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We consider a potential flow model of axisymmetric waves travelling on a ferrofluid
jet. The ferrofluid coats a copper wire, through which an electric current is run. The
induced azimuthal magnetic field magnetises the ferrofluid, which in turn stabilises
the well known Plateau—Rayleigh instability seen in axisymmetric capillary jets. This
model is of interest because the stabilising mechanism allows for axisymmetric
magnetohydrodynamical solitary waves. A numerical scheme capable of computing
steady periodic, solitary and generalised solitary wave solutions is presented. It is
found that the solution space for the model is very similar to that of the classical
problem of two-dimensional gravity—capillary waves.
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1. Introduction

Since the work of Rayleigh (1878), it has been known that capillary jets are
unstable to linear perturbations of wavelength longer than that of the circumference
of the jet. This instability, referred to as the Plateau—Rayleigh instability, causes a
capillary jet to break into droplets, and removes the possibility of the existence of
steady solitary wave solutions. The steady solutions that do exist, that is periodic
waves with wavelength shorter than the circumference of the jet, were computed
numerically by Vanden-Broeck, Miloh & Spivack (1998). These waves, similar to the
two-dimensional capillary waves found analytically by Crapper (1957) for the case of
infinite depth and Kinnersley (1976) for finite depth, form overhanging structures as
the amplitude increases, until finally a limiting configuration with a trapped bubble
is formed. Alternatively, the solution branches can terminate on a non-trivial static
configuration, where there is no motion in the fluid.

Ferrofluids are fluids containing nanoparticles of ferromagnetic material coated
in molecular surfactant, resulting in the fluid having superparamagnetic behaviour.
Ferrofluids are used in a variety of industrial applications, such as measuring the
acceleration and inclination of oil drills, and sealing pump shafts (Raj, Moskowitz
& Casciari 1995). Since the analytic work and experiments of Bashtovoi & Krakov
(1978) and Arkhipenko et al. (1980), it has been known that magnetic fields can
stabilise the Plateau—Rayleigh instability when considering a column of ferrofluid.
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This is done by coating a copper wire with ferrofluid and passing a current through
the wire, inducing an azimuthal magnetic field. The buoyancy effects are suppressed
by surrounding the ferrofluid in a non-magnetisable fluid of equal density. The
problem is characterised by a magnetic Bond number B, defined in §2, which
comes from a ratio of magnetic to capillary forces. Arkhipenko et al. (1980) show
that when B > 1, the Rayleigh—Plateau instability is stabilised for all wavelengths.
This formulation is of particular interest since it allows for axisymmetric solitary
wave solutions. The axisymmetry makes the mathematical treatment of the problem
significantly easier than that of a fully three-dimensional model, due to both the
reduction in the number of free spatial variables, and the existence of a Stokes
streamfunction (Batchelor 1994, §2.2).

In this paper, we consider two models. In the first model, named the one-layer
model, we assume the surrounding non-magnetisable fluid has negligible density. In
the second model, named the two-layer model, we consider a surrounding fluid of
density equal to that of the ferrofluid. It is helpful to draw comparisons between the
models discussed in this paper and the classical problem of two-dimensional gravity—
capillary free-surface and interfacial waves. It is found there are many similarities, and
some interesting differences, between these dispersive water wave systems. Reviews of
two-dimensional gravity—capillary waves can be found in Dias & Kharif (1999) and
Vanden-Broeck (2010). We note that our model allows for variable density ratios of
the two fluids. However, a ratio of unity is of particular interest since, as stated above,
gravity free regimes can be experimentally realised this way. This was done recently
by Bourdin, Bacri & Falcon (2010), where axisymmetric periodic and solitary waves
were observed.

So far most analytic and numerical work on the problem has considered only
the one-layer model. Under the assumption that the radius of the copper wire
(denoted d) is negligible, Rannacher & Engel (2006) derived a Korteweg—de Vries
(KdV) equation to describe weakly nonlinear solitary waves. Like the KdV equation
for gravity—capillary waves, it is found that for some critical values of the parameters,
the coefficient of the dispersive term changes sign (Korteweg & de Vries 1895;
Benjamin 1982; Hunter & Vanden-Broeck 1983). For the ferromagnetic problem, this
occurs at B = B,. However, unlike gravity—capillary waves, there is also a change in
sign of the coefficient of the nonlinear term at B = By < B,. The implication is that
the KdV equation predicts depression solitary waves in the region B € (B4, B;), and
elevation waves for Be€ (1, By) and B > B,.

Blyth & Pardu (2014) (referred to as BP throughout) performed a numerical
investigation of solitary wave solutions to the one-layer model in the fully nonlinear
regime for arbitrary values of d. They found that, for 1 < B < B;(d), solitary waves
bifurcating from zero amplitude are elevation waves, while for B,(d) < B < B,(d)
these solutions are depression waves. This is in good agreement with Rannacher
& Engel’s KdV equation, who found By = 3/2 and B, = 9 when d = 0. Time
dependant computations on solutions of this type are considered by Guyenne &
Pérau (2016). Furthermore, BP also found branches of depression solitary waves
bifurcating from non-zero amplitude for 1 < B < By, and likewise elevation solitary
waves bifurcating from non-zero amplitude for B; < B < 2. This is rather surprising,
since such bifurcations have not been found for two-dimensional gravity—capillary
waves.

For B < B,, the linear dispersion relation c(k) is monotonic increasing, where ¢
is the wave speed and k the wavenumber. When B > B,, a minimum appears. BP
found no pure solitary waves (waves with monotonic decay in the far field) in this
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regime. They instead found solitary wave packets, which bifurcate from the minimum
of the dispersion relation. These waves are described at small amplitude by a nonlinear
Schrodinger equation, recently derived by Groves & Nilsson (2018) for the one-layer
model under the assumption that d =0. Groves and Nilsson also proved the existence
of a variety of solitary wave solutions for this model. When there is a minimum,
as well as solitary wave packets, one also expects to find generalised solitary waves.
These are solitary waves characterised by a wave train of ripples in the far field.
Such solutions have been found for gravity—capillary waves (for example, Hunter &
Vanden-Broeck 1983). In this paper, we compute numerically solutions of this type for
the ferrofluid jet. It is found that, for all parameter values tested, the far field of the
solution is never flat along the branches of generalised solitary waves. This is checked
by showing that the values of the curvature of the streamlines are non-zero in the
far field. This was found to be the case for two-dimensional gravity—capillary waves
in the numerical investigation of Champneys, Vanden-Broeck & Lord (2002), and for
hydroelastic waves by Gao & Vanden-Broeck (2014). Since no pure solitary waves
are found when B > B,, the KdV equation does not accurately predict the behaviour
of nonlinear solutions in this regime.

