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Abstract

We model in a dynamic way an insider’s private information flow which is successively
augmented by a family of initial enlargement of filtrations. According to the a priori
available information, we propose several density hypotheses which are presented in
hierarchical order from the weakest to the strongest. We compare these hypotheses, in
particular, with Jacod’s one, and deduce conditional expectations under each of them
by providing consistent expressions with respect to the common reference filtration.
Finally, this framework is applied to a default model with insider information on the
default threshold and some numerical illustrations are performed.
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1. Introduction

Modelling information is a crucial subject in financial markets. The mathematical tool is
based on the theory of initial enlargement of a filtration by a random variable, which was
developed by the French school in the 1970s–80s by Jacod [17], [18], Jeulin [19], Jeulin and
Yor [21], amongst others ; see also [26, Chapter VI] for an introduction in English. This theory
received a new focus in the 1990s for its application in finance, notably for problems occurring
in insider modelling. When an insider is present, his/her information is often modelled by the
enlargement of the common information filtration by the insider’s private information and we
investigate problems such as the existence of arbitrage or the value of private information; see,
e.g. [2], [12], and [16]. Classically, in these papers the extra information L is revealed at the
initial time but does not evolve or become more accurate through time.

In this paper our aim is to generalize previous works and consider an insider who can adjust
his/her extra information with time. Let ti , i = 1, . . . , n, be a family of discrete times andLi be
random variables modelling the extra information available at time ti . The insider’s information,
which is modelled by the filtration GI, is given by the successive initial enlargement at time
ti by the random variable Li . In [1] and [12], Jacod’s hypothesis, or the so-called density
hypothesis, which assumes the equivalence between the conditional law of L with respect

Received 28 January 2016; revision received 7 December 2016.
∗ Postal address: Université de Lyon - CNRS, UMR 5208, Institut Camille Jordan-Ecole Centrale de Lyon, 36 avenue
Guy de Collongue, 69134 Ecully Cedex, France. Email address: christophette.blanchet@ec-lyon.fr
∗∗ Postal address: CREST, UMR 9194, Ensae ParisTech, Université Paris Saclay, France.
Email address: caroline.hillairet@ensae.fr
∗∗∗ Postal address: Université Claude Bernard - Lyon 1, Institut de Science Financière et d’Assurances, 50 Avenue
Tony Garnier, 69007 Lyon, France. Email address: ying.jiao@univ-lyon1.fr

653

https://doi.org/10.1017/apr.2017.17 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:christophette.blanchet@ec-lyon.fr?subject=Adv. Appl. Prob.%20paper%2016112
mailto:caroline.hillairet@ensae.fr?subject=Adv. Appl. Prob.%20paper%2016112
mailto:ying.jiao@univ-lyon1.fr?subject=Adv. Appl. Prob.%20paper%2016112
https://doi.org/10.1017/apr.2017.17


654 C. BLANCHET-SCALLIET ET AL.

to the common reference filtration and the law of L, plays an important role. It implies, in
particular, the existence of an equivalent martingale measure and, thus, no free lunch with
vanishing risk (NFLVR). Moreover, following Föllmer and Imkeller [10], in [12] an equivalent
martingale measure was constructed under which the reference filtration is independent of
the random variable L. Our methodology consists of generalizing these properties in the
framework of successive initial enlargement. We propose several density hypotheses in a
hierarchical order. We show that if a density hypothesis is supposed at each step between the
conditional law of Li with respect to the previous information and the conditional law of Li

with respect to previous information at time ti , we obtain families of probability measures with
favourable properties. Indeed, under this successive density hypothesis, we construct a family
of probabilities Pi , i = 1, . . . , n, which decouple, at time ti , the random variable Li and Gi−1

ti
.

However, this first family obtained by a natural induction does not preserve at time ti the law
of the next random variables Lk, i < k ≤ n. To overcome this inconvenience, we propose a
second family of probability measures Qi , i = 1, . . . , n, constructed by a backward change of
probability measure. Then we focus on the conditional expectation with successive information.
The use of the family Qi allows us to obtain an evaluation formula in terms of F-conditional
expectations, where F is the common reference information. Our approach, although less
general than the local method solution approach introduced by Song [27], [28], nevertheless
provides tractable formulae, in particular, for the computation of conditional expectation, which
are useful for financial applications. From this successive density hypothesis, we derive, in
addition, stronger formulations where the a priori available information concerns the nontrivial
or trivial initial σ -algebra, which are more similar to the classical density hypothesis of Jacod
in the initial enlargement framework. Moreover, another point of view is to consider a global
initial enlargement of the reference filtration F by the random vector L = (L1, . . . , Ln) and a
density hypothesis between the conditional law of L and the law of L. We investigate the link
between the global approach and the successive approach.

The application in finance generalizes the default model in [14] to a dynamic setting. The
default time is supposed to be the first time where the value of the firm reaches a random threshold
chosen by the manager of the firm and adjusted dynamically. In literature, another ‘dynamic’
enlargement of filtrations was introduced by Corcuera et al. [8], where the private information
is affected by an independent noise process vanishing as the revelation time approaches. The
authors of [22] and [23] studied progressive filtration expansions with càdlàg processes. Bilina
Falafala and Protter proposed in [6] a related model in which the market filtration F is initially
enlarged at an F-stopping time. Assuming Jacod’s absolute continuity hypothesis is satisfied on
the whole time interval [0, T ], they examined conditions for no arbitrage and free lunches on
[0, T ] and they compared the market trader’s and insider’s risk in a Föllmer–Schweizer sense;
see [11]. With Jacod’s absolute continuity hypothesis instead of the equivalent hypothesis,
NFLVR may hold only locally and not globally. In this paper we propose an alternative approach
in that we do not assume Jacod’s hypothesis (neither absolute continuity nor the equivalent
density) on the whole interval [0, T ] but only on the interval [ti , T ] starting at the disclosure
time ti of the updated information Li . Besides, our successive density hypothesis on [ti , T ],
i = 1, . . . , n, implies a NFLVR setting for the insider. To compare the survival probability for
different information, we introduce the standard information available to an investor in credit
risk, given by the progressive enlargement, which was studied in, e.g. [4], [5], [20], and [24].
Using our successive enlargement framework, we obtain explicit formulations for the survival
probability of the insider and compare the results with those of standard investors by numerical
illustrations. Finally, we note a strain of related literature dealing with initial enlargement
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and the information drift, such as applying Malliavin’s calculus [15], [16], or using forward
anticipative calculus [3], which provide other perspectives to study the insider information.

The paper is organized as follows. We present the model framework in Section 2. In Section 3
we introduce the successive density hypothesis and propose two constructions of auxiliary
probability measures to compute conditional expectations. Then in Section 4 we consider
several particular cases of the successive density framework and make comparisons. Finally,
in Section 5 we apply this insider information framework to a default model and perform some
numerical illustrations.

2. Model framework

Let (�,A,P) be a probability space equipped with a reference filtration F = (Ft )0≤t≤T
which satisfies the usual conditions and represents the common information flow on financial
markets, where T is a finite-time horizon. The insider has knowledge of extra information
which is revealed dynamically with time. Let {ti , i = 1, . . . , n} be a family of discrete times.
The insider’s information is described by a family of random variables {Li, i = 1, . . . , n},
where Li is A-measurable and takes values in a Polish space E whose Borel σ -algebra is
denoted by E . The insider gets the information on Li at time ti , so the total information flow
of the insider is described by the filtration GI = (GI

t )t≥0, where

GI
t := Ft ∨ σ(L1) ∨ · · · ∨ σ(Li), t ∈ [ti , ti+1). (2.1)

We can interpret this information flow in two different but equivalent ways by using the
theory of enlargement of filtrations. On the one hand, for any t ∈ [0, T ], define the extra
information process as

Lt =
n∑
i=1

Li 1[ti ,ti+1)(t) (2.2)

then we have GI
t = Ft ∨ σ(Ls, s ≤ t). The filtration GI is the progressive enlargement of the

filtration F by the information process L. On the other hand, let us define a family of filtrations
Gi = (Git )t≥0 for all i = 1, . . . , n, where

Git := Ft ∨ σ(L1) ∨ · · · ∨ σ(Li), t ∈ [0, T ]. (2.3)

By definition, we have GI
t = Git for t ∈ [ti , ti+1) and Git = Gi−1

t ∨ σ(Li), where we set by
convention G0

t = Ft . Each filtration Gi is the initial enlargement of the filtration Gi−1 by the
random variable Li . We thus obtain an increasing family of successive initial enlargement of
filtrations.

We denote by L the n-dimensional random vector (L1, . . . , Ln). For any i = 1, . . . , n,
let L(i) := (L1, . . . , Li). Similarly, we use the expression x to denote a vector (x1, . . . , xn)

inEn, and let x(i) := (x1, . . . , xi). For any t ∈ [0, T ], the σ -algebra Git is generated by Ft and
σ(L(i)). Therefore, any Gi-adapted process can be written in the form (Yt (L

(i)), 0 ≤ t ≤ T ),
where Yt (·) is Ft ⊗ E⊗i-measurable; see [19].

In the classical framework of initial information modelling, the insider obtains the extra
information at the initial time t = 0 and keeps it until the final time T . In our setting this
corresponds to the case where n = 1 and GI

t = G1
t for all t ∈ [0, T ].

In the enlargement of filtration theory, the conditional laws of Li with respect to different
filtrations play an important role. For a random variable X taking values in the Polish space E
and a sub-σ -algebra B of A, we denote by P(X ∈ · | B) a regular version of the conditional
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probability law of X with respect to B. By definition, it is a map from � × B to [0, 1] such
that

• for any ω ∈ �, P(X ∈ · | B)(ω) is a probability measure on (E, E);

• for any Borel set S in E, the function P(X ∈ S | B) on � is B-measurable, and is
P-almost surely (a.s.) equal to the B-conditional expectation EP[1S(X) | B].

3. Successive density hypothesis

In order to study the dynamic properties of the filtration GI, we introduce the following
successive density hypothesis, which asserts that the terminal conditional law ofLi is equivalent
to its Gi−1

ti
-conditional law. This hypothesis provides a weaker and more flexible form compared

to the one for the initial enlargement of filtration in [1] and [12] (see also [18] for comparison)
which is widely adopted in the study of asymmetric information. In particular, it allows us to
take into account the insider’s information in a progressive manner at each time step.

