥v ≤ log+ ∥c∥v ≤ log ∥c∥v + 1

d − 1
log+ ∣λ fc(0)−1∣v(4.3)

and

∣c1∣−1v = ∣λ fc(0)−1∣v
d−1∏
i=2

∣c i ∣v ≤ ∣λ fc(0)−1∣v∥c∥d−2v .(4.4)

We apply (4.3) to obtain

∑
v/∈S

log+ ∥c∥v ≤∑
v/∈S

( log ∥c∥v + 1

d − 1
log+ ∣λ fc(0)−1∣v)

≤∑
v/∈S

log ∣c1∣v +∑
v/∈S

1

d − 1
log+ ∣λ fc(0)−1∣v ,

by the definition of S,

=∑
v∈S

log ∣c1∣−1v +∑
v/∈S

1

d − 1
log+ ∣λ fc(0)−1∣v ,

by the product formula (2.2),

≤∑
v∈S

( log+ ∣λ fc(0)−1∣v + (d − 2) log+ ∥c∥v)
+∑

v/∈S

1

d − 1
log+ ∣λ fc(0)−1∣v ,
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by (4.4)

≤ (d − 2)∑
v∈S

log+ ∥c∥v + ∑
v∈X(C)

log+ ∣λ fc(0)−1∣v
= (d − 2)h(c) − (d − 2)∑

v/∈S

log+ ∥c∥v + deg(λ fc(0)),
by (2.4). But then

(d − 1)∑
v/∈S

log+ ∥c∥v ≤ (d − 2)h(c) + deg(λ fc(0)),
from which

(d − 1)∑
v∈S

log+ ∥c∥v = (d − 1)h(c) − (d − 1)∑
v/∈S

log+ ∥c∥v
≥ h(c) − deg(λ fc(0)),

which, by (4.1), is what was claimed. ∎

Proof of the�eorem First, some reductions. We claim that hcrit( f n) = hcrit( f )
for all n (which differs from [11] because of our slightly different definition of the
critical height here). To see this, note that for any v ∈ X(C), we have, by the chain
rule and the observation G f n ,v = G f ,v , that

gcrit,v( f n) = max
( f n)′(c)=0

G f n ,v(c) = max
f ′( f i(c))=0

0≤i<n

G f ,v(c)
= max

f ′(ζ)=0
max
f i(c)=ζ
0≤i<n

G f ,v(c) = max
f ′(ζ)=0

G f ,v(ζ)
= gcrit,v( f ),

since f i(c) = ζ impliesG f ,v(c) = d−iG f ,v(ζ). Summing over all v ∈ X(C) establishes
the claim. Also, if P is a point of period n and multiplier λ for f, then P is a fixed point
of multiplier λ for f n (by definition). Finally, ft is PCF if and only if f nt is, and so
if the claim in the theorem is true for fixed points, it is true for periodic points. We
henceforth assume n = 1, that is, that f (P) = P.

Furthermore, the statement of the theorem is preserved under passing to a finite
branched cover π ∶ Y → X. Specifically, if f and λ are already defined overC(X), then
write π∗ f as above for the polynomial obtained by pulling-back the coefficients of f
to Y. We have deg(π∗λ) = deg(π)deg(λ), while hcrit(π∗ f ) = deg(π)hcrit( f ), and so
the ratio deg(λ f (P))/hcrit( f ) is unchanged. Since the statement of the theorem is
also coordinate-free, we can freely change variables. Passing to a finite extension and
choosing a new coordinate we can then assume, without loss of generality, that f has
form (2.1) with c i ∈ C(X), and that P = 0 is the fixed point in question.

Suppose that f has infinitely many PCF specializations, and for each critical point
c, write

D( f , c) = ∑
v∈X(C)

G f ,v(c)[v] ∈ Div(X)⊗Q
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as in [9, Equation 8], which is the same asD f ,c in [4, Definition 4.6, p. 114]. Given any
two critical points, neither one generically preperiodic, we have by [4, �eorem 37,
p. 135] that the corresponding divisors are proportional. So there is a single divisor D
on X such that for each f ′(c) = 0, we have D( f , c) = α( f , c)D for some α( f , c) ∈ Q,
and in at least one case, α( f , c) ≠ 0. Writing f in the normal form (2.1), we can, by
permuting the c i , take 0 ≤ α( f , c i) ≤ α( f , c1) ≠ 0 for all i. So, in particular,

G f ,v(c1) ≥ G f ,v(c i)
for any 1 ≤ i ≤ d − 1 and any v ∈ X(C). Let S be the set of points of X defined in (4.2).
By Lemma 3.2, if v ∈ S, then wemust have log+ ∥c∥v = 0. But by Lemma 4.1, if λ fc(0) ≠
0, we now have

0 = (d − 1)∑
v∈S

log+ ∥c∥v ≥ hcrit( fc) − deg(λ fc(0)).
Since all cases were reduced to this one, this proves the theorem in general. ∎

�e theorem confirmed, we now demonstrate that the ratio deg(λ f (P))/hcrit( f )
really is constrained as in (1.1).

Proposition 4.2 If P ∈ C(X) is periodic for f, then
deg(λ f (P)) ≤ (d − 1)hcrit( f ).

Furthermore, the ratio deg(λ f (P))/hcrit( f ) can take any rational value in the interval[0, d − 1].
Proof We claim, in fact, that in each absolute value v , we have

log+ ∣λ f (P)∣v ≤ (d − 1)gcrit,v( f ).
�e proposition is then proved by summing over all v ∈ X(C).