In this paper, we extend the numerical investigation of BP by computing generalised
solitary waves and periodic waves for the one-layer model. Furthermore, we adapt
the numerical method to allow for two flow domains, and compute solutions for the
two-layer model. Steady periodic, solitary and generalised solitary wave solutions are
found.

The paper is organised as follows. In §2, we formulate the problem. In §3, we
derive the linear dispersion relation for the problem. In § 4, we describe the numerical
method used to compute solutions. In § 5, the range of possible static solutions (¢ =0)
is discussed. In § 6, the results of the numerical investigation are presented. Section 7
is a conclusion to the paper.

2. Formulation

We consider an axisymmetric column of ferrofluid with constant density p; and
magnetic susceptibility y;, coating a copper rod of radius d. We choose the cylindrical
coordinate system (x, ) such that x points along the rod, and r is the radial coordinate.
The ferrofluid is surrounded by a non-magnetisable fluid (x, = 0) of density p, < p;
(we do not consider values of p, > p; to avoid the Rayleigh-Taylor instability). The
interface is given by » =n(x, #), the mean radius of which is denoted R. Denote the
velocity fields in the ferrofluid and surrounding fluid as u; = (uy, v1) and u; = (U2, v,)
in (x, r) respectively. The system is contained inside a fixed cylindrical container
of radius D (see figures 1 and 2). We note that in the experiments of Arkhipenko
et al. (1980) and Bourdin et al. (2010), the fluids were contained in a rectangular box.
However, since axisymmetric interfaces were witnessed, the box must have been of a
sufficient size to not destroy the axisymmetry of the problem. Therefore, comparison
between the experiments and the model in this paper can be made by considering
large values of D.

A current [ is passed through the copper wire. This induces a purely azimuthal
magnetic field, given by

H = pol/(2mr)e,, (2.1)

where [ is the magnetic permeability in a vacuum, and e, is the unit vector in the
clockwise azimuthal direction. We assume the linear magnetisation law, such that the
magnetisation M satisfies M = x H. The assumption of an axisymmetric interface
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Vi, =0

FIGURE 2. (Colour online) Three-dimensional visualisation of the problem.

results in the decoupling of the magnetic problem from the hydrodynamic problem
(Rannacher & Engel 2006). Continuity of pressure (Rosensweig 1985, §5.1) on the
interface is given by

P =P, + Tk — %XZ(H.;%). 2.2)

Here, P, and P, are the pressures in the ferrofluid and outer fluid respectively, T the
surface tension, and « the mean curvature, given by

-1/2 P -3/2
1 an\’ 97n an
=—11 — —— |1 — . 2.3
“ n<+<8x>> dx? + dx 23)

Note that since H is azimuthal, the pressure jump associated with the magnetic field
is zero.

We consider a wave of unchanging form with wavelength A and celerity c¢. Under
the assumption that the flows in either region are irrotational and incompressible, both
velocity fields can be written in terms of a velocity potential u;, = V¢, ,, where ¢,
and ¢, satisfy the axisymmetric Laplace equation, given by
3¢ n 1 9¢; n ¢
arr  r or 07
in their respective flow domains. We assume the wave is symmetric about the point
¢1 = ¢, =0. We require no normal flow through the rod and outer cylinder, that is

3¢

— =0 for r=d, (2.5)
ar

Vi = =0, i=1,2, (2.4)
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a
9 _o for r=D. 2.6)
ar
The Bernoulli principle (Rosensweig 1985, §5.2) satisfied on the interface gives
9 3¢ 1 1 poxiI* 1

C, 2.7)

(g% — 0g? — (P, — P,) —
2(611 pq2)+pl(1 2)

ot p ot 4m2p, 212

where ¢g; = |V¢i|, p = p2/p1 and C is the Bernoulli constant. We take R as the
reference length and /7T /(Rp;) as the reference velocity. Making use of (2.2), we
find that the non-dimensionalised Bernoulli equation is

91 3¢2 ) B
—_— = ——=C, 2.8
P 1 (ql pgy) K =53 (2.8)
where the magnetic Bond number B is defined as
poxiI?
= ) 2.9
472RT 29)

The magnetic Bond number is a ratio of magnetic to surface tension forces. It is
shown in § 3 that the stability of linear perturbations is determined by B. Finally, the
kinematic boundary condition on the interface is given by

8n+3n g 0¢
or  dx ox  or’

Note that for solitary waves with a flat far field, instead of fixing the mean of n to
unity, we fix n in the far field to be unity. This choice of scaling gives rise to the
far-field condition

i=1,2. (2.10)

n—1, asx— too. (2.11)

It is left to solve the governing equation (2.4) for ¢; and ¢, in their respective flow
domains, subject to boundary conditions, (2.5), (2.6), (2.8) and (2.10). We consider
two values of p, that is p =0 (one-layer model) and p =1 (two-layer model). For the
one-layer model, we ignore the outer boundary r = D. This removes the requirement
to solve for ¢,, since the equations concerning just ¢; form a closed system (no ¢,
terms are present in (2.8) when p =0).

In the following section, we derive the linear dispersion relation for the system.

3. Linear theory
Consider a small perturbation to the uniform stream of the form

pr=e) FuNe™" dy=€d Gulr)e" (3.1a,)

m=1 m=1

where |€| < 1, and F,, and G,, are unknown functions of r. Note that if ¢* > 0, the
solution is stable, while if ¢? <0, the amplitude grows exponentially in time and the
solution is unstable. Ignoring terms of O(e?), and solving the linearised system, one
finds the equation for the free surface,

kd
n=1+Ce (I.(k) K‘((kd)) i ( )) gihtr=en, (3.2)
1
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Here, I, and K,, are the modified Bessel functions of the first and second kind of
order n, and C; is an arbitrary constant. Equation (3.2) is a linear perturbation of
wavenumber k, travelling at speed c. Furthermore, we recover the linear dispersion

relation |

d D
e(™
m{ " my
where

m? =1, (kK (kd) — Ky (01, (kd),  m? = To(k)K, (kd) + 1, (kd)Ko (k). (3.4a,b)

2

= (k* =1+ B), (3.3)

Replacing all instances of d with D in the above equations gives m? and mb. If it
is the case that c(k) = c(nk) for some positive integer n > 2, then the leading-order
solution is given by

_ _ 1, (kd) ik(x—ct)
n =1+4+¢€C <Il(k) K, (kd) Kl(k)> e
_ I, (nkd) ink(x—ct)
+€C, <11 (nk) K, (nkd) Kl(nk)> € . 3.5

This phenomenon is called Wilton ripples, and is only possible when a minimum
occurs in the dispersion relation (corresponding to B > B,). A similar property is
seen in gravity—capillary waves, and was originally derived by Wilton (1915). One
finds at higher order a solvability condition for C,. However, the algebra quickly
becomes complicated, and instead these solutions are recovered via fully nonlinear
computations, as seen in § 6.