Assumption 3.1. For any i ∈ {1, . . . , n}, the Gi−1
T -conditional law of Li is equivalent to

its Gi−1
ti

-conditional law under the probability P, namely, there exists a positive Gi−1
T ⊗ E -

measurable function αi | i−1
T (L(i−1), ·) such that

P(Li ∈ dx | Gi−1
T ) = α

i | i−1
T (L(i−1), x)P(Li ∈ dx | Gi−1

ti
). (3.1)

Remark 3.1. (i) In the above assumption, we actually consider the density αi | i−1
T (L(i−1), ·)

as an (FT ⊗ E⊗i−1)⊗ E -measurable function αi | i−1
T (·, ·) evaluated at L(i−1). Note that

such a representation need not be unique. More precisely, there may exist another (FT ⊗
E⊗i−1)⊗E -measurable function α̃i | i−1

T (·, ·) such that α̃i | i−1
T (x(i−1), x) is not identically equal

to αi | i−1
T (x(i−1), x) for (x(i−1), x) ∈ Ei but α̃i | i−1

T (L(i−1), x) = α
i | i−1
T (L(i−1), x). We refer

the reader to [25] for a general discussion on the stochastic process depending on a parameter.

(ii) In [1] and [12] it was assumed that the Gi−1
t -conditional law of Li is equivalent to its

probability law for t ∈ R+. The main difference here is that the conditional law P(Li ∈
dx | Gi−1

ti
), with respect to which we consider the density of P(Li ∈ dx | Gi−1

T ), is a random
measure instead of a deterministic probability law. Therefore, it is difficult to apply Jacod’s
method [18, Lemma 1.8] to prove the existence of a martingale version of the density process.
Our choice of working with the terminal time T allows us to overcome this difficulty. In fact,
Assumption 3.1 implies that, for any t ∈ [ti , T ], the Gi−1

t -conditional law of Li under P is
equivalent to the Gi−1

ti
-conditional law of Li . Moreover, the Gi−1

t ⊗ E -measurable function
EP[αi | i−1

T (L(i−1), x) | Gi−1
t ] gives the density of P(Li ∈ dx | Gi−1

t ) with respect to P(Li ∈
dx | Gi−1

ti
), which we denote as αi | i−1

t (L(i−1), ·). We refer the reader to Corollary 3.1 for
details.

(iii) UnderAssumption 3.1, similar as in [1, Proposition 3.3], the filtration Gi is right-continuous
on [ti , T ], and also is GI on [0, T ].
3.1. One step enlargement of filtration

The filtration GI can be considered as a step-by-step enlargement of F. Also, the successive
density hypothesis has an inductive nature. In this subsection we focus on one step of the
enlargement and develop tools which will be useful in the inductive study of GI.

Let (�,A,P) be a probability space and H = (Hu)u∈[t,T ] be a filtration of A, where t is
a fixed real number such that 0 ≤ t < T . Let X be an A-measurable random variable which
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takes value in a Polish space (E, E). We assume that there exists a positive HT ⊗E-measurable
function qT (·) such that

P(X ∈ dx | HT ) = qT (x)P(X ∈ dx | Ht ). (3.2)

Example 3.1. We give a simple but illustrative example which satisfies hypothesis (3.2) but not
the density hypothesis with respect to the probability law ofX. LetY1 andY2 be two independent
random variables which both follow the standard normal distribution. Let X = max(Y1, Y2).
We consider the filtration H = (Hu)u∈[t,T ] such that Hu = σ(Y1) for all u ∈ [t, T ]. It is
clear that the HT -conditional law of X has a density with respect to the Ht -conditional law,
which equals the constant 1. However, it is not true that this conditional law is absolutely
continuous with respect to the probability law of X. In fact, if we denote respectively by �
and φ the probability distribution function and the probability density function of the standard
normal distribution, then the probability law of X has the probability density 2�φ. However,
the σ(Y1)-conditional law of X is �(Y1)δY1(du) + 1[Y1,+∞) φ(u) du, which is not absolutely
continuous with respect to the Lebesgue measure. This is a typical situation which we cannot
handle within the classic framework of density hypothesis.

Remark 3.2. Condition (3.2) is invariant under a change of probability measure. Indeed, if P′
is an equivalent probability measure of P with dP′/dP = QT (X) on HT ∨σ(X), whereQT (·)
is a positive HT ⊗ E -measurable function, then for any nonnegative Borel function f on E,

EP′ [f (X) | HT ] = EP[f (X)QT (X) | HT ]
EP[QT (X) | HT ] =

∫
E
f (x)QT (x)qT (x)νt (dx)∫
E
QT (x)qT (x)νt (dx)

,

where νt (dx) := P(X ∈ dx | Ht ). Moreover, letQt(·) be a Ht ⊗ E -measurable function such
that Qt(X) = EP[QT (X) | Ht ∨ σ(X)], then Qt(X) is the Radon–Nikodym density dP′/dP

on Ht ∨ σ(X), and, hence,

EP′ [f (X) | Ht ] = EP[f (X)Qt(X) | Ht ]
EP[Qt(X) | Ht ] =

∫
E
f (x)Qt(x)νt (dx)∫
E
Qt(x)νt (dx)

.

Therefore, P′(X ∈ · | HT ) is absolutely continuous with respect to P′(X ∈ · | Ht ), and the
corresponding density is given by

q ′
T (·) = qT (·)QT (·)

Qt (·)
∫
E
Qt(x)νt (dx)∫

E
QT (x)qT (x)νt (dx)

. (3.3)

Note that, if X and HT are P-conditionally independent given Ht , then we can choose Qt(·)
to be

Qt(·) := EP[QT (·) | Ht ].
In [18], Jacod has proposed a density hypothesis without a (strict) positivity assumption

on the density. With the above notation, the FT -condition law of the random variable X is
absolutely continuous (but not necessarily equivalent) to the probability law of X. We can
also consider the analogue of this hypothesis in relaxing the positivity condition of the density
function. This weakened condition is still invariant under the change of (equivalent) probability
measures, and (3.3) still holds. In fact, although qT (·) is not necessarily positive, the integral∫
E
QT (x)qT (x)νt (dx), which appears in the denominator of the right-hand side of (3.3), is equal

to EP[QT (X) | HT ], which is positive a.s. However, the equivalent hypothesis is essential in
Proposition 3.4 in order to obtain the decoupling equivalent probability measure.
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Let G = (Gu)u∈[t,T ] denote the initial enlargement of H with X, i.e. Gu = Hu ∨ σ(X). By
using the conditional density, we can construct a probability measure equivalent to P under
which the random variable X and the filtration H are conditionally independent given Ht .

Proposition 3.1. Under hypothesis (3.2), there exists an equivalent probability measure Q to
P such that

(i) Q coincides with P on H;

(ii) X and H are conditionally independent under Q given Ht ;

(iii) X has the same conditional law, given Ht , under P and Q.

Moreover, the probability measure Q is unique on GT and given by dQ/dP|GT = qT (X)
−1.

We emphasize that, although the result has a form similar as in [10] and [12], under our
hypothesis it is, in general, not possible to assume the independence betweenX and the filtration
H under an equivalent probability measure.

Proof of Proposition 3.1. By taking the expectation of a conditional expectation, we have

EP[qT (X)−1] = EP[EP[qT (X)−1 | HT ]] = EP

[∫
E

qT (x)
−1νT (dx)

]
.

The hypothesis (3.2) thus leads to

EP[qT (X)−1] = EP

[∫
E

qT (x)
−1qT (x)νt (dx)

]
= 1.

Let Q be the probability measure on (�,A) defined by dQ/dP = qT (X)
−1. If f is a

nonnegative Borel function on E, ZT a nonnegative HT -measurable random variable, and Yt
a nonnegative Ht -measurable random variable, then a direct computation shows that

EQ[f (X)ZT Yt ] = EP[f (X)qT (X)−1ZT Yt ]
= EP

[
ZT Yt

∫
E

f (x)qT (x)
−1νT (dx)

]

= EP

[
ZT Yt

∫
E

f (x)νt (dx)

]
= EP[EP[ZT | Ht ]YtEP[f (X) | Ht ]]. (3.4)

If we take ZT to be the constant function 1, it follows that the conditional law of X under P

and Q, given Ht , coincide. If we take f and Yt to be the constant function 1, it follows that P

and Q coincide on HT . Therefore, relation (3.4) implies that

EQ[f (X)ZT | Ht ] = EQ[f (X) | Ht ]EQ[ZT | Ht ],
namely σ(X) and H are conditionally independent given Ht .

For the uniqueness of the probability measure Q on GT , it suffices to observe that, for any
positive GT -measurable random variable YT (X), we have

EQ[YT (X)] = EQ

[∫
E

EQ[YT (x) | Ht ]Q(X ∈ dx | Ht )

]
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by using the conditional independence of H and σ(X) given Ht . Since the probability
measures P and Q coincide on H and the conditional probability laws of X given Ht with
respect to P and Q coincide, we obtain

EQ[YT (X)] = EP

[∫
E

EP[YT (x) | Ht ]P(X ∈ dx | Ht )

]

= EP

[∫
E

YT (x)P(X ∈ dx | Ht )

]

= EP

[∫
E

YT (x)qT (x)
−1P(X ∈ dx | HT )

]
= EP[YT (X)qT (X)−1].

Therefore, the Radon–Nikodym density of Q with respect to P on GT should be qT (X)−1. �
Corollary 3.1. For any u ∈ [t, T ], the Hu-conditional law of X is equivalent to the Ht -
conditional law ofX under the probability P. Moreover, if qu(·) is a positive Hu⊗E -measurable
function on �× E such that qu(x) = EP[qT (x) | Hu] P-a.s., then we have

P(X ∈ dx | Hu) = qu(x)P(X ∈ dx | Ht ).

In particular, the Radon–Nikodym derivative of the probability measure Q defined in Proposi-
tion 3.1 with respect to P is given by qu(X)−1 on Hu for u ∈ [t, T ].

Proof. Let Q be the probability measure on A defined by dQ/dP = qT (X)
−1. By Propo-

sition 3.1, for any u ∈ [s, T ], we obtain

Q(X ∈ · | Hu) = Q(X ∈ · | Ht ) = P(X ∈ · | Ht ). (3.5)

Moreover, for any nonnegative Borel function f on E, we have∫
E

f (x)P(X ∈ dx | Hu) = EP[f (X) | Hu] = EQ[f (X)qT (X) | Hu]
EQ[qT (X) | Hu] . (3.6)

Note that

EQ[f (X)qT (X) | Hu] = EQ

[∫
E

f (x)qT (x)Q(X ∈ dx | HT )

∣∣∣∣ Hu

]

= EQ

[∫
E

f (x)qT (x)νt (dx)

∣∣∣∣ Hu

]

= EQ

[∫
E

f (x)νT (dx)

∣∣∣∣ Hu

]
, (3.7)

where the second equality comes from (3.5) and we recall that νt (dx) = P(X ∈ dx | Ht ). In
addition, we have, from (3.7),

EQ[f (X)qT (X) | Hu] =
∫
E

f (x)EQ[qT (x) | Hu]νt (dx) =
∫
E

f (x)qu(x)νt (dx) (3.8)

since Q and P coincide on H. In particular, when f is the constant function 1, (3.7) yields

EQ[qT (X) | Hu] = 1.
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Therefore, by (3.6) and (3.8), we obtain∫
E

f (x)P(X ∈ dx | Hu) =
∫
E

f (x)qu(x)P(X ∈ dx | Ht ),

namely qu(·) is the density of νu(dx) with respect to νt (dx). �

3.2. Change of probability measures

We now come back to the successive enlargements under Assumption 3.1. In this subsection
and the next one, we introduce two different ways to construct equivalent probability measures,
which will play an important role in further applications.