Note that if P has period n, we can replace f by f n and assume that P is fixed.
Also, since both sides are coordinate independent, we can, without loss of generality,
replace X by a finite cover, and change coordinates so that f = fc in the form (2.1) and
P = 0. But now,

log+ ∣λ fc(0)∣v = log+ ∣
d−1∏
i=1

c i ∣
v

≤ (d − 1) log+ ∥c∥v = (d − 1)gcrit,v( fc),
as claimed.

Next, let 0 ≤ x ≤ d − 1 be a rational number. If x = 0, then we can realize x as
deg(λ f (P))/hcrit( f ) by taking a non-isotrivial family with a fixed point of multiplier

1. To be concrete, we can take fc for c1 = ⋯ = cd−2 = t and cd−1 = t
−(d−2), which has

critical height d − 1.
Otherwise, if x ≠ 0, let m ∈ Z+ so that mx ∈ Z, and write mx = qm + r, with q ≤

d − 1 and r < m, both q and r non-negative integers. For i ≤ q, set c i = t
m , with t

some indeterminate, cq = t
r , and c i = 1 for i > q (noting that q ≤ x ≤ d − 1). Now, the

polynomial fc over C(t) has a fixed point at z = 0 with multiplier ±∏d−1
i=1 c i = ±t

mx .
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On the other hand, Lemma 3.1 applied at all places shows that hcrit( fc) = m, and so
we realize x = deg(λ f (P))/hcrit( f ) in this example. ∎

Weendwith three remarks, the first two justifying claimsmade in the introduction,
and the last proposing avenues for future work.

Remark 4.3 Let d ≥ 2, let X be the rational curve defined by

X ∶ (d − 1)Pd−1
= dtPd−2

+ 1,

and let f (z) = (d − 1)zd − dtzd−1, so that f (P) = P. Since f has critical points at z = 0
and z = t, but the first is fixed,we compute from the definition that hcrit( f ) = deg(t) =
d − 1. On the other hand,

λ f (P) = f ′(P) = d(d − 1)Pd−2(P − t),
which has degree 2d − 3, since deg(P) = 1. �is gives

deg(λ f (P))
hcrit( f ) =

2d − 3

d − 1
= 2 + o(1),

where o(1)→ 0 as d →∞.
On the other hand, there are infinitely many t ∈ X(C) such that ft is PCF. To see

this, consider the solutions to f nt (t) = 0. On the one hand, if t is a solution to this, then
the corresponding specialization ft is PCF. On the other hand, f nt (t) is a polynomial
of degree dn in t, in fact the highest-order term in f nt (t) is (−1)d(d − 1)(dn−1)/(d−1)td

n

.
We have

f n+1t (t) = ( f n(t))d−1 ((d − 1) f n(t) − dt),
and so every solution to f kt (t) = 0 for k ≤ n is a solution to f n(t) = 0. Suppose that
the solutions to f n+1t (t) = 0 are all already solutions to f nt (t) = 0.�en all solutions to(d − 1) f nt (t) − dt = 0 have f nt (t) = 0, and hence t = 0. In other words, (d − 1) f nt (t) −
dt is a polynomial of degree dn , with only t = 0 as a root, and hence is a constant
multiple of td

n

. But we can see by induction that f nt (t) is divisible by t2, and so cannot
differ by td/(d − 1) from a constant multiple of td

n

. So there is a root of f n+1(t) = 0
which is not a root of f nt (t) = 0, and, in general, for each n, there exists a tn such that
the critical points of ftn consist of a fixed point, and an n-th preimage of a fixed point.
Necessarily, these are distinct for distinct n, and so there are certainly infinitely many
t ∈ X(C) with ft PCF.

Remark 4.4 We noted in the introduction that, while a family of cubic polynomials
with a generic super-attracting periodic point will have infinitely many PCF special-
izations, this is not true for polynomials of degree d ≥ 4. Citing the results of Favre and
Gauthier [4], this could be demonstrated by choosing a family with periodic critical
point and two infinite, independent critical orbits on the generic fibre. In the interest
of specificity, though, we construct a concrete class of examples.

Let b ∈ Pd−2, let t be an indeterminate, and consider ftb, i.e., fc for c i = b i t. Chang-
ing the homogeneous coordinates representing b just rescales the parametrization,
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but keeps the family the same. By the number field version of Lemma 3.1 (essentially
[10, Lemma 8], but we keep the notation of this note), we have for t ≠ 0,

hcrit( ftb) = ∑
v∈MK

[Kv ∶ Qv][K ∶ Q] gcrit,v( ftb)
≥ ∑

v∈MK

[Kv ∶ Qv][K ∶ Q] log ∥b1 t, . . . , bd−1 t∥ − Od(1)
= hPd−2(b) − Od(1).

In other words, once hPd−2(b) is sufficiently large, the non-isotrivial family ftb
specializes to a PCF map only at t = 0. If we take hPd−2(b) large and on a coordinate
hyperplane (which we can do once d ≥ 4), the family will have a generically super-
attracting fixed point and exactly one PCF specialization.

Remark 4.5 We have considered only the function field case here, but the results
in [12] can also be used to establish an analogous gap on h(λ f (P))/hcrit( f ) in the
number field case, albeit with a messier statement, in the case where f has at most
one infinite critical orbit up to symmetries. It would be of some interest to determine
what the set of possible values of this ratio is in that setting, and how it depends on
the number of infinite critical orbits, up to equivalence.
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