Since d <1 <D and 0< p <1, the denominator in (3.3) is always positive, meaning
that the stability of the solution depends on k and B. We find that solutions with
wavenumber k are stable if

kK >1-B. (3.6)

This is true for all k if B> 1. Note that we recover the stability condition found by
Rayleigh (1878) by taking B=0 (that all solutions with k <1 are unstable).

The right-hand side of (3.3) tends to infinity as & — oo. Hence, whether the
dispersion curve has a minimum or not can be determined by considering the gradient
of ¢* for small k. A negative gradient for small k corresponds to the existence of a
minimum. Denoting the dispersion relation when p =0 as c¢,, we find that

d
2=l ("2) (K —1+B). (3.7)

£k \mj

Taking a small k£ expansion of the above equation, and differentiating with respect to
k, one gets

de, 1 2 2 4 2 3
2c,,@ ~ §[(_1 +4d” —3d"+4d logd)(B—1) +8(1 —d) ]k + O(k”). (3.8)
Hence, there exists a minimum in c,(k) given that the coefficient of k in the above
equation is negative. This is the case if B> B,, where B, has the following dependence
on d:

8(1 —d?)

By(d)=1 .
2(d) T4l 13 —adilogd

(3.9)
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This expression is in agreement with (3.5) in the paper of BP. We see in § 6 that the
characteristics of the solution space changes upon the existence of a minimum.

When p =1, we now expect B, to have dependence on both d and D. In the case
when D — oo, BP demonstrated that B, = 1. For a finite value of D, one can follow
the same argument given above for ¢, to find that

B,(d,D)=1 E 3.10
2( ) )— _E, ( . )
where
;A —aHD* -1
_ 2
E=o-nra-a (3.11)
— ; 2 _ _ 2 _ 42 1)\2
F = gpr—ay (O~ DU=d)D =D +d)+2d'D* - 1)’ logd
—2D*(d* = 1)*1logD]. (3.12)

We will find it useful to denote the value of ¢ at k=0 as ¢y, and the minimum value
of ¢ occurring at k =k, to be denoted c,. When B < B,, ¢y = ¢,. In the following
section, we describe the numerical method used to solve the fully nonlinear problem.

4. Numerical scheme

We consider a wave of wavelength A travelling with unchanging form at a constant
speed c. We remove time dependence by taking a frame of reference travelling with
the wave. We will use a finite difference scheme originally proposed by Woods (1951)
for axisymmetric flows, and later independently formulated by Jeppson (1970). The
method has since been used by a variety of authors for axisymmetric capillary waves
(Vanden-Broeck et al. 1998) under the effect of electric (Grandison et al. 2008) or
magnetic (BP) fields, and the rise of Taylor bubbles in a tube (Doak & Vanden-Broeck
2018). We will first describe the method used to find solutions to the two-layer model.
This involves adapting the finite difference scheme to allow for two computational
domains, as described below. Following this, we state the simplifications made to the
method to solve the one-layer problem.

The idea is to solve the problem by finding the physical variable r in the
two potential spaces (¢, ¥) and (¢, V¥,), where ¥ and i, are the Stokes
streamfunctions, defined by

_ 1w

ror’

Loy,

roox’

i

i=1,2. (4.1a,b)

u;

Lines given by 1; = constant are everywhere parallel to the velocity vector u;, and are
orthogonal to lines of constant ¢;. However, it is interesting to note that the Stokes
streamfunction, unlike it’s two-dimensional counterpart, does not satisfy the Laplace
equation. Therefore, the powerful tools of complex analysis are unavailable to us here,
since the mapping from the (x, r) space to the (¢, ¥) space is not conformal. Without
loss of generality, we choose to define ¥, =d’c/2=Q; on r=d, ¥, =¥, =Q on
the interface, and ¥, = Qp on r=D. We note that, in the case of a flat free surface
(uniform stream solution), Q =c¢/2 and Qp = cD?/2. Integrating (4.1) with u; =c and
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FIGURE 3. The two flow domains in potential space. The interface between the two fluids
is in bold, and corresponds to the same streamline in physical space.

v; =0, the uniform stream solution is found to be

2
it g < <0,

r= ¢ (4.2)
2 i 0 <v <0

c
This encourages the coordinate transformations ¥, = > and ¥, = s’ to better distribute
streamlines between the interface and the boundaries. This choice of transformation
means that taking equally spaced points in the discretisation of ¢ and s results in
equally spaced streamlines in the computation of the uniform stream solution. Seeking
a periodic wave of wavelength A, symmetric about ¢, = ¢, = 0, the ferrofluid and
surrounding fluid flow domains are mapped onto the rectangular domains $2; and £2,
respectively, where

21 = (¢ e[—ca/2,01, €107, 0"}, 4.3)

2 = {¢r €[—cd/2, 0, 5[0, 05°1). (4.4)

Here, we only consider the flow domains over half a wavelength, making use of
the assumed symmetry. The flow domain in the potential space is shown in figure 3.

Seeking r as a function of the independent variables (¢, ¥;) in £2; and (¢, ¥,) in
£2,, we find that (2.4) under the mapping becomes

5 0%r N 0°r L ar\’ ar\’ 0 45
P—s+r—+r —(— ) =0. .
;o A d¢;

Furthermore, one can express g; = |V¢;| and the mean curvature « evaluated on the
interface as functions of ¢;, using the identities

—a e () e (2)) 19
qi(¢i —(u,' +v,‘ - ad)i +r BWi ) ( .