We recall that for any x ∈ E and t ∈ [ti , T ], αi | i−1
t (L(i−1), ·) is defined as the conditional

expectation

α
i | i−1
t (L(i−1), x) = EP[αi | i−1

T (L(i−1), x) | Gi−1
t ].

By Corollary 3.1, we have

P(Li ∈ dx | Gi−1
t ) = α

i | i−1
t (L(i−1), x)P(Li ∈ dx | Gi−1

ti
).

We now introduce a family of probability measures equivalent to P by using Proposition 3.1
in a recursive manner.

Definition 3.1. Let P0 := P, and, for any i ∈ {1, . . . , n}, let Pi be the probability measure on
(�,A) such that

dPi

dPi−1 = 1

α
i | i−1
T (L(i))

. (3.9)

For any x(i) ∈ Ei , let

ψit (x
(i)) :=

i∏
k=1

1

α
k | k−1
t (x(k))

, t ∈ [ti , T ]. (3.10)

We show in Proposition 3.2 below that the probability measures (Pi )ni=1 are well defined
and the Radon–Nikodym density of Pi with respect to P is ψit (L

(i)) on Git .

Proposition 3.2. The probability measures (Pi )ni=1 are well defined and equivalent to P. For
any i ∈ {1, . . . , n},

(i) the probability measures Pi and Pi−1 coincide on Gi−1
T , in particular, all probability

measures (Pi )ni=1 coincide with P on FT ;

(ii) L(i) and FT are conditionally independent given Fti under Pi;

(iii) for any t ∈ [ti , T ], the Radon–Nikodym density of Pi with respect to Pi−1 is given by
α
i | i−1
t (L(i))−1 on Git and, hence, the Radon–Nikodym density of Pi with respect to P is

given by ψit (L
(i)) on Git .

Proof. We prove the proposition by induction on i. The case when i = 1 is true by
Proposition 3.1. Suppose that the equivalent probability measures P1, . . . ,Pi−1 are well
defined and verify the properties asserted by the proposition. Moreover, Assumption 3.1
holds for the probability measure Pi−1 by Remark 3.2. More precisely, the conditional
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law Pi−1(Li ∈ · | Gi−1
T ) is absolutely continuous with respect to Pi−1(Li ∈ · | Gi−1

ti
), and

the corresponding density is

α
i | i−1
T (L(i−1), · ) ψi−1

T (L(i−1))

EP[ψi−1
T (L(i−1)) | Gi−1

ti
]

×
∫
E

EP[ψi−1
T (L(i−1)) | Gi−1

ti
] P(Li ∈ dx | Gi−1

ti
)∫

E
α
i | i−1
T (L(i−1), x)ψi−1

T (L(i−1))P(Li ∈ dx | Gi−1
ti
)
,

which is still equal to αi | i−1
T (L(i−1), · ) since

ψi−1
T (L(i−1)) =

∫
E

α
i | i−1
T (L(i−1), x)ψi−1

T (L(i−1))P(Li ∈ dx | Gi−1
ti
)

and

EP[ψi−1
T (L(i−1)) | Gi−1

ti
] =

∫
E

EP[ψi−1
T (L(i−1)) | Gi−1

ti
]P(Li ∈ dx | Gi−1

ti
).

We now show that (3.9) effectively defines a probability measure Pi . We have

EPi−1 [αi | i−1
T (L(i))−1 | Gi−1

ti
] = EP[αi | i−1

T (L(i))−1ψi−1
T (L(i−1)) | Gi−1

ti
]

EP[ψi−1
T (L(i−1)) | Gi−1

ti
] .

Assumption (3.1) applied to Li and Gi−1 leads to

EP[αi | i−1
T (L(i))−1ψi−1

T (L(i−1)) | Gi−1
ti

]
= EP

[
ψi−1
T (L(i−1))

∫
E

α
i | i−1
T (L(i−1), x)−1α

i | i−1
T (L(i−1), x)P(Li ∈ dx | Gi−1

ti
) | Gi−1

ti

]
= EP[ψi−1

T (L(i−1)) | Gi−1
ti

].
Therefore, EPi−1 [αi | i−1

T (L(i))−1 | Gi−1
ti

] = 1 and, hence, Pi is well defined.
By Proposition 3.1, Pi and Pi−1 coincide on Gi−1. In particular, Pi and P are the same on FT ,

which implies the first assertion. By the induction hypothesis, L(i−1) and FT are conditionally
independent given Fti−1 under the probability measure Pi−1, which implies, since Fti−1 ⊆ Fti ,
that L(i−1) and FT are conditionally independent given Fti under Pi−1, and also under Pi

by (i). It then suffices to verify that Li and FT are conditionally independent, given Fti under
Pi , to prove the second assertion. Note that Proposition 3.1 also shows that Li and Gi−1

T are
conditionally independent given Gi−1

ti
under the probability Pi . Let f be a nonnegative Borel

function on E, and X is a nonnegative FT -measurable random variable. By the conditional
independence of Li and FT given Gi−1

ti
under Pi , we obtain

EPi [f (Li)X | Fti ] = EPi [EPi [f (Li) | Gi−1
ti

] EPi [X | Gi−1
ti

] | Fti ].
Moreover, since X and L(i−1) are conditionally independent given Fti under Pi , we have
EPi [X | Gi−1

ti
] = EPi [X | Fti ]. Therefore, we obtain

EPi [f (Li)X | Ft ] = EPi [f (Li) | Fti ] EPi [X | Fti ].
Finally, the last assertion of the proposition follows from (i) and Corollary 3.1. The proposition
is thus proved. �
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Remark 3.3. This construction of successive changes of probability measures is natural and
uses only the knowledge of L(i) to construct Pi . However, under the probability measure Pi ,
the law of Lk , k ∈ {i + 1, . . . , n}, is not identical to the law of Lk under Pi−1. We will show
in the next subsection that Pn preserves the P-conditional probability law of Lk given Gk−1

tk
.

Proposition 3.3. Let t, u ∈ [ti , T ], t ≤ u, and Xu(L(i)) be a nonnegative Giu-measurable
random variable. We have

EP[Xu(L(i)) | Git ] = EP[Xu(x(i))ψiu(x(i))−1 | Ft ]
ψit (x

(i))−1

∣∣∣
x(i)=L(i)

.

Proof. We use the change of the probability measure to Pi and obtain

EP[Xu(L(i)) | Git ] = EPi [Xu(L(i))ψiu(L(i))−1 | Git ]
ψit (L

(i))−1
.

By Proposition 3.2, L(i) and FT are conditionally independent given Ft under the probability Pi .
Therefore,

EP[Xu(L(i)) | Git ] = EPi [Xu(x(i))ψiu(x(i))−1 | Ft ]
ψit (x

(i))−1

∣∣∣
x(i)=L(i)

.

Since Pi and P coincide on FT , we obtain the desired result. �

3.3. Backward construction of probability measures

In order to have a family of probability measures under which the conditional law of
each Li remains unchanged, we propose the following construction, using a backward change
of probability measures. This method is also crucial in the evaluation of financial claims which
we will discuss later.

Definition 3.2. Let Qn+1 = P, and, for i ∈ {1, . . . , n}, let Qi be a probability measure on
(�,A) such that

dQi

dQi+1 := 1

α
i | i−1
T (L(i))

. (3.11)

Let

ϕiT (x) =
n∏
k=i

1

α
k | k−1
T (x(k))

.

Then the Radon–Nikodym derivative of Qi with respect to P is given by

dQi

dP
= ϕiT (L). (3.12)

Note that ϕiT (L) is a GnT -measurable random variable.

Proposition 3.4. The equivalent probability measures (Qi )ni=1 are well defined and verify the
following properties for any i ∈ {1, . . . , n}:

(i) Qi coincides with P on Gi−1
T ;

(ii) for any k ∈ {i, . . . , n}, Lk and Gk−1
T are conditionally independent given Gk−1

tk
under Qi;
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(iii) for any k ∈ {1, . . . , n}, Lk has the same conditional law given Gk−1
tk

under all (Qi )ni=1
and P.

Proof. We prove the proposition by a reverse induction on i. The assertion is clearly true
when i = n+ 1. Assume that the probability measures Qi+1, . . . ,Qn+1 have been constructed
and verify the assertions in the proposition. Since Qi+1 is identical to P on GiT , we have

Qi+1(Li ∈ dx | Gi−1
T ) = α

i | i−1
T (L(i−1), x)Qi+1(Li ∈ dx | Gi−1

ti
). (3.13)

In particular, we have

EQi+1
[

1

α
i | i−1
T (L(i))

∣∣∣∣ Gi−1
T

]
= 1.

Therefore, the probability measure Qi equivalent to Qi+1 given by (3.11) is well defined.
By (3.13) and Proposition 3.1, the probability measure Qi coincides with Qi+1, and, there-

fore, with P on Gi−1
T . So assertion (i) is proved, and, hence, for any k ∈ {1, . . . , i−1},Lk has the

same conditional law given Gk−1
tk

under Qi and P. Moreover, Li is conditionally independent
of Gi−1

T given Gi−1
ti

under Qi , andLi has the same conditional probability law given Gi−1
ti

under
Qi and Qi+1 (and, hence, under P also). Finally, for k ∈ {i + 1, . . . , n}, let h be a nonnegative
Borel function on E, and Y be a nonnegative Gk−1

T -measurable random variable, then

EQi [h(Lk)Y | Gk−1
tk

] = EQi+1 [h(Lk)Yαi | i−1
T (L(i))−1 | Gk−1

tk
]

EQi+1 [αi | i−1
T (L(i))−1 | Gk−1

tk
]

= EQi+1 [h(Lk) | Gk−1
tk

]EQi+1 [Yαi | i−1
T (L(i))−1 | Gk−1

tk
]

EQi+1 [αi | i−1
T (L(i))−1 | Gk−1

tk
]

since, by the induction hypothesis, Lk and Gk−1
T are conditionally independent given Gk−1

tk
under Qi+1. Therefore,

EQi [h(Lk)Y | Gk−1
tk

] = EQi+1 [h(Lk) | Gk−1
tk

]EQi [Y | Gk−1
tk

].