() = —¢° ar *r  (or > or A ¥ N ar @7
w=-d a0~ (55) ov amamg) o @
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Note that x; here denotes the mean curvature as a function of ¢, and likewise for
k>. These functions correspond to the same curve in physical space (the interface),
and hence have the same value at given points along the interface, but are different
functions due to the discontinuity in tangential velocities across the interface. We
discretise £2; and £2, into equidistant points with M points in ¢; and ¢,, N points
in t and P points in s as follows

cd N
¢1i=¢2i:_m(M_l) i=1,.... M, (4.8)
1
t=0y + (0" - ‘/2)— j=1.....N, (4.9)

We satisfy the governing equation (4.5) at the interior nodes of 2, and 2, finding
the values of derivatives with finite difference approximations. We use second-order
central differences, making use of the symmetry by imposing dr/d¢; =0 at ¢; =0 and
¢;i=—cA/2 (for i=1, 2). On the interface, we use second-order backwards differences
to compute derivatives with respect to ¢, and forward differences for derivatives with
respect to s. Derivatives with respect to i, are given in terms of derivatives with
respect to ¢ via the identities

a 19

—_— = ——, 4.11)
oYn 2t ot
0? 1 2 10 4.12)
oy 42 \arr tot)’ '
The same is done for i, and s. Equations (2.5) and (2.6) can be written as
r(¢1, Qu) =d, r(¢2, Op) =D, (4.13a,b)

respectively. Finally, we satisfy the dynamic boundary condition (2.8) on the interface
in both £2, and £2,. For example, consider (2.8) satisfied in £2,. Making use of (4.6),

this gives

1 (8r>2 2<8r>2 <8r>2 2<8r>2

= — | +r | — — — | +tr | —

2 3¢ oY 99> CAVP)
where «; is computed using (4.7). Note that the time-dependant term is removed due
to the moving frame of reference. We see that we require dr/d¢, and dr/dvy, as
functions of ¢; on the interface to solve this equation in £2;. Similarly, we require
or/d¢; and dr/dy as functions of ¢, to solve it in §2,. This is done by integrating
the identities

B
+i =55 =C. (414)

ox or

=r—
i Y
on the interface to find x as a function of ¢; in £2;, and x as a function of ¢, in 2.

We then interpolate in x to find ¢, as a function of ¢;, since the interface is the same
in either domain. An unfortunate consequence of the interpolation procedure is that it

, i=1,2, (4.15)
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requires the interface 1 to be a single valued function of x, meaning the method will
not work for overhanging waves.

Fixing a value of B, the system above provides M(P + N) equations for M(P +
N) 4+ 4 unknowns (r at each mesh point, C, ¢, Q and Qp). We obtain three additional
equations by fixing the amplitude A of the wave,

A=r0, Q) —r(—cd/2, Q), (4.16)

and the wavelength A,

0 0
A= [/ Ty, dqbl] , A= [/ Ty, dqﬁz] . 4.17a,b)
—ca Y1=0 —cd V=0

Finally, we fix the mean displacement of the interface (R=1) by writing

0
[/ (r— Drry, d¢1} =0. (4.18)

Ac/2 V1=0

In some instances, it is convenient to fix instead the speed ¢ and allow the amplitude
A to be an unknown. The discrete system of M (P + N) 44 equations for M(P+N) +4
unknowns can be solved numerically via Newton’s method. We terminate the iterations
in Newton’s method once the L*-norm of the residuals is of order 107!

When considering pure solitary waves, the far-field condition (2.11) is equivalent to
demanding r tends to the uniform stream solution (4.2) as ¢; — *oco. Furthermore,
the far-field condition fixes the Bernoulli constant C = (1 — p)c?/2 + 1 — B/2 (see
(2.8)) and the fluxes Q = ¢/2 and Qp = c¢D?/2. In such circumstances, we replace
the governing equation (4.5) with (4.2) at the mesh points ¢, = ¢, = —cA/2. Again,
we obtain M(N + P) equations from the field equation and boundary conditions. We
obtain an additional equation by fixing the amplitude of the wave, which for solitary
waves we choose to be the value of r on the interface at the point of symmetry. This
results in M(P 4+ N) + 1 equations for the M(P + N) 4+ 1 unknowns (r at each mesh
point, and c¢). We must take A large enough such that the solution becomes identical
within graphical accuracy to further increase in A. This is common practise when
computing solitary waves (for example, see Byatt-Smith & Longuet-Higgins (1976)),
since computationally we cannot solve for infinitely large domains.

The numerical scheme described above is used to find solutions for the two-layer
model. When finding solutions for the one-layer problem, we do not need to solve for
values of r in the domain £2,, or the value Qp. For example, for one-layer periodic
waves, there are MN + 3 unknowns (r at each mesh point in £2,, C, ¢, and Q). We
solve the field equation (4.5) at interior nodes of £2,. Furthermore, we satisfy (4.14)
with p =0 on ¥, = Q, as well as (4.13a), (4.16), (4.17a) and (4.18). This results in
a closed discrete system of MN + 3 equations for MN + 3 unknowns. Furthermore,
since we do not require values from £2, to solve (4.14) in §2;, we no longer need to
interpolate values in x, as is done in the two-layer problem. This allows us to compute
overhanging solutions for the one-layer model.

Typical mesh sizes for periodic waves are M =200, and N and P are chosen such
that differences in ¢ are approximately equal to differences in s. For example, with d =
0.5 and D=2, we took N =30 and P=060. For solitary waves, larger values of M are
considered. Meshes of this size are possible due to the sparsity of the Jacobian matrix.
Furthermore, for more extreme profiles, it can be useful to perform the coordinate
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transforms ¢ = —cA(1 — a?)/2 or ¢ = —cAa?/2 on either ¢; or ¢, (or both), and then
take equally spaced points in « € [0, 1]. The first transformation condenses points close
to ¢ = —cA/2, while the second condenses points near ¢ = 0. The transformation is
chosen such that the distribution of points is more uniform. There are less points in
areas of small velocities if equally spaced points in ¢ are used.

In the following section, we discuss the possible static configurations of the
problem.

5. Static profiles

It is helpful to discuss static configurations of this problem (¢ =0), since many of
the dynamic solution branches terminate on static profiles. Setting all time derivatives
and velocities to zero in (2.8), it is left to find 5 that satisfies

B

where « is the mean curvature. BP solved (5.1) by parameterising the problem in
terms of arclength s, and expressing it as a two-dimensional system for the unknowns
n and o, where o =tann,. We repeat their findings below for the sake of completeness.
They found that the energy, E, given by

C, B
E:ncosa—zn —Elogn, 5.2)

is a conserved quantity. Curves of constant E correspond to trajectories in the (o, 1)
plane. Full details can be found in §4 of BP. There are four possible fixed points of
the system, given by

@nw, ),  @Qnm, B), (Qn+Dm, yy), (@n+ Dm, yo), (5.3a—d)

where

1+ /T—2CB —1+/1=2CB
Pu= 2C : - 2C ‘

Since we only consider solutions with n > 0, assuming B > 0, the existence of
these fixed points can be broken down into three cases. In the first case, when
C <0, we find that the fixed point (2n7, B_) is a saddle point, and the fixed point
(2n+1)m, y_) is a centre. The other two fixed points are unphysical, and are ignored.
Figure 4(a) shows trajectories in the («, ) space. The heteroclinic orbits (solid lines)
connecting the saddle points at (2nw, B_) and (2(n+ 1)7, B_) correspond to solitary
waves with radial displacement S_ in the far field. As expected, when C =1 — B/2,
this value is unity. These solutions self-intersect, and are hence unphysical. The
circular orbits (dotted lines) contained inside the heteroclinic orbits correspond to
smooth periodic profiles, while the 2w periodic curves (dashed lines) correspond to
self-intersecting periodic profiles.

Next, when 0 < C < 1/2B, we find that the fixed point (2nm, B_) is again a saddle
point, and the fixed point (2nm, B,) is a centre. Figure 4(b) is an example of the
(e, n) space. The homoclinic orbit connecting the saddle point to itself corresponds to
a smooth elevation solitary wave profile. The heteroclinic orbits connecting the saddle
points are again self-intersecting solitary waves. Circular orbits correspond to smooth
periodic profiles, and 27 periodic curves are self-intersecting periodic solutions.

yi (5.4a,b)
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(b) 8

FIGURE 4. (Colour online) Curves of constant E in the («, n) plane. Both panels are for
B =1.25. (a) Has C = —1, while (b) has C =0.2. The critical points are labelled with
crosses. The solid lines correspond to heteroclinic and homoclinic orbits, the dotted lines
circular orbits and dashed lines 27 periodic curves.

Finally, when C > 1/(2B), there are no physical fixed points, and all trajectories are
21 periodic curves in the (o, n) space, corresponding to self intersecting periodic
profiles.

All of the solutions described above are one-dimensional profiles that satisfy (5.1)
and n >0 with ¢ =0. We integrate for values of x along the curve of constant E via
the integral

x=/ cota dn, (5.5)
E=const.

to obtain the profile in the (x, n) space. This integral is evaluated numerically using
the trapezoidal rule.

The solutions do not take into consideration any boundaries at r=d and r=D. It is
of interest to note that we can interpret the profiles even if they intersect a boundary:
the solutions can be seen as profiles which touch a boundary. We then consider the
profile up to the point of contact, where the solution is reflected. This is demonstrated
in figure 5, where two examples of a static profile (dashed curves) crossing a boundary
(dotted curve) from above and below (a and b respectively) are interpreted this way.
We only consider the portion of the profile satisfying d < n < D. In (a), the dashed
profile self-intersects, and is hence not physical without the inclusion of a boundary.
The dashed profile of (b) is a static elevation solitary wave, and is a valid solution
without the boundary. We note that these modified solutions disregard the complicated
physical properties of contact angles (for example, see Batchelor 1994, § 1.9). Despite
this, the solutions are still of importance to consider, since many dynamic solution
branches approach such static limiting configurations, as shown in § 6.

In the next section, we discuss the results of the numerical procedure discussed in
§ 4 for non-static solutions, and how they relate to the static solutions discussed above.

6. Results

A thorough numerical investigation was performed by BP on the one-layer model
for solitary waves. In this paper, we find new results for periodic and generalised
solitary waves. We will repeat a discussion of the results of BP, since it will help to
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FIGURE 5. (Colour online) The dashed curves are profiles of static configurations. In (a),
this static solution corresponds to a 27w periodic curve in the («, n) space, while in (b),
it corresponds to a homoclinic orbit. The dotted curves we take as boundaries below (a)
or above (b) the profile. The black curves show the modified solution, taken by reflecting
the relevant part of the dashed profile.

explain the solution space of the two-layer model, where there are many similarities.
We differentiate between two distinct cases, when there does not exist a minimum
in the dispersion curve (B < B,) and when there does exist a minimum (B > B,),
describing the solution space in each instance. Below, we first consider B < B,.

6.1.1. One layer

We begin by considering the solution space for the one-layer model. Using a linear
solution (3.2) as an initial guess in the Newton iterations, we are able to use the
numerical method described in §4 to compute periodic solutions. Once on a solution
branch, we can use the method of continuation to compute larger amplitude solutions.
In figure 6(a), we show some solution branches for periodic waves for the one-layer
model. These branches have the value d = 1.5/3.8, which is the value of d used
in the experiments of Bourdin ef al. (2010). We computed branches for a variety of
parameter values to determine the effect the parameters have on the solutions. Our
findings are presented below.

The solution branches terminate in a variety of ways. It can be the case that,
given B and d are sufficiently small, the solution branch terminates on a smooth
static profile. These static solutions were computed for B = 0 by Vanden-Broeck
et al. (1998). We cannot use the numerical scheme described in §4 to compute the
static profiles, since the method assumes the existence of a velocity field. However,
one can continue along the solution branches up to small values of ¢. We can then
extrapolate to find an approximate value of the Bernoulli constant C for ¢ =0. This
allows us to find the set of static configurations in the (&, ) space associated with
the given Bernoulli constant, as described in § 5. Comparisons can then be made with
the small ¢ profile and the static profile obtained by integrating along the curve of
constant energy E, where E can be obtained by evaluating (5.2) at some mesh point
on the interface of the small ¢ solution. Periodic smooth static profiles are orbits
in the (o, n) space. Figure 7(a) is a comparison between a one-layer solution with
parameter values B=0.05, 1=4, d=0 and ¢ =0.02, and the static profile obtained
by integrating along the corresponding trajectory in the (o, n) space (the («, n) space
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FIGURE 6. Periodic solution branches with 4 =7 and d =1.5/3.8. (a) Shows one-layer
solution branches, while (b) is for two-layer solution branches with D =2. In both cases,
the B=1 branch terminates on a static profile which touches the bottom boundary r =d.
The B=3 branch for p =0 overturns and ultimately forms a trapped bubble. The limiting
configuration of the B =3 branch for p =1 is unknown.
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FIGURE 7. (Colour online) (a) Shows a comparison between a one-layer solution found
for ¢ =0.02 (solid curve) and a smooth static profile (crosses). Only half a wavelength
is shown. The solution has parameter values d =0, B=0.05 and 1 =4. (b) Shows the
trajectories in the («, n) space. The dashed curve is the solution given by the crosses in
(a). In (b), the cross is a saddle point and the circle a centre.

is shown in figure 7b). The agreement between the two profiles obtained via different
methods provides a check on our numerical method, and demonstrates that the
solution branches can terminate on static profiles. These smooth static configurations
only occur for small values of B. For example, with the parameter values of the
solution shown in figure 7, but with B = 0.1, it is found that the solution branch
instead terminates on a static profile which touches the bottom boundary. This is
described below.