If we take Y = 1 then the Gk−1
tk

-conditional law ofLk under Qi coincides with that under Qi+1,
which proves assertion (iii). Moreover, this also shows that

EQi [h(Lk)Y | Gk−1
tk

] = EQi [h(Lk) | Gk−1
tk

]EQi [Y | Gk−1
tk

],
which gives assertion (ii) and completes the proof. �

3.4. Conditional expectation with successive information

In this subsection we are interested in the computation of conditional expectations with the
insider’s successive information. The GI-conditional expectations may represent the dynamic
values of a financial claim viewed by the insider. The idea is to make connections with the
F-conditional expectations which are easier to deal with in an explicit manner and the result
is given in a decomposed form with a regime change at each time ti when new information is
available. We still suppose that Assumption 3.1 holds for the information flow. In particular,
we assume that the insider has knowledge on the marginal conditional laws P(Li ∈ dx | Gi−1

ti
),

i ∈ {1, . . . , n}. We will present the evaluation formula in terms of F-conditional expectations.

https://doi.org/10.1017/apr.2017.17 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.17


664 C. BLANCHET-SCALLIET ET AL.

Let YT (L) be a nonnegative GI
T -measurable random variable. Our purpose is to determine

the conditional expectation of YT (L) given the insider’s information GI
t at t ∈ [0, T ]. Here we

work under the initial probability measure P. Note that the method is valid under an equivalent
probability measure since Assumption 3.1 is invariant under an equivalent probability change.
By definition (2.1) and (2.3), we have

EP[YT (L) | GI
t ] =

n∑
i=1

1[ti ,ti+1)(t)E
P[YT (L) | Git ] =

n∑
i=1

1[ti ,ti+1)(t)E
P[Yti+1(L

(i)) | Git ],
(3.14)

where
Yti+1(L

(i)) := EP[YT (L) | Giti+1
]. (3.15)

It then suffices to determine Yti+1(L
(i)) under Assumption 3.1. The result is obtained by using

a recursive pricing kernel and we use probability measures constructed in the two previous
subsections.

For any i ∈ {1, . . . , n}, let Ji be the operator which sends a nonnegative or bounded GiT -
measurable random variable XT (L(i)) to the following integral:∫

E

EP[XT (L(i−1), xi) | Gi−1
ti

]P(Li ∈ dxi | Gi−1
ti
), (3.16)

which is a Gi−1
ti

-measurable random variable. Note that, by Proposition 3.3, we have

EP[XT (L(i−1), xi) | Gi−1
ti

] = EP[XT (x(i))ψi−1
T (x(i−1))−1 | Fti ]

ψi−1
ti
(x(i−1))−1

∣∣∣
x(i−1)=L(i−1)

. (3.17)

In other words, the operator Ji can be expressed in terms of an F-conditional expectation and
integral with respect to the Gi−1

ti
-conditional law of Li .

This operator can be better understood by using the probability measure Qi constructed in
Subsection 3.3. In fact, by Proposition 3.4, we have

P(Li ∈ dxi | Gi−1
ti
) = Qi (Li ∈ dxi | Gi−1

ti
),

and
EP[XT (L(i−1), xi) | Gi−1

ti
] = EQi [XT (L(i−1), xi) | Gi−1

ti
]

since Qi and P coincide on Gi−1
T . Therefore, we can write (3.16) as∫

E

EQi [XT (L(i−1), xi) | Gi−1
ti

]Qi (Li ∈ dxi | Gi−1
ti
),

which implies, since Li and G(i−1)
T are conditionally independent given Gi−1

ti
under Qi , that

Ji(XT (L
(i))) = EQi [XT (L(i)) | Gi−1

ti
]. (3.18)

Therefore, Ji is actually a conditional expectation operator. In particular, it is an R-linear
operator which verifies the following equality:

Ji(XT (L
(i))Zti (L

(i−1))) = Zti (L
(i−1))Ji(XT (L

(i))) (3.19)

for any Gi−1
ti

-measurable random variable Zti (L
(i−1)) such that the left-hand side of the above

formula is well defined.
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Lemma 3.1. Let XT (L) be a bounded or nonnegative GnT -measurable random variable. We
have

EQi+1 [XT (L) | Giti+1
] = Ji+1 ◦ · · · ◦ Jn(XT (L)Ui+1

T (L)), i ∈ {0, . . . , n}, (3.20)

where the operator Ji+1 ◦ · · · ◦ Jn is considered as the identity operator when i = n and

Ui+1
T (L) :=

n∏
k=i+1

α
k | k−1
tk+1

(L(k))

α
k | k−1
T (L(k))

. (3.21)

Proof. We prove the assertion by reverse induction on i. The case when i = n follows from
(3.18) since UnT (L) = 1. In the following, we assume that equality (3.20) is verified for i + 1
and we now prove it is the case for i.

By the induction hypothesis and the fact that

Ui+1
T (L) = α

i+1 | i
ti+2

(L(i+1))

α
i+1 | i
T (L(i+1))

Ui+2
T (L),

we have

Ji+1 ◦ · · · ◦ Jn(XT (L)Ui+1
T (L)) = Ji+1

(
EQi+2

[
XT (L)

α
i+1 | i
ti+2

(L(i+1))

α
i+1 | i
T (L(i+1))

∣∣∣∣ Gi+1
ti+2

])

= Ji+1(E
Qi+1 [XT (L) | Gi+1

ti+2
])

= EQi+1 [XT (L) | Giti+1
],

where the second equality comes from the probability change from Qi+2 to Qi+1, and the last
equality follows from (3.18). �

Theorem 3.1. Let YT (L) be a bounded or nonnegative GI
T -measurable random variable. For

any t ∈ [0, T ], we have

EP[YT (L) | GI
t ] =

n∑
i=1

1[ti ,ti+1)(t)
EP[Yti+1(x

(i))ψiti+1
(x(i))−1 | Ft ]

ψit (x
(i))−1

∣∣∣∣
x(i)=L(i)

, (3.22)

where Yti+1(·) is Fti+1 ⊗ E⊗i-measurable such that Yti+1(L
(i)) = EP[YT (L) | Giti+1

]. More-
over, the sequence of random variables (Yti+1(L

(i)))ni=0 satisfies the following backward recur-
sive relation:

Yti+1(L
(i)) = Ji+1(Yti+2(L

(i+1))�ti+2(L
(i+1)))

Ji+1(�ti+2(L
(i+1)))

, i ∈ {0, . . . , n− 1}, (3.23)

with the terminal term Ytn+1(L
(n)) = YT (L) and the pricing kernel given by

�ti+2(L
(i+1)) := Ji+2 ◦ · · · ◦ Jn(αi+1 | i

ti+2
(L(i)) · · ·αn | n−1

T (L(n))) (3.24)

with convention �t1 = 1.
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Proof. By (3.14) and Proposition 3.3, we obtain equality (3.22). We now prove relation
(3.23) by computing the conditional expectation (3.15) under the change of probability measure
to Qi+1 as

Yti+1(L
(i)) = EP[Yti+2(L

(i+1)) | Giti+1
] = EQi+1 [Yti+2(L

(i+1))ϕi+1
T (L)−1 | Giti+1

]
EQi+1 [ϕi+1

T (L)−1 | Giti+1
] ,

where ϕi+1
T (L) is the Radon–Nikodym derivative of Qi+1 with respect to P defined in (3.12).

By Lemma 3.1, we have

EQi+1 [Yti+2(L
(i+1))ϕi+1

T (L)−1 | Giti+1
]

= Ji+1 ◦ · · · ◦ Jn(Yti+2(L
(i+1))ϕi+1

T (L)−1Ui+1
T (L))

= Ji+1(Yti+2(L
(i+1)))Ji+2 ◦ · · · ◦ Jn(ϕi+1

T (L)−1Ui+1
T (L)),

where the second equality comes from (3.19). Note that, by (3.21), we have

Ui+1
T (L)

ϕi+1
T (L)

= α
i+1 | i
ti+2

(L(i)) · · ·αn | n−1
T (L(n)),

which implies that

EQi+1 [Yti+2(L
(i+1))ϕi+1

T (L)−1 | Giti+1
] = Ji+1(Yti+2(L

(i+1))�ti+2(L
(i+1))).

In addition, Lemma 3.1 shows that

EQi+1 [ϕi+1
T (L)−1 | Giti+1

] = Ji+1(�ti+2(L
(i+1))),

which implies (3.23) and completes the proof. �
Remark 3.4. Since we deal with processes of finite-time horizon, Theorem 3.1 can also be
viewed as a characterization of GI-martingales. In fact, a GI-adapted process can be written in
the form

Xt =
n∑
i=1

1[ti ,ti+1)(t)X
(i)
t (L

(i)), t ∈ [0, T ],

where, for each i ∈ {1, . . . , n},X(i)t (·) is an Ft⊗E⊗i-measurable random variable. Theorem 3.1
shows that the above process is an (GI,P)-martingale if

X
(i)
t (x

(i))

ψit (x
(i))

= EP

[
Xti+1(x

(i))

ψiti+1
(x(i))

∣∣∣∣ Ft

]
,

where Xti+1(·) is Fti+1 ⊗ E⊗i-measurable such that Xti+1(L
(i)) = EP[XT | Giti+1

], which can
be calculated by (3.23). This condition can also be interpreted as below. For any i ∈ {1, . . . , n}
and any x(i) ∈ Ei , the process

X
(i)
t (x

(i))

ψit (x
(i))

, t ∈ [ti , ti+1)

is an (F,P)-martingale on [ti , ti+1) which converges to Xti+1(x
(i))/ψiti+1

(x(i)) when t tends
to ti+1.
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4. Several stronger density hypotheses

In this section we consider particular cases of our successive density framework by introduc-
ing several stronger density hypotheses than Assumption 3.1. We compare these hypotheses
and deduce concrete evaluation formulae in each case. For simplicity, we suppose that F0 is
trivial.

4.1. Density hypothesis with different initial σ -algebras

We begin by the case where we consider the conditional law ofLi given the initial σ -algebra
of the previous information filtration Gi−1

0 = σ(L(i−1)).

Assumption 4.1. For any i ∈ {1, . . . , n}, the Gi−1
T -conditional law of Li is equivalent to

its Gi−1
0 -conditional law under the probability P, namely there exists a positive Gi−1

T ⊗ E -
measurable function βi | i−1

T (L(i−1), ·) such that

P(Li ∈ dx | Gi−1
T ) = β

i | i−1
T (L(i−1), x)P(Li ∈ dx | Gi−1

0 ).

Similarly to what we have explained in Remark 3.1, we can consider the conditional density
β
i | i−1
T (L(i−1), ·) as a positive (FT ⊗ E⊗(i−1))⊗ E -measurable function βi | i−1

T (·, ·) evaluated
at L(i−1). For any t ∈ [0, T ], let βi | i−1

t (·, ·) be an (Ft ⊗ E⊗(i−1))⊗ E -measurable function
such that

β
i | i−1
t (L(i−1), x) = EP[βi | i−1

T (L(i−1), x) | Gi−1
t ].

By Corollary 3.1,

P(Li ∈ dx | Gi−1
t ) = β

i | i−1
t (L(i−1), x)P(Li ∈ dx | Gi−1

0 ). (4.1)

Note that βi | i−1
0 (L(i−1), x) = 1 a.s. for all x ∈ E and∫

E

β
i | i−1
t (L(i−1), x)P(Li ∈ dx | Gi−1

0 ) = 1.