As mentioned in §35, static profiles can be interpreted as solutions which touch
a boundary. It is found that this configuration is a limiting case for many solution
branches. Consider one-layer periodic solutions for varying values of d. For a fixed B,
if d is large enough, as we continue along a solution branch, the value of ¢ decreases
as the solution forms a profile which gets very close to the boundary »=d. A branch
which terminates in such a manner is the B =1 branch from figure 6(a). The final
solution computed along the branch (shown by the square in the figure) is a solution
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FIGURE 8. (Colour online) (a) Is a comparison between the solution corresponding to
the square in figure 6(a) (given by the solid curve) and its corresponding ¢ =0 solution
(dashed curve). (b) Shows a blow up of the behaviour close to the point of contact for
solutions with phase speeds ¢ =c; =0.08 and ¢ =c, =0.05.

for ¢ =0.05. Figure 8(a) shows the profile of this solution. Computing a static profile
with the same value of C and E results in a self-intersecting profile, shown by the
dashed curve in the figure. The static profile agrees well with the ¢ =0.05 solutions
up to where the static solution intersects the boundary. Figure 8(b) shows a blow up
of this region. The two solid curves are solutions with the phase speeds ¢ = c¢; =
0.08 and ¢ = ¢, = 0.05. The image shows that as the speed is decreased further,
the agreement between the curves and the static profile becomes stronger, and the
thickness of the layer of fluid at the point of intersection continues to decrease. This
provides numerical evidence that as ¢ — 0, the dynamic profile approaches a static
solution which touches the bottom boundary.

The final possible limiting configuration of one-layer periodic solution branches are
profiles with a trapped bubble. Such branches occur for larger values of B than the
branches which terminate in static solutions. The B =3 branch of figure 6(a) is one
such example, and the profile of the limiting configuration solution (corresponding
to the cross in figure 6a) is shown in figure 9. This limiting configuration has been
found to occur for two-dimensional capillary and gravity—capillary waves, as found
by Crapper (1957), Kinnersley (1976) and Hunter & Vanden-Broeck (1983). Such
solutions were also found for axisymmetric capillary waves (B =0) by Vanden-Broeck
et al. (1998). Continuing along the branch past the trapped bubble solutions, we
find solutions with self-intersecting interfaces. Such solutions are not physically
valid. It may be possible to extend the solution branch by allowing the pressure
inside the bubble to vary, as was done by Vanden-Broeck & Keller (1980) for
two-dimensional capillary waves. However, difficulties are experienced, since this
introduces a discontinuity in (4.14), and hence in the derivatives of r, which in turn
would require a more sophisticated treatment in a finite difference scheme. This
possible extension is beyond the scope of this paper. These intricate overturning
solutions require a larger number of mesh points to retain accuracy. Consider the
B = 3 branch of figure 6(a). Fixing the phase speed to ¢ = 0.7 and allowing the
amplitude to vary, table 1 shows the amplitude of the ¢ = 0.7 solution for different
values of M and N. The table demonstrates the convergence of the numerical method
for these extreme overhanging solutions.
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FIGURE 9. Periodic solution corresponding to the cross in figure 6(a). (a) Shows one
wavelength of the solution. (b) Is a blow up of the trapped bubble.

M
75 150 300

25 0.69254 0.69257 0.69257
N 50 0.69271 0.69274 0.69275

100 0.69276 0.69279 0.69280

200 0.69277 0.69280 —

TABLE 1. Values of the amplitude A for the one-layer solution with parameter values
B=3,d=1.5/3.8 and ¢=0.7 for different mesh sizes. Issues with memory (the size of the
Jacobian used in Newton’s method becomes very large) deny the possibility of computing
a solution with N =200 and M = 300.

In §3, we saw that when B > 1, all wavelengths are stabilised. This allows for
the existence of pure solitary waves. Starting from small amplitude, as we increase A,
the waves form longer troughs and shorter crests. In the limit 4 — oo, the solutions
approach a solitary wave with a flat far field. These solitary wave branches bifurcate
from the uniform stream at cyp. Assuming d =0, Rannacher & Engel (2006) obtained a
KdV equation which approximates such solutions for small amplitude. Fully nonlinear
computations of the solutions with arbitrary d were done by BP. They found that, in
agreement with the KdV equation, there exists critical values B,(d) and B,(d) such
that when B < Bj, the solitary waves are of elevation, while if B; < B < B», the
solutions are depression waves. These waves get broader as the amplitude goes to
zero, making it computationally impossible to compute the branches all the way to
the bifurcation point.

As well as the solitary waves bifurcating from the uniform stream, BP found
solitary waves solutions which bifurcate from finite amplitude. For 1 < B < Bj, these
branches are waves of depression. The amplitude from which these solution branches
bifurcate decreases as B increases up to B;. Meanwhile, for B; < B < 2, the finite
amplitude bifurcating branches are elevation solitary waves. The amplitude at which
these branches bifurcates decreases as B approaches B; from above. It would appear
that the bifurcating amplitude of these two branches approaches zero as B tends to B;.
This is further supported by the analysis of Groves & Nilsson (2018), who for d =0
derived a cubic KdV equation (see (1.4)—(1.5) in their paper) for the model when B
is close to B;. The equation predicts both elevation and depression waves exist in
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this region, both of which bifurcate from zero amplitude. The numerical results of
the present paper suggest that this is also true for non-zero values of d, although
difficulties in computing solution branches up to the point of bifurcation due to wave
broadening deny conclusive numerical evidence.

The existence of the finite amplitude bifurcating pure solitary waves is in stark
contrast with the gravity—capillary problem, where such solutions have not been
observed. Continuing the branches beyond the bifurcation point into large amplitudes,
BP found that depression waves terminate in either static profiles which touch the
bottom boundary, or overturning waves with a trapped bubble, while elevation solitary
wave branches terminate in smooth static configurations. This is similar to the periodic
limiting configurations. The only difference occurs for the nonlinearly bifurcating
B = 2 solitary wave branch, which was found to increase indefinitely in amplitude.
We can gain some insight as to why this is the case by considering the static
configurations. Smooth static elevation solitary waves correspond to the homoclinic
orbit connecting the saddle point to itself in figure 4(a). Taking C =1 — B/2, there
does not exist such orbits when C < 0 (i.e. B > 2). Therefore, there is no limiting
static configuration for the B =2 elevation branch, offering a possible explanation as
to why the B =2 branch has this unique behaviour, and why elevation branches do
not exist for larger values of B.