In particular, if we define for all ti ≤ t ≤ T a function αi | i−1
t (x) on�×Ei which is FT ⊗E i-

measurable such that

α
i | i−1
t (x(i)) = β

i | i−1
t (x(i))

β
i | i−1
ti

(x(i))
, (4.2)

then the random vector L verifiesAssumption 3.1 with the conditional densityαi | i−1
T (L(i−1), x)

and αi | i−1
t (L(i−1), x) = EP[αi | i−1

T (L(i−1), x) | Gi−1
t ], x ∈ E.

Let us note that under Assumption 4.1 the filtration Gi is right-continuous on [0, T ], whereas
it is a priori right-continuous only on [ti , T ] under the weaker Assumption 3.1.

We now apply Theorem 3.1 to compute the conditional expectation under Assumption 4.2
where the recursive operators can be simplified in an explicit manner. As the result can also be
obtained in a more straightforward manner using a global approach (see Subsection 4.2), we
will give the proof by using the recursive approach in Appendix A.

Proposition 4.1. We suppose that Assumption 4.1 holds. Let YT (L) be a nonnegative GnT -
measurable random variable. Then, for t ∈ [0, T ], we have

EP[YT (L) | GI
t ] =

n∑
i=1

1[ti ,ti+1)(t)

∫
En−i

EP[YT (x)ZnT (x) | Ft ]
Zit (x

(i))

∣∣∣∣
x(i)=L(i)

× P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Gi0),
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where the pricing kernel is defined as

Zit (x
(i)) :=

i∏
k=1

β
k | k−1
t (x(k)). (4.3)

We state the following key property of the pricing kernel.

Lemma 4.1. For i ∈ {0, . . . , n− 1} and t ∈ [0, T ],
P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Git )

= Znt (L
(i), xi+1, . . . , xn)

Zit (L
(i))

P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Gi0) (4.4)

with convention Z0
t = 1. Moreover, we have

Zit (L
(i)) =

∫
En−i

Znt (L
(i), xi+1, . . . , xn)P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Gi0). (4.5)

Proof. Let I it be the operator sending a nonnegative Git -measurable random variable Yt (L(i))
to

E[Yt (L(i)) | Gi−1
t ] =

∫
E

Yt (L
(i−1), xi)β

i | i−1
t (L(i−1), xi)P(Li ∈ dxi | Gi−1

0 ).

On the one hand, by the property of conditional expectation, we have

(I i+1
t ◦ · · · ◦ Int )(Yt (L))

= EP[Yt (L) | Git ]
=

∫
En−i

Yt (L
(i), xi+1, . . . , xn)P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Git ). (4.6)

On the other hand, by the definition of the operators I i+1
t , . . . , I nt and the fact that

βi+1 | i (L(i), xi+1) · · ·βn | n−1(L(i), xi+1, . . . , xn) = Znt (L
(i), xi+1, . . . , xn)

Zit (L
(i))

,

it follows that
(I i+1
t ◦ · · · ◦ Int )(Yt (L))

=
∫
En−i

Yt (L
(i), xi+1, . . . , xn)

Znt (L
(i), xi+1, . . . , xn)

Zit (L
(i))

× P(Ln ∈ dxn | Gn−1
0 ) · · · P(Li+1 ∈ dxi+1 | Gi0)

=
∫
En−i

Yt (L
(i), xi+1, . . . , xn)

Znt (L
(i), xi+1, . . . , xn)

Zit (L
(i))

× P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Gi0).

Combining with equality (4.6), we deduce the first assertion (4.4) of the lemma, which leads
to (4.5) directly. �

Another hypothesis is the Jacod’s hypothesis in the successive initial enlargement of filtration
setting where the terminal conditional law of each Li given the previous information filtration
G(i−1) is equivalent to its probability law.
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Assumption 4.2. For any i ∈ {1, . . . , n}, the Gi−1
T -conditional law of Li is equivalent to its

conditional law under the probability P, namely there exists a positive Gi−1
T ⊗ E -measurable

function pi | i−1
T (L(i−1), ·) such that

P(Li ∈ dx | Gi−1
T ) = p

i | i−1
T (L(i−1), x)P(Li ∈ dx).

Note that under the above assumption, for any t ∈ [0, T ], the Gi−1
t -conditional law of Li

has the densitypi | i−1
t (L(i−1), x) := EP[pi | i−1

T (L(i−1), x) | Gi−1
t ] with respect to P(Li ∈ dx).

In particular, the family of (P,Gi−1)-martingales pi | i−1(L(i−1), ·) has the initial value

p
i | i−1
0 (L(i−1), x) = P(Li ∈ dx | Gi−1

0 )

P(Li ∈ dx)
, x ∈ E. (4.7)

Moreover, if L satisfiesAssumption 4.2, it also satisfiesAssumption 4.1 with βi | i−1
T (L(i−1), x),

where, for all t ,

β
i | i−1
t (x(i)) = p

i | i−1
t (x(i))

p
i | i−1
0 (x(i))

. (4.8)

We give hereafter an example where Assumption 4.2 is satisfied and the density processes
pi | i−1 are given explicitly.

Example 4.1. Let (W,W ′) a two-dimensional Brownian motion and Ft = σ(Ws, s ≤ t ≤ T ).
Define the Brownian motion B = ρW + (1 − ρ)W ′ with ρ ∈ [0, 1[ and let Li = Bti+1 be the
endpoint of B at each interval [ti , ti+1[. Then Assumption 4.2 is satisfied and

p
i | i−1
t (L(i−1), x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(Li−1, ti+1 − ti , x)

φ(0, ti+1, x)
, t ≤ ti ,

φ(Li−1 + ρ(Wt −Wti ), ρ
2(ti+1 − t)+ (1 − ρ)2(ti+1 − ti ), x)

φ(0, ti+1, x)
, ti < t ≤ ti+1,

φ(Li−1 + ρ(Wti+1 −Wti ), (1 − ρ)2(ti+1 − ti ), x)

φ(0, ti+1, x)
, ti+1 < t ≤ T ,

where φ(μ, σ 2, x) is the probability density function of the normal distribution N(μ, σ 2).
We note that pi | i−1(L(i−1), x) is a (P,Gi−1)-martingale on [0,T].

We deduce from Proposition 4.1 the following result.

Proposition 4.2. We suppose that Assumption 4.2 holds. Let YT (L) be a nonnegative GnT -
measurable random variable. Then, for t ∈ [0, T ], we have

EP[YT (L) | GI
t ] =

n∑
i=1

1[ti ,ti+1)(t)

∫
En−i

EP[YT (x)Z̃nT (x) | Ft ]
Z̃it (x

(i))

∣∣∣∣
x(i)=L(i)

× P(Li+1 ∈ dxi+1) · · · P(Ln ∈ dxn),

where Z̃it (x
(i)) = ∏i

k=1 p
k | k−1
t (x(k)).
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Proof. We apply Proposition 4.1 under Assumption 4.2. By equality (4.8), we obtain

Zit (x
(i)) =

i∏
k=1

β
k | k−1
t (x(k)) = Z̃it (x

(i))

i∏
k=1

1

p
k | k−1
0 (x(k))

.

Therefore, Proposition 4.1 leads to

EP[YT (L) | GI
t ]

=
n∑
i=1

1[ti ,ti+1)(t)

∫
En−i

EP[YT (x)Z̃nT (x) | Ft ]
Z̃it (x

(i))

∣∣∣∣
x(i)=L(i)

×
n∏

k=i+1

1

p
k | k−1
0 (x(k))

P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Gi0).

Finally, by (4.7), which implies the following relation:

P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Gi0)

=
( n∏
k=i+1

p
k | k−1
0 (x(k))

)
P(Li+1 ∈ dxi+1) · · · P(Ln ∈ dxn),

we obtain the result of the proposition. �
Remark 4.1. Similarly to Lemma 4.1, for i ∈ {0, . . . , n− 1} and t ∈ [0, T ], we have

P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Git )

= Z̃nt (L
(i), xi+1, . . . , xn)

Z̃it (L
(i))

P(Li+1 ∈ dxi+1) · · · P(Ln ∈ dxn), (4.9)

where Z̃0
t = 1 and

Z̃it (L
(i)) =

∫
En−i

Z̃nt (L
(i), xi+1, . . . , xn)P(Li+1 ∈ dxi+1) · · · P(Ln ∈ dxn).

Due to the transitivity of the equivalence relation between probability measures, Assump-
tion 4.2 implies Assumption 4.1 which, in turn, implies Assumption 3.1. We now provide
several examples to compare these hypotheses.

Example 4.2. (i) Trivial examples (that lead to no enlargement of filtrations) show that the
reciprocal statements are false: e.g. Li which is a deterministic function of L(i−1) satisfies
Assumption 4.1 but not Assumption 4.2; Li , which is a Gi−1

ti
-measurable random variable but

not Gi−1
0 -measurable satisfies Assumption 3.1 and not Assumption 4.1.

(ii) More generally, Assumption 4.1 is satisfied but not Assumption 4.2 at step ti if and only if
the distribution of Li is not equivalent to the conditional distribution of Li given L(i−1).

(iii) Here is another example, in the context of credit risk and default threshold, in which
Assumption 4.1 is satisfied and not Assumption 4.2. Let Li take two values a or b, a < b.
At time ti , the manager has an anticipation of the firm’s value XT ′+ti with T ′ > T and knows
if this value will be above or below the constant target c, X being an F-adapted process.
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If XT ′+ti+1 is above the target and the former threshold Li was low, then the manager keeps
fixing a low level for the threshold Li+1, otherwise he/she will fix a high level for Li+1, i.e.

Li+1 = a 1{XT ′+ti+1
>c} 1{Li=a} +b(1{XT ′+ti+1

≤c} + 1{XT ′+ti+1
>c} 1{Li=b}).

In this example, the distribution of Li+1 has two atoms a and b with positive probability, while
the distribution of Li+1 given the event {Li = b} is a Dirac measure.

(iv) Similarly, here is an example in which Assumption 3.1 is satisfied but not Assumption 4.1.
If XT ′+ti+1 and the current value Xti+1 is above the target c, then the manager keeps fixing a
low level for the threshold Li+1, otherwise he/she fixes a high level for Li+1, i.e.

Li+1 = a 1{XT ′+ti+1
>c} 1{Xti+1>c} +b(1{XT ′+ti+1

≤c} + 1{XT ′+ti+1
>c} 1{Xti+1≤c}).

In this example, the distribution of Li+1 (given L(i)) has two atoms a and b with positive
probability, while the distribution of Li+1, given the event {Xti+1 ≤ c}, is a Dirac measure.

As in Proposition 3.4, we can introduce a family of probability measures which satisfy the
following properties.

Proposition 4.3. Under Assumption 4.1 (respectively, Assumption 4.2), there exists a family of
equivalent probability measures {Qi

, i = 1, . . . , n} such that

(i) Q
i

is identical to P on Gi−1
T ;

(ii) any Lk , k ∈ {1, . . . , n}, has the same conditional law given Gk−1
0 (respectively, the same

probability law) under Q
i

and P;

(iii) under Q
i
, the vector (Li, . . . , Ln) and Gi−1

T are conditionally independent given Gk−1
0

(respectively, independent).

Moreover, the Radon–Nikodym derivative is given by

dQ
k

dP

∣∣∣∣
GnT

=
n∏
i=k

1

β
i | i−1
T (L(i))

= Zk−1
T (L(k−1))

ZnT (L)

(respectively,
∏n
i=k 1/pi | i−1

T (L(i)) = Z̃k−1
T (L(k−1))/Z̃nT (L)).

4.2. Global enlargement of filtration

In this subsection, instead of assuming the density hypothesis in a successive way for the
family of enlarged filtrations, we consider the random variables L1, . . . , Ln as a vector and
treat the Jacod’s hypothesis in the following way.

Assumption 4.3. The F-conditional law of L = (L1, . . . , Ln) is equivalent to its probability
law, i.e. there exists an FT ⊗ En-measurable function pT (·) such that

P(L ∈ dx | Ft ) = pT (x)P(L ∈ dx),

where dx = (dx1, . . . , dxn).

We denote by (pt (x), t ∈ [0, T ]) the density process of L given F, which is a (P,F)-
martingale for any x ∈ En. Define the filtration GL = (GL

t )t∈[0,T ], where GL
t := Ft ∨ σ(L)
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coincides with Gnt . Then L and F are independent under the equivalent probability measure PL

defined by
dPL

dP

∣∣∣∣
GL
t

:= 1

pt (L)
.

We remark that L1, . . . , Ln are not mutually independent under PL. In particular, if L is
independent of FT then pt (L) = 1.

We make precise the relationship between the global approach and the successive one.
In particular, we compare Assumption 4.3 with previous assumptions.

Proposition 4.4. (i) Assumption 4.3 is equivalent to Assumption 4.1. The conditional densities
are given by the following relations. On the one hand,

pT (x) =
n∏
i=1

β
i | i−1
T (x(i))

and, on the other hand,

β
i | i−1
T (L(i−1), xi) =

∫
En−i pT (L

(i−1), xi, . . . , xn)P(L
i+1 ∈ dxi+1, . . . , Ln ∈ dxn | Gi0)∫

En−i+1 pT (L(i−1), xi, . . . , xn)P(Li ∈ dxi, . . . , Ln ∈ dxn | Gi−1
0 )

.

(4.10)
(ii) The probability measure PL coincides with the probability measure Q

1
constructed in

Proposition 4.3 under Assumption 4.1.

Proof. If Assumption 4.1 holds, let i = 0 in Lemma 4.1, we obtain

P(L ∈ dx | Ft ) = Znt (x)P(L ∈ dx),

which implies Assumption 4.3 with

pt (x) = Znt (x). (4.11)

Moreover, by Proposition 4.3, PL = Q
1
, which is the second assertion of the proposition.

Conversely, supposing that Assumption 4.3 holds, and F and L are independent under PL;
thus, for i = 1, . . . , n,

PL(Li ∈ dxi | FT ∨ σ(L(i−1))) = PL(Li ∈ dxi | L(i−1)), P-a.s.

and we conclude, using the stability ofAssumption 4.1 under an equivalent change of probability
measure (PL is equivalent to P), that

P(Li ∈ dxi | Gi−1
T )(ω) ∼ P(Li ∈ dxi | Gi−1

0 ).

Moreover, the Radon–Nikodym density dP/dPL on GiT is given by

Qi
T (L

(i)) :=EPL [pT (L) | GiT ]
=

∫
En−i

pT (L
(i), xi+1, . . . , xn)P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Gi0)
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since L and F are independent under PL and PL coincides with P on σ(L). Therefore, by
Remark 3.2, we obtain

P(Li ∈ dxi | Gi−1
T ) = Qi

T (L
(i−1), xi)∫

E
Qi
T (L

(i−1), xi)P(Li ∈ dxi | Gi−1
0 )

P(Li ∈ dxi | Gi−1
0 ),

which leads to (4.10). �

Proposition 4.5. (i) Assumption 4.3 together with the condition P(L ∈ dx) ∼ ∏n
i=0 P(Li ∈

dxi) is equivalent to Assumption 4.2. The conditional densities are given by the following
relations. On the one hand,

pT (x) = Z̃nT (x)

Z̃n0 (x)
=

n∏
i=1

p
i | i−1
T (x(i))

p
i | i−1
0 (x(i))

(4.12)

and, on the other hand,

p
i | i−1
T (L(i−1), xi) =

∫
En−i (pT /ζ )(L

(i−1), xi, . . . , xn)P(Li+1 ∈ dxi+1) · · · P(Ln ∈ dxn)∫
En−i+1(pT /ζ )(L(i−1), xi, . . . , xn)P(Li ∈ dxi) · · · P(Ln ∈ dxn)

,

where ζ(·) is the Radon–Nikodym density of
∏n
i=1 P(Li ∈ dxi) with respect to P(L ∈ dx).

(ii) Under Assumption 4.3 and assuming P(L ∈ dx) = ζ(x)−1∏n
i=1 P(Li ∈ dxi) with ζ(·)

being a positive function on En, the equivalent probability measure QL defined by

dQL

dP

∣∣∣∣
GnT

= ζ(L)

pT (L)
(4.13)

satisfies

(a) F and the random variables L1, . . . , Ln are mutually independent under QL;

(b) the marginal law of each L1, . . . , Ln under QL coincide with the one under P.

(iii) The probability measure QL coincides with the probability Q
1

defined in Proposition 4.3
under Assumption 4.2.

Proof. (i) and (ii) Under Assumption 4.2, by Remark 4.1 and taking i = 0 in (4.9), we have

P(L ∈ x | FT ) = Z̃nT (x)P(L
1 ∈ dx1) · · · P(Ln ∈ dxn)

and, in particular,

P(L ∈ x) = Z̃n0 (x)P(L
1 ∈ dx1) · · · P(Ln ∈ dxn). (4.14)

Therefore, Assumption 4.3 is true with pT (x) = Z̃nT (x)/Z̃
n
0 (x).

Conversely, we assume that Assumption 4.3 holds and the condition P(L ∈ x) ∼∏n
i=1 P(Li ∈ dxi), with

P(L ∈ x) = ζ(x)−1
n∏
i=1

P(Li ∈ dxi).

https://doi.org/10.1017/apr.2017.17 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.17


674 C. BLANCHET-SCALLIET ET AL.

Note that Assumption 4.3 implies the existence of a probability measure PL equivalent to P

such that L is independent of FT under PL and that PL coincides with P on FT and on σ(L).
Therefore,

PL(L ∈ dx) = P(L ∈ dx) = ζ(x)−1
n∏
i=1

P(Li ∈ dxi) = ζ(x)−1
n∏
i=1

PL(Li ∈ dxi),

which implies that

EPL [ζ(L)] =
∫
En

ζ(x)

ζ(x)

n∏
i=1

PL(Li ∈ dxi) = 1.

We introduce a new probability measure QL on GL
T such that dQL/dPL = ζ(L), which is also

given by (4.13). We then check (a) and (b) in the second assertion.

• We first prove that L and FT are independent under QL. Let f be a bounded Borel
function on En and X be a bounded FT -measurable random variable. We have

EQL [f (L)X] = EPL [ζ(L)f (L)X] = EPL [ζ(L)f (L)]EPL [X] = EQL [f (L)]EPL [X],
where the second equality comes from the fact that L and FT are independent under PL.
Taking f = 1 in the last expression leads to

EPL [X] = EQL [X],
therefore EQL [f (L)X] = EQL [f (L)]EQL [X].

• Moreover, the random variables L1, . . . , Ln are independent under QL. Indeed, if
f1, . . . , fn are bounded Borel functions on E then

EQL [f1(L
1) · · · fn(Ln)] = EPL [ζ(L)f1(L

1) · · · fn(Ln)]
=

∫
En
ζ(x)f1(x

1) · · · fn(xn)PL(L ∈ dx)

=
∫
En
f1(x

1) · · · fn(xn)
n∏
i=1

PL(Li ∈ dxi)

=
n∏
i=1

EPL [fi(Li)].

Besides, taking fj = 1 for all j = i yields

EQL [fi(Li)] = EPL [fi(Li)] = EP[fi(Li)].
Therefore,

EQL [f1(L
1) · · · fn(Ln)] =

n∏
i=1

EQL [fi(Li)].

• The previous two points yield

QL(Li ∈ dxi | Gi−1
T ) = QL(Li ∈ dxi).
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Moreover, the Radon–Nikodym density dP/dQL on GiT is given by

EQL

[
pT (L)

ζ(L)

∣∣∣∣ GiT

]

=
∫
En−i

pT

ζ
(L(i), xi+1, . . . , xn)P(Li+1 ∈ dxi+1) · · · P(Ln ∈ dxn).

By Remark 3.2, this implies Assumption 4.2 with

p
i | i−1
t (L(i−1), x)

=
∫
En−i (pT /ζ )(L

(i−1), xi, . . . , xn)P(Li+1 ∈ dxi+1) · · · P(Ln ∈ dxn)∫
En−i+1(pT /ζ )(L(i−1), xi, . . . , xn)P(Li ∈ dxi) · · · P(Ln ∈ dxn)

.

Therefore, assertions (i) and (ii) are proved.

(iii) Finally, to prove the third assertion, it suffices to verify that (
∏n
i=1 p

i | i−1
T (L(i)))−1 is equal

to ζ(L)/pT (L). This is a consequence of (4.12) since (4.14) leads to

ζ(x) = 1

Z̃n0 (x)
=

n∏
i=1

1

p
i | i−1
0 (x(i))

.

The proposition is thus proved. �
Remark 4.2. In the particular case where the law of L admits a density with respect to the
Lebesgue measure on En, Assumptions 4.2 and 4.3 are equivalent.

Remark 4.3. The function ζ can be expressed in terms of copulas: c(u1, . . . , un) denotes the
density of the copula such that

C(u1, . . . , un) = F(F−1
1 (u1), . . . , F−1

n (un)) =
∫ u1

−∞
· · ·

∫ un

−∞
c(u1, . . . , un) du1 · · · dun,

where F1, . . . , Fn are marginal distribution functions and F is the joint distribution function,
then

ζ(x1, . . . , xn) = 1

c(F1(x1), . . . , Fn(xn))
. (4.15)

4.3. Conditional expectation using the global approach

We now apply the global approach to calculate the conditional expectations with respect to
the insider’s filtration GI, under the equivalent Assumptions 4.2 and 4.3. The idea is to use the
global change of probability measure PL, which will make the computation easier.

Proposition 4.6. We suppose that Assumption 4.3 holds. Let YT (L) be a nonnegative GnT -
measurable random variable. Then, for t ∈ [0, T ],
EP[YT (L) | GI

t ]

=
n∑
i=1

1[ti ,ti+1)(t)

×
∫
En−i EP[YT (x)pT (x) | Ft ]P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | L(i))∫

En−i pt (x)P(L
i+1 ∈ dxi+1, . . . , Ln ∈ dxn | L(i))

∣∣∣∣
x(i)=L(i)

.
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Proof. We use the change of probability measure to PL constructed in the global approach
of Subsection 4.2. By Bayes’ formula, we have

1[ti ,ti+1) E
P[YT (L) | GI

t ] = 1[ti ,ti+1) E
P[YT (L) | Git ] = 1[ti ,ti+1)

EPL [(YT pT )(L) | Git ]
EPL [pT (L) | Git ]

.

Since L and F are independent under PL, and PL coincides with P on F and σ(L), respectively,
we have

EPL [pT (L1, . . . , Ln) | Git ]
=

(∫
En−i

EP[pT (x(i), xi+1, . . . , xn) | Ft ]

× P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | L(i))

)∣∣∣∣
x(i)=L(i)

=
(∫

En−i
pt (x

(i), xi+1, . . . , xn)P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | L(i))

)∣∣∣∣
x(i)=L(i)

,

where the second equality results from the martingale property of (pt (x))t∈[0,T ]. Moreover,

EPL [(YT pT )(L1, . . . , Ln) | Git ]
=

(∫
En−i

EP[(YT pT )(x(i), xi+1, . . . , xn) | Ft ]

× P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | L(i))

)∣∣∣∣
x(i)=L(i)

,

which completes the proof. �
Remark 4.4. By equality pT (x) = ZnT (x) (see (4.11)) and relation (4.5), we see that Propo-
sition 4.6 yields the same result as in Proposition 4.1 under Assumption 4.1.

Remark 4.5. If Assumption 4.2 is satisfied then

P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | L(i))

= 1

ζ(L(i), xi+1, . . . , xn)
P(Li+1 ∈ dxi+1) · · · P(Ln ∈ dxn).

Then as a direct consequence of Proposition 4.6, we have

EP[YT (L) | GI
t ] =

n∑
i=1

1[ti ,ti+1)(t)

∫
En−i

EP[(YT (pT /ζ ))(x(i), xi+1, . . . , xn) | Ft ]
(pt/ζ )(x(i), xi+1, . . . , xn)

∣∣∣∣
x(i)=L(i)

×
n∏

k=i+1

P(Lk ∈ dxk). (4.16)

5. Application and numerical illustration

In this section we apply our framework to a default model with insider information. We
are particularly interested in both the default and survival probabilities, and the pricing of
defaultable bonds under different information levels.
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We consider the default time of a firm which is supposed to be the first time that a continuous
F-adapted process (Xt , t ∈ [0, T ]) reaches a random threshold, which is determined by the
manager of the firm and can be adjusted dynamically. More precisely, let the default threshold
(Lt , t ∈ [0, T ]) be given in the form of (2.2). The default time is defined by

τ := inf{t : Xt < Lt }, (5.1)

where the random variablesL1, . . . , Ln represent the private information of the manager on the
threshold at times t1, . . . , tn, which are not available to standard investors. This model extends
the one considered in [14]. To make a comparison with a standard investor, we also introduce
the information filtration given by G = (Gt )t∈[0,T ], where

Gt =
⋂
s≥t

Fs ∨ σ(τ ∧ s).

The filtration G is the progressive enlargement of F by the random time τ and is classically used
to model the available information in a default market for a standard investor, in comparison
with the filtration GI which represents the insider information.

5.1. Conditional survival probability

One of fundamental quantities in the modelling of credit risk is the conditional survival
probability given the available information. The following result yields the conditional sur-
vival probability given the insider information. For ease of computations, we suppose that
Assumption 4.2 holds, but similar computations can be carried out under the other assumptions
studied in this paper.

Proposition 5.1. Let 0 ≤ t ≤ s ≤ T . We denote by i and j the indexes such that ti ≤ t < ti+1
and tj ≤ s < tj+1. Then

P(τ > s | GI
t ) = 1{τ>t}

EP[χis (x(i)) | Ft ]∫
En−i (ps/ζ )(x

(i), xi+1, . . . , xn)
∏n
k=i+1 P(Lk ∈ dxk)

∣∣∣∣
x(i)=L(i)

,

(5.2)

where, denoting X∗[t,s[ := inf t≤u<sXu and X∗
t := X∗[0,t[ = inf0≤u<tXu, if i < j ,

χis (x
(i)) =

∫
En−i

ps

ζ
(x) 1{X∗[t,ti+1[>xi } 1{X∗[ti+1,ti+2[>xi+1} · · · 1{X∗[tj ,s[>x

j }
n∏

k=i+1

P(Lk ∈ dxk),

and otherwise, if i = j ,

χis (x
(i)) =

∫
En−i

ps

ζ
(x) 1{X∗[t,s[>xi }

n∏
k=i+1

P(Lk ∈ dxk).

Proof. By definitions (5.1) and (2.2), the survival event can be written as

1{τ>s} = 1{X∗[t1,t2[>L1} · · · 1{X∗[ti ,t[>L
i } 1{X∗[t,ti+1[>Li } · · · 1{X∗[tj ,s[>L

j } .

We apply (4.16) to the random variable

YT (x) = 1{X∗[t1,t2[>x1} · · · 1{X∗[ti ,t[>x
i } 1{X∗[t,ti+1[>xi } · · · 1{X∗[tj ,s[>x

j }

and obtain the results. �
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We also recall that for the standard information, it is well known (see [4], [9]) that, for t ≤ s,

P(τ > s | Gt ) = 1{τ>t}
P(τ > s | Ft )

P(τ > t | Ft )
. (5.3)

In the following, we will compare the survival probability estimated by these two types of
investor in an explicit setting, in order to show the impact of insider information.

5.2. An explicit default model

We consider now a concrete example with three periods 0 = t1 < t2 < t3 = T , where
the value of the firm X follows a geometric Brownian motion (with drift μ and volatility σ ).
The default threshold information are renewed at t1 and t2 respectively as L1 and L2 and we
suppose thatL1 andL2 are exponential random variables with intensity λ1 and λ2, respectively.
In addition, we assume that L = (L1, L2) are independent of FT . We note that the standard
investor has the knowledge on the (marginal and joint) laws of L, while the insider knows the
realization of these thresholds at the renewal times of information. Let the law of L be given
by a Gumbel–Barnett copula (see [13]) with parameter 0 ≤ θ ≤ 1, which is given by

C(u1, u2) = u1 + u2 − 1 + (1 − u1)(1 − u2)e
−θ ln(1−u1) ln(1−u2).

Then the joint cumulative distribution function of (L1, L2) is given by

F(x1, x2) = 1 − e−λ1x1 − e−λ2x2 + e−(λ1x1+λ2x2+θλ1λ2x1x2).

Moreover, by (4.15), we have

1

ζ(x1, x2)
= e−(θλ1λ2x1x2)((θλ1x1 + 1)(θλ2x2 + 1)− θ).

Let ν = μ − σ 2/2. We recall that for a geometric Brownian motion X with drift μ and
volatility σ starting from X0 = 1, the density of the couple (X∗

t , Xt ) for t > 0 is given by

ft (u, v) = 1{u≤v} 1{0≤u≤1}
2vν/σ

2−1 ln(v/u2)

σ 3
√

2πt(3/2)u
exp

(
− ν2t

2σ 2

)
exp

(
− ln2(v/u2)

2σ 2t

)

and the density of X∗
t is given by

fX∗
t
(w) = 1{0<w≤1}

(
1√

2πtw

(
exp

(
− (−ln(w)+ νt)2

2σ 2t

)

+ w2ν/σ 2
exp

(
− (−ln(w)− νt)2

2σ 2t

))

− ν

σ 2w
2ν/σ 2−1erfc

(−ln(w)− νt

σ
√

2t

))
,

where erfc(x) = (2/
√
π)

∫ +∞
x

e−v2
dv, x ≥ 0, is the complementary error function.

We now present the explicit formulae for the conditional survival probabilities below.
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5.2.1. Survival probability for t ∈ [t1, t2). Insider information. We have

P(τ > T | GI
t ) = 1{τ>t}

∫ +∞

0
EP[1{X∗[t,t2[>x1} 1{X∗[t2,T [>y} | Ft ]x1=L1

1

ζ(L1, y)
λ2e−λ2y dy

since
∫ +∞

0 (1/ζ(L1, y))λ2e−λ2y dy = 1. To compute more explicitly this quantity, we need
the joint law of the running minimum (X∗[t,t2[, X

∗[t2,s[). Using the result of [7], we have

EP[1{X∗[t2,T [>y} | Ft2 ] = 1{y≤Xt2 }
(

1 − 1

2
erfc

(
ln(Xt2/y)+ ν(T − t2)

σ
√

2(s − t2)

))
.

− 1

2

(
y

Xt2

)2ν/σ 2

erfc

(
ln(Xt2/y)− ν(T − t2)

σ
√

2(T − t2)

)
=: G(Xt2 , y).

Furthermore, using the Markov property and the joint law of (X∗
t2−t , Xt2−t ), leads to

EP[1{X∗[t,t2[>x1} 1{X∗[t2,T [>y} | Ft ] =
∫∫

1{uXt>x1}G(vXt , y)ft2−t (u, v) du dv.

Standard information. For the progressive information, we use (5.3) where successive
conditioning implies that

P(τ > T | Ft )

=
∫ 1

0

∫ +∞

0

∫ 1

0
exp(−λ1 min(X∗

t , uXt )− λ2(vwXt)− θλ1λ2 min(X∗
t , uXt )(vwXt))

× fX∗
T−t2

(w)ft2−t (u, v) dw dv du.

5.2.2. Survival probability for t ∈ [t2, T ). Straightforward computations imply the following
results.

Insider information. We have

P(τ > T | GI
t ) = 1{τ>t}

∫ 1

u

fX∗
T−t (w) dw|u=L1/Xt

.

Standard information. We have

P(τ > T | Gt ) = 1{τ>t}

∫ 1
0 F(X

∗
t2
,min(X∗[t2,t[, wXt))fX∗

T−t (w) dw

F(X∗
t2
, X∗[t2,t[)

.

5.3. Numerical results

In this subsection we compare the survival probabilities for the insider and the standard
investor by numerical examples. We use the default time model described previously. The
value of the parameters are μ = 0.05, σ = 0.8, λ1 = 1.5 and λ2 = 1, t1 = 0, t2 = 1,
and t3 = T = 2. In particular, we analyse the impact of the correlation between L1 and L2

through the parameter θ . The θ = 0 case corresponds to the independence case. We present
two examples. In the first one, there is a default event before the maturity, and in the second
one, there is no default. In each example, we compare the survival probabilities P(τ > T | GI

t )

and P(τ > T | Gt ) on a given trajectory of the value of the firm.
In the first example, in Figure 1 we present the realized trajectory of the value of the firm. We

suppose that the manager adjusts the threshold level at t2 = 1 from L1 = 0.8 to L2 = 1.5, so
there is a high risk of default after time t2, which is larger than the expected value. We observe
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Figure 1: First case: default during [1, 2], L1 = 0.8, L2 = 1.5.

Figure 2: Survival probabilities P(τ > T | GI
t ) and P(τ > T | Gt ) for θ = 0, 0.5 and 1.

from the three graphs in Figure 2 that in all the cases (for different values of θ ), the insider will
modify immediately the estimations on the survival probability and there is an instantaneous
jump at t2. While the standard investor, who is not accessible to this information, maintains
the survival probability at a high level and can adjust the estimation only when the default
occurs effectively. Finally, comparing the three graphs where the correlation between L1 and
L2 varies, we see that when the time approaches t2, since the value of the firm is at a relatively
high level compared to L1, when there is a strong correlation (with larger θ ) between the two
thresholds, the insider will have a higher estimation for the survival probability than when there
is independence. However, such a difference between the estimations due to different values
of θ will be neutralized once the insider obtains the exact information on L2 at time t2.

In the second example where the sample path of the value of the firm is given by Figure 3,
there is no default before the maturity T . In addition, we suppose that the level of the second
threshold L2 = 0.6 is slightly lower than the first one L1 = 0.8 and is close to the expected
value. So there is no important readjustment of the insider’s estimation at t2, as shown in all
three graphs in Figure 2. However, when the value of the firm descends gradually after time t2
and approaches the threshold level L2, the estimations of the survival probability by the insider
has dropped significantly; see Figure 4. Only when the value of the firm begins to go back
up and when the time approaches the maturity, the insider modifies once again the survival
probability to be higher. In contrast, the estimations by the standard investor remain quite
stable during all periods in this example. The comparison between the correlation parameter
θ is similar to the first example. Since the value of the firm is at a high level during the first
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Figure 3: Second case: no default , L1 = 0.8, L2 = 0.6.

Figure 4: Survival probabilities P(τ > T | GI
t ) and P(τ > T | Gt ) for θ = 0, 0.5 and 1.

period, if θ = 1, the insider has a higher estimation for the survival probability than in the case
if θ = 0. However, such differences are visible only before the second information renewal
time.

Appendix A

A.1. Proof of Proposition 4.1

The goal of this subsection is to apply Theorem 3.1 to compute GI-conditional expectations
under Assumption 4.1. We begin by calculating, in several lemmas below, the recursive
operators in Theorem 3.1 in an explicit manner and then state the proof of Proposition 4.1.
Throughout this subsection Assumption 4.1 holds.

Lemma A.1. Let i ∈ {1, . . . , n} and t ∈ [ti , T ]. If Xt(L(i)) is a nonnegative Git -measurable
random variable then

Ji(Xt (L
(i)))

=
∫
E

EP[Xt(x(i))Zi−1
t (x(i−1)) | Fti ]

Zi−1
ti
(x(i−1))

∣∣∣∣
x(i−1)=L(i−1)

β
i | i−1
ti

(L(i−1), xi)P(Li ∈ dxi | Gi−1
0 ),

where Zit (x
(i)) is defined by (4.3).
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Proof. We recall the operation Ji defined by (3.16). By (3.17), we have

Ji(Xt (L
(i))) =

∫
E

EP[Xt(x(i))ψi−1
t (x(i−1))−1]

ψi−1
ti
(x(i−1))−1

∣∣∣∣
x(i−1)=L(i−1)

P(Li ∈ dxi | Gi−1
ti
).

Note that

ψi−1
t (x(i−1))−1 =

i−1∏
k=1

α
k | k−1
t (x(k)) =

i−1∏
k=1

β
k | k−1
t (x(k))

β
k | k−1
tk

(x(k))
= Zi−1

t (x(i−1))

i−1∏
k=1

1

β
k | k−1
tk

(x(k))
,

where the first equality comes from (3.10), the second equality follows from (4.2), and the last
equality results from (4.3). Similarly, we have

ψi−1
ti
(x(i−1))−1 =

i−1∏
k=1

β
k | k−1
ti

(x(k))

β
k | k−1
tk

(x(k))
= Zi−1

ti
(x(i−1))

i−1∏
k=1

1

β
k | k−1
tk

(x(k))
.

Therefore,

EP[Xt(x(i))ψi−1
t (x(i−1))−1]

ψi−1
ti
(x(i−1))−1

= EP[Xt(x(i))Zi−1
t (x(i−1)) | Fti ]

Zi−1
ti
(x(i−1))

.

By (4.1), we obtain the announced equality. �

Lemma A.2. The pricing kernel (3.24) is given, under Assumption 4.1, by

�ti+2(L
(i+1)) = β

i+1 | i
ti+2

(L(i+1))

β
i+1 | i
ti+1

(L(i+1))
(A.1)

and

Ji+1(�ti+2(L
(i+1))) = 1. (A.2)

Proof. We have

�ti+2(L
(i+1)) = (Ji+2 ◦ · · · ◦ Jn)(αi+1 | i

ti+2
(L(i)) · · ·αn | n−1

T (L(n))).

By Lemma A.1, this can be expressed it as the integral of

EP

[
α
i+1 | i
ti+2

(x(i+1))

n∏
j=i+2

(
α
j | j−1
tj+1

(x(j))
Z
j−1
tj+1

(x(j−1))

Z
j−1
tj

(x(j−1))
β
j | j−1
tj

(x(j))

) ∣∣∣∣ Fti+2

]
x(i+1)=L(i+1)

= β
i+1 | i
ti+2

(L(i+1))

β
i+1 | i
ti+1

(L(i+1))

E[ZnT (x) | Fti+2 ]x(i+1)=L(i+1)

Zi+1
ti+2
(L(i+1), xi+2)

= β
i+1 | i
ti+2

(L(i+1))

β
i+1 | i
ti+1

(L(i+1))

Znti+2
(L(i+1), xi+2, . . . , xn)

Zi+1
ti+2
(x(i+2))
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with respect to P(Li+2 ∈ dxi+2, . . . , Ln ∈ dxn | Gi+1
0 ). By (4.5) we obtain the first equality.

We then apply Lemma A.1 to write Ji+1(�ti+2(L
(i+1))) as

∫
E

EP

[
β
i+1 | i
ti+2

(x(i+1))

β
i+1 | i
ti+1

(x(i+1))

Ziti+2
(x(i))

Ziti+1
(x(i))

β
i+1 | i
ti+1

(x(i+1))

∣∣∣∣ Fti+1

]
x(i)=L(i)

P(Li+1 ∈ dxi+1 | Gi0)

=
∫
E

EP

[
Ziti+2

(x(i))

Ziti+1
(x(i))

β
i+1 | i
ti+2

(x(i+1))

∣∣∣∣ Fti+1

]
x(i)=L(i)

P(Li+1 ∈ dxi+1 | Gi0)

=
∫
E

EP

[
Zi+1
ti+2
(x(i+1))

Ziti+1
(x(i))

∣∣∣∣ Fti+1

]
x(i)=L(i)

P(Li+1 ∈ dxi+1 | Gi0).

Note that, by Lemma 4.1, we have

P(L1 ∈ dx1, . . . , Li ∈ dxi | Ft ) = Zit (x
(i))P(L1 ∈ dx1, . . . , Li ∈ dxi | F0).

Therefore, (Zi+1
t (x(i+1)))t∈[0,T ] is an (F,P)-martingale, so we obtain

Ji+1(�ti+2(L
(i+1))) =

∫
E

β
i+1 | i
ti+1

(L(i), xi+1)P(Li+1 ∈ dxi+1 | Gi0) = 1. �

Proof of Proposition 4.1. Let YT (L) be a nonnegative GnT -measurable random variable.
Then, for t ∈ [0, T ],

EP[YT (L) | GI
t ] =

n∑
i=1

1[ti ,ti+1)(t)

∫
En−i

EP[YT (x)ZnT (x) | Ft ]
Zit (x

(i))

∣∣∣∣
x(i)=L(i)

×P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Gi0). �

Proof. Apply Theorem 3.1 and compute the sequence of random variables (Yti+1(L
(i)))ni=0

underAssumption 4.1. By the backward recursive relation (3.23) and equalities (A.1) and (A.2),
we have

Yti+1(L
(i)) = Ji+1(Yti+2(L

(i+1))�ti+2(L
(i+1)))

Ji+1(�ti+2(L
(i+1)))

= Ji+1

(
Yti+2(L

(i+1))
β
i+1 | i
ti+2

(L(i+1))

β
i+1 | i
ti+1

(L(i+1))

)
,

where the second equality comes from (3.19). By Lemma A.1, we can write it as

∫
E

EP

[
Yti+2(x

(i+1))
β
i+1 | i
ti+2

(x(i+1))

β
i+1 | i
ti+1

(x(i+1))

Ziti+2
(x(i))

Ziti+1
(x(i))

β
i+1 | i
ti+1

(x(i+1))

∣∣∣∣ Fti+1

]
x(i)=L(i)

× P(Li+1 ∈ dxi+1 | Gi0)

=
∫
E

EP

[
Yti+2(x

(i+1))
Ziti+2

(x(i))

Ziti+1
(x(i))

β
i+1 | i
ti+2

(x(i+1))

∣∣∣∣ Fti+1

]
x(i)=L(i)

P(Li+1 ∈ dxi+1 | Gi0).
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Therefore, it follows that Yti+1(L
(i)) is the integral

∫
En−i

EP

[
YT (x)

n∏
j=i+1

Z
j−1
tj+1

(x(j−1))

Z
j−1
tj

(x(j−1))
β
j | j−1
tj+1

(x(j))

∣∣∣∣ Fti+1

]
x(i)=L(i)

× P(Ln ∈ dxn | Gn−1
0 ) · · · P(Li+1 ∈ dxi+1 | Gi0)

=
∫
En−i

EP[YT (x)ZnT (x) | Fti+1 ]
Ziti+1

(x(i))

∣∣∣∣
x(i)=L(i)

P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Gi0).

We deduce that, for t ∈ [ti , ti+1),

EP[Yti+1(x
(i))ψti+1(x

(i))−1 | Ft ]
ψit (x

(i))−1

∣∣∣∣
x(i)=L(i)

=
∫
En−i

EP[YT (x)ZnT (x) | Ft ]
Zit (x

(i))

∣∣∣∣
x(i)=L(i)

P(Li+1 ∈ dxi+1, . . . , Ln ∈ dxn | Gi0).

The proposition is thus proved. �
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