6.1.2. Two layers

Next, we shall discuss the solution space for the two-layer model when the
dispersion relation is monotonic increasing. Again, starting from linear solutions, we
can use the method of continuation to compute periodic solution branches. Some
periodic solution branches are shown in figure 6(b). These branches have the same
parameter values as the one-layer periodic branches of figure 6(a), except for a
density ratio of unity between the two fluids (since it is the two-layer model), and
an additional outer boundary at r = D, where D =2. The B =1 branch, as with the
one-layer B = 1 branch, terminates on a static profile which touches the boundary
r =d. Decreasing the value of D, one finds the solution branches can also terminate
on static profiles which touch the upper boundary. For example, for the B=1 branch
discussed above, taking the same parameter values but changing D to D = 1.3 results
in such a limiting configuration.

Next, consider the B = 3 branch. Due to the similarities between the one-layer
and two-layer models for the B =1 model, one may expect this solution branch to
form overturning solutions, and eventually form a trapped bubble. Unfortunately, as
mentioned earlier, the numerical method described in §4 cannot compute overturning
solutions for the two-layer model. This is due to the interpolation procedure for values
on the interface being performed in the x variable, for which overturning solutions
are not single valued. One may be tempted to instead interpolate in the r variable,
for which these solutions are single valued. However, the code is extremely sensitive
to this method and fails to converge. We have computed the B = 3 branch from
figure 6(b) as far as computationally possible with the method. The profile of this
solution is shown in figure 10. We believe the solution will overturn as one continues
along the branch. However, a new numerical treatment of the problem will be required
to investigate these solutions. Overturning two-dimensional gravity—capillary internal
waves have been found in the recent numerical and analytical investigations of Akers
et al. (2016).

For B > 1, we again expect to see pure solitary waves. Some solution branches
for d=1.5/3.3 and D =2 are shown in figure 11. It can be seen that for B= 1.4,
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FIGURE 10. Periodic solution corresponding to the cross in figure 6(b). Two wavelengths
are shown. Streamlines in the ferrofluid are the black curves, while streamlines in the
second fluid are the dashed curves. Not all streamlines have been plotted. This is the
largest amplitude solution computed on this solution branch. The branch could not be
computed further due to difficulties with overturning.
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FIGURE 11. Two-layer pure solitary wave branches with d=1.5/3.3 and D=2 for B=
1.4 and B =3. The dashed curves show the value of ¢, for the two choices of B, while
the dotted curves correspond to the maximum possible value of the amplitude, where the
profile touches a boundary. The points (a)—(b) refer to the solutions shown in figure 12.

the elevation branch bifurcates from zero amplitude, while the depression branch
bifurcates from non-zero amplitude. The roles are reversed for B = 3, implying
By € (1.4, 3) for the given values of d and D. Due to the existence of the upper
boundary r = D, the elevation branches can now terminate on static profiles which
touch the boundary. This is shown in figure 12(a), where an elevation solitary wave
for c=0.1 is shown to be in good agreement with a static profile that crosses r="2.
This new limiting configuration means that, unlike for the one-layer model, there now
exists pure elevation solitary waves (bifurcating from finite amplitude) for values of
B > 2. One does not have to consider the case when there is no upper boundary for
two-layer pure solitary wave solutions, since BP showed that when D — oo, there
exists a minimum in the dispersion curve for B > 1, removing the possibility of pure
solitary waves (it can be seen from (3.10)—(3.12) that B, — 1 as D — 00).
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FIGURE 12. (Colour online) Profiles corresponding to the points (a) and (b) in figure 11.
They approach static profiles which touch r=D and r=d respectively. The dotted curves
are static profiles which the solutions approach as ¢ — 0.

A description of the solution space when there exists a minimum is presented in
the following section.

As stated previously, if B> B,, then a minimum occurs in the dispersion relation. We
will discuss the results for the one-layer and two-layer models simultaneously, since
the solution spaces in this regime are qualitatively similar. The only difference occurs
for overhanging solutions, where our inability to compute overhanging solutions for
the two-layer model means the limiting configurations of some two-layer solution
branches remain unknown. This is discussed below.

When there is a minimum in the dispersion curve, we see periodic solutions
exhibiting higher mode resonance, as described by (3.5). These solutions exist for
integer values of n > 1 when c(k) = c(nk), where c is given by (3.3). Fixing a value
of k and n, we can find a value of B such that this equality is satisfied. Using these
parameter values, we are able to compute solutions with Wilton ripples, as shown
in figure 13 for n =2, 3, 4, 5. These solutions are for the one-layer model. One can
continue these branches of solutions into highly nonlinear regimes by further increase
of the amplitude. They form interesting profiles, where the depression of each ripple
begins to overturn (see figure 14). They terminate once one of the overhanging
structures forms a trapped bubble. These results can be repeated for the two-layer
problem, although as before we are unable to extend solution branches beyond the
point of overturning.

Increasing the wavelength of periodic solutions when c(k) has a minimum results in
a larger central peak or trough, and a train of smaller amplitude waves in the far field.
Denote the wavelength of the far-field waves as A Increasing the wavelength of the
solution by A results in two almost overlapping solutions, where the longer wave has
one additional linear wave in the far-field. This is demonstrated in figure 15. One can
easily add more waves to the far field, limited only by computational storage. These
solutions are finite wavelength approximations of generalised solitary waves. As one
would expect, A is found to be the finite valued wavelength which gives c() = co.
These waves were computed by Vanden-Broeck (1991) and Champneys et al. (2002)
for gravity—capillary waves. We present a generalised solitary wave solution branch for
the one-layer problem in figure 16, and the corresponding profiles in figure 17. We
fixed n(x=0) =1.045, and vary the speed of the wave. Due to the imposed symmetry,
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FIGURE 13. One-layer solutions exhibiting higher mode resonance for 4 = m and
d=0. Only half a wavelength is shown. The values of B are B=16.4, B=21.7, B=27.2
and B = 32.8 while the values of n in (3.5) are n =2, 3, 4, 5 for (a), (b), (¢) and (d)
respectively.
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FIGURE 14. The limiting configuration of the solution branch obtained by continuing the
solutions of figures 13(a) and 13(b) to larger amplitude. Only half a wavelength is shown.
The insets show the trapped bubble formed by each solution.

and since these solutions are finite wavelength approximations of generalised solitary
waves, the far-field wave train ends in either a peak or a trough. We can see in
figure 17 (by looking at the leftmost point of the profile) that in this case it is a
peak. As with gravity—capillary waves, the branches start and end on solutions with
larger amplitude far-field waves. For solutions in between the ends of the branch, the
amplitude of the waves in the far field is smaller (see figure 17). No solutions with a
flat far field were found. This is shown numerically in figure 18, where the reciprocal
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FIGURE 15. Two one-layer long wave solutions with parameter values B = 13, d =0,
¢=12.5 and n(0) =1.045, and wavelengths 4 =65.8 (solid curve) and A =71.1 (dashed
curve). It can be seen that the two profiles almost perfectly overlap, where the longer
solution has an additional periodic wave in the tail.
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FIGURE 16. Generalised solitary wave branch for n(0) =1.045 and 4= 63. Some profiles
corresponding to points on the branch are shown in figure 17.

of the radius of curvature of the free surface, given by

Txx
W=—2
(L+m)'7

is shown to be strictly negative when evaluated at the furthest mesh point in the far
field for all solutions on the branch. The KdV equation of Rannacher & Engel (2006)
predicts pure elevation solitary waves in this region, and hence fails to accurately
describe fully nonlinear solutions when B > B,. Generalised solitary wave branches
with the same behaviour were found for the two-layer problem, where one such branch
is presented in figure 19.

Although there do not exist pure solitary waves bifurcating from zero amplitude
at ¢y, there do exist branches of solitary wave packets bifurcating from a linear wave
train of wavenumber k,, at c,,. Use of the chain rule shows that at the minimum of the
dispersion relation, the group velocity of linear waves is equal to the phase velocity.
This allows the existence of solitary wave packets (Akylas 1993), in particular one
depression branch and one elevation branch. At small amplitudes, these waves are
described by a nonlinear Schrodinger equation, as derived for the one-layer model
(assuming d =0) by Groves & Nilsson (2018). Fully nonlinear solutions for the one-
layer problem were computed numerically by BP. They found that as one increases

6.1)
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FIGURE 17. Generalised solitary waves corresponding to points (a)—(f) in figure 16. Only
half a wavelength is shown.
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FIGURE 18. Plot of the curvature of the free surface W (6.1) in the far field against B
for the generalised solitary waves. W remains strictly negative, meaning none of these
solutions are pure solitary waves. The points (a)-(f) refer to the solutions shown in

figure 17.

the amplitude along the depression branch, the solutions begin to overturn, forming
a trapped bubble. Repeating the numerical scheme for variable parameter values, we
found the overturned bubble does not have to occur at the point of symmetry, but
can also appear at some other point in the profile, as seen in figure 20(a). For no
parameter values tested did the solution branches approach a static configuration. This
is in agreement with §5, where the range of static solutions found did not include
solitary waves with decaying oscillating tails.
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FIGURE 19. Two-layer generalised solitary wave branch for d =1.5/3.3, D =3, n(0) =
1.04 and A= 100. Two profiles corresponding to points (a) and (b) are shown. Only half
the solution is shown in (a) and (b).
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FIGURE 20. One-layer solitary wave packets for d =1.5/3.3, B=20. (a) Is the limiting
configuration of the depression branch and (b) the furthest point computed on the elevation
branch. The inset of (a) shows the trapped bubble.

BP conjecture that the elevation branches overturn and form trapped bubbles as well,
although they note care must be taken since this conjecture was mistakenly made by
Vanden-Broeck & Dias (1992) for two-dimensional gravity—capillary elevation solitary
wave packets. The more accurate computations of Dias, Menace & Vanden-Broeck
(1996) demonstrated that these solution branches actually turn around and form many
loops in the (c, n) space. Figure 20(b) shows a solution from the elevation branch,
computed as far along the branch as possible. Both solutions where computed
with N = 30 and M = 900. These solutions also exist for the two-layer model.
This is expected, since the same phenomenon occurs for two-dimensional internal
gravity—capillary waves (Laget & Dias 1997). In figure 21, we show a two-layer
depression solitary wave packet, with varying values of D. As D gets larger, the
variation in the profiles becomes small. It follows that one could approximate the
case of a surrounding fluid of infinite radius (D — oo) by taking a suitably large
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FIGURE 21. Two-layer solitary wave packets with amplitude A = —0.1, for d =1.5/3.3,
B =8.3 and D =2 (dotted curve), D =4 (dashed curve) and D =8 (solid curve). Only
one half of the profile is shown. The dashed and solid curves almost overlap.
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FIGURE 22. Two-layer dispersion relation, given by (3.3), with d=1.5/3.3, B=8.3 and
D =2 (dotted curve), D =28 (dashed curve) and D — oo (solid curve).

value of D. This is further confirmed by considering the dispersion relation (3.3)
for various values of D, as shown in figure 22. It can be seen that the dispersion
relations for D =8 and D — oo are very similar, the largest difference occurring at
k— 0 (the long wave speed).

There are difficulties with comparing the two-layer numerical results of this paper
with the experimental data of Bourdin et al. (2010), as was discussed in BP. For
completeness, we highlight the key points here. Bourdin et al. coated a copper wire of
radius 1.5 mm with a ferrofluid jet of radius 3.8 mm when creating periodic waves,
and 3.3 mm when creating solitary waves. The ferrofluid was surrounded in freeon
of almost equal density, and the whole system was contained in a cuboid container
with a 40 mm x 40 mm side and 30 mm length. The fact that axisymmetric profiles
were witnessed in a cuboid container implies that the effects of the container were
negligible. Hence, to compare our model with these experimental results, we wish to
consider the case of a surrounding fluid of infinite radius. As shown above, this can be
approximated by considering a large value of D. Bourdin er al. observed pure solitary
waves: a depression wave for magnetic Bond number B=28.1 and a wave of elevation
for B=10.5. As noted by BP, and confirmed by the results in this paper, one would
expect to see solitary wave packets or generalised solitary waves for such parameter
values, due to the occurrence of minimum in the dispersion curve. This is at odds with
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the pure elevation and depression solitary waves witnessed by Bourdin et al. However,
we suspect the inclusion of the effects of the second fluid are not negligible. Evidence
for this was given by BP, who showed that the agreement between the experimental
and theoretical dispersion curve improved when taking the second fluid to have equal
as opposed to negligible density. It would be of interest to see further experimental
results on the problem.

7. Conclusion

In conclusion, we have presented a numerical model capable of finding stable
travelling wave solutions on a ferrofluid jet, where the surrounding fluid is assumed
to be of zero density or equal density to that of the ferrofluid. The results from the
classical problem of two-dimensional gravity—capillary waves have helped predict the
behaviour of the solution space for various parameter values. The importance of the
existence of a minimum in the linear dispersion relation has been demonstrated, and
periodic, solitary and generalised solitary waves have been found for both models. The
stability of the solutions is as of yet unknown, and would require a time dependent
numerical scheme to find out, as done by Guyenne & Pardu (2016) for pure solitary
waves on the one-layer model. As well as time dependent models, it would be
interesting to see if symmetry breaking bifurcations can be found with the numerical
scheme described in this paper (by removing the imposed symmetry condition), as
has been found by Gao, Wang & Vanden-Broeck (2017) for gravity—capillary waves.